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Abstract

This thesis contains four papers, where the first two are in the area
of geometry of numbers, the third is about class group statistics and
the fourth is about free path lengths. A general theme throughout the
thesis is lattice points and convex bodies.

In Paper A we give an asymptotic expression for the number of
integer matrices with primitive row vectors and a given nonzero deter-
minant, such that the Euclidean matrix norm is less than a given large
number. We also investigate the density of matrices with primitive
rows in the space of matrices with a given determinant, and determine
its asymptotics for large determinants.

In Paper B we prove a sharp bound for the remainder term of the
number of lattice points inside a ball, when averaging over a compact
set of (not necessarily unimodular) lattices, in dimensions two and
three. We also prove that such a bound cannot hold if one averages
over the space of all lattices.

In Paper C, we give a conjectural asymptotic formula for the num-
ber of imaginary quadratic fields with class number h, for any odd
h, and a conjectural asymptotic formula for the number of imaginary
quadratic fields with class group isomorphic to G, for any finite abelian
p-group G where p is an odd prime. In support of our conjectures we
have computed these quantities, assuming the generalized Riemann
hypothesis and with the aid of a supercomputer, for all odd h up to
a million and all abelian p-groups of order up to a million, thus pro-
ducing a large list of “missing class groups.” The numerical evidence
matches quite well with our conjectures.

In Paper D, we consider the distribution of free path lengths, or the
distance between consecutive bounces of random particles in a rectan-
gular box. If each particle travels a distance R, then, as R → ∞ the
free path lengths coincides with the distribution of the length of the
intersection of a random line with the box (for a natural ensemble of
random lines) and we determine the mean value of the path lengths.
Moreover, we give an explicit formula for the probability density func-
tion in dimension two and three. In dimension two we also consider
a closely related model where each particle is allowed to bounce N
times, as N → ∞, and give an explicit formula for its probability
density function.
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Sammanfattning

Denna avhandling innehåller fyra artiklar, varav de första två är i
ämnet geometrisk talteori, den tredje handlar om klassgruppstatistik,
och den fjärde handlar om fria väglängder. Ett generellt tema genom
avhandlingen är gitterpunkter och konvexa kroppar.

I Artikel A ger vi ett asymptotiskt uttryck för antalet heltalsma-
triser med primitiva radvektorer och en given determinant, sådana att
den euklidiska matrisnormen är mindre än ett givet stort tal. Vi under-
söker också tätheten av matriser med primitiva radvektorer i rummet
av matriser med en given determinant, och avgör dess asymptotiska
beteende för stora determinanter.

I Artikel B bevisar vi en skarp övre gräns på feltermen för antalet
gitterpunkter inuti en boll då vi tar medelvärdet över en kompakt
mängd av (inte nödvändigtvis unimodulära) gitter, i dimension två
och tre. Vi bevisar även att en sådan övre gräns inte kan hålla om vi
tar medelvärdet över rummet av alla gitter.

I Artikel C ger vi en förmodad asymptotisk formel för antalet ima-
ginära kvadratiska kroppar med klasstal h, för udda h, och en för-
modad asymptotisk formel för antalet imaginära kvadratiska kroppar
med klassgrupp isomorf med G, för ändliga abelska p-grupper G där
p är ett udda primtal. För att stödja vår förmodan så har vi beräknat
dessa kvantiteter, under antagandet av den generaliserade Riemann-
hypotesen och med hjälp av en superdator, för all udda h upp till en
miljon G och alla abelska p-grupper av ordning upp till en miljon, och
vi har därmed producerat en stor lista på “saknade klassgrupper”. De
numeriska resultaten matchar våra förmodanden väl.

I Artikel D betraktar vi fördelningen av fria väglängder, dvs sträc-
kan mellan på varandra följande studsar av slumpmässiga partiklar i
en rektangulär låda. Om varje partikel färdas en sträcka R, så överens-
stämmer fördelningen av fria väglängder då R→∞ med fördelningen
av längden av snittet av en slumpmässig linje med lådan (för en na-
turlig ensemble av slumpmässiga linjer), och vi beräknar medelvärdet
av fria väglängderna. Vi ger ett explicit uttryck för täthetsfunktionen
i dimension två och tre. I dimension två betraktar vi även en relaterad
modell där varje partikel tillåts studsa N gånger, och vi ger ett explicit
uttryck för täthetsfunktionen då N →∞.
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1 Introduction

This thesis consists of this introduction and four papers. As indicated by
the title of the thesis, the first two papers are in the area of geometry of
numbers, the third paper is about class group statistics, and the fourth
paper is about free path lengths. Lattices and convex bodies are a general
theme throughout the thesis.

In this introduction we give an informal overview of the results obtained
in the papers contained in this thesis, intended to be accessible to a general
audience. For the sake of exposition, we will deviate from the formulations
used in the papers, and instead present the results with a more geometrical
flavor.

1.1 Overview of Paper A

Consider a parallelogram with integer coordinates which cannot be decom-
posed into smaller parallelograms with integer coordinates. We will call such
an object a primitive parallelogram; see Figure 1.1 for an illustration.
How many primitive parallelograms are there with an area of 10?

There are infinitely many such primitive parallelograms: in fact, starting
with a single primitive parallelogram, we can produce another one with the
same area by for example shifting it an integer distance up or to the right, or
by shearing it (see Figure 1.2), and by repeating either of these operations
we can produce arbitrarily many different parallelograms, all of which are
primitive and have the same area.

Thus, in order to make the counting problem interesting we need to im-
pose some restriction not only on the location of the parallelograms but also
on their size. A natural restriction is to consider all primitive parallelograms

1
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Figure 1.1 – Four parallelograms of area 10. The two blue parallelograms are
primitive, but the two red parallelograms are not, since they can be partitioned
into several smaller parallelograms.

Figure 1.2 – Three primitive parallelograms of area 10, where the green paral-
lelogram is obtained by applying the shear transformation (x, y) 7→ (x + y, y) to
the vertices of the blue parallelogram, and the pink parallelogram is obtained by
applying the same shearing transformation to the green parallelogram.

with the origin of the plane as a vertex, and such that
√
a2 + b2 (1.1.1)

is bounded by some large number T , say 100, where a and b are the side-
lengths of the parallelogram.

The first result of Paper A implies that the number of such primitive
parallelograms is approximately

2.4 · T 2

for large values of T . Indeed, by a brute force computer calculation one
can find that the correct number for T = 100 is 24000, which coincides ex-
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actly with our approximation (typically however, the approximation will be
slightly off). In fact, in Paper A we prove an analogous result for the gener-
alization of the above problem to n dimensions, where we replace primitive
parallelograms of area 10 with n-dimensional primitive parallelepipeds with a
given positive volume k, such that the origin is a vertex of the parallelepiped
and such that

√
a2

1 + · · ·+ a2
n ≤ T , where a1, a2, . . . , an are the side-lengths

of the parallelepiped (the n-dimensional generalization of a parallelogram).1
Next, suppose we choose a parallelogram with integer coordinates and

area 10 at random.2 What is the probability that the parallelogram we
choose is primitive? Equivalently, what is the proportion of primitive paral-
lelograms out of the set of all integer parallelograms with area 10? It follows
from the results of Paper A that the probability in this case is

22.222 . . .%.

A brute force computer search reveals that the proportion for T ≤ 100
is 24000/107816 = 0.22260 . . ., which indeed is close to the value above. In
Paper A we determine the probability in the generalized case in n dimensions
and a given positive volume k. Let us denote this probability by Dn(k).

We may ask which values can occur for the probability Dn(k). We prove
in Paper A that in two dimensions, probabilities arbitrarily close to any
given probability between 0% and 100% occur. Let us now focus on n ≥ 3
dimensions. The probability Dn(k) is maximized and equal to 1 for k = 1
only, and we prove that Dn(k) is close to 1 precisely if k has no small divisors
(for example if k is a large prime, say 31337). Although we have until now
assumed that the volume k is positive, one can make sense of the value
Dn(0), and we prove that the probability Dn(k) is minimized and equal to

1
ζ(n− 1)n

(1.1.2)

for k = 0 only, where ζ is the Riemann zeta function, and we prove that
Dn(k) is close to this minimum value for precisely those values of k which are
divisible by all small numbers (for example factorials, say k = 7! = 5040).

1In Paper A we actually compute a different number N ′
n,k(T ), which is precisely a

factor n!/2 larger than the number we are talking about in this section.
2To make this rigorous, we may think of the randomization process as selecting uni-

formly at random one parallelogram out of all parallelograms of area 10 with the origin
as a vertex which satisfy the condition (1.1.1) for some fixed large T .
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Finally, we prove that for n ≥ 4 there are “gaps” for the probability Dn(k)
in the sense that not all probabilities between the minimum (1.1.2) and the
maximum 1 can be attained; for example, in dimension four the probability
values are never betwen 74% and 81%, even though the minimum value is
about 48%. No statement was made3 in Paper A about whether there are
any gaps in dimension n = 3.

1.2 Overview of Paper B

Consider the lattice of all points with integer coordinates in the plane and
draw a large circle centered at the origin. How many lattice points are there
inside the circle?

(a) (b) (c)

Figure 1.3 – Approximating the number of lattice points inside a circle by the area
of the circle.

It is easy to see that the area of the circle is an approximation of the
number of lattice points inside the circle: namely, if we draw a square of
area 1 around each lattice point inside the circle (see Figure 1.3b for an
illustration), then the number of lattice points inside the circle is equal
to the area of the union of all these squares, and since this jagged shape
approximates the circle, the conclusion follows. Thus we are lead to the
natural follow-up question of how good this approximation is. Let t be the
radius of the circle and let us write N(t) for the number of lattice points
inside the circle. Then, as we have shown, N(t) is approximately πt2. Define

3At the time of this writing, I have proved that there are no gaps in dimension n = 3.
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the discrepancy

E(t) :=
∣∣∣N(t)− πt2

∣∣∣

to be the difference between the actual number of lattice points inside the
circle and our approximation. How large is E(t) for large radii t? This is
known as the Gauss circle problem. We can argue as follows to get an
upper bound on the discrepancy E(t).

Consider the set of squares of area 1 centered at a lattice point such that
the square touches the boundary of the circle, as in Figure 1.3c. If we want
to adjust our approximation πt2 to become the correct value N(t), then we
need to add, for every square containing a blue lattice point in Figure 1.3c
the missing area in that square (the white part), and we need to subtract,
for every square containing a red lattice point in Figure 1.3c the area of
the blue part in that square. Thus, in the worst case, we would have to
add (or subtract) no more than the area of all the squares in Figure 1.3c.
The number of squares in Figure 1.3c is, up to a constant, approximately
equal to the circumference 2πt of the circle, and therefore E(t) should be of
the order t for large t; since this is much smaller than πt2 for large t, this
justifies our calling the latter an approximation for N(t).

However, the actual size of the discrepancy E(t) should be much smaller,
by the following heuristic. When we add together all the small “adjust-
ments” described in the previous paragraph, we should intuitively expect
that many of the positive adjustments will be cancelled out by negative ad-
justments. If we cheat and pretend that the adjustments are “random” and
independent of each other, then the situation becomes similar to a one-
dimensional random walk: take a large number of steps of length 1, and
at each step either move forwards or backwards at random. How far from
our starting point should we expect to end up at the end of the random
walk? The answer turns out to be roughly the square root of the number of
steps, and we should therefore expect the discrepancy E(t) to be of the order
t1/2 for large t. How small can we make the exponent in the discrepancy?
Landau has proven that the exponent cannot be 1/2 or smaller, but Hardy
has conjectured that it can be made arbitrarily close to 1/2. The best result
to date is the exponent 131/208 ≈ 0.6298 . . ., due to Huxley.

In Paper B, we consider the generalization of the Gauss circle problem
where we replace the lattice of integer points with a random lattice; see
Figure 1.4a. A lattice in the plane is the set of points that can be reached
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from the origin by taking steps of v,−v, w, and −w where v and w are two
non-parallel vectors; the vectors v and w are called basis vectors for the
lattice. For an illustration, see Figure 1.4a, where the two black arrows are
the basis vectors and the lattice is the set of blue and red dots. (Note that
different basis vectors can yield the same lattice; see Figure 1.4b.) For a
general lattice, the number of lattice points inside a circle is approximately
equal to the area of the circle, divided by the area of the parallelogram
spanned by the two basis vectors. We may again ask what the discrepancy
is between the number of points inside the circle and this approximation.

(a) Lattice points inside a circle (b) Same lattice, different basis vectors

Figure 1.4

A random lattice may be generated by choosing uniformly at random
one basis vector each from two bounded regions in the plane, such that no
choice can yield two vectors that are parallel or arbitrarily close to parallel,
and such that arbitrarily short basis vectors cannot be chosen; see Figure
1.5 for an example. In Paper B, we prove that the expected discrepancy for
a random lattice is of the order t1/2 for large t.4

We also consider the analogous problem in three dimensions. Similar to
the arguments in two dimensions, we can show that the number of points
from a given lattice inside a sphere of large radius t is approximately propor-
tional to the volume 4

3πt
3 of the sphere. A naïve argument shows, as before,

that the discrepancy can be bounded, up to a constant, by the surface area
of the sphere, which is of the order t2, but a heuristic argument suggests
that the actual size of the discrepancy should be roughly the square root

4In Paper B, we actually use a more natural but less intuitive method of generating
random lattices, but the proof also works for the simpler model that we describe here.



1.3. OVERVIEW OF PAPER C 7

Figure 1.5 – Generating a random lattice by choosing one blue basis vector and
one green basis vector.

of this. We prove in Paper B that the expected discrepancy for a random
lattice is t, up to a logarithmic factor.

One may ask if the conditions we placed on the two regions in Figure
1.5 are necessary. In Paper B, we prove that if we relax these conditions,
then one can find pairs of regions such that the expected discrepancy must
be strictly larger (in fact, of order t1.5) in the three-dimensional case.

1.3 Overview of Paper C

A different way of counting the lattice points inside a circle is to add together,
for each smaller circle centered at the origin, the number of points which lie
exactly on that circle; see Figure 1.6.

Figure 1.6 – Each lattice point inside the large blue circle is on the boundary of
some concentric blue circle.
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To be explicit, each lattice point (x, y) inside a circle of radius t centered
at the origin satisfies the equation

x2 + y2 = m (1.3.1)

for some integer m ≤
√
t. The number of integer points (x, y) which satisfy

(1.3.1) is commonly denoted r2(m), and thus the number of lattice points
inside the circle of radius t centered at the origin can also be given as

∑

m≤
√

t

r2(m),

which corresponds to summing the number of points on each blue circle in
Figure 1.6.

More generally one could count lattice points inside an ellipse in an
analogous fashion. If a, b, c are integers and m ≥ 0, then the equation

ax2 + bxy + cy2 = m (1.3.2)

describes an ellipse in the plane centered at the origin if and only if

b2 − 4ac < 0.

We call D := b2 − 4ac the discriminant of the quadratic form ax2 +
bxy + cy2 (or just form for short). If there exist integers x, y such that the
equation (1.3.2) is satisfied, then the quadratic form is said to represent
m.

This motivates (among many other reasons) the study of quadratic forms
and the set of integers which a quadratic form represents. How many
quadratic forms are there with a given negative discriminant D? When
counting quadratic forms, we will dismiss those quadratic forms which are
essentially just another quadratic form in disguise. For example, we will
dismiss the quadratic form

10x2 + 5xy + 15y2, (1.3.3)

as it can be be obtained from the quadratic form

f(x, y) := 2x2 + xy + 3y2 (1.3.4)
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by multiplying the latter form by 5. We will also dismiss the quadratic form

g(x, y) := 50x2 − 5xy + 8y2, (1.3.5)

as it can be obtained from f by writing g(x, y) = f(5x−y, 3y). The quadratic
form

h(x, y) := 2x2 + 5xy + 6y2

can be obtained from f by writing h(x, y) = f(x + y, y), but on the other
hand, we can also obtain f from h by writing f(x, y) = h(x−y, y), so we will
dismiss neither, but instead consider f(x, y) and h(x, y) to be equivalent,
and regard both of them to be the same form. The opposite form of f
(note that we only flip the sign of the middle term),

F (x, y) := 2x2 − xy + 3y2, (1.3.6)

can be obtained from f by writing F (x, y) = f(x,−y), and conversely we
can obtain f from F by writing f(x, y) = F (x,−y), but the variable substi-
tution (x, y) 7→ (x,−y) flips the orientation of the plane and as such we do
not necessarily regard F as equivalent to f (unless a variable substitution
between them which keeps the orientation of the plane also exists). The
set of possible discriminants we are left with after dismissing all quadratic
forms such as (1.3.3) and (1.3.5) are precisely5 the (negative) fundamental
discriminants. Two quadratic forms with the same negative fundamental
discriminant represent exactly the same set of integers if and only if the
forms are equivalent or opposite.

The class number of a negative fundamental discriminant D is the
number of quadratic forms with discriminant D, where we count equivalent
quadratic forms as the same quadratic form. The Gauss class number
problem is to find all negative fundamental discriminants D with class
number 1; this is a highly nontrivial problem which was not solved until the
1950s or 1960s.6

In Paper C we give, for any odd number h, a formula which we conjecture
approximates the number of negative fundamental discriminants D such
that the class number of D is h. (Our restriction to odd values simplifies

5See Proposition 7.1a in [Bue89].
6A proof was given by Heegner in 1952 which was not initially accepted, and it was

later proved independently by Baker in 1966 and by Stark in 1967.
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certain aspects of the technical arguments in the paper.) In support of our
conjecture, we have computed the correct value (under the assumption of
the generalized Riemann hypothesis) for all odd h up to a million with the
aid of a supercomputer, and we find that our approximation is typically
within 1% of the correct value within this range.

An ancient identity known as Brahmagupta’s identity states that

(x2 + ky2) · (z2 + kw2) = (xz + kyw)2 + k(xw − yz)2

for any value of k, or in other words, if we multiply the two quadratic forms
x2 + ky2 and z2 + kw2 then we can write the result as the quadratic form
X2 + kY 2 where X = xz + kyw and Y = xw − yz. Gauss managed to
generalize this and prove that one can, for any quadratic forms f and g of
the same negative fundamental discriminant, write

f(x, y) · g(z, w) = Q(X,Y )

for some quadratic form Q(X,Y ), where X and Y are integer linear combi-
nations of xz, xw, yz, yw. The set of quadratic forms with a given negative
fundamental discriminant D together with this multiplication operation,
and where we regard equivalent forms as the same form, is called the class
group of D. For example, the discriminant of the quadratic form (1.3.4)
is −23, and it can be shown that the class group of −23 has exactly three
elements (and thus the class number of −23 is 3): the form f which we
defined in (1.3.4), the form F which we defined in (1.3.6) and the form

i(x, y) := x2 + xy + 6y2.

The multiplication table of this group is given in Figure 1.7a. The multi-
plication table gives complete information about the structure of the class
group. We note that the multiplication table in Figure 1.7a is identical (after
a simple name-change) to the addition table of the group of integers {0, 1, 2}
modulo 3, and thus the two groups have the same structure.

It is natural to ask what the multiplication tables of the class groups
look like. It is for example well-known that they are always symmetric
about the main diagonal. In Paper C, we make a conjecture about which
multiplication tables can be attained from the class groups of odd negative
fundamental discriminants;7 for technical reasons we restrict ourselves to

7In the paper, this conjecture is of course stated in terms of finite abelian groups
rather than multiplication tables.
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· i f F

i i f F
f f F i
F F i f

(a) Multiplication table for the quadratic
forms of discriminant −23.

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

(b) Addition table for the integers 0, 1, 2
modulo 3.

Figure 1.7 – Two groups with the same structure.

the case where the size of the class group has only one prime divisor p, for
odd primes p. We conjecture that a multiplication table is more likely to be
attained (for some odd negative fundamental discriminant) if it has a high
degree of “cyclicity,” and therefore that most tables will not be attained.
In support of our conjecture, we have calculated (under the assumption of
the generalized Riemann hypothesis) with the aid of a supercomputer the
structures of all class groups with an odd class number h up to a million.
The data seems to support our conjecture, and in particular we have found
(again, under the assumption of the generalized Riemann hypothesis) a large
list of explicit examples of “missing class groups.”

Remark 1.3.7. Distinguishing between equivalent and opposite forms makes it
so that the inverse element of a quadratic form in the class group of a discriminant
d becomes the opposite of the quadratic form, but the distinction is perhaps better
motivated by the fact that this definition makes the class group of a negative
fundamental discriminant isomorphic to the ideal class group of the quadratic field
Q(
√
d); see for instance Chapter 5 in [Cox89] for an exposition on ideal class groups.

1.4 Overview of Paper D

Consider a rectangular room containing only a point-shaped light bulb. Turn
the light on, so that it sends out light rays in all directions. After a few
minutes, the rays will have travelled a large distance (the same distance
for each ray) and bounced a large number of times against the walls of the
room; see Figure 1.8 for an illustration.

Between each pair of consecutive bounces of a given ray, the ray will
have travelled a certain distance; we will refer to such a distance as a
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Figure 1.8 – Sending out a large number of rays for an equal distance each.

bounce length. In Paper D, we calculate the distribution of bounce lengths
for the system of all rays; see Figure 1.9 for an example. We also calculate
the distribution for the analogous problem in three dimensions. Moreover,
we determine the expected value of the bounce lengths for the analogous
problem in n dimensions for any n ≥ 2, and find that it has the rather
simple geometrical interpretation as the quotient

volume of the room
surface area of the room

multiplied by the constant 2πSn−1/Sn where Sn−1 is the surface area of the
(n− 1)-dimensional sphere in n-dimensional space.

Note that in the problem above, each ray contributes a different num-
ber of bounce lengths (for example, although they have travelled the same
distance, the yellow ray in Figure 1.8 has bounced twice while the green ray
has only bounced once). This means that the distribution of bounce lengths
favors some directions more than others. It is thus interesting to ask what
the distribution of bounce lengths of a single ray would be, if its starting
direction is chosen uniformly at random (or equivalently, we could use many
rays, but instead impose that they all travel for the same number of bounces
rather than the same distance), so that all directions are treated equally.
This second problem is less mathematically elegant than the first and we
only have a result in two dimensions. We give explicitly the distribution for
this problem in two dimensions in Paper D and find indeed that it differs
from the distribution above. See Figure 1.10 for an example.
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0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 1.9 – Distribution of bounce lengths for a rectangle with side-lengths 1 and
2 (normalized to have area 1). The red curve is given by an explicit formula for the
probability density function, and the blue histogram was obtained experimentally
with a computer simulation by sending 100000 rays from the origin in uniformly
random directions for a distance 1000 each. Note that the side-lengths of the
rectangle can be recovered from the locations of the singularities of the curve.

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 1.10 – Red curve: distribution of bounce lengths for a system of many
particles in a rectangle with side-lengths 1 and 2. Black dashed curve: Distribution
of bounce lengths for a system of a single random particle in the same rectangle.
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Abstract We give an asymptotic expression for the number of nonsingular integer
n × n-matrices with primitive row vectors, determinant k, and Euclidean matrix norm
less than T , as T → ∞. We also investigate the density of matrices with primitive
rows in the space of matrices with determinant k, and determine its asymptotics for
large k.
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1 Introduction

An integer vector v ∈ Zn is primitive if it cannot be written as an integer multiple
m �= 1 of some other integer vector w ∈ Zn . Let A be an integer n × n-matrix
with nonzero determinant k and primitive row vectors. We ask how many such
matrices A there are of Euclidean norm at most T , that is, ‖A‖ ≤ T , where

‖A‖ :=
√∑

a2
i j = √

tr(At A). Let N ′
n,k(T ) be this number (the prime in the notation

denotes the primitivity of the rows), and let Nn,k(T ) be the corresponding count-
ing function for matrices with not necessarily primitive row vectors. We will deter-
mine the asymptotic behavior of N ′

n,k(T ) for large T , and investigate the density
Dn(k) := limT →∞ N ′

n,k(T )/Nn,k(T ) of matrices with primitive vectors in the space
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210 S. Holmin

of matrices with nonzero determinant k. Since N ′
n,k and Nn,k do not depend on the

sign of k, we will without loss of generality assume that k > 0.
Let Mn,k be the set of integer n × n-matrices with determinant k. Then Nn,k(T ) =

|BT ∩ Mn,k |, where BT is the (closed) ball of radius T centered at the origin in the
space Mn(R) of real n × n-matrices equipped with the Euclidean norm. Throughout,
we will assume that n ≥ 2 and k > 0 unless stated otherwise.

Duke et al. [2] found that the asymptotic behavior of Nn,k is given by

Nn,k(T ) = cn,k T n(n−1) + Oε(T
n(n−1)−1/(n+1)+ε),

as T → ∞, for a certain constant cn,k and all ε > 0, where the error term can be
improved to O(T 4/3) for n = 2. The corresponding case for singular matrices was
later investigated by Katznelson, who proved in [4] that

Nn,0(T ) = cn,0T n(n−1) log T + O(T n(n−1)).

See the next page for the constants cn,k and cn,0.
Let M ′

n,k be the set of matrices in Mn,k with primitive row vectors. Then N ′
n,k(T ) =

|BT ∩ M ′
n,k |. Wigman [8] determined the asymptotic behavior of the counting function

|GT ∩ M ′
n,0|, where GT is a ball of radius T in Mn(R), under a slightly different norm

than ours. The results can be transferred to our setting, whereby we have

N ′
n,0(T ) = c′

n,0T n(n−1) log T + O(T n(n−1)), n ≥ 4,

N ′
3,0(T ) = c′

3,0T 3(3−1) log T + O(T 3(3−1) log log T ),

N ′
2,0(T ) = c′

2,0T 2(2−1) + O(T ).

The case n = 2 above is equivalent to the primitive circle problem, which asks
how many primitive vectors there are of length at most T in Z2 given any (large) T .

The main result in our paper is the following asymptotic expression for the number
of nonsingular matrices with primitive row vectors and fixed determinant.

Theorem 1 Let k �= 0. Then

N ′
n,k(T ) = c′

n,k T n(n−1) + Oε(T
n(n−1)−1/(2n)+ε),

as T → ∞ for a certain constant c′
n,k and all ε > 0.

Section 3 is dedicated to the proof of this theorem.
The constant in Theorem 1 can be written as

c′
n,k = C1

|k|n−1

∑

d1···dn=|k|

n∏

i=1

∑

g|di

μ(g)

(
di

g

)i−1

,

for k �= 0, which may be compared to the constants obtained from [2], [4] and [8],
namely
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Counting nonsingular matrices with primitive row vectors 211

cn,k = C1

|k|n−1

∑

d1···dn=|k|

n∏

i=1

di−1
i

cn,0 = C0
n − 1

ζ(n)

c′
n,0 =

⎧
⎪⎪⎨
⎪⎪⎩

C0
n − 1

ζ(n − 1)nζ(n)
(n ≥ 3)

πT 2

ζ(2)
(n = 2)

where ζ is the Riemann zeta function, μ is the Möbius function, and C0 and C1
are constants defined as follows (these depend on n, but we will always regard n as
fixed). Let ν be the normalized Haar measure on SLn(R). The measure w below is
obtained by averaging the n(n − 1)-dimensional volume of E ∩ Au over all classes
Au := {A ∈ Mn(R) : Au = 0} for nonzero u ∈ Rn . In Appendix C we give a precise
definition of w and calculate w(B1).

Write Vn for the volume of the unit ball in Rn and Sn−1 for the surface area of the
(n − 1)-dimensional unit sphere in Rn . Then

C0 := w(B1) = Vn(n−1)Sn−1

2
= πn2/2

Γ
(n

2

)
Γ

(
n(n − 1)

2
+ 1

) ,

C1 := lim
T →∞

ν(BT ∩ SLn(R))

T n(n−1)
= Vn(n−1)Sn−1

2ζ(2) · · · ζ(n)
= C0

ζ(2) · · · ζ(n)
.

1.1 Density

It will be interesting to compare the growth of N ′
n,k to that of Nn,k . We define the

density of matrices with primitive rows in the space Mn,k to be

Dn(k) := lim
T →∞

N ′
n,k(T )

Nn,k(T )
= c′

n,k

cn,k
.

The asymptotics of Nn,0 and N ′
n,0 are known from [4] and [8], and taking their

ratio, we see that

Dn(0) = 1

ζ(n − 1)n

for n ≥ 3. We will be interested in the value of Dn(k) for large n and large k. The
limit of Dn(k) as k → ∞ does not exist, but it does exist for particular sequences of
k.

We say that a sequence of integers is totally divisible if its terms are eventually
divisible by all positive integers smaller than m, for any m. We say that a sequence
of integers is rough if its terms eventually have no divisors smaller than m (except
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212 S. Holmin

for 1), for any m. An equivalent formulation is that a sequence (k1, k2, . . .) is totally
divisible if and only if |ki |p → 0 as i → ∞ for all primes p, and (k1, k2, . . .) is rough
if and only if |ki |p → 1 as i → ∞ for all primes p, where |m|p denotes the p-adic
norm of m.

We state our main results about the density Dn . We prove these in sect. 4.

Theorem 2 Let n ≥ 3 be fixed. Then Dn is a multiplicative function, and Dn(pm) is
strictly decreasing as a function of m for any prime p. We have

1

ζ(n − 1)n
= Dn(0) < Dn(k) < Dn(1) = 1

for all k �= 0, 1. Now let k1, k2, . . . be a sequence of integers. Then

Dn(ki ) → 1

if and only if (k1, k2, . . .) is a rough sequence, and

Dn(ki ) → 1

ζ(n − 1)n

if and only if (k1, k2, . . .) is a totally divisible sequence. Moreover, Dn(k) → 1 uni-
formly as n → ∞.

Remark 3 Given an integer sequence k1, k2, . . ., write ki = ±∏
p pm p(i) for the prime

decomposition of ki for nonzero ki , and otherwise formally define m p(i) = ∞ for all p
if ki is zero. For n ≥ 3, it follows from Theorem 2 that the limit limi→∞ Dn(ki ) exists
and is equal to

∏
p limi→∞ Dn(pm p(i)) where the product extends over all primes p,

whenever every sequence of prime exponents (m p(1), m p(2), . . .) is either eventually
constant or tends to ∞.

We prove Theorem 2 for nonzero ki , but it is interesting that this formulation holds
for k = 0 also. The case of k = 0 was proved by Wigman [8], where he found that
Dn(0) equals 1/ζ(n − 1)n . We remark that Theorem 2 implies that

Dn(ki ) → Dn(0)

if and only if (k1, k2, . . .) is totally divisible, for any fixed n ≥ 3.
For completeness, let us state what happens in the rather different case n = 2.

Proposition 4 Let n = 2. Then Dn is a multiplicative function, and Dn(pm) is strictly
decreasing as a function of m for any prime p. We have

D2(ki ) → 0

if and only if limi→∞
∑

p|ki
1/p → ∞. Moreover,

D2(ki ) → 1
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Counting nonsingular matrices with primitive row vectors 213

if and only if limi→∞
∑

p|ki
1/p → 0. The sums are taken over all primes p which

divide ki .

In light of Remark 3, one may ask which values in the interval [Dn(0), 1] can be
obtained as partial limits of the function Dn . In this direction, we have the following
result.

Proposition 5 For n ≥ 4, the set of values of Dn(k) as k ranges over Z is not dense
in in the interval [Dn(0), 1]. For n = 2, the set of values of D2(k) as k ranges over Z
is dense in the interval [0, 1].

Section 4 is dedicated to the proofs of Theorem 2, Propositions 4 and 5.

1.2 Proof outline of Theorem 1

Our proof of Theorem 1 uses essentially the same approach as [2]. The set M ′
n,k is

partitioned into a finite number of orbits A SLn(Z), where A ∈ Mn,k are matrices in
Hermite normal form with primitive row vectors. We count the matrices in each orbit
separately. The number of matrices in each orbit scales as a fraction 1/kn−1 of the
number of matrices in SLn(Z). We can view SLn(Z) as a lattice in the space SLn(R),
and the problem is reduced to a lattice point counting problem. The lattice points inside
the ball BT are counted by evaluating the normalized Haar measure of BT ∩ SLn(R).

2 Preliminaries

The Riemann zeta function ζ is given by

ζ(s) :=
∞∑

n=1

1

ns
=

∏
p

1

1 − 1/ps

for Re s > 1, where we use the convention that when an index p is used in a sum or
product, it ranges over the set of primes.

The Möbius function μ is defined by μ(k) := (−1)m if k is a product of m distinct
prime factors (that is, k is square-free), and μ(k) := 0 otherwise. We note that μ

is a multiplicative function, that is, a function f : N∗ → C defined on the positive
integers such that f (ab) = f (a) f (b) for all coprime a, b.

We will use the fact that SLn(R) = Mn,1 has a normalized Haar measure ν which
is bi-invariant (see [6]).

2.1 Lattice point counting

Let G be a topological group with a normalized Haar measure νG and a lattice Γ ⊆ G,
and let GT be an increasing family of bounded subsets of G for all T ≥ 1. Under
certain conditions (see for instance [3]), we have

|GT ∩ Γ | ∼ νG(GT ∩ G),
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where we by f (T ) ∼ g(T ) mean that f (T )/g(T ) → 1 as T → ∞. In this paper,
we are interested in the lattice SLn(Z) inside SLn(R), and the following result will be
crucial.

Theorem 6 ([2, Theorem 1.10]). Let BT be the ball of radius T in the space Mn(R)

of real n × n-matrices under the Euclidean norm ‖A‖ = √
tr(At A). Let ν be the

normalized Haar measure of SLn(R). Then

|BT ∩ SLn(Z)| = ν(BT ∩ SLn(R)) + Oε(T
n(n−1)−1/(n+1)+ε)

for all ε > 0, and the main term is given by

|BT ∩ SLn(Z)| ∼ C1T n(n−1), C1 = 1

ζ(2) · · · ζ(n)

πn2/2

Γ
(n

2

)
Γ

(
n(n − 1)

2
+ 1

) .

In fact, a slightly more general statement is true. We can replace the balls BT in
Theorem 6 with balls under any norm on Mn(R), and the asymptotics will still hold,
save for a slighty worse exponent in the error term.

Theorem 7 ([3, Corollary 2.3]). Let ‖ · ‖′ be any norm on the vector space Mn(R),
and let GT be the ball of radius T in Mn(R) under this norm. Let ν be the normalized
Haar measure of SLn(R). Then

|GT ∩ SLn(Z)| = ν(GT ∩ SLn(R)) + Oε(T
n(n−1)−1/(2n)+ε)

for all ε > 0.

We will be interested in the following particular case of Theorem 7. Let A ∈ Mn,k .
Then ‖X‖′ := ‖A−1 X‖ defines a norm on Mn(R), and the ball of radius T in Mn(R)

under the norm ‖ · ‖′ is A · BT .

Corollary 8 Let A ∈ Mn,k . Then

|ABT ∩ SLn(Z)| = ν(ABT ∩ SLn(R)) + Oε(T
n(n−1)−1/(2n)+ε)

for all ε > 0, using the notation from Theorem 6.

3 The number of matrices with primitive rows

In the present section, we will prove Theorem 1. We begin by noting that the common
divisors of the entries of each row in an integer n × n-matrix A are preserved under
multiplication on the right by any matrix X ∈ SLn(Z). In particular, if each row of A
is primitive, then each row of AX is primitive, for any X ∈ SLn(Z). So we get:

Lemma 9 If A ∈ M ′
n,k then AX ∈ M ′

n,k for all X ∈ SLn(Z). Thus A·SLn(Z) ⊆ M ′
n,k .
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Counting nonsingular matrices with primitive row vectors 215

Consequently M ′
n,k may be written as a disjoint union of orbits of SLn(Z):

M ′
n,k =

⋃

A∈A
A SLn(Z),

for properly chosen subsets A of M ′
n,k . In fact, as we will show in the following, the

number of orbits is finite, and so we may take A to be finite.
A lower triangular integer matrix

C :=

⎛
⎜⎜⎜⎜⎝

c11 0 · · · 0

c21 c22
. . . 0

...
. . . 0

cn1 · · · cn(n−1) cnn

⎞
⎟⎟⎟⎟⎠

is said to be in (lower) Hermite normal form if 0 < c11 and 0 ≤ ci j < cii for all
j < i . The following result is well-known.

Lemma 10 ([1, Theorem 2.4.3]). Assume k > 0. Given an arbitrary matrix A ∈ Mn,k ,
the orbit A SLn(Z) contains a unique matrix C in Hermite normal form.

We may thus write

M ′
n,k =

m⋃

i=1

Ai SLn(Z),

where A1, . . . , Am are the unique matrices in Hermite normal form with primitive
row vectors and determinant k, and m := |M ′

n,k/ SLn(Z)|. By counting the number
of matrices in Hermite normal form with determinant k > 0, we get

|Mn,k/ SLn(Z)| =
∑

d1···dn=k

d0
1 d1

2 · · · dn−1
n ,

where the sum ranges over all positive integer tuples (d1, . . . , dn) such that d1 · · ·
dn = k.

Proposition 11 Let k > 0. Then

|M ′
n,k/ SLn(Z)| =

∑

d1···dn=k

n∏

i=1

∑

g|di

μ(g)

(
di

g

)i−1

where the first sum ranges over all positive integer tuples (d1, . . . , dn) such that
d1 · · · dn = k.
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Proof We want to count those matrices in Hermite normal form which are in M ′
n,k , that

is, n × n-matrices in Hermite normal form with determinant k and all rows primitive.
The number of such matrices is

∣∣M ′
n,k/ SLn(Z)

∣∣ =
∑

d1···dn=k

n∏

i=1

vi (di ),

where vi (d) is the number of primitive vectors (x1, . . . , xi−1, d) such that 0 ≤
x1, . . . , xi−1 < d. There is a bijective correspondence between the primitive vectors
(x1, . . . , xi−1, d) and the vectors y = (y1, . . . , yi−1) such that 1 ≤ y1, . . . , yi−1 ≤ d
and gcd(y) is coprime to d. Let d = pa1

1 · · · p
a j
j be the prime factorization of d. The

number of vectors y which are divisible by some set of primes P ⊆ {p1, . . . , p j } is

(
d∏

p∈P p

)i−1

,

so by the principle of inclusion/exclusion (see [7]), we have

vi (d) =
∑

P⊆{p1,...,p j }
(−1)|P|

(
d∏

p∈P p

)i−1

=
∑

g|p1···p j

μ(g)

(
d

g

)i−1

=
∑

g|d
μ(g)

(
d

g

)i−1

. ��

We are now ready to derive the asymptotics of N ′
n,k(T ).

Proof of Theorem 1 Let us write A1, . . . , Am for all the n × n-matrices in Hermite
normal form with determinant k, where m := |M ′

n,k/ SLn(Z)|, and let 1 ≤ i ≤ m.
Then

|BT ∩ Ai SLn(Z)| =
∣∣∣Ai (A−1

i BT ∩ SLn(Z))

∣∣∣ =
∣∣∣A−1

i BT ∩ SLn(Z)

∣∣∣ ,

which by Corollary 8 is equal to

ν(A−1
i BT ∩ SLn(R)) + Oε(T

n(n−1)−1/(2n)+ε)

for any ε > 0. Since Ai/k1/n ∈ SLn(R), we get by the invariance of the measure ν

that

ν(A−1
i BT ∩ SLn(R)) = ν

(
Ai

k1/n

(
A−1

i BT ∩ SLn(R)
))

= ν

(
k−1/n BT ∩ Ai

k1/n
SLn(R)

)
= ν

(
BT/k1/n ∩ SLn(R)

)
.
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By Theorem 6, the last expression is equal to

C1(T/k1/n)n(n−1) + Oε(T
n(n−1)−1/(2n)+ε),

and thus

|BT ∩ Ai SLn(Z)| = C1

kn−1 T n(n−1) + Oε(T
n(n−1)−1/(2n)+ε). (1)

Now,

N ′
n,k(T ) = ∣∣BT ∩ M ′

n,k

∣∣ =
∣∣∣∣∣BT ∩

m⋃

i=1

Ai SLn(Z)

∣∣∣∣∣ =
m∑

i=1

|BT ∩ Ai SLn(Z)| ,

so applying (1) we get

N ′
n,k(T ) =

m∑

i=1

C1

kn−1 T n(n−1) + Oε(T
n(n−1)−1/(2n)+ε)

= ∣∣M ′
n,k/ SLn(Z)

∣∣ C1

kn−1 T n(n−1) + Oε(T
n(n−1)−1/(2n)+ε),

and we need only apply Proposition 11 to get an explicit constant for the main term.
This concludes the proof. ��

4 Density of matrices with primitive rows

Set

an(k) := |Mn,k/ SLn(Z)| =
∑

d1···dn=k

d0
1 · · · dn−1

n , (2)

a′
n(k) := |M ′

n,k/ SLn(Z)| =
∑

d1···dn=k

n∏

i=1

∑

g|di

μ(g)

(
di

g

)i−1

. (3)

We would like to calculate the density of matrices with primitive rows in Mn,k for
k �= 0, that is, the quantity

Dn(k) = lim
T →∞

N ′
n,k(T )

Nn,k(T )
= c′

n,k

cn,k
= |M ′

n,k/ SLn(Z)|
|Mn,k/ SLn(Z)| = a′

n(k)

an(k)
.

We will prove in Sect. 4.1 that an, a′
n and Dn are multiplicative functions, and therefore

we need only understand their behavior for prime powers k = pm . We will now prove
a sequence of lemmas which we will finally use in Sect. 4.2 to prove Theorem 2.
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Lemma 12 The functions a′
n and an are connected via the identity

a′
n(pm) =

m∑

i=0

(−1)i
(

n

i

)
an(pm−i )

for primes p and m ≥ 0.

Proof an(pm) counts the number of n × n-matrices in Hermite normal form with
determinant pm , whereas a′

n(pm) counts the number of such with primitive rows. If
A is a matrix in Mn,k\M ′

n,k , then some set of rows, indexed by S ⊆ [n] := {1, . . . , n}
(where |S| ≤ m), are divisible by p. The number of such matrices is an(pm−|S|), and
thus by the inclusion/exclusion principle,

a′
n(pm) =

∑

S⊆[n]
|S|≤m

(−1)|S|an(pm−|S|) =
m∑

i=0

(−1)i
(

n

i

)
an(pm−i ). ��

Lemma 13 For any prime p and m ≥ 1, the following recursion holds:

an(pm) = pn−1an(pm−1) + an−1(pm),

or equivalently,

an(pm−1) = an(pm) − an−1(pm)

pn−1 .

Proof We split the sum

an(pm) =
∑

d1···dn=pm

d0
1 · · · dn−1

n

into two parts, one part where dn is divisible by p, and another part where it is not
(so that dn = 1). The terms corresponding to dn = 1 sum to an−1(pm). Where dn

is divisible by p, we can write dn =: pen for some en . Let ei := di for all i < n.
Thus,

∑

d1···dn=pm

p|dn

d0
1 · · · dn−1

n =
∑

e1···en=pm−1

e0
1 · · · (pen)n−1 = pn−1an(pm−1).

Adding the two parts gives us an(pm) = pn−1an(pm−1)+ an−1(pm), from which the
second claim in the lemma follows by rearrangement. ��
Lemma 14 Let n and p be fixed, where n ≥ 3 and p is a prime. Then
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Dn(pm) →
(

1 − 1

pn−1

)n

as m → ∞.

Proof We apply the simple upper bound

an−1(pm) =
∑

d1···dn−1=pm

d0
1 · · · dn−2

n ≤
∑

d1···dn−1=pm

(pm)n−2 = (m + 1)n−1(pm)n−2

to the expression for an(pm−1) in Lemma 13:

an(pm−1) = 1

pn−1 (an(pm) − an−1(pm))

= 1

pn−1 an(pm) + O((pm)n−2(m + 1)n−1).

Repeated application (at most n times) of this formula yields the asymptotics

an(pm−i ) = 1

(pn−1)i
an(pm) + O((pm)n−2(m + 1)n−1)

for 1 ≤ i ≤ n.
Now let m → ∞, so that we may assume m to be larger than n. The sum in Lemma

12 then extends up to i = n (because the factors
(n

i

)
vanish for larger i), so

a′
n(pm) =

n∑

i=0

(−1)i
(

n

i

)
an(pm−i )

=
n∑

i=0

(−1)i
(

n

i

)
1

(pn−1)i
an(pm) + O((pm)n−2(m + 1)n−1).

We divide by an(pm) on both sides and use the fact that an(pm) ≥ (pm)n−1, so that

Dn(pm) =
n∑

i=0

(−1)i
(

n

i

)
1

(pn−1)i
+ O

(
(pm)n−2(m + 1)n−1

(pm)n−1

)

=
n∑

i=0

(
n

i

)( −1

pn−1

)i

+ O

(
(m + 1)n−1

pm

)

=
(

1 − 1

pn−1

)n

+ O

(
(m + 1)n−1

pm

)
.

As m → ∞, the second term on the right vanishes. ��
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4.1 Multiplicativity and monotonicity of the density function

In this section we will prove the following proposition.

Proposition 15 The function Dn is multiplicative, and Dn(pm) is strictly decreasing
as a function of m for any fixed prime p and dimension n ≥ 2.

We may rewrite (2) as

an = (·)n−1 ∗ · · · ∗ (·)0

where (·)i is the function x �→ xi and ∗ denotes the Dirichlet convolution. Similarly,
we may rewrite (3) as

a′
n = (μ ∗ (·)n−1) ∗ · · · ∗ (μ ∗ (·)0), (4)

so by the commutativity and associativity of the Dirichlet convolution we have

a′
n = μ∗n ∗ an,

where μ∗n denotes the convolution of μ with itself n times (so that μ∗1 = μ). Since
the Dirichlet inverse of μ is the constant function 1, we have also the relation

an = 1∗n ∗ a′
n .

As μ and (·)i are multiplicative functions, it follows that an, a′
n and Dn are multiplica-

tive as well.
Now, we want to show that Dn(pm) = a′

n(pm)/an(pm) is strictly decreasing as a
function of m, for fixed n ≥ 2 and primes p, or equivalently that

a′
n(pm)

an(pm)
>

a′
n(pm+1)

an(pm+1)
(5)

for all m ≥ 0. The inequality (5) is equivalent to

a′
n(pm)

(1∗n ∗ a′
n)(pm)

>
a′

n(pm+1)

(1∗n ∗ a′
n)(pm+1)

for all m ≥ 0, which is equivalent to

a′
n(pm)∑m

i=0 1∗n(pi )a′
n(pm−i )

>
a′

n(pm+1)∑m+1
i=0 1∗n(pi )a′

n(pm+1−i )
,

or, after taking the reciprocal of both sides,

m∑

i=0

1∗n(pi )
a′

n(pm−i )

a′
n(pm)

<

m+1∑

i=0

1∗n(pi )
a′

n(pm+1−i )

a′
n(pm+1)

.
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Since the last term (i = m + 1) on the right hand side is positive, this inequality
holds if

a′
n(pm−i )

a′
n(pm)

≤ a′
n(pm+1−i )

a′
n(pm+1)

for all i ≤ m. We can rearrange this inequality as

a′
n(pm+1)

a′
n(pm)

≤ a′
n(pm+1−i )

a′
n(pm−i )

,

which states that a′
n(pm+1)/a′

n(pm) is a non-increasing function of m, for fixed n ≥ 2
and p prime. We will therefore be done if we can prove that

a′
n(pm+1)a′

n(pm+1) ≥ a′
n(pm)a′

n(pm+2) (6)

for all m ≥ 0, or equivalently, that the function m �→ a′
n(pm) is logarithmically

concave:
We say that a sequence u : N0 → R is logarithmically concave if

u2
r − ur−1ur+1 ≥ 0

for all r ≥ 1. We note that a sequence u of positive real numbers is logarithmi-
cally concave if and only if u1/u0 ≥ u2/u1 ≥ u3/u2 ≥ · · · , that is, if and only if
(u1/u0, u2/u1, u3/u2, . . .) is a non-increasing sequence. Also note that if u is posi-
tive and logarithmically concave, then the inequality ui+1/ui ≥ u j+1/u j implies the
inequality ui+1u j − u j+1ui ≥ 0 for all indices i < j .

Let � denote the discrete convolution, so that (u �v)r = ∑r
j=0 ur− jv j for all r ≥ 0

given any sequences u, v : N0 → R. We will need the following fact, which follows
from the proof of Theorem 1 in [5].

Theorem 16 ([5, Theorem 1]). Let u, v : N0 → R be sequences such that u0 = v0 =
1, and let w = u � v. Then we may write w2

r − wr−1wr+1 = I + II + III, where

I =
∑

0≤i< j≤r−1

(v jvi+1 − v j+1vi )(ur− j ur−i−1 − ur−1− j ur−i ),

II =
r−1∑

j=0

v j (ur− j ur − ur−1− j ur+1),

III = vr ur +
r−1∑

j=0

u j (vrvr− j − vr+1vr−1− j ),

for all r ≥ 1. In particular, if u, v are positive and logarithmically concave sequences,
then so is w, since all factors in the sums in I, II, III are non-negative for such u, v.
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Fix n and p. Then since (μ ∗ (·)i )(pm) = ∑m
r=0 μ(pm−r )pri = (M �

Pi )(m) where M is the sequence (1,−1, 0, 0, 0, . . .) and where Pi is the sequence
(1, pi , p2i , p3i , . . .), Eq. (4) implies that the function m �→ a′

n(pm) can be written as

(M � Pn−1) � · · · � (M � P0).

Lemma 17 Let 0 ≤ i < j . Then (M � Pi ) � (M � Pj ) is positive and logarithmically
concave if and only if i > 0.

Proof Write u := M � Pi and v := M � Pj where i < j . We have u0 = 1 and
ur = pir − pi(r−1) for all r ≥ 1. Thus u1ur − u0ur+1 = (pi − 1)(pir − pi(r−1)) −
(pi(r+1) − pir ) = pi(r−1) − pir = −ur for all r ≥ 1, and usur −us−1ur+1 = 0 when
s ≥ 2, r ≥ 1 or s = 1, r = 0. Likewise vsvr − vs−1vr+1 is −vr if s = 1, r ≥ 1, and
0 otherwise.

Let w := u�v = (M�Pi )�(M�Pj ). By Theorem 16 we can write w2
r −wr−1wr+1 =

I + II + III, where

I = (−vr−1)(−ur−1),

II = vr−1(−ur ),

III = vr ur + ur−1(−vr ),

for all r ≥ 1, and therefore

w2
r − wr−1wr+1 = ur−1vr−1 + urvr − urvr−1 − ur−1vr

= (ur − ur−1)(vr − vr−1).

Thus, since (u0, u1, . . .) is a non-decreasing sequence for i > 0, and likewise
(v0, v1, . . .) is a non-decreasing sequence for j > 0, we get w2

r − wr−1wr+1 ≥ 0 for
all r ≥ 1 for i > 0. Also, the sequence w is positive for i, j > 0 since it is then the con-
volution of two positive sequences. If i = 0, then the inequality w2

r − wr−1wr+1 ≥ 0
fails for r = 1 since then u1 − u0 = (p0 − 1) − 1 < 0 and v1 − v0 = (p j − 1) −
1 > 0. ��

We will prove Proposition 15 by induction on n. The base case is the following
proposition, which we will prove in Appendix B.

Proposition 18 For n = 4, 5 and any fixed prime p, the function m �→ a′
n(pm) is

logarithmically concave.

It happens that a′
n(pm), as a function of m, is not logarithmically concave for n = 2

or n = 3 for all p [it fails the inequality (6) for r = 1 when p = 2], so we will also
need the following proposition, which we prove in Appendix A.

Proposition 19 For n = 2, 3 and any fixed prime p, the function m �→ Dn(pm) is
strictly decreasing.

The proofs of Propositions 19 and 18 consist of explicitly evaluating an(pm) and
a′

n(pm) for the values of n in question, both of which are polynomials in p with
exponents in m, and verifying Eqs. (5) and (6), respectively.
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Proof of Proposition 15 By Propositions 18 and 19, it suffices to consider n > 5. By
Proposition 18 and Theorem 16, it follows that A′

n(m) := a′
n(pm) is logarithmically

concave for all n > 5 and any p, since for any even n > 5, we can write

A′
n = A′

4 � [(M � P4) � (M � P5)] � · · · � [(M � Pn−2) � (M � Pn−1)],

and for any odd n > 5, we can write

A′
n = A′

5 � [(M � P5) � (M � P6)] � · · · � [(M � Pn−2) � (M � Pn−1)],

and in both cases we have written A′
n as the convolution of positive and logarithmically

concave sequences, by Lemma 17. We have thus proven the inequality (6), and this
concludes the proof of Proposition 15. ��

4.2 Asymptotics of the density function

In this section we prove Theorem 2 and thus derive the asymptotics of Dn(k). Fix
n ≥ 3. For any nonzero integer ki , write ki = ∏

p pm p(i) as a product of prime
powers, where all but finitely many of the exponents m p(i) are zero. Then since Dn

is multiplicative, we have

Dn(ki ) =
∏

p

Dn(pm p(i)).

Now, by Lemma 14 and Proposition 15, we get

1 ≥
∏

p

Dn(pm p(i)) >
∏

p

(
1 − 1

pn−1

)n

= 1

ζ(n − 1)n
> 0,

so it follows by dominated convergence that

lim
i→∞

∏
p

Dn(pm p(i)) =
∏

p

lim
i→∞ Dn(pm p(i)), (7)

whenever (k1, k2, . . .) is a sequence of nonzero integers such that the limit
limi→∞ Dn(pm p(i)) exists for each prime p.

Let (k1, k2, . . .) be a sequence of nonzero integers. It now follows from (7), Propo-
sition 15 and the fact that Dn(1) = 1, that

Dn(ki ) → 1

if and only if m p(i) → 0 as i → ∞ for all p, that is, if and only if (k1, k2, . . .) is a
rough sequence. Likewise it follows, using Lemma 14, that

Dn(ki ) → 1

ζ(n − 1)n
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if and only if m p(i) → ∞ for all p, that is, if and only if (k1, k2, . . .) is a totally
divisible sequence. Since Dn(0) = 1/ζ(n − 1)n , we may allow the elements of the
sequence (k1, k2, . . .) to also assume the value 0.

Finally, it follows that Dn(k) → 1 as n → ∞ uniformly with respect to k since

Dn(k) ≥ 1

ζ(n − 1)n
→ 1

as n → ∞ because ζ(n − 1) = 1 + O(2−n) for n ≥ 3. We have thus proved all parts
of Theorem 2. ��

We conclude this section by proving Proposition 4, which tells us the asymptotics
of D2(k) for n = 2.

Proof of Proposition 4 If m = 0, we have D2(pm) = 1. Assume m > 0. The 2 × 2-
matrices in Hermite normal form with determinant pm and primitive rows are of the

form

(
1 0
x pm

)
where 0 ≤ x < pm, p � x . Thus a′

2(pm) = pm(1 − 1/p). Moreover,

a2(pm) =
∑

d1d2=pm

d2 =
∑

i+ j=m

pi =
m∑

i=0

pi = pm+1 − 1

p − 1
= pm 1 − 1/pm+1

1 − 1/p
,

so

D2(pm) = (1 − 1/p)2

1 − 1/pm+1 (8)

for all m ≥ 1. We see immediately that D2(pm) is strictly decreasing as a function of
m, for any fixed p. Therefore

(
1 − 1

p

)2

≤ D2(pm) ≤ 1 − 1

p
.

Since D2 is multiplicative, we get

⎡
⎣∏

p|k

(
1 − 1

p

)⎤
⎦

2

≤ D2(k) ≤
∏

p|k

(
1 − 1

p

)
.

The left and right sides both tend to 0 if and only if limi→∞
∑

p|ki
1/p → ∞, and

they both converge to 1 if and only if limi→∞
∑

p|ki
1/p → 0. ��

4.3 The image of the density function

Proof of Proposition 5 for n ≥ 4. By Proposition 15, the function Dn is multiplicative,
and Dn(pm) is strictly decreasing as a function of m for any fixed p, n. Thus we get
Dn(k) ≤ Dn(2) whenever k is divisible by 2. When k is not divisible by 2, we get
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Dn(k) ≥
∏

p≥3

lim
m→∞ Dn(pm) =

∏

p≥3

(
1 − 1/pn−1

)n

= 1(
1 − 1/2n−1

)n

∏
p

(
1 − 1/pn−1

)n = 1(
1 − 1/2n−1

)n
1

ζ(n − 1)n
.

by Lemma 14. We will show that this value is larger than Dn(2), which will prove
that the image of Dn : Z → R is not dense in [Dn(0), 1]. By Eq. (2) we have an(2) =∑n

i=1 2i−1 = 2n−1 and by Lemma 12 we have a′
n(2) = an(2)−nan(1) = (2n−1)−n,

so Dn(2) = 1 − n/(2n − 1).
Thus it suffices to prove

1(
1 − 1/2n−1

)n
1

ζ(n − 1)n
> 1 − n

2n − 1
. (9)

This inequality can be verified numerically for n = 4, 5. Let us now assume n ≥ 6.
The inequality (9) is is equivalent to

− log(1 − n/(2n − 1)) − n log
(

1 − 1/2n−1
)

> n log ζ(n − 1).

By Taylor expansion, the first term on the left hand side is > n/(2n − 1) > n/2n ,
and the second term on the left hand side is > n/2n−1. Thus the inequality above
follows from 1/2n + 1/2n−1 ≥ log ζ(n − 1), or equivalently e3/2n ≥ ζ(n − 1). We
bound the left hand side from below by 1 + 3/2n , and we bound the right hand side
from above by 1 + 1/2n−1 + ∫∞

2
dx

xn−1 . Thus the inequality follows from 1 + 3/2n ≥
1 + 1/2n−1 + 1/((n − 2)2n−2) or equivalently 3 ≥ 2 + 4/(n − 2), which is true for
all n ≥ 6. ��
Proof of Proposition 5 for n = 2. It suffices to show that the set of values of
− log(D2(k)) as k ranges over positive square-free integers is dense in [0,∞). By
the identity (8) we have

D2(p) = (1 − 1/p)2

1 − 1/p2 = 1 − 1/p

1 + 1/p
= p − 1

p + 1
= 1 − 2

p + 1
.

Let k > 0 be squarefree, and let P0 be the set of primes dividing k. Then

− log D2(k) = − log
∏

p∈P0

D2(p) =
∑

p∈P0

(
− log

(
1 − 2

p + 1

))
.

The terms dp := − log(1− 2
p+1 ) are positive, decreasing, and tend to zero as p → ∞.

By Taylor expansion, the sum
∑

p dp over all primes is larger than
∑

p
2

p+1 , which
diverges since

∑
p 1/p diverges.

Now, given any x ∈ [0,∞) and any ε > 0, we can find a k such that − log D2(k)

is within a distance ε from x as follows. Let p0 be the smallest prime such that
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dp0 < ε, and let P0 be the smallest set of consecutive primes, starting with p0, such
that

∑
p∈P0

dp ≥ x . Then the sum
∑

p∈P0
dp = − log D2(k) is at a distance at most

dp0 < ε from x since dp is decreasing, where k = ∏
p∈P0

p, and we are done. ��
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Appendix A: Proof of Proposition 19

We prove Proposition 19. Recall from Eq. (8) that D2(pm) = (1−1/p)2/(1−1/pm+1)

if m > 0, and otherwise D2(p0) = 1. Thus we see immediately that D2(pm) is strictly
decreasing as a function of m.

The case n = 3 remains. By Eq. (2) we get

a3(pm) =
∑

j1+ j2+ j3=m

p j2+2 j3 =
m∑

j3=0

p2 j3
m− j3∑

j2=0

p j3 =
m∑

j3=0

p2 j3 1 − pm− j3+1

1 − p

= 1

1 − p

m∑

j3=0

(p2 j3 − pm+ j3+1) = 1

1− p

(
1 − p2(m+1)

1 − p2 − pm+1 1 − pm+1

1 − p

)

= 1 − p2(m+1) − (1 + p)pm+1 + (1 + p)p2(m+1)

(1 − p)(1 − p2)

= 1 − pm+1 − pm+2 + p(m+1)+(m+2)

(1 − p)(1 − p2)
= (pm+1 − 1)(pm+2 − 1)

(p − 1)(p2 − 1)
.

for all m ≥ 1.
Let us write I (P) := 1 if the condition P is true, and I (P) := 0 if the condition

P is false. By Eq. (3) we get for all m ≥ 1 that

a′
3(pm) =

∑

j1, j2, j3≥0:
p j1 p j2 p j3=pm

3∏

i=1

∑

r≥0:
pr |p ji

μ(pr )(p ji −r )i−1

=
∑

j2, j3≥0:
j2+ j3=m

(
p j2 − p j2−1 I ( j2 > 0)

) (
p2 j3 − p2( j3−1) I ( j3 > 0)

)
. (10)

We expand the product in the summand and split the sum into several geometric series
which we sum individually. We get

m∑

j2=0

(
p2m−j2 − p2m− j2−1 I ( j2 >0)− p2m− j2−2 I (m > j2)+ p2m− j2−3 I (0< j2 <m)

)

= p2m

(
1− p−(m+1)

1− p−1 − p−1

(
1− p−(m+1)

1− p−1 − 1

)
− p−2 1− p−m

1− p−1 + p−3
(

1− p−m

1− p−1 −1

))
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= p2m

1− p−1

(
1− p−(m+1)− p−1

(
1− p−(m+1)−(1− p−1)

)

−p−2(1 − p−m)+ p−3
(

1− p−m −(1 − p−1)
))

= p2m

1− p−1

(
(1− p−2)2− p−m−1(1− p−1)2

)
= p2m(1− p−2)2− pm−1(1− p−1)2

1− p−1

=(p2m(p+1)2− pm+1)
p−1

p3 .

Since D3(1) = 1 and D3(pm) < 1 for all m > 0 (the diagonal matrix with diagonal
entries 1, 1, pm is in Hermite normal form, but its last row is not primitive), it suffices
to show that D3(pm) > D3(pm+1) for all m ≥ 1. To see this, we note that

p2m(p + 1)2 − pm+1

(pm+1 − 1)(pm+2 − 1)
>

p2m+2(p + 1)2 − pm+2

(pm+2 − 1)(pm+3 − 1)

⇐⇒ p2m(p + 1)2[(pm+3 − 1) − p2(pm+1 − 1)] − pm+1[(pm+3 − 1)

−p(pm+1 − 1)] > 0

⇐⇒ p2m(p + 1)2(p2 − 1) − pm+1(pm+2 + 1)(p − 1) > 0

⇐⇒ p2m(p + 1)3 − p2m(p3 + p1−m) > 0,

where the last inequality is true since (p + 1)3 > p3 + 1 ≥ p3 + p1−m for all m ≥ 1
and all p ≥ 2. This concludes the proof of Proposition 19. ��

Appendix B: Proof of Proposition 18

B1: The case n = 4

We prove Proposition 18 for n = 4. By Eq. (3), we can write

a′
4(pm) =

∑

j1, j2, j3, j4≥0:
p j1 p j2 p j3 p j4 =pm

4∏

i=1

∑

r≥0:
pr |p ji

μ(pr )(p ji −r )i−1

=
∑

j2+ j3+ j4=m

(
p j2 − p j2−1 I ( j2 > 0)

) (
p2 j3 − p2( j3−1) I ( j3 > 0)

)

(
p3 j4 − p3( j4−1) I ( j4 > 0)

)
,

where I (P) is defined as in (10). We evaluate this sum in the same way that we
evaluated a′

3(pm) in Appendix A: We expand the product in the summand and eliminate
the symbols I (P) by splitting the sum into several geometric series over different
ranges, corresponding to the conditions j2 > 0, and so on, and compute each geometric
series individually. We assume m ≥ 1 to guarantee that

∑m
j2=1, for instance, is never

an empty sum. Thus, by a tedious but straightforward calculation, we get
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a′
4(pm)= (p−1)pm−6

p+1

(
p2m − pm+1−4pm+2−6pm+3−4pm+4− pm+5+3p2m+1

+6p2m+2+7p2m+3+6p2m+4+3p2m+5+ p2m+6+ p3
)
. (11)

Using this, one may show that

a′
4(pm+1)2−a′

4(pm)a′
4(pm+2)

=(p−1)4 p3m−7
(

(p+1)2
(

p2+ p+1
)3

p2m −
(

p2+ p+1
)3

pm +(p+1)2 p

)

=(p−1)4 p3m−7
(

((p+1)2 pm −1)
(

p2+ p+1
)3

pm +(p+1)2 p

)
, (12)

which we see is positive for all p ≥ 2 and all m ≥ 1. Moreover, using a′
4(p0) = 1,

we get

a′
4(p1)2 − a′

4(p0)a′
4(p2) = (p − 1)(p + 2)

(
p3 − 3

)
,

which is positive for all p ≥ 2. Thus we have proved the inequality (6) for all m ≥ 0,
which completes the proof of Proposition 18 for the case n = 4. ��

Equations (11) and (12) may be verified with a computer algebra system, for
instance with the Mathematica code provided at http://www.math.kth.se/~holmin/
files/x/a4prime_is_logconcave.

B2: The case n = 5

We prove Proposition 18 for n = 5. We repeat the procedure above. We evaluate

a′
5(pm) =

∑

j2+ j3+ j4+ j5=m

(
p j2 − p j2−1 I ( j2 > 0)

) (
p2 j3 − p2( j3−1) I ( j3 > 0)

)

×
(

p3 j4 − p3( j4−1) I ( j4 > 0)
) (

p4 j5 − p4( j5−1) I ( j4 > 0)
)

.

As before, we expand the product in the summand, and split the sum into several

geometric series. This yields a′
5(pm) = p−1

p10(p+1)(p2+p+1)

(
p4m − pm+6 + p2m+3 +

5p2m+4 +11p2m+5 +14p2m+6 +11p2m+7 +5p2m+8 + p2m+9 − p3m+1 −5p3m+2 −
15p3m+3 − 30p3m+4 − 45p3m+5 − 51p3m+6 − 45p3m+7 − 30p3m+8 − 15p3m+9 −
5p3m+10 − p3m+11 + 4p4m+1 + 10p4m+2 + 20p4m+3 + 31p4m+4 + 40p4m+5 +
44p4m+6 + 40p4m+7 + 31p4m+8 + 20p4m+9 + 10p4m+10 + 4p4m+11 + p4m+12

)
,

valid for m ≥ 1.
We get a′

5(p)−a′
5(1)a′

5(p2) = (p−1)
(
(p−1)p

(
p2+ p+3

)
(p(p+2)+2)−10

)
,

which we see is positive, and thus we have proved the inequality (6) for m = 0.

123



Counting nonsingular matrices with primitive row vectors 229

For m ≥ 1, we get a′
5(pm+1)2 −a′

5(pm)a5(pm+2) = (p−1)4 p3m−13

p2+p+1

(
− p3m + p4m −

pm+2−4pm+3−10pm+4−16pm+5−19pm+6−16pm+7−10pm+8−4pm+9−pm+10+
2p2m+1 +10p2m+2 +34p2m+3 +80p2m+4 +143p2m+5 +201p2m+6 +224p2m+7 +
201p2m+8 +143p2m+9 +80p2m+10 +34p2m+11 +10p2m+12 +2p2m+13 −8p3m+1 −
32p3m+2−88p3m+3−188p3m+4−328p3m+5−480p3m+6−600p3m+7−646p3m+8−
600p3m+9 − 480p3m+10 − 328p3m+11 − 188p3m+12 − 88p3m+13 − 32p3m+14 −
8p3m+15 − p3m+16 + 6p4m+1 + 23p4m+2 + 64p4m+3 + 143p4m+4 + 266p4m+5 +
423p4m+6 + 584p4m+7 + 706p4m+8 + 752p4m+9 + 706p4m+10 + 584p4m+11 +
423p4m+12+266p4m+13+143p4m+14+64p4m+15+23p4m+16+6p4m+17+p4m+18+
p6 + 2p5 + p4

)
. The first factor is obviously positive for p ≥ 2, and the second fac-

tor may be rearranged as (752p4m+9 − 646p3m+8) + (706p4m+10 − 600p3m+9) +
(706p4m+8 −600p3m+7)+ (584p4m+11 −480p3m+10)+ (584p4m+7 −480p3m+6)+
(423p4m+12−328p3m+11)+(423p4m+6−328p3m+5)+(266p4m+13−188p3m+12)+
(266p4m+5 − 188p3m+4) + (143p4m+14 − 88p3m+13) + (143p4m+4 − 88p3m+3) +
(64p4m+15 − 32p3m+14) + (64p4m+3 − 32p3m+2) + (23p4m+16 − 8p3m+15) +
(23p4m+2 − 8p3m+1) + (6p4m+17 − p3m+16) + (6p4m+1 − p3m) + (224p2m+7 −
19pm+6)+(201p2m+8−16pm+7)+(201p2m+6−16pm+5)+(143p2m+9−10pm+8)+
(143p2m+5 −10pm+4)+(80p2m+10 −4pm+9)+(80p2m+4 −4pm+3)+(34p2m+11 −
pm+10)+ (34p2m+3 − pm+2)+10p2m+12 +10p2m+2 +2p2m+13 +2p2m+1 +2p5 +
p4m+18 + p4m + p6 + p4, where every term is positive for all p ≥ 2, and we have
thus proved the inequality (6) for m ≥ 1. This concludes the proof of Proposition 18
for n = 5. ��

The computations of a′
5(pm) and a′

5(pm+1)2 − a′
5(pm)a′

5(pm+2) may be veri-
fied with the Mathematica code provided at http://www.math.kth.se/~holmin/files/x/
a5prime_is_logconcave.

Appendix C: Calculation of a measure

In [4] the asymptotics

Nn,0(T ) = n − 1

ζ(n)
w(B)T n(n−1) log T + O(T n(n−1))

are given, where B is the unit ball in Mn(R). The measure w on Mn(R) is defined in [4]
as follows. Let Au := {A ∈ Mn(R) : Au = 0} be the space of matrices annihilating the
nonzero vector u ∈ Rn\{0}. We define for (Lebesgue measurable) subsets E ⊆ Mn(R)

the measure wu(E) := vol(E ∩ Au) where vol is the standard n(n − 1)-dimensional
volume on Au , and define the measure w(E) := (1/2)

∫
Sn−1 wu(E) dν(u), where ν is

the standard Euclidean surface measure on the (n − 1)-dimensional sphere Sn−1.
We shall now calculate w(B). The set B ∩ Au is the unit ball in the n(n − 1)-

dimensional vector space Au . Its volume does not depend on u �= 0, and if u =
(0, . . . , 0, 1), then B ∩ Au is the unit ball in Rn(n−1), when identifying Mn(R) with
Rn2

. Denote by Vn(n−1) the volume of the unit ball inRn(n−1). Thus wu(B) = Vn(n−1),
independently of u �= 0, and
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230 S. Holmin

w(B) = Vn(n−1)

1

2

∫

Sn−1

dν(u) = Vn(n−1)Sn−1

2
,

where Sn−1 is the surface area of the sphere Sn−1. The volume and surface area of the
unit ball is well known, and we may explicitly calculate

C0 := w(B) = πn2/2

Γ
(n

2

)
Γ

(
n(n − 1)

2
+ 1

) .

Recalling from Theorem 6 the expression for C1, we get the following relation.

C1 = 1

ζ(2) · · · ζ(n)

πn2/2

Γ
(n

2

)
Γ

(
n(n − 1)

2
+ 1

) = 1

ζ(2) · · · ζ(n)
C0.
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The number of points from a random
lattice that lie inside a ball

Samuel Holmin ∗

January 18, 2015

We prove a sharp bound for the remainder term of the number of lattice
points inside a ball, when averaging over a compact set of (not necessarily
unimodular) lattices, in dimensions two and three. We also prove that such a
bound cannot hold if one averages over the space of all lattices.

1 Introduction
Let Ω be the (closed) standard unit ball in Rn. A lattice in Rn is a set of the form
X · Zn ⊆ Rn for some X ∈ GLn(R). The set of all lattices may be identified with the
space GLn(R)/GLn(Z), and we equip it with a measure µ induced by the Haar measure
on GLn(R). Let NX(t) be the number of points from the lattice XZn inside the ball
tΩ of radius t. We have NX(t) = #(XZn ∩ tΩ) = #(Zn ∩ tΩX), where ΩX := X−1Ω.
Let EX(t) := NX(t) − vol(tΩX). Consider the set of unit cubes centered at the set of
integer points u ∈ Zn. Since NX(t) equals the number of cubes whose center is inside
tΩX , which coincides with the volume of the union of these cubes, we can write

NX(t) = vol(tΩX) +
∑

cubes T intersecting ∂(tΩ)
YT ,

where YT equals vol(T \ tΩX) if the center of T is inside tΩ, and YT equals − vol(T ∩ tΩX)
otherwise. There are approximately vol(∂(tΩX)) = tn−1 vol(∂(ΩX)) correction terms YT ,
each bounded, so it follows that NX(t) is asymptotic to tn vol(ΩX). Heuristically, if the
correction terms YT were i.i.d. random variables, the central limit theorem would imply
that the standard deviation of the remainder term EX(t) = ∑

T YT is approximately
proportional to

√
vol(∂(tΩX)) for large t. This suggests that |EX(t)| should be of the

order t(n−1)/2 for fixed X.
Let δ > 0 be a small arbitrary constant. For the integer lattice Z2, Hardy conjectured

that |EZ2(t)| = O(
√

vol(∂(tΩ)) · tδ) = O(t1/2+δ) as t → ∞ [Har17]. It is known that

∗The author was partially supported by the Swedish Research Council.
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|EX(t)| 6= O(t1/2) for every lattice in R2, due to Nowak [Now85a], and the best known
upper bound is |EX(t)| = O(t131/208+δ), where 131/208 ≈ 0.62981, due to Huxley [Hux03].
Hardy’s conjecture holds on average in the sense that

√
1
t

∫ t
0 |EX(τ)|2 dτ = Θ(t1/2), due

to Bleher [Ble92].
In three dimensions, it is known that |EX(t)| 6= O(t), due to Nowak [Now85b], and

the best known upper bound for arbitrary lattices in R3 is |EX(t)| = O(t63/43+δ), where
63/43 ≈ 1.465, due to Müller [Mül99], with the improvement |EZ3(t)| = O(t21/16+δ) for
the integer lattice Z3, where 21/16 = 1.3125, due to Heath-Brown [HB99]. On average,
we have

√
1
t

∫ 2t
t |EX(τ)|2 dτ = O(t1+δ), see [ISS02]. (Note: Several of the cited results

above were given in a more precise form; for instance, the latter bound was given as
O(t log t).)

In higher dimensions, the following is known. For every lattice X in n ≥ 3 dimensions,
we have |EX(t)| 6= o(t(n−1)/2) (this result is due to Landau [Lan24]). It is not known
for any n ≥ 2 if there exists for each δ > 0 some X such that |EX(t)| = O(t(n−1)/2+δ),
but Schmidt proved in [Sch60] that |EX(t)| = O(tn/2+δ) for almost every lattice, when
n ≥ 2. The best general bound for n ≥ 5 is |EX(t)| = O(tn−2), due to Götze [Göt04],
and this bound is attained by the integer lattices (to be specific, |EZn(t)| 6= o(tn−2) for
every n ≥ 4, see Krätzel [Krä00]). See [IKKN06] for an excellent survey on results about
lattice points in convex domains.
The main result of this paper is that the bound O(t(n−1)/2+δ) holds on average in

dimensions two and three, when averaging over any compact set of lattices:

Theorem 1. Fix a compact subset L0 of GLn(R)/GLn(Z) and denote by E0[f(X)] :=∫
L0
f(X) dµ(X) the mean of a function f over the set L0. Then there exists some α > 0

such that
√
E0
[
|EX(t)|2

]
= O(t(log t)α)

as t→∞ for dimension n = 3, and
√
E0
[
|EX(t)|2

]
= O(t1/2) (2)

as t→∞ for dimension n = 2.

The majority of this paper will focus on the three-dimensional case, as it is the more
difficult case. Our bound (2) in two dimensions is an improvement of Theorem 1.1(ii)
in [PT02], which had an additional factor tδ. The corresponding statement of Theorem 1
for orthogonal lattices (that is, lattices XZn where X is a diagonal matrix), but with an
additional factor tδ, was proved by Hofmann, Iosevich, Weidinger in [HIW04], and our
proof of Theorem 1 is inspired by theirs.

The assumption in Theorem 1 that L0 is compact cannot be removed when n = 3: as
Corollary 4 below shows, if we average over the set La,b = {X ∈ GL3(R)/GL3(Z) : 0 <
a ≤ |detX| ≤ b < ∞}, which is not compact, then we get both a lower and an upper
bound with an exponent strictly larger than what Theorem 1 guarantees. The failure of
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the heuristic in this case may be explained by the fact that La,b contains lattices with
arbitrarily short lattice vectors.

Proposition 3. For any fixed n ≥ 3, we have
√
E1
[
|EX(t)|2

]
= Θ(

√
vol(tΩ)) = Θ(tn/2)

as t → ∞, where E1[f(X)] :=
∫
SLn(R)/ SLn(Z) f(X) dµ1(X) is the mean of f over the

set of all lattices in SLn(R)/ SLn(Z), and where µ1 is the normalized Haar measure on
SLn(R).

Corollary 4. Fix 0 < a < b. For any fixed n ≥ 3, we have
√
Ea,b

[
|EX(t)|2

]
= Θ(tn/2)

as t → ∞, where Ea,b[f(X)] :=
∫
La,b

f(X) dµ(X) is the mean of f over La,b = {X ∈
GLn(R)/GLn(Z) : a ≤ |detX| ≤ b}.∗

This paper is organized as follows. Sections 3 through section 6 are dedicated to the
proof of Theorem 1 for n = 3. We sketch in section 7 how the given proof may be
modified for the slightly easier case n = 2. Proposition 3 is an easy consequence of the
mean value formulas of Siegel and Rogers; we prove Proposition 3 and Corollary 4 in
section 8.

Remark 5. The actual measure used in Theorem 1 is not important; the proof holds for
any measure of the form f(X) dX and any compact set L0 of GLn(R), where dX is the
Euclidean measure on the entries of the matrix X and f : GLn(R)→ R+ is a function
which is bounded above and below in R+ = {x ∈ R : x > 0} throughout L0.

For instance, one may use the following natural measure for generating random lattices
close to a given lattice. Fix a matrix X0 ∈ GLn(R). We generate random vectors
x1, . . . , xn, where each vector xi is generated by a uniform probability measure on vectors
sufficiently close to the ith column of X0, and then we let x1, . . . , xn be the basis vectors
of our random lattice. This corresponds to taking f(X) = 1 for all X and taking
L0 := {X0 + tE : |t| ≤ ε}, where E is the n×n-matrix of all ones, and ε > 0 is sufficiently
small such that L0 does not contain any singular matrices.

2 Notation
Throughout this paper, we will assume that the parameter t > 1 is large. We will
write f(t) / g(t) if there exists a constant c > 0 and an integer m ≥ 0 such that
|f(t)| ≤ |cg(t)(log t)m| for all sufficiently large t. We see that / is a transitive relation. As
customary, we will write f(t)� g(t) if there exists a constant c such that |f(t)| ≤ |cg(t)|
for all sufficiently large t.
∗Note that averaging over the whole set GLn(R)/ GLn(Z) does not make sense, since GLn(R)/ GLn(Z)
has infinite covolume and consequently the expected value of any constant would be infinite.
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Given a function f : Rk → R for some k, we write f̂(ξ) =
∫
Rk f(x)e−2πix·ξ dx for its

Fourier transform.
We will write Zn(a) for the set of all nonzero integer vectors k = (k1, . . . , kn) such

that |ki| ≤ a for each 1 ≤ i ≤ n. For a vector k and a matrix X, we will write
‖k‖X :=

∥∥∥(X−1)Tk
∥∥∥. Finally, we will frequently use the notation k̃ := (N−1)Tk where N

is a given upper triangular matrix which will be clear from context.

3 Decomposition of the Haar measure
Let µ be the Haar measure on GL3(R). The measure µ induces a measure on the quotient
space GL3(R)/GL3(Z), and we will abuse notation by denoting both of these measures
by the symbol µ. Let F ⊆ GL3(R) be a fundamental domain relative to GL3(Z). If
f : GL3(R)/GL3(Z)→ R is an integrable function, we shall write f(X) := f(X ·GL3(Z))
for X ∈ GL3(R), and then

∫

GL3(R)/GL3(Z)
f(X) dµ(X) =

∫

F⊆GL3(R)
f(X) dµ(X),

where in the right-hand side we are integrating with respect to the measure on GL3(R).
We will use the Iwasawa decomposition GL3(R) = K · A · N where K = O3(R) is the

group of orthogonal matrices, A is the group of diagonal matrices with positive diagonal
entries, and N is the group of upper triangular matrices with ones on the diagonal. If
X ∈ GL3(R), then there is a unique (K,A,N) ∈ K ×A×N such that X = KAN . Let
N+ be the set of all matrices N ∈ N such that all entries of N above the diagonal belong
to the interval [1, 2). (We will later use the fact that the entries of N ∈ N+ are not close
to zero.) By performing Euclid’s algorithm on the columns of N using elementary column
operations, one can show that there exists for any X = KAN some matrix U ∈ GL3(Z)
such that XU ∈ K · A · N+, which shows that the set K · A · N+ ⊆ GL3(R) contains a
fundamental domain F+ relative to GL3(Z).
The Haar measure µ on GL3(R) can be expressed in terms of the left-invariant

Haar measures on K,A and N as follows. Let R := A · N be the group of upper
triangular matrices with positive diagonal elements. The Haar measure on A is dA =
db1 db2 db3 /(b1b2b3) where b1, b2, b3 are the diagonal elements of A ∈ A, and the Haar
measure on N is dN = dη1 dη2 dη3 where η1, η2, η3 are the entries of N ∈ N above the
diagonal. Write µK for the (appropriately normalized) Haar measure on K. Theorem
8.32 from [Kna02] implies that for any integrable function f , we have

∫

GL3(R)
f(X) dµ(X) =

∫

N

∫

A

∫

K
f(KAN) ∆R(AN)

∆GL3(R)(AN)
∆N (N)
∆R(N) dµK(K) dAdN

where X = KR = KAN , and ∆G : G→ R+ is the modular function associated with a
topological group G. Let us write ∆(A,N) := ∆R(AN)

∆GL3(R)(AN)
∆N (N)
∆R(N) . The modular functions

can be computed (in fact, one may show that ∆GL3(R) = ∆N = 1, and ∆R(R) = b21b
−2
3

where b1, b2, b3 are the diagonal elements of R), but all we will need is that ∆ is bounded
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when restricted to a compact set, which follows from the fact that the modular functions
are continuous and positive (see [Kna02]).
For our purposes, the parametrization

N =




1 η1 η2
0 1 η3
0 0 1


 ∈ N+, ηi ∈ [1, 2), (6)

A =




1/√a1 0 0
0 1/√a2 0
0 0 1/√a3


 ∈ A, ai ∈ (0,∞),

will be useful. (The forthcoming expression (16) will take on a simpler form.) We get
the Jacobian

∣∣∣ ∂(b1,b2,b3)
∂(a1,a2,a3)

∣∣∣ = 2−3(a1a2a3)−2. Writing ∆(a, η) := ∆(A,N), and letting f be
a non-negative integrable function on GL3(R)/GL3(Z), we obtain

∫

GL3(R)/GL3(Z)

f(X) dµ(X) =
∫

F+
f(X) dµ(X) ≤

∫

K·A·N+
f(X) dµ(X) =

∫∫∫

K∈K
a∈(0,∞)3

η∈[1,2)3

f(KAN) ∆(a, η)
23(a1a2a3)2 da dη dµK(K),

where da = da1 da2 da3 and dη = dη1 dη2 dη3 are the standard Lebesgue measures.
Integrating over the compact set L0 ⊆ GL3(R)/GL3(Z) with respect to the measure µ

corresponds to integrating over the compact set

L′0 := L0 ·GL3(Z) ∩ F+ ⊆ GL3(R) (7)

with respect to the measure da dη dµK(K). For each i = 1, 2, 3, let ψi be the characteristic
function of the smallest closed interval contained in (0,∞) which contains all values that
ai assumes when X = KAN ranges over the compact set L′0. Since g(X) := |EX(t)|2 is
rotation invariant (that is, g(KX) = g(X) for all K ∈ K, X ∈ GL3(R)) and non-negative,
we have
∫

L0
|EX(t)|2 dµ(X) ≤

∫

[1,2)3

∫

(0,∞)3
|EAN (t)|2 ∆(a, η)

23(a1a2a3)2ψ1(a1)ψ2(a2)ψ3(a3) da dη .

The support of ψ1ψ2ψ3 is contained in (0,∞)3, so for simplicity of notation, we will allow
the inner integral to range over all of R3. Since ∆(a, η)/(23(a1a2a3)2) and 4π|detA|2 are
bounded above and below throughout the support of ψ1ψ2ψ3, a bound of the right-hand
side above will be equivalent, up to constants, to a bound of

∫

[1,2)3

∫

R3
|EAN (t)|2 ∆(a, η)

23(a1a2a3)2
23(a1a2a3)2

∆(a, η) 4π|detA|2ψ1(a1)ψ2(a2)ψ3(a3) da dη

=
∫

[1,2)3

∫

R3
|EAN (t)|2ψ(a) da dη, (8)

5



where we have defined

ψ(a) := 4π|detA|2ψ1(a1)ψ2(a2)ψ3(a3).

(It is convenient to introduce the factor 4π|detA|2 as it will later be cancelled by a factor
appearing from |EAN (t)|2.) Thus, in order to bound

∫
L0
|EX(t)|2 dµ(X), it suffices to

bound (8).

4 Setup
We define a smoothed version of

NX(t) =
∑

k∈Z3

χtΩX
(k)

by

N ε
X(t) :=

∑

k∈Z3

χtΩX
∗ ρε(k) (9)

where ρ : R3 → R is a mollifier and ρε(x) := ε−3ρ(x/ε) for a parameter ε = ε(t) > 0.
(Recall that a mollifier is a smooth, non-negative function with compact support and
unit mass.) We define ρ(x) := ρ0(x1)ρ0(x2)ρ0(x3) where ρ0 : R→ R is an even mollifier
such that |ρ̂0(y)| � e−

√
y for large y; see [Ing33] for the construction of such a function

ρ0. We obtain the asymptotics

|ρ̂(x)| � e−
√
|x1|−
√
|x2|−
√
|x3| � e−

√
‖x‖ (10)

as ‖x‖ → ∞, by the inequality (
√
|x1|+

√
|x2|+

√
|x3|)4 ≥ x2

1 + x2
2 + x2

3. Note that the
Fourier transform ρ̂ is real-valued since ρ is an even function.
Since the convolution χtΩX

∗ ρε is smooth, we may apply the Poisson summation
formula to the sum (9), and since both of the functions χtΩX

and ρε have compact
support, the convolution theorem ̂χtΩX

∗ ρε = χ̂tΩX
· ρ̂ε holds. Moreover, χ̂tΩX

(0, 0, 0) =∫
tΩX

1 = t3 vol ΩX and ρ̂ε(0, 0, 0) =
∫
ρε = 1, so we get

N ε
X(t) = t3 vol ΩX +

∑

k 6=(0,0,0)
χ̂tΩX

(k)ρ̂ε(k) =: t3 vol ΩX + EεX(t).

We first show that the function N ε
X approximates NX well:

Lemma 11. There exists a constant R > 0 such that

N ε
X(t−Rε) ≤ NX(t) ≤ N ε

X(t+Rε),

where R only depends on the mollifier ρ.
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Proof. Let R be the radius of a ball centered at the origin which contains the support of
ρ, so that the support of ρε is contained in a ball of radius εR. Consider

χtΩX
∗ ρε(k) =

∫
ρε(x)χtΩX

(k − x) dx .

The integral ranges over all x ∈ supp ρε, so we may assume that ‖x‖ ≤ εR inside the
integral. If k is inside tΩX and at a distance at least εR from the boundary ∂(tΩX),
then χtΩX

(k − x) = 1, so the integral becomes
∫
ρε(x) dx = 1, which agrees with

χtΩX
(k) = 1. If on the other hand k is outside tΩX and at a distance at least εR from

the boundary ∂(tΩX), then χtΩX
(k − x) = 0, so the integral vanishes and again agrees

with χtΩX
(k) = 0. Finally, if k is at a distance at most εR from the boundary ∂(tΩX),

then since 0 ≤ χtΩX
≤ 1 and ρε is nonnegative, the integral is bounded below by 0 and

above by
∫
ρε = 1. We have thus proved that χtΩX

∗ ρε equals χtΩX
at all points at a

distance at least εR from the boundary of tΩX , and at all other points it assumes a value
in [0, 1]. This proves the lemma, since NX(t) counts the number of lattice points inside
tΩX , while N ε

X(t−Rε) counts each of these with a weight at most 1, and N ε
X(t+Rε)

counts all the same lattice points, plus a few more with various weights in [0, 1].

Using the lemma, we arrive at:

Claim 12. To prove Theorem 1 for n = 3 it suffices to prove that
∫

[1,2)3

∫

R3
|EεAN (t)|2ψ(a) da dη / t2 (13)

for all ε = ε(t) such that ε ≥ 1/t for all sufficiently large t.

Proof. Lemma 11 implies that

EX(t) ≤ Eε0
X (t+Rε0) + vol(ΩX)((t+Rε0)3 − t3),

−EX(t) ≤ −Eε0
X (t−Rε0) + vol(ΩX)(t3 − (t−Rε0)3),

for any ε0 > 0. Choosing ε0 := 2/t we get

|EX(t)| ≤ max(|Eε0
X (t+Rε0) +O(t)|, |Eε0

X (t−Rε0) +O(t)|)
� |Eε0

X (t+Rε0)|+ |Eε0
X (t−Rε0)|+ t.

The asymptotic constant depends on the determinant of X, but if we restrict X to the
compact set L′0 (see (7)), then the determinant of X is bounded by a constant which
only depends on the fixed set L0. By (8) we have

∫

L0
|EX(t)|2 dµ(X)�

∫

[1,2)3

∫

R3
|EAN (t)|2ψ(a) da dη

�
∫

[1,2)3

∫

R3
|Eε0

X (t+Rε0)|2ψ(a) da dη+
∫

[1,2)3

∫

R3
|Eε0

X (t−Rε0)|2ψ(a) da dη+t2,

7



and noting that ε0 ≥ 1/(t+Rε0) and ε0 ≥ 1/(t−Rε0) for all sufficiently large t±Rε0,
the hypothesis (13) implies that the right-hand side above is

/ (t+Rε0)2 + (t−Rε0)2 + t2 � t2,

and thus
√∫

L0
|EX(t)|2 dµ(X) / t follows.

For the remainder of the section we will assume that ε ≥ 1/t for all sufficiently large
t. We will now estimate the behavior of EεX . Consider the Fourier transform of the
characteristic function χΩ of the standard unit ball Ω in R3. Taking advantage of the
fact that χΩ is a radial function and hence that its Fourier transform is radial as well, an
easy calculation shows that (see equation 10 in chapter 6.4 in [SS03])

χ̂Ω(k) = 2
‖k‖

∫ 1

0
sin(2π‖k‖r)r dr,

which can be integrated by parts to get

χ̂Ω(k) = −cos(2π‖k‖)
π‖k‖2 + sin(2π‖k‖)

2π2‖k‖3 .

Since ΩX = X−1 · Ω we get

χ̂ΩX
(k) =

∫

X−1·Ω
e2πix·k dx =

∫

Ω
e2πiX−1y·k

∣∣∣detX−1
∣∣∣ dy

=
∣∣∣detX−1

∣∣∣χ̂Ω((X−1)Tk) = |detX|−1
(
−cos(2π‖k‖X)

π‖k‖2X
+ sin(2π‖k‖X)

2π2‖k‖3X

)
,

recalling the definition
‖k‖X = ‖(X−1)Tk‖.

Recall that EεX(t) = ∑
k 6=(0,0,0) χ̂tΩX

(k)ρ̂ε(k). It is straightforward to show that χ̂tΩX
(k) =

t3χ̂ΩX
(tk) and ρ̂ε(k) = ρ̂(εk). Hence we can write

EεX(t) = S1 + S2 :=

−|detX|−1t
∑

k 6=(0,0,0)

cos(2π‖tk‖X)
π‖k‖2X

ρ̂(εk) + |detX|−1 ∑

k 6=(0,0,0)

sin(2π‖tk‖X)
2π2‖k‖3X

ρ̂(εk),

where both sums S1, S2 are real since ρ̂ is real-valued. For X = AN,A ∈ A, N ∈ N+, we
have |detX|−1 � 1, so for such X we get

|S2| �
∑

k 6=(0,0,0)

|ρ̂(εk)|
‖k‖3

.

We use the fact that |ρ̂(εk)| decreases as 1/‖εk‖N ≤ tN/‖k‖N for any N > 0, provided
that ε ≥ 1/t. Then we get |S2| �

∑
k 6=0 t

N/‖k‖3+N = tN
∑
k 6=0 1/‖k‖3+N � tN , where

8



the final sum converges to a constant by integral comparison for any N > 0. Choosing
N = 1/2 gives us |S2| � t1/2.
Consequently we have

|EεX(t)|2 = (S1 + S2)2 � S2
1 + S2

2 � S2
1 + t,

and thus, to prove Theorem 1 for n = 3, by Claim 12 it will suffice to prove that∫
[1,2)3

∫
R3 S2

1ψ(a) da dη / t2, where

S2
1 = |detX|−2t2

∑

k,l 6=(0,0,0)

cos(2π‖tk‖X) cos(2π‖tl‖X)
π2‖k‖2X‖l‖2X

ρ̂(εk)ρ̂(εl)

andX = AN , using the parametrization (6). Write the product cos(2π‖tk‖X) cos(2π‖tl‖X)
as (eα + e−α)(eβ + e−β)/4 = 1

4(eα+β + eα−β + e−α+β + e−α−β) where α := 2πit‖k‖X and
β := 2πit‖l‖X . We split the integral into a sum of four integrals and treat each case
separately, that is, we will prove

t2
∫

[1,2)3

∫

R3

∑

k,l 6=(0,0,0)
|detA|−2 e2πitΦk,l(AN)

4π2‖k‖2AN‖l‖2AN
ρ̂(εk)ρ̂(εl)ψ(a) da dη / t2

where Φk,l(X) = ±‖k‖X ± ‖l‖X , for all four different combinations of sign choices.
We cancel the factor t2 on both sides and exchange the order of integration and

summation (noting that the sum is uniformly convergent by the rapid decay of ρ̂). Thus,
recalling that ψ(a) = 4π|detA|2ψ1(a1)ψ2(a2)ψ3(a3), we arrive at:

Claim 14. To prove Theorem 1 for n = 3 it suffices to prove that
∑

k,l 6=(0,0,0)

|ρ̂(εk)ρ̂(εl)|
‖k‖2‖l‖2 |Ik,l(t)| / 1, (15)

for all ε = ε(t) such that ε ≥ 1/t for all sufficiently large t, where

Ik,l(t) :=
∫

[1,2)3

∫

R3
e2πitΦk,l(AN)ψk,l(AN) da dη,

Φk,l(AN) := ±‖k‖AN ± ‖l‖AN ,

ψk,l(AN) :=
( ‖k‖
‖k‖AN

)2( ‖l‖
‖l‖AN

)2
ψ1(a1)ψ2(a2)ψ3(a3),

for all four choices of signs in the definition of Φk,l.

Consider Φk,l(AN) for A ∈ A, N ∈ N+. Write k̃ := (N−1)Tk and l̃ := (N−1)Tl.
Then ‖k‖AN = ‖(A−1)T(N−1)Tk‖ = ‖A−1k̃‖. Similarly ‖l‖A = ‖A−1 l̃‖. Using the
parametrization (6), we get

A−1 =




√
a1 0 0
0 √

a2 0
0 0 √

a3


, (N−1)T =




1 0 0
−η1 1 0

η1η3 − η2 −η3 1



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and therefore

Φk,l(AN) = ±
√
a1k̃2

1 + a2k̃2
2 + a3k̃2

3 ±
√
a1 l̃21 + a2 l̃22 + a3 l̃23. (16)

where k̃2
i denotes the square of the ith component of the vector k̃ = (N−1)Tk, and

similarly for l̃2i . Note that our choice of parametrization (6) of the entries of A turned
the expressions inside the square roots in the exponent Φk,l(AN) into linear forms of
a1, a2, a3.
Since

∥∥X−1∥∥
op‖k‖ ≤ ‖Xk‖ ≤ ‖X‖op‖k‖ where ‖X‖op is the operator norm of the

matrix X for any X, it follows that ‖k‖AN � ‖k‖ � ‖k‖AN and likewise for l, when
AN ∈ A · N+. Hence ψk,l(AN) can be bounded above and below by constants uniform
in k and l (but depending on L0), and thus |Ik,l(t)| �

∫ |ψk,l| � 1.
We now show that we may neglect the terms in the sum (15) for which either ‖k‖ or
‖l‖ is large, where the notion of “large” is given by the following definition.

Definition 17. We set U(t) := 32t(log t)2 for all t > 1. Note that U(t) / t and
log(U(t)) / 1.

Lemma 18. Assuming that ε ≥ 1/t for all sufficiently large t, we have
∑

k,l 6=(0,0,0)
‖k‖≥U(t) or ‖l‖≥U(t)

|ρ̂(εk)ρ̂(εl)|
‖k‖2‖l‖2 |Ik,l(t)| � 1

where the analogous bound holds if we interchange k and l.

Proof. It suffices to bound the sum
∑

k,l 6=(0,0,0)
‖k‖≥U(t)

=
∑

k,l 6=(0,0,0)
‖k‖,‖l‖≥U(t)

+
∑

k,l 6=(0,0,0)
‖k‖≥U(t)>‖l‖

. (19)

Using the bounds |Ik,l(t)| � 1, |ρ̂(εl)| � 1, and finally |ρ̂(εk)| � e−
√
‖εk‖ from (10), and

assuming that ε ≥ 1/t, the second sum on the right above can be written as

∑

k,l 6=(0,0,0)
‖k‖≥U(t)>‖l‖

|ρ̂(εk)ρ̂(εl)|
‖k‖2‖l‖2 |Ik,l(t)| �

∑

l 6=(0,0,0)
‖l‖≤U(t)

1
‖l‖2

∑

k 6=(0,0,0)
‖k‖≥U(t)

e−
√
‖k/t‖

‖k‖2 . (20)

The first sum on the right-hand side of (20) is

�
∫ U(t)

1

1
r2 r

2 dr � U(t)� t(log t)2.

The second sum on the right-hand side of (20) is

�
∫ ∞

U(t)/2
e−
√
r/t dr �

(
−2te−

√
r/t
(√

r/t+ 1
))∣∣∣∣

r=U(t)/2
�

te−
√

16(log t)2
√

16(log t)2 � te−4 log t(log t)2 = t−3(log t)2. (21)
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Thus the right-hand side of (20) is

� t−2(log t)4 � 1.

The first sum on the right-hand side of (19) can be written as

∑

k,l 6=(0,0,0)
‖k‖,‖l‖≥U(t)

|ρ̂(εk)ρ̂(εl)|
‖k‖2‖l‖2 |Ik,l(t)| �

∑

k 6=(0,0,0)
‖k‖≥U(t)

e−
√
‖k/t‖

‖k‖2
∑

l 6=(0,0,0)
‖l‖≥U(t)

e−
√
‖l/t‖

‖l‖2 ,

which by our previous calculation is � (t−3(log t)2)2 � 1.

Remark 22. If one only wants to prove a weaker version of Theorem 1 with a bound of
the form O(t(n−1)/2+δ) for some δ > 0, with no log factors, it suffices to take U(t) = t1+δ′

for some sufficiently small δ′ > 0, and to use the elementary estimate ρ̂(x)� 1/‖x‖2 for
the Fourier transform of ρ in the proof of Lemma 18.

The lemma above shows that we may restrict ourselves to summing only over the
integer vectors k, l 6= (0, 0, 0) bounded in norm by U(t), and thus it is enough to sum
over k, l 6= (0, 0, 0) such that |ki|, |lj | ≤ U(t) for all i, j ∈ {1, 2, 3}. Thus we have:

Claim 23. To prove Theorem 1 for n = 3 it suffices to prove that
∑

k,l∈Z3(U(t))

1
‖k‖2‖l‖2 |Ik,l(t)| / 1 (24)

where the sum extends over all nonzero integer vectors k, l ∈ Z3 with entries bounded by
U(t).

5 Neglecting integer vectors with vanishing coordinates
In order to bound the sum on the left-hand side of (24), we will need to take advantage
of nontrivial bounds of the oscillating integral Ik,l(t). We will derive such a bound in
Section 6, but for technical reasons, in order to use that bound, we need the first two
coordinates of k and l to be nonzero. In the present section, we will prove that we can
neglect the part of the sum where some of k1, k2, l1, l2 are zero.
We begin by showing that the terms for which both some coordinate of k and some

coordinate of l is zero can be neglected:

Lemma 25. We have ∑

k,l∈Z3(U(t))
k1=l1=0

1
‖k‖2‖l‖2 |Ik,l(t)| / 1.

The same bound holds if we exchange k1 for any other component of k, and l1 for any
other component of l.

11



Proof. We use the trivial bound |Ik,l(t)| � 1 and split the sum into one over k and one
over l. The sum over k satisfies

∑

k∈Z3(U(t))
k1=0

1
‖k‖2 =

∑

|k2|,|k3|≤U(t)
(k2,k3) 6=(0,0)

1
‖(k2, k3)‖2 �

∫ U(t)

1

1
r2 r dr � log(U(t)) / 1

where in the second sum we are only summing over integer vectors in Z2. The same
bound holds for the sum over l, so the statement of the lemma follows.

We now need a lemma on oscillating integrals; see the corollary of Proposition 2 in
chapter VIII in [Ste93].

Lemma 26 (van der Corput lemma). Let φ, ψ0 : [a, b]→ R be smooth functions defined
on some interval [a, b], and suppose that φ′ is monotonic and that there exists a constant
c0 > 0 such that φ′(x) ≥ c0 for all x. Then

∣∣∣∣∣

∫ b

a
eitφ(x)ψ0(x) dx

∣∣∣∣∣ ≤
C

c0t

(
|ψ0(b)|+

∫ b

a

∣∣ψ′0(x)
∣∣ dx

)

for all t > 0, where C is an absolute constant.

We prove in the following two lemmas that we can also neglect the terms for which
precisely one of k and l has a zero in the first two coordinates.†

Lemma 27. We have ∑

k,l∈Z3(U(t))
k1=0

l1,l2,l3 6=0

1
‖k‖2‖l‖2 |Ik,l(t)| / 1.

The same bound holds if we exchange the roles of k and l.

Proof. Assume that k1 = 0, k 6= (0, 0, 0) and l1, l2, l3 6= 0. Consider Φk,l(AN), given by
equation (16). The partial derivative with respect to a1 is

∂

∂a1
Φk,l(AN) = ± k̃2

1
2‖k‖AN

± l̃21
2‖l‖AN

.

Now, since k̃1 = k1 = 0 and l̃1 = l1 6= 0, we get

∂

∂a1
Φk,l(AN) = ± l̃21

2‖l‖AN
� l21
‖l‖ �

|l1|
‖l‖ .

†This does not imply an analogous statement for the third coordinate because the proof depends on a
bound of the integral Ik,l(t), and our choice of decomposition KAN + of our integration domain is
not symmetric in the coordinates.
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Moreover, the second derivative with respect to a1 is
(
∂

∂a1

)2
Φk,l(AN) = ∓ l41

4‖l‖3AN
,

which is either always positive or always negative, depending on the sign ± in the definition
of Φk,l. Thus the map φ(a1) := Φk,l(AN) for fixed a2, a3 is such that |φ′(a1)| � |l1|/‖l‖
and φ′ is monotonic. Writing [b1, b2] for the support of the characteristic function ψ1, we
can apply the van der Corput Lemma 26 to the integral

∫ b2

b1
e2πitΦk,l(AN)ψ0(a1) da1

where we have defined ψ0(a1) := ‖k‖2‖l‖2

‖k‖2
AN‖l‖2

AN

. The function ψ0 is bounded since ‖k‖AN �
‖k‖ and ‖l‖AN � ‖l‖. Its derivative, by the assumption that k̃1 = k1 = 0, l̃1 = l1 6= 0, is

ψ′0(a1) = d

da1

‖k‖2‖l‖2

(a1k̃2
1 + a2k̃2

2 + a3k̃2
3)(a1 l̃21 + a2 l̃22 + a3 l̃23)

= − ‖k‖2‖l‖2l21
(a1k̃2

1 + a2k̃2
2 + a3k̃2

3)(a1 l̃21 + a2 l̃22 + a3 l̃23)2
= − ‖k‖2‖l‖2

‖k‖2AN‖l‖2AN
l21
‖l‖2AN

,

which is also bounded. Thus the van der Corput Lemma gives us the bound
∣∣∣∣
∫

R
e2πitΦk,l(AN)ψk,l(AN) da1

∣∣∣∣�
1
t

‖l‖
|l1|

,

where the asymptotic constant is independent of k, l. Integrating in the rest of the
variables yields by compactness

|Ik,l(t)| �
∫

[1,2)3

∫

R2

1
t

‖l‖
|l1|

ψ2(a2)ψ3(a3) da2 da2 dη �
1
t

‖l‖
|l1|

.

Using this bound, it now follows that
∑

k,l∈Z3(U(t))
k1=0

l1,l2,l3 6=0

1
‖k‖2‖l‖2 |Ik,l(t)| �

1
t

∑

k∈Z3(U(t))
k1=0

1
‖k‖2

∑

l∈Z3(U(t))
l1,l2,l3 6=0

1
‖l‖|l1|

.

The sum over k has logarithmic behavior in U(t) since we are summing over a two-
dimensional space. We will split the sum over l into one over l1, and one over (l2, l3). We
have ‖l‖ ≥ ‖(0, l2, l3)‖ ≥ ‖(l2, l3)‖, so

∑

k,l∈Z3(U(t))
k1=0

l1,l2,l3 6=0

1
‖k‖2‖l‖2 |Ik,l(t)| /

1
t

∑

1≤|l1|≤U(t)
|l1|−1 ∑

1≤|l2|,|l3|≤U(t)
‖(l2, l3)‖−1

� 1
t

∫ U(t)

1

1
x
dx

∫ U(t)

1

1
r
r dr � 1

t
· log(U(t)) · U(t) / 1. (28)

This completes the proof that the sum over k1 = 0 can be neglected.
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Lemma 29. We have ∑

k,l∈Z3(U(t))
k2=0

l1,l2,l3 6=0

1
‖k‖2‖l‖2 |Ik,l(t)| / 1.

The same bound holds if we exchange the roles of k and l.

Proof. Assume that k2 = 0, k 6= (0, 0, 0) and l1, l2, l3 6= 0. We write
∑

k,l∈Z3(U(t))
k2=0

l1,l2,l3 6=0

1
‖k‖2‖l‖2 |Ik,l(t)| =

∫

[1,2)3

∑

k,l∈Z3(U(t))
k2=0

l1,l2,l3 6=0

1
‖k‖2‖l‖2

∣∣∣∣
∫

R3
e2πiΦk,l(AN)ψk,l(AN) da

∣∣∣∣ dη . (30)

We will split the latter sum into two parts: one in which |l2 − 2η1l1| ≥ 1, and one in
which |l2 − 2η1l1| < 1. We will bound the sum over |l2 − 2η1l1| ≥ 1 by mimicking the
proof of Lemma 27, with the difference that we consider instead the directional derivative
of Φk,l(AN) with respect to the direction (−η2

1, 1, 0).
We deal first with the part of the sum (30) with |l2 − 2η1l1| ≥ 1. We change the order

of integration inside the integral Ik,l(t) such that the innermost integral is taken with
respect to a2, and perform a one-variable substitution from a2 to u := −η2

1a1 + a2 inside
this integral. Recalling the expression (16), it now follows, since k2 = 0, that

∂

∂u
Φk,l(AN) = −η2

1
∂

∂a1
Φk,l(AN) + ∂

∂a2
Φk,l(AN) = ±−η

2
1 k̃

2
1 + k̃2

2
2‖k‖AN

± −η
2
1 l̃

2
1 + l̃22

2‖l‖AN

= ±−η
2
1k

2
1 + (−η1k1 + k2)2

2‖k‖AN
± −η

2
1l

2
1 + (−η1l1 + l2)2

2‖l‖AN

= ±−η
2
1l

2
1 + (−η1l1 + l2)2

2‖l‖AN
= ±−2η1l1l2 + l22

2‖l‖AN
= ± l2(l2 − 2η1l1)

2‖l‖AN
and

(
∂

∂u

)2
Φk,l(AN) = ∓(l2(l2 − 2η1l1))2

4‖l‖3AN
.

Whenever |l2 − 2η1l1| ≥ 1 holds, we get a bound of the form
∣∣∣ ∂∂uΦk,l

∣∣∣ � |l2|/‖l‖ with
u 7→ ∂

∂uΦk,l monotonic. Since ψ1ψ2 is the characteristic function of a rectangle, it follows
that the support of u 7→ ψk,l(AN) is some interval [b1, b2], which is bounded in length
(independent of k and l). The function u 7→ ψk,l(AN) restricted to the interval [b1, b2]
coincides with the function u 7→ ‖k‖2‖l‖2

‖k‖2
AN‖l‖2

AN

because ψ1ψ2ψ3 is a characteristic function.
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The function u 7→ ψk,l(AN) is bounded, and so is

∂

∂u
ψk,l(AN) = ∂

∂u

‖k‖2‖l‖2

‖k‖2AN‖l‖2AN
=

− ‖k‖2‖l‖2

‖k‖2AN‖l‖2AN
· (−η2

1 k̃
2
1 + k̃2

2)
‖k‖2AN

− ‖k‖2‖l‖2

‖k‖2AN‖l‖2AN
· (−η2

1 l̃
2
1 + l̃22)

‖l‖2AN

on the interval [b1, b2] since
∣∣∣−η2

1 l̃
2
1 + l̃22

∣∣∣ � ‖l̃‖2 � ‖l‖2AN and −η2
1 k̃

2
1 + k̃2

2 = 0. Thus,
whenever |l2 − 2η1l1| ≥ 1 holds, the van der Corput Lemma 26 gives us the bound

∣∣∣∣
∫

R
e2πitΦk,l(AN)ψk,l(AN) da2

∣∣∣∣ =
∣∣∣∣
∫

R
e2πitΦk,l(AN)ψk,l(AN) du

∣∣∣∣�
1
t

‖l‖
|l2|

,

and estimating trivially in the remaining variables a1, a3 yields
∣∣∣∣
∫

R3
e2πitΦk,l(AN)ψk,l(AN) da

∣∣∣∣�
1
t

‖l‖
|l2|

.

This bound yields
∫

[1,2)3

∑

k,l∈Z3(U(t))
k2=0

l1,l2,l3 6=0
|l2−2η1l1|≥1

1
‖k‖2‖l‖2

∣∣∣∣
∫

R3
e2πiΦk,l(AN)ψk,l(AN) da

∣∣∣∣ dη �

1
t

∫

[1,2)3

∑

k,l∈Z3(U(t))
k2=0

l1,l2,l3 6=0
|l2−2η1l1|≥1

1
‖k‖2‖l‖1|l2|

dη ≤ 1
t

∑

k,l∈Z3(U(t))
k2=0

l1,l2,l3 6=0

1
‖k‖2‖l‖|l2|

/ 1,

where the last bound is completely analogous to the bound (28).
It remains to bound the part of the sum (30) with |l2 − 2η1l1| < 1. When |l2 − 2η1l1| <

1, there are at most two values that l2 may assume when η1, l1 are held fixed, and using
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‖(l1, l2, l3)‖ ≥ ‖(l1, 0, l3)‖ = ‖(l1, l3)‖, we get
∫

[1,2)3

∑

k,l∈Z3(U(t))
k2=0

l1,l2,l3 6=0
|l2−2η1l1|<1

1
‖k‖2‖l‖2

∣∣∣∣
∫

R3
e2πiΦk,l(AN)ψk,l(AN) da

∣∣∣∣ dη �

∫

[1,2)3

∑

k,l∈Z3(U(t))
k2=0

l1,l2,l3 6=0
|l2−2η1l1|<1

1
‖k‖2‖l‖2 dη �

∫

[1,2)3

∑

k,l∈Z3(U(t))
k2=0

l1,l2,l3 6=0
|l2−2η1l1|<1

1
‖(k1, k3)‖2‖(l1, l3)‖2 dη �

∑

1≤|k1|,|k3|≤U(t)

∑

1≤|l1|,|l3|≤U(t)

1
‖(k1, k3)‖2‖(l1, l3)‖2 / 1,

and we are done.

Putting the lemmas together, we have thus demonstrated:

Claim 31. To prove Theorem 1 for n = 3 it suffices to prove that
∑

k,l∈Z3(U(t))
k1,k2,l1,l2 6=0

1
‖k‖2‖l‖2 |Ik,l(t)| / 1,

where k3, l3 may assume both zero and nonzero values.

Proving the inequality in Claim 31 is the heart of the proof of Theorem 1; we will do
this in the next section.

6 Concluding the proof of Theorem 1
Recall that k̃ = (N−1)Tk, l̃ = (N−1)Tl. We now define γ := −η1. Then we have
k̃1 = k1, k̃2 = γk1 + k2 and l̃1 = l1, l̃2 = γl1 + l2, and thus

k̃1 l̃2 − k̃2 l̃1 = k1l2 − k2l1,

k̃1 l̃2 + k̃2 l̃1 = k1l2 + k2l1 + 2γk1l1.
(32)

The crucial ingredient in the proof of the inequality in Claim 31 is the following inequality,
and the uniformity of the bound is essential, as we will apply it to all terms of an infinite
sum.
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Lemma 33. Assume that
∣∣∣k̃2

1 l̃
2
2 − k̃2

2 l̃
2
1

∣∣∣ 6= 0. Then

∣∣∣∣
∫

R3
e2πitΦk,l(AN)ψk,l(AN) da

∣∣∣∣ ≤
C

t

‖k‖3/2‖l‖3/2∣∣∣k̃2
1 l̃

2
2 − k̃2

2 l̃
2
1

∣∣∣

for all t > 0, where C is a constant which does not depend on k, l,N (but which does
depend on the already fixed cutoff function ψ).

We will postpone the proof of Lemma 33 until we need to use it; Lemma 33 compels
us to split the sum in Claim 31 into parts as follows. We write

∑

k,l∈Z3(U(t))
k1,k2,l1,l2 6=0

1
‖k‖2‖l‖2 |Ik,l(t)| ≤

∫

[1,2)3

(∑
1

+
∑

2
+
∑

3

) 1
‖k‖2‖l‖2

∣∣∣∣
∫

R3
e2πitΦk,l(AN)ψk,l(AN) da

∣∣∣∣ dη, (34)

where∑1 is the sum over |k1l2 + k2l1 + 2γk1l1| < 1/2; ∑2 is the sum over k1l2−k2l1 = 0;∑
3 is the sum over |k1l2 + k2l1 + 2γk1l1| ≥ 1/2 and k1l2 − k2l1 6= 0, and where all sums

range over k, l ∈ Z3(U(t)) such that k1, k2, l1, l2 6= 0.
The following lemma shows that we may neglect the sums ∑1 and ∑2:

Lemma 35. For any |γ| ≥ 1, we have
∑

k,l∈Z3(U(t))
k1,k2,l1,l2 6=0

|k1l2+k2l1+2γk1l1|<1/2

1
‖k‖2‖l‖2 / 1,

where the asymptotic constant is independent of γ, and
∑

k,l∈Z3(U(t))
k1,k2,l1,l2 6=0
|k1l2−k2l1|=0

1
‖k‖2‖l‖2 / 1.

Proof. We obtain the second sum by substituting k2 7→ −k2 and γ = 0 in the first sum.
Thus it suffices to bound the first sum in the cases |γ| ≥ 1 and γ = 0. We will treat both
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cases simultaneously. We have
∑

k,l∈Z3(U(t))
k1,k2,l1,l2 6=0

|k1l2+k2l1+2γk1l1|<1/2

1
‖k‖2‖l‖2 �

∑

k,l∈Z3(U(t))
k1,k2,l1,l2 6=0

|k1l2+k2l1+2γk1l1|<1/2

1
(‖(k1, k2)‖+ |k3|)2(‖(l1, l2)‖+ |l3|)2 �

∑

1≤|k1|,|k2|,|l1|,|l2|≤U(t)
|k1l2+k2l1+2γk1l1|<1/2

∫ U(t)

0

∫ U(t)

0

dk3 dl3
(‖(k1, k2)‖+ |k3|)2(‖(l1, l2)‖+ |l3|)2 �

∑

1≤|k1|,|k2|,|l1|,|l2|≤U(t)
|k1l2+k2l1+2γk1l1|<1/2

1
‖(k1, k2)‖‖(l1, l2)‖ ≤

∑

1≤|a|,|b|,|x|,|y|≤U(t)
bx−ay=[2γab]

1
‖(a, b)‖‖(x, y)‖ ≤

U(t)∑

r=1

∑

1≤|a|,|b|≤U(t)
gcd(a,b)=1

∑

1≤|x|,|y|≤U(t)
bx−ay=[2γr2ab]/r

1
r‖(a, b)‖‖(x, y)‖ ,

where we have used the notation [x] for the integer nearest to x ∈ R, where we round
away from zero if there is an ambiguity.
Consider the innermost sum, in which a, b, r are fixed, and let c := [2γr2ab]/r. Now,

since gcd(a, b) = 1, the equation bx− ay = c has the set of solutions (x, y) = (x0, y0) +
m(a, b),m ∈ Z, granted there exists some solution (x0, y0) ∈ Z2. For each solution (x, y)
we will define (x′, y′) to be the integer vector on the line L spanned by (a, b) which is closest
to (x, y) among all vectors (x′, y′) with ‖(x′, y′)‖ ≤ ‖(x, y)‖; if there is an ambiguity, choose
the shorter vector (x′, y′). See Figure 1. We see that the set of solutions (x, y) ∈ Z2 maps
to the set of vectors (x′, y′) = m(a, b),m ∈ Z, with at most two vectors (x, y) mapping
to any given (x′, y′). Now we will bound 1/‖(x, y)‖ by 1/‖(x′, y′)‖ = 1/(m‖(a, b)‖) if
m 6= 0, and otherwise we will use the bound 1/‖(x, y)‖ ≤ 1/D, where D is the distance
between the line bx − ay = c and the origin in R2. Note that the case m = 0 cannot
occur if γ = 0 since we are summing over nonzero vectors only; but if |γ| ≥ 1, we get
D = |c|/‖(a, b)‖ ≥ |2rab|/‖(a, b)‖. We also have |m| ≤

√
2 · U(t). Thus the last sum

above can be bounded by
U(t)∑

r=1

∑

1≤|a|,|b|≤U(t)
gcd(a,b)=1


2 1

r‖(a, b)‖
‖(a, b)‖

2rab + 4

√
2U(t)∑

m=1

1
r‖(a, b)‖‖m(a, b)‖


�

U(t)∑

r=1

U(t)∑

a=1

U(t)∑

b=1

1
r2

1
a

1
b

+
U(t)∑

r=1

∑

1≤|a|,|b|≤U(t)

√
2U(t)∑

m=1

1
r

1
m

1
‖(a, b)‖2

/ 1,

where all the individual sums in the last expression have at worst logarithmic behavior
in U(t), so we are done.
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Figure 1: In the proof of Lemma 35, each integer point (x, y) on the line bx− ay = c is
mapped to the closest integer point (x′, y′) on the parallel line L with shorter
or equal length.

x

y bx− ay = c

L

(x, y)

(x′, y′)

It remains to deal with the third part of (34), and for this we will need to use the
integral bound from Lemma 33. First let us prove Lemma 33.

Proof of Lemma 33. We will prove the bound for the inner integral with respect to a1
and a2. Then the result follows by the compactness of the integration domain. Recalling
(16), the integral we need to bound is

∫

R2
exp

(
2πit

(
±
√
a1k̃2

1 + a2k̃2
2 + a3k̃2

3 ±
√
a1 l̃21 + a2 l̃22 + a3 l̃23

))
×

×

 ‖k‖√

a1k̃2
1 + a2k̃2

2 + a3k̃2
3




2
 ‖l‖√

a1 l̃21 + a2 l̃22 + a3 l̃23




2

ψ1(a1)ψ2(a2) da1 da2 .

We perform a variable substitution from (a1, a2) to (x, y) where x := a1k̃2
1 + a2k̃2

2 +
a3k̃2

3, y := a1 l̃21 +a2 l̃22 +a3 l̃23, which yields the Jacobian 1/|k̃2
1 l̃

2
2− k̃2

2 l̃
2
1|. The integral above

becomes

1
|k̃2

1 l̃
2
2 − k̃2

2 l̃
2
1|

∫

R2
e2πit(±√x±√y) ‖k‖2

x

‖l‖2
y

Ψk,l,N (x, y) dx dy . (36)
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where we define Ψk,l,N (x, y) := ψ1(a1)ψ2(a2) (noting that a1, a2 may be expressed in
terms of x, y when a3, η, k, l are held fixed). Since a1, a2, a3 are bounded above and below
throughout the support of ψ1ψ2ψ3, it follows that |x| � ‖k̃‖2 � ‖k‖2, and similarly
|x| � ‖k̃‖2 � ‖k‖2, throughout the support of Ψk,l,N . Likewise |y| � ‖l‖2 and |y| � ‖l‖2
throughout the support of Ψk,l,N .

We will assume without loss of generality that ‖k‖ ≥ ‖l‖, and use integration by parts
on the inner integral of (36) with respect to x; if instead ‖k‖ ≤ ‖l‖ were the case, we
repeat the following argument but integrate by parts instead with respect to y. An

antiderivative of e2πit
√
x with respect to x is e

2πit
√
x

πit

(√
x− 1

2πit

)
. Since ψ1ψ2 is the

characteristic function of a rectangle, it follows that x 7→ Ψk,l,N (x, y) is the characteristic
function of some interval [b1(y), b2(y)], where the length of the interval is � ‖k‖2. Thus

∫

R
e2πit(±√x±√y) ‖k‖2

x

‖l‖2
y

Ψk,l,N (x, y) dx =
[
e2πit(±√x±√y)

±πit

(√
x− 1

2πit

)‖k‖2
x

‖l‖2
y

]b2(y)

x=b1(y)
−

∫ b2(y)

b1(y)

e2πit(±√x±√y)

±πit

(√
x− 1

2πit

)(
−‖k‖

2

x2

)
‖l‖2
y

dx .

Using the bounds ‖k‖2 � |x| � ‖k‖2, we can bound the above expression by

2 sup
x∈[b1(y),b2(y)]

(
e2πit(±√x±√y)

±πit

(√
x− 1

2πit

)‖k‖2
x

‖l‖2
y

)
+

|b2(y)− b1(y)| × sup
x∈[b1(y),b2(y)]

(
e2πit(±√x±√y)

±πit

(√
x− 1

2πit

)(
−‖k‖

2

x2

)
‖l‖2
y

)
�

sup
x∈[b1(y),b2(y)]

(
1
t

√
x
‖k‖2
x

‖l‖2
y

)
+ |b2(y)− b1(y)| × sup

x∈[b1(y),b2(y)]

(
1
t

√
x

x

‖k‖2
x

‖l‖2
y

)
�

1
t

√
‖k‖2 ‖k‖

2

‖k‖2
‖l‖2
y

+ ‖k‖2 1
t

1√
‖k‖2

‖k‖2

‖k‖2
‖l‖2
y

= 21
t
‖k‖‖l‖

2

y
.

We finally integrate with respect to y, and use the bounds ‖l‖2 � |y| � ‖l‖2. Write
D := {y ∈ R : Ψk,l,N (x, y) = 1 for some x ∈ R} for the domain of integration. Thus (36)
is bounded by

1
|k̃2

1 l̃
2
2 − k̃2

2 l̃
2
1|
‖l‖2 sup

y∈D

(
1
t
‖k‖‖l‖

2

y

)
� 1
|k̃2

1 l̃
2
2 − k̃2

2 l̃
2
1|
‖k‖‖l‖2

t
=

1
|k̃2

1 l̃
2
2 − k̃2

2 l̃
2
1|
‖k‖3/2‖l‖3/2

t

‖l‖1/2

‖k‖1/2
≤ 1
|k̃2

1 l̃
2
2 − k̃2

2 l̃
2
1|
‖k‖3/2‖l‖3/2

t
,

where the last inequality follows from our assumption ‖k‖ ≥ ‖l‖.
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Applying Lemma 33, and recalling (32), it now only remains to bound
∫

[1,2)3

∑
3

1
‖k‖2‖l‖2

∣∣∣∣
∫

R3
e2πitΦk,l(AN)ψk,l(AN) da

∣∣∣∣ dη �
∫

[1,2)3

∑
3

1
‖k‖2‖l‖2

1
t

‖k‖3/2‖l‖3/2∣∣∣k̃2
1 l̃

2
2 − k̃2

2 l̃
2
1

∣∣∣
dη =

∫

[1,2)3

∑
3

1
‖k‖2‖l‖2

1
t

‖k‖3/2‖l‖3/2
|k1l2 − k2l1||k1l2 + k2l1 + 2γk1l1|

dη .

The integrand only depends on η1 = −γ. Integrating with respect to η2 and η3, the
expression above becomes

∫

(−2,−1]

∑

k,l∈Z3(U(t))
k1,k2,l1,l2 6=0

|k1l2+k2l1+2γk1l1|≥1/2
k1l2−k2l1 6=0

1
‖k‖2‖l‖2

1
t

‖k‖3/2‖l‖3/2
|k1l2 − k2l1||k1l2 + k2l1 + 2γk1l1|

dγ .

We split the sum into one over k3, l3 and one over the other coordinates. We use the
fact that ‖k‖ ≥ |k3| if k3 6= 0, and otherwise ‖k‖ ≥ 1, and likewise for l. Thus the above
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expression is bounded by

1
t

∫ −1

−2

∑

1≤|k1|,|k2|,|l1|,|l2|≤U(t)
|k1l2+k2l1+2γk1l1|≥1/2

k1l2−k2l1 6=0

1
|k1l2 − k2l1||k1l2 + k2l1 + 2γk1l1|

dγ×

×

1 +

∑

1≤|k3|≤U(t)

1
|k3|1/2




1 +

∑

1≤|l3|≤U(t)

1
|l3|1/2


�

(
(U(t))1/2

)2

t

∫ −1

−2

∑

1≤|k1|,|k2|,|l1|,|l2|≤U(t)
|k1l2+k2l1+2γk1l1|≥1/2

k1l2−k2l1 6=0

1
|k1l2 − k2l1||k1l2 + k2l1 + 2γk1l1|

dγ /

∫ −1

−2

∑

1≤|k1|,|k2|,|l1|,|l2|≤U(t)
|k1l2+k2l1+2γk1l1|≥1/2

k1l2−k2l1 6=0

1
|k1l2 − k2l1||k1l2 + k2l1 + 2γk1l1|

dγ ≤ (37)

∫ −1

−2

U(t)∑

r=1

∑

1≤|k1|,|k2|,|l1|,|l2|≤U(t)
|k1l2+k2l1+2γk1l1r|≥1/(2r)

k1l2−k2l1 6=0
gcd(k1,l1)=1

1
r2|k1l2 − k2l1||k1l2 + k2l1 + 2γk1l1r|

dγ ≤

∫ −1

−2

U(t)∑

r=1

∑

1≤|w|≤2U(t)2

∑

1≤|k1|,|l1|≤U(t)
gcd(k1,l1)=1

∑

1≤|k2|,|l2|≤U(t)
|k1l2+k2l1+2γk1l1r|≥1/(2r)

k1l2−k2l1=w

1
r2|w||k1l2 + k2l1 + 2γk1l1r|

dγ .

(38)

Consider the innermost sum, where k1, l1, γ, w, r are fixed. Since gcd(k1, l1) = 1 inside
the sum, it follows that the equation k1l2 − k2l1 = w has the set of solutions (k2, l2) =
(x0, y0) +m(k1, l1),m ∈ Z, granted there exists some solution (x0, y0) ∈ Z2. Therefore
k1l2 + k2l1 + 2γk1l1r assumes the values c0 + 2k1l1m for m ∈ Z as (k2, l2) varies, where
c0 := k1y0 + l1x0 + 2γk1l1r is constant. In particular, k1l2 + k2l1 + 2γk1l1r assumes
consecutive values spaced a distance 2|k1l1| apart, with at most two values smaller than
2|k1l1| in absolute value, and the number of values it assumes is ≤ 2U(t). It follows that
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the expression (38) above is

�
∫ −1

−2

U(t)∑

r=1

∑

1≤|w|≤2U(t)2

∑

1≤|k1|,|l1|≤U(t)
gcd(k1,l1)=1

1
r2|w|×

×




∑

1≤|m|≤U(t)

1
2|mk1l1|

+
∑

1≤|k2|,|l2|≤U(t)
1

2r
≤|k1l2+k2l1+2γk1l1r|<2|k1l1|

k1l2−k2l1=w

1
|k1l2 + k2l1 + 2γk1l1r|



dγ .

We expand this into a sum of two terms. We have
∫ −1

−2

U(t)∑

r=1

∑

1≤|w|≤2U(t)2

∑

1≤|k1|,|l1|≤U(t)
gcd(k1,l1)=1

1
r2|w|

∑

1≤|m|≤U(t)

1
2|mk1l1|

dγ / 1,

which takes care of the first term. It remains to bound
∫ −1

−2

∑

1≤r,|k1|,|l1|≤U(t)
1≤|w|≤2U(t)2

gcd(k1,l1)=1

1
r2|w|

∑

1≤|k2|,|l2|≤U(t)
1

2r
≤|k1l2+k2l1+2γk1l1r|<2|k1l1|

k1l2−k2l1=w

1
|k1l2 + k2l1 + 2γk1l1r|

dγ .

We may without loss of generality assume that k1l2 + k2l1 + 2γk1l1r is positive in the
innermost sum, since we obtain the opposite case by switching the signs of k1, k2, w.
Moreover, we may extend the sum to range over all (k2, l2) ∈ Z2. It thus suffices to bound

∑

1≤r,|k1|,|l1|≤U(t)
1≤|w|≤2U(t)2

gcd(k1,l1)=1

1
r2|w|

∫ −1

−2

∑

(k2,l2)∈Z2
1

2r
≤(k1l2+k2l1+2γk1l1r)<2|k1l1|

k1l2−k2l1=w

1
(k1l2 + k2l1 + 2γk1l1r)

dγ .

In the innermost sum, which is a sum over precisely one pair (k2, l2), and where
k1, l1, γ, w, r are fixed, denote by f(γ) the unique positive value in [1/(2r), |2k1l1|) which
k1l2 + k2l1 + 2γk1l1r assumes as (k2, l2) varies, if it exists, or let f(γ) be undefined
otherwise. Then f(γ) = c + 2γk1l1r (mod 2|k1l1|) on its domain of definition, where
c = k1y0 + l1x0 is a constant, so f(γ) coincides with a sawtooth wave with slope 2k1l1r
and period 1/r, except that it is undefined where the sawtooth wave has a value in
[0, 1/(2r)). Now we can partition (−2, 1] ∩ dom(f) into at most r + 1 subintervals Im
such that f is linear on each. The integral of 1/f(γ) with respect to γ on any such
subinterval Im is

∫

Im

dγ

f(γ) =
[ log|k1l2 + k2l1 + 2γk1l1r|

2k1l1r

]sup Im

γ=inf Im

�

log
∣∣∣(2 + 4r)U(t)2

∣∣∣+
∣∣∣log 1

2r

∣∣∣
|2k1l1r|

/ log r
|k1l1r|

,
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where the asymptotic constants are independent of m. We now get
∑

1≤r,|k1|,|l1|≤U(t)
1≤|w|≤2U(t)2

gcd(k1,l1)=1

1
r2|w|

r+1∑

m=1

∫

Im

dγ

f(γ) /

∑

1≤r,|k1|,|l1|≤U(t)
1≤|w|≤2U(t)2

gcd(k1,l1)=1

1
r2|w|

(r + 1) log r
|k1l1r|

/ 1,

and this completes the proof of Theorem 1 for n = 3.

7 Proof of Theorem 1 for n = 2
We will sketch how the proof of Theorem 1 for the case n = 3 may be modified for the
case n = 2.
By a decomposition of the measure on GL2(R)/GL2(Z) analogous to equation (8), it

suffices to prove that
√∫

[1,2)2

∫

R2
|EAN (t)|2ψ(a) da dη � t1/2,

where ψ(a) := 4π|detA|2ψ1(a1)ψ2(a2) for the characteristic functions ψ1, ψ2 of two closed

intervals contained in (0,∞), and where we use the parametrization N =
(

1 η1
0 1

)
, η1 ∈

[1, 2), A =
(

1/√a1 0
0 1/√a2

)
, ai ∈ (0,∞).

The analog of Claim 12 in two dimensions is that it suffices to prove
∫

[1,2)2

∫

R2
|EεAN (t)|2ψ(a) da dη � t,

for all ε = ε(t) such that ε ≥ 1/t1/2, where EεX(t) := ∑
k 6=(0,0) χ̂tΩX

(k)ρ̂ε(k) and ρε(x) =
ε−2ρ0(x1/ε)ρ0(x2/ε), and where as before ρ0 : R → R is an even mollifier such that
|ρ̂0(y)| � e−

√
y for large y.

Next, to estimate the behavior of EεX , we begin by considering the Fourier transform
of the characteristic function χΩ of the standard unit ball in R2. It equals (see equation
11 in chapter 6.4 of [SS03])

χ̂Ω(k) = 2π
∫ 1

0
J0(2π‖k‖r)r dr,

where we have written Jα for the Bessel function of the first kind of order α. Integrating
the Taylor series of J0 (see equation 9.1.10 of [AS64]) term by term, we obtain

χ̂Ω(k) = J1(2π‖k‖)
‖k‖ .
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Using the asymptotics J1(x) =
√

2
πx cos(x− 3π/4) +O(x−3/2) for large x (see equation

9.2.1 of [AS64]), we obtain

χ̂Ω(k) =
cos(2π‖k‖ − 3π

4 )
π‖k‖3/2

+O(‖k‖−5/2),

so it follows, as before, that

χ̂ΩX
(k) = |detX|−1 cos(2π‖k‖X − 3π

4 )
π‖k‖3/2X

+O(‖k‖−5/2)

where we have defined ‖k‖X := ‖(X−1)Tk‖.
Since EεX(t) = ∑

k 6=(0,0) χ̂tΩX
(k)ρ̂ε(k) = ∑

k 6=(0,0) t
2χ̂ΩX

(tk)ρ̂(εk), we obtain, as before,

EεX(t) = |detX|−1 ∑

k 6=(0,0)

(
t2

t3/2
cos(2π‖tk‖X − 3π

4 )
π‖k‖3/2X

+ t2

t5/2
O(‖k‖−5/2)

)
ρ̂(εk)

= |detX|−1t1/2


 ∑

k 6=(0,0)

cos(2πt‖k‖X − 3π
4 )

π‖k‖3/2X

ρ̂(εk)


+O(1).

Writing cos(x) = (eix + e−ix)/2 and squaring EεX , it follows, analogous to Claim 14, since
ρ̂ is real-valued, that it suffices to show that

∑

k,l 6=(0,0)

|ρ̂(εk)ρ̂(εl)|
‖k‖3/2‖l‖3/2 |Ik,l(t)| � 1, (39)

for all ε = ε(t) such that ε ≥ 1/t1/2, where

Ik,l(t) :=
∫

[1,2)2

∫

R2
e2πitΦk,l(AN)ψk,l(AN) da dη,

Φk,l(AN) := ±‖k‖AN ± ‖l‖AN ,

ψk,l(AN) :=
( ‖k‖
‖k‖AN

)3/2( ‖l‖
‖l‖AN

)3/2
ψ1(a1)ψ2(a2),

for all four choices of signs in the definition of Φk,l.
The rest of the proof consists of bounding different parts of the sum (39). Doing this

for n = 2 amounts to repeating the arguments for n = 3 with the difference that now k, l
instead range over Z2 and that the exponents of ‖k‖ and ‖l‖ in (39) are 3/2 instead of
2. Many of the bounds are improved in the case n = 2, the majority of them becoming
o(1), but we remark that we cannot do better than Θ(1), since with k = l = (0, 1) and
choosing Φk,l(AN) = ‖k‖AN − ‖l‖AN we get Ik,l(t) = Θ(1). In contrast, most of the
bounds fail for n ≥ 4 using the exact method above; the technical reason being that the
exponents of ‖k‖, ‖l‖ for k, l ∈ Zn in the analog of (39) become (n+ 1)/2, whereas we
would need the exponents to be roughly of the order n to get our desired bounds. We
will now proceed to bound the sum (39).
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7.1 Neglecting integer vectors with large coordinates
We imitate the proof of Lemma 18. Let as before U(t) = 32t log2 t. Since ε = ε(t) ≥
1/t1/2 ≥ 1/t we have

∑

k 6=(0,0)
‖k‖≥U(t)

e−
√
‖εk‖

‖k‖3/2
�
∫ ∞

U(t)/2

e−
√
r/t

r3/2 r dr ≤
∫ ∞

U(t)/2
e−
√
r/t dr � t−3 log2 t

where the last inequality is the same as inequality (21). We also have
∑

l 6=(0,0)

1
‖l‖3/2

�
∫ U(t)

1

1
r3/2 r dr ≤

∫ U(t)

1
dr � U(t)� t log2 t.

As in the proof of Lemma 18, it follows that

∑

k,l 6=(0,0)
‖k‖≥U(t)

|ρ̂(εk)ρ̂(εl)|
‖k‖3/2‖l‖3/2 |Ik,l(t)| �

∑

l 6=(0,0)

1
‖l‖3/2

∑

k 6=(0,0)
‖k‖≥U(t)

e−
√
‖εk‖

‖k‖3/2
� 1

due to the rapid decay of ρ. Consequently it suffices to restrict the sum (39) to the terms
for which |kj |, |lj | ≤ U(t) for j = 1, 2.

7.2 Neglecting integer vectors with vanishing coordinates
We have

∑

k∈Z2(U(t))
k1=0

1
‖k‖3/2

�
∫ U(t)

1

1
r3/2 dr � 1,

which, as in Lemma 25, implies that we may neglect the terms of the sum (39) where
both some coordinate of k and some coordinate of l is zero.

Next, to show that we may neglect the terms for which precisely one of k1 or l1 is zero,
we need to modify the proof of Lemma 27. The proof may be repeated verbatim up until
ψ0 is defined, which should be changed to ψ0(a1) := ‖k‖3/2‖l‖3/2

‖k‖3/2
AN‖l‖

3/2
AN

, the derivative of which
is bounded since it is

ψ′0(a1) = −3
4
‖k‖3/2‖l‖3/2

‖k‖3/2AN‖l‖
3/2
AN

l21
‖l‖2AN

� ‖k‖
3/2‖l‖3/2

‖k‖3/2‖l‖3/2
‖l‖2

‖l‖2
= 1.

This yields, as in the proof of Lemma 27, that |Ik,l(t)| � 1
t
‖l‖
|l1| where the asymptotic

constant is independent of k, l, and thus
∑

k,l∈Z2(U(t))
k1=0,k2,l1,l2 6=0

|ρ̂(εk)ρ̂(εl)|
‖k‖3/2‖l‖3/2 |Ik,l(t)| �

1
t

∑

k∈Z2(U(t))
k1=0

1
‖k‖3/2

∑

l∈Z2(U(t))
l1,l2 6=0

1
|l1|‖l‖1/2

�

1
t
· 1 · log(U(t)) ·

√
U(t)� 1.
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Next, to show that we may neglect the terms for which precisely one of k2 or l2 is zero,
we need to modify the proof of Lemma 29. Again the proof can be repeated verbatim
up until the point where we need to show that the partial derivative ∂

∂u
‖k‖3/2‖l‖3/2

‖k‖3/2
AN‖l‖

3/2
AN

is

bounded, where u = −η2
1a1 + a2. Indeed it is, for

∂

∂u

‖k‖3/2‖l‖3/2

‖k‖3/2AN‖l‖
3/2
AN

= −3
4
‖k‖3/2‖l‖3/2

‖k‖3/2AN‖l‖
3/2
AN

(−η2
1l

2
1 + l̃22)

‖l‖2AN
� ‖k‖

3/2‖l‖3/2

‖k‖3/2‖l‖3/2
‖l‖2

‖l‖2
= 1.

This yields, as in Lemma 29, that
∫

[1,2)2

∑

k,l∈Z2(U(t))
k2=0
l1,l2 6=0

|l2−2η1l1|≥1

1
‖k‖3/2‖l‖3/2

∣∣∣∣
∫

R2
e2πiΦk,l(AN)ψk,l(AN) da

∣∣∣∣ dη �

1
t

∫

[1,2)2

∑

k,l∈Z2(U(t))
k2=0
l1,l2 6=0

|l2−2η1l1|≥1

1
‖k‖3/2‖l‖1/2|l2|

dη ≤ 1
t

∑

k,l∈Z2(U(t))
k2=0
l1,l2 6=0

1
‖k‖3/2‖l‖1/2|l2|

� 1.

Moreover, since there is at most one value that l2 may assume in the region |l2 − 2η1l1| < 1,
we also have

∫

[1,2)2

∑

k,l∈Z2(U(t))
k2=0
l1,l2 6=0

|l2−2η1l1|<1

1
‖k‖3/2‖l‖3/2

∣∣∣∣
∫

R2
e2πiΦk,l(AN)ψk,l(AN) da

∣∣∣∣ dη �

∫

[1,2)2

∑

k,l∈Z2(U(t))
k2=0
l1,l2 6=0

|l2−2η1l1|<1

1
‖k‖3/2‖l‖3/2 dη �

∫

[1,2)2

∑

k,l∈Z2(U(t))
k2=0
l1,l2 6=0

|l2−2η1l1|<1

1
k

3/2
1 l

3/2
1

dη �

∞∑

k1=1

1
k

3/2
1

∞∑

l1=1

1
l
3/2
1
� 1.

Thus it remains only to prove that
∑

k,l∈Z3(U(t))
k1,k2,l1,l2 6=0

1
‖k‖2‖l‖2 |Ik,l(t)| � 1. (40)

7.3 Concluding the proof of Theorem 1 for n = 2
We can bound (40) by

∫

[1,2)2

(∑
1

+
∑

2
+
∑

3

) 1
‖k‖3/2‖l‖3/2

∣∣∣∣
∫

R2
e2πitΦk,l(AN)ψk,l(AN) da

∣∣∣∣ dη,
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where∑1 is the sum over |k1l2 + k2l1 + 2γk1l1| < 1/2; ∑2 is the sum over k1l2−k2l1 = 0;∑
3 is the sum over |k1l2 + k2l1 + 2γk1l1| ≥ 1/2 and k1l2 − k2l1 6= 0, and where all sums

range over all k, l ∈ Z2(U(t)) such that k1, k2, l1, l2 6= 0. Recall that γ = −η1.
In order to show that we may neglect the sums ∑1 and ∑2, we need to modify the

proof of Lemma 35. The sum ∑
1 is

�
∑

1≤|k1|,|k2|,|l1|,|l2|≤U(t)
|k1l2+k2l1+2γk1l1|<1/2

1
‖(k1, k2)‖3/2‖(l1, l2)‖3/2 ≤

U(t)∑

r=1

∑

1≤|a|,|b|≤U(t)
gcd(a,b)=1

∑

1≤|x|,|y|≤U(t)
bx−ay=[2γr2ab]/r

1
r3/2‖(a, b)‖3/2‖(x, y)‖3/2

,

As in the proof of Lemma 35, the sum over (x, y) can be bounded, up to constants, by a
sum where we replace each vector (x, y) by m(a, b) for |m| ≤

√
2U(t), m 6= 0, with one

additional term where we replace 1/‖(x, y)‖ by ‖(a, b)‖/|2rab|, and thus the expression
above is

�
U(t)∑

r=1

∑

1≤|a|,|b|≤U(t)
gcd(a,b)=1


 ‖(a, b)‖3/2

r3/2‖(a, b)‖3/2|2rab|3/2
+

√
2U(t)∑

m=1

1
r3/2‖(a, b)‖3/2‖m(a, b)‖3/2


�

U(t)∑

r=1

U(t)∑

a=1

U(t)∑

b=1

1
r3

1
a3/2

1
b3/2

+
U(t)∑

r=1

∑

1≤|a|,|b|≤U(t)

√
2U(t)∑

m=1

1
r3/2m3/2‖(a, b)‖3

� 1,

and thus ∑1 � 1. As in the proof of Lemma 35, the above argument can be repeated
verbatim (with the substitutions k2 7→ −k2 and γ 7→ 0) to prove that also ∑2 � 1.

It thus remains only to deal with∑3. Lemma 33 still holds for n = 2 (when integrating
instead over R2). Applying Lemma 33 to the sum ∑

3, we get
∫

[1,2)

∑
3

1
‖k‖3/2‖l‖3/2

∣∣∣∣
∫

R2
e2πitΦk,l(AN)ψk,l(AN) da

∣∣∣∣ dη ≤

C

t

∫ −1

−2

∑

1≤|k1|,|k2|,|l1|,|l2|≤U(t)
|k1l2+k2l1+2γk1l1|≥1

k1l2−k2l1 6=0

1
|k1l2 − k2l1||k1l2 + k2l1 + 2γk1l1|

dγ,

where C is a constant which does not depend on any of k, l,N (but which does depend
on ψ), but this is precisely C

t multipled by the expression (37) on page 22, which we
have already proved is / 1 as part of the proof for n = 3. Thus the expression above is
/ 1

t , so it is � 1. This completes the proof of Theorem 1 for n = 2.

8 Proof of Proposition 3 and Corollary 4
Denote by

E1[f(X)] :=
∫

SLn(R)/ SLn(Z)
f(X) dµ1(X)
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the mean value of f over the set of all lattices with unit determinant, where µ1 is the
normalized Haar measure on SLn(R)/ SLn(Z). We quote the mean value formulas of
Siegel and Rogers (see [Sie45] and Theorem 4 in [Rog55]).

Theorem 41 (Siegel’s mean value formula). Suppose that n ≥ 2. Let ρ : Rn → R be an
integrable function, and let Λ := XZn for X ∈ SLn(R). Then

E1


∑

u∈Λ
ρ(u)


 =

∫

Rn
ρ(x) dx+ρ(0).

Theorem 42 (Rogers’s mean value formula). Suppose that n ≥ 3. Let ρ : Rn × Rn → R
be a non-negative Borel-measurable function, and let Λ := XZn for X ∈ SLn(R). Then

E1


 ∑

u,v∈Λ
ρ(u, v)


 =

∫∫

Rn×Rn
ρ(x, y) dx dy+ρ(0, 0)+

2
∞∑

q=1

∑

r≥1
gcd(q,r)=1

1
qn

∫

Rn

(
ρ

(
x,
q

r
x

)
+ ρ

(
q

r
x, x

))
dx .

Proof of Proposition 3. Taking ρ(u) := χtΩ(u) in Siegel’s mean value formula, we obtain

E1[NX(t)] = vol(tΩ) + 1,

and taking ρ(u, v) := χtΩ(u)χtΩ(v) in Rogers’s mean value formula, we obtain

E1
[
NX(t)2

]
= vol(tΩ)2 + 1 + 4

∞∑

q=1

∑

r≥1
gcd(q,r)=1

1
qn

∫

Rn
χtΩ(x)χtΩ

(
q

r
x

)
dx,

so that

E1
[
NX(t)2

]
− (vol(tΩ)2 + 1) = 4

∑

q,r≥1
gcd(q,r)=1

1
(qr)n

∫

Rn
χtΩ(qx)χtΩ(rx) dx =

4
∑

q,r≥1
gcd(q,r)=1

1
(qr)n vol

(
t

max(q, r)Ω
)

=
∑

q,r≥1
gcd(q,r)=1

4 vol(tΩ)
(qr)n max(q, r)n =: cn vol(tΩ),

where cn ≥ 4 is a constant (which is clearly convergent for n ≥ 2). Thus we have

E1
[
EX(t)2

]
= E1

[
(NX(t)− vol(tΩ))2

]
=

E1
[
NX(t)2

]
− 2 vol(tΩ)E1[NX(t)] + vol(tΩ)2 =

cn vol(tΩ) + 1− 2 vol(tΩ) = 1 + (cn − 2) vol(Ω)tn = Θ(tn),

so
√
E1
[
|EX(t)|2

]
= Θ(tn/2). This completes the proof of Proposition 3.
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Proof of Corollary 4. We identify GLn(R)/GLn(Z) with GL+
n (R)/ SLn(Z), where GL+

n (R)
is the subset of GLn(R) consisting of matrices with positive determinant, and use the
decomposition GL+

n (R)/ SLn(Z) = (SLn(R)/SLn(Z)) · D, where D = {rI : r > 0} is
the set of positive multiples of the identity matrix I. We identify the Haar measure
on GL+

n (R)/ SLn(R) with the Haar measure µ on GLn(R), which is well-known to be
bi-invariant. The Haar measure dr/r on D is bi-invariant as well since D is commutative.
Thus the modular functions on these topological groups are identically 1 (see [Kna02]).
Consequently, Theorem 8.32 from [Kna02] implies that

∫

a≤|detX|≤b
|EX(t)|2 dµ(X) =

∫
rI∈D
a≤rn≤b

∫

SLn(R)/SLn(Z)
|ErX(t)|2 dµ1(X)dr

r
.

We have ErX(t) = EX(t/r) for any r > 0, so the inner integral can be written as
E1
[
|EX(t/r)|2

]
. Using the bounds from Proposition 3 on the inner integral, and bounding

the outer integral trivially, we get
∫

La,b

|EX(t)|2 dµ(X) = Θ(tn).
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MISSING CLASS GROUPS AND CLASS NUMBER STATISTICS FOR IMAGINARY

QUADRATIC FIELDS

S. HOLMIN, N. JONES, P. KURLBERG, C. MCLEMAN AND K. PETERSEN

Abstract. The number F(h) of imaginary quadratic fields with class number h is of classical interest:

Gauss’ class number problem asks for a determination of those fields counted by F(h). The unconditional
computation of F(h) for h ≤ 100 was completed by M. Watkins, using ideas of Goldfeld and Gross-Zagier;

Soundararajan has more recently made conjectures about the order of magnitude of F(h) as h → ∞ and

determined its average order. In the present paper, we refine Soundararajan’s conjecture to a conjectural
asymptotic formula and also consider the subtler problem of determining the number F(G) of imaginary

quadratic fields with class group isomorphic to a given finite abelian group G. Using Watkins’ tables, one

can show that some abelian groups do not occur as the class group of any imaginary quadratic field (for
instance (Z/3Z)3 does not). This observation is explained in part by the Cohen-Lenstra heuristics, which

have often been used to study the distribution of the p-part of an imaginary quadratic class group. We
combine heuristics of Cohen-Lenstra together with our refinement of Soundararajan’s conjecture to make

precise predictions about the asymptotic nature of the entire imaginary quadratic class group, in particular

addressing the above-mentioned phenomenon of “missing” class groups, for the case of p-groups as p tends
to infinity. Furthermore, conditionally on the Generalized Riemann Hypothesis, we extend Watkins’ data,

tabulating F(h) for odd h ≤ 106 and F(G) for G a p-group of odd order with |G| ≤ 106. (In order to

do this, we need to examine the class numbers of all negative prime fundamental discriminants −q, for
q ≤ 1.1881 · 1015.) The numerical evidence matches quite well with our conjectures.

1. Introduction

Given a fundamental discriminant d < 0, let H(d) denote the ideal class group of the imaginary quadratic

field Q(
√
d), and let h(d) := |H(d)| denote the class number. A basic question is:

Question 1.1. Which finite abelian groups G occur as H(d) for some negative fundamental discriminant
d?

Equivalently, which finite abelian groups G do not occur as H(d)? The case where G ' (Z/2Z)r has
classical connections via genus theory to Euler’s “idoneal numbers,” and it follows from work of Chowla
[8] that for every r � 1, the group (Z/2Z)r does not occur as the class group of any imaginary quadratic
field. Later work of various authors ([6], [45], [17]) has shown that (Z/nZ)r does not occur as an imaginary
quadratic class group for r � 1 and 2 ≤ n ≤ 6 (in fact, Heath-Brown showed that groups with exponent 2a

or 3 · 2a occur only finitely many times.) Moreover, (Z/nZ)r does not occur for n > 6 and r �n 1 assuming
the Generalized Riemann Hypothesis (cf. [6, 45]); in fact they show that the exponent of H(d) tends to
infinity as d→ −∞.

Due to the possible existence of Siegel zeroes, the unconditional results mentioned above are ineffective.
To find explicit examples of missing class groups, one can undertake a brute-force search using tables of M.
Watkins [44], who used the ideas of Goldfeld and Gross-Zagier to give an unconditional resolution of Gauss’
class number problem for class numbers h ≤ 100. Such a search reveals that none of the groups

(
Z
3Z

)3

,
Z
9Z
×
(

Z
3Z

)2

,

(
Z
3Z

)4

occur as the class group of an imaginary quadratic field.
It is also natural to ask how common the groups that do occur are:

Question 1.2. Given a finite abelian group G, for how many fundamental discriminants d < 0 is H(d) ' G?

2010 Mathematics Subject Classification. 11R29, 11Y40.
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In order to address this question, we are led to investigate a closely related issue:

Question 1.3. Given an integer h > 0, for how many fundamental discriminants d < 0 is |H(d)| = h?

Questions 1.1, 1.2, and 1.3 appear to be beyond the realm of what one can provably answer in full
with current technology. In this paper, we combine the heuristics of Cohen-Lenstra with results on the
distribution of special values of Dirichlet L-functions to give a conjectural asymptotic answer to Question
1.3, for h odd. (For this we only use the Cohen-Lenstra heuristic to predict divisibility properties of class
numbers.) Further, using this conjectured asymptotic answer, we use the Cohen-Lenstra heuristic to predict
the p-group decomposition of H(d) and obtain a conjectured asymptotic answer to Question 1.2 in the case
where G is a p-group for an odd prime p. (We believe that similar results hold for composite class number,
though here one must be careful in how limits are taken; for instance with some groups of order pn1

1 pn2
2 ,

p1 fixed and p2 tending to infinity is very different from p1 and p2 both tending to infinity.) In particular,
regarding Question 1.1, we establish a precise condition on the shape of an abelian p-group which governs
whether or not it should occur as an imaginary quadratic class group for infinitely many primes p. For
instance, our conjecture predicts that the group

(
Z
pZ

)3

should appear as a class group for only finitely many primes p (in fact, quite likely for no primes p at all; cf.
Conjecture 1.10 in Section 1.3.1), whereas the two groups

Z
p3Z

,
Z
p2Z
× Z
pZ

should occur as a class group for infinitely many primes p.
Given a positive integer h we set

F(h) := |{fundamental discriminants d < 0 : h(d) = h}|. (1.1)

Thus for instance F(1) = 9, which is the statement of the Baker-Stark-Heegner theorem on Gauss’ class
number 1 problem for imaginary quadratic fields. Given a fixed finite abelian group G, we consider the
refined counting function

F(G) := |{fundamental discriminants d < 0 : H(d) ' G}|,
so that F(h) =

∑
|G|=h F(G), where the sum runs over isomorphism classes of finite abelian groups of order

h. The Cohen-Lenstra heuristics suggest that, for any finite abelian group G of odd order h, the expected
number of imaginary quadratic fields with class group G is given by

F(G) ≈ P (G) · F(h), (1.2)

where

P (G) :=

(
1

|Aut(G)|

)/



∑

abel. groups G′
s.t. |G′|=|G|

1

|Aut(G′)|


 . (1.3)

The first factor P (G) may be evaluated explicitly, whereas the second factor F(h) is more delicate. K.
Soundararajan has conjectured (see [40, p. 2]) that

F(h) � h

log h
(h odd) . (1.4)

We refine Soundararajan’s heuristic, sharpening (1.4) to a conjectural asymptotic formula, which involves
certain constants associated to a random Euler product. Let Y = {Y(p) : p prime} denote a collection of
independent identically distributed random variables satisfying

Y(p) :=

{
1 with probability 1/2

−1 with probability 1/2
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and let

L(1,Y) :=
∏

p

(
1− Y(p)

p

)−1

denote the corresponding random Euler product, which converges with probability one. Define the constant

C := 15
∞∏

`=3
` prime

∞∏

i=2

(
1− 1

`i

)
≈ 11.317, (1.5)

as well as the factor (defined for odd h)

c(h) :=
∏

pn‖h

n∏

i=1

(
1− 1

pi

)−1
.

Conjecture 1.4. We have

F(h) ∼ C

15
· c(h) · h · E

(
1

L(1,Y)2 log(πh/L(1,Y))

)
∼ C · c(h) · h

log(πh)
(1.6)

as h −→∞ through odd values. (Here E denotes expected value.)

Conjecture 1.4 is developed from the Cohen-Lenstra heuristics together with large-scale distributional
considerations of the special value L(1, χd). The former can be viewed as a product over non-archimedean
primes; the latter as an archimedean factor — in a sense our prediction is a “global” (or adelic) generalization
of the Cohen-Lenstra heuristic, somewhat similar to the Siegel mass formula.

More precisely, motivated by the Cohen-Lenstra heuristic we introduce a correction factor that considers
divisibility of h by a random odd positive integer (for instance a random class number is divisible by 3 with
conjectural probability

1−
∞∏

i=1

(
1− 1

3i

)
≈ 43%,

and this suggests a correction factor of
(
1−∏∞i=1

(
1− 1

3i

))
/(1/3) whenever 3 divides h). We remark that the

Cohen-Lenstra heuristics have often been applied to give a probabilistic model governing the p-part of a class
group, for a fixed prime p (see for instance [10, Section 9]). By contrast, the precise asymptotic predicted by
Conjecture 1.4 involves applying these considerations for all primes p (including the archimedean prime).

The relevant information about the distribution of L(1, χd) is implicit in the following theorem, which
gives the analogue of [40, Theorem 1] averaged over odd values of h.

Theorem 1.5. Assume the Generalized Riemann Hypothesis. Then for any ε > 0, we have

∑

h≤H
h odd

F(h) =
15

4
· H2

logH
+O

(
H2(logH)−3/2+ε

)
,

as H −→∞.

Remark 1.6. In fact, our analysis (cf. Section 4) yields the more accurate approximation

F(h) ∼ C

15
· c(h) · h · E

(
1

L(1,Y)2 log(πh/L(1,Y))

)

= C · c(h) · h

log(πh)
·
(

1 +
c1

log(πh)
+

c2

log2(πh)
+

c3

log3(πh)
+ o

(
1

log3(πh)

))
,

(1.7)

where

c1 :=
π2

15
E
(

logL(1,Y)

L(1,Y)2

)
≈ −0.578,

c2 :=
π2

15
E
(

log2 L(1,Y)

L(1,Y)2

)
≈ 0.604,

c3 :=
1

c0
E
(

log3 L(1,Y)

L(1,Y)2

)
≈ −0.526.

(1.8)
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Without this higher order expansion we have a relative error of size O(1/ log h); since we only have data for
odd h ≤ 106, the higher order expansion is essential to get a convincing fit to the observed data.

1.1. Numerical evidence for Conjecture 1.4. With the aid of a supercomputer and assuming GRH, we
have computed F(h) and F(G) for all odd h < 106 and all p-groups G of odd size at most 106. For the
correctness of the computation, and to obtain some important speedups, we use GRH in three ways. First,
we use a recent result by Lamzouri, Li, and Soundararajan [25] in order to give an upper bound on the
negative prime fundamental discrimants d < 0 for which h(d) < 106. Consequently it is enough to examine
h(−q) for all primes q ≡ 3 mod 4, and q ≤ 1.1881 · 1015. In particular, we must extend the class number
computation [23], where Jacobson, Ramachandran, and Williams determine h(−d) for d < 1011, and −d
a fundamental discriminant. In order to avoid the costly full computation of the class number (especially

for −d > 1014), we use the Dirichlet class number formula h(d) = L(1, χd) ·
√
|d|/π in order to compute a

lower bound on h(d) by approximating L(1, χd). Assuming GRH, L(1, χd) is well approximated by a short
truncated Euler product; to choose parameters we use some explicit GRH-conditional bounds due to Bach
[1] together with a simple, but quite important, improvement (cf. Proposition 6.1.) Finally, for class groups
that are far from cyclic (these are quite rare), we compute the full class group using PARI’s quadclassunit0,
an implementation of Buchmann-McCurley’s sub-exponential, and GRH-conditional, algorithm. For more
details regarding the computation, see Section 6.

The numerics give us quite convincing evidence in support of Conjecture 1.4. Below we give some samples1

of computed values F(h) (conditional on the GRH) compared to the values predicted by Conjecture 1.4,
rounded to the nearest integer. We also list the relative error (F(h)−pred(h))/ pred(h) given as a percentage,
where

pred(h) := C · c(h) · h

log(πh)
·
(

1 +
c1

log(πh)
+

c2

log2(πh)
+

c3

log3(πh)

)
. (1.9)

h 10001 10003 10005 10007 10009 10011 10013 10015
F(h) 10641 12154 20661 10536 10329 15966 12221 12975

pred(h) 10598 12116 21074 10383 10385 16144 12038 12993
Relative error +0.41% +0.31% −1.96% +1.48% −0.54% −1.10% +1.52% −0.14%

h 100001 100003 100005 100007 100009 100011 100013 100015
F(h) 94623 85792 164289 86770 111948 142512 87138 108993

pred(h) 94213 85641 164806 86620 111210 142989 86577 108820
Relative error +0.43% +0.18% −0.31% +0.17% +0.66% −0.33% +0.65% +0.16%

h 999985 999987 999989 999991 999993 999995 999997 999999
F(h) 1064529 1095135 771805 791007 1093645 914482 733397 1815672

pred(h) 1063376 1098842 769673 788871 1093732 911447 730673 1825811
Relative error +0.11% −0.34% +0.28% +0.27% −0.01% +0.33% +0.37% −0.56%

For large h the prediction seems fairly good as the relative error very often is smaller than 1%. To gain
further insight, we study the fluctuations in the difference between the observed data and the predictions,
normalized by dividing by the square root of the prediction (it is perhaps not a priori obvious, but with this
normalization the resulting standard deviation is close to one in many circumstances). More precisely, we
make a histogram of the values of

r(h) :=
F(h)− pred(h)√

pred(h)

for various subsets of the (odd) integers. For notational convenience, we shall let µ and σ denote the mean
and standard deviation, respectively, of the observed data in each plot.

1The complete list of computed values of F(h) is given in [20].
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0.2

0.25

Figure 1. Histogram for r(h), as h ranges over odd integers in [500000, 1000000]. (µ, σ) =
(0.291561, 2.685280).

Interestingly, the probability distribution appears to be bimodal. A closer inspection of the table above
indicates a small positive bias for h that are divisible by three. Separating out (odd) h according to divisibility
by three, or not, results in the following two histograms:

-2 -1 1 2 3 4 5 6

0.1

0.2

0.3

0.4

Figure 2. Histogram for r(h), as h 6≡ 0 mod 3 ranges over odd integers in
[500000, 1000000]. (µ, σ) = (1.987995, 1.006428).
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-8 -6 -4 -2 2
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0.25

Figure 3. Histogram for r(h), as h ≡ 0 mod 3 ranges over odd integers in
[500000, 1000000]. (µ, σ) = (−3.101265, 1.529449).

The curve (red in color printouts and online) in the first plot is a Gaussian probability density function
with mean and standard deviation fitted to the data — the first plot appears to be Gaussian, whereas the
second clearly is not.

Also note that (after our normalization), the effect of three divisibility is quite pronounced — the shift in
the mean value is of order of magnitude a standard deviation.

By further separating h ≡ 0 mod 3 into subsets according to the exact power of three that divides h, we
obtain distributions that appear Gaussian; for comparison, we again plot a (red) curve giving the probability
density function for a Gaussian random variable with the same mean and standard deviation as the observed
data. (Note that there is a significant shift in the mean, whereas the standard deviation is close to one.)
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Figure 4. Histogram for r(h), for odd h in (500000,1000000), 3||h. (µ, σ) = (−2.326289, 1.027387).
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Figure 5. Histogram for r(h), for odd h in (500000,1000000), 32||h. (µ, σ) = (−4.372185, 1.062480).
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Figure 6. Histogram for r(h), for odd h in (500000,1000000), 33||h. (µ, σ) = (−5.110585, 1.087463).

The exact nature of this “three divisibility bias” is unclear, but inspired by the slow convergence in the
Davenport-Heilbronn asymptotic2 ∑

−X<d<0
d fund. disc.

|H(d)[3]| ∼ C ·X (1.10)

(here H(d)[3] denotes the 3-torsion subgroup of H(d)) we can slightly adjust c(h) to remove most of this bias
and obtain a more accurate prediction pred′(h). (Essentially we examine the exact power of three divisibility

2In fact, a negative second order correction to (1.10) of size X5/6 was recently obtained by T. Taniguchi and F. Thorne [42]

and also independently by M. Bhargava, A. Shankar and J. Tsimmerman [4].
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of h and adjust to the data, see Section 4.2 for more details.) With this adjustment, the fluctuations for

r′(h) :=
F(h)− pred′(h)√

pred′(h)

(for the full set of odd h) is quite close to a Gaussian.

-4 -2 2 4

0.1

0.2

0.3

0.4

Figure 7. Histogram for r′(h), for all odd h in (500000,1000000). (µ, σ) = (0.013214, 1.065277).

However, compared to the fitted Gaussian, the histogram is slightly more peaked, and has less mass in
the tails. If we remove integers being divisible by 34 this effect is reduced and we get an improved fit to a
Gaussian.
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0.4

Figure 8. Histogram for r′(h), for all odd h in (500000,1000000) and h not divisible by 81.
(µ, σ) = (0.016292, 1.016726).
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1.2. Groups occuring as class groups. We now return to our discussion of the quantity F(G). To make
precise what we mean by the shape of an abelian p-group, recall the bijection

{partitions of n} ↔ {abelian groups of order pn}

λ = (n1, n2, . . . , nr) 7→ Gλ(p) :=
r⊕

i=1

Z/pniZ.

Using (1.2) in conjunction with Conjecture 1.4, and evaluating each factor asymptotically, we are led to the
following conjecture. Given a partition

λ = (n1, n2, . . . , nr), n1 ≥ n2 ≥ · · · ≥ nr ≥ 1, n1 + n2 + · · ·+ nr = n

of n, define the cyclicity index of λ by

c(λ) :=

r∑

i=1

(3− 2i)ni = n1 −
r∑

i=2

(2i− 3)ni. (1.11)

Note that c(λ) ∈ [1 − (n − 1)2, n] and Gλ(p) is cyclic if and only if c(λ) = n; thus c(λ) provides a measure
of how much Gλ(p) deviates from being cyclic.

Conjecture 1.7. Fix n ∈ N and a partition λ of n. Then F(Gλ(p)) > 0 for infinitely many primes p if and
only if c(λ) ≥ 0. More precisely, if c(λ) > 0 then as p→∞ we have

F (Gλ(p)) ∼ C

n
· p

c(λ)

log p
,

where C is as in (1.5). If c(λ) = 0 then as x→∞ we have

∑

p≤x
p prime

F (Gλ(p)) ∼ C

n
· x

(log x)2
.

If c(λ) < 0 then

p�λ 1 =⇒ F(Gλ(p)) = 0.

Definition 1.8. We say that a partition λ of n is attainable if c(λ) ≥ 0.

Thus, Conjecture 1.7 implies that Gλ(p) occurs as a class group for infinitely many primes p if and only if
λ is attainable. What is the relative proportion of attainable partitions among all partitions? The following
table suggests that the relative proportion decreases with n.

n 4 5 6 7 8 9 10 11 12 . . . 100

#{attainable partitions of n} 3 3 5 5 7 7 9 9 13 . . . 4742
#{partitions of n} 5 7 11 15 22 30 42 56 77 . . . 190 569 292

Ratio 0.6 0.43 0.45 0.33 0.32 0.23 0.21 0.16 0.17 . . . 0.000025

Our next theorem confirms this.

Theorem 1.9. For a positive integer n, we have

#{attainable partitions of n}
#{partitions of n} � n3/4e(2−

√
2
3π)
√
n.

In particular,

lim
n→∞

#{attainable partitions of n}
#{partitions of n} = 0.

1.3. Numerical investigations of attainable groups. For families of p-groups with c(λ) > 0, we expect
that many (if not all) groups should occur; in fact F(Gλ(p)) should grow with p. On the other hand, there
should be very few (if any at all) in case c(λ) < 0 — we call these groups “sporadic”.

In this section, we present numerical evidence supporting Conjecture 1.7 based on our numerical compu-
tation of F(G), conditional on GRH, for all p-groups G of odd size at most 106. (See Section 6 for details
regarding the computation.)
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1.3.1. Numerics on F(Gλ(p)). We give in the tables below3 the value of F(Gλ(p)) (conditional on GRH)
for each odd prime p and each partition λ of some n ≥ 3, such that |Gλ(p)| < 106. To be precise: The
second column in each table contains all partitions of n for some fixed n, ordered by decreasing cyclicity
index c(λ), which itself is given in the leftmost column. The top row contains a list of all primes p such that
pn < 106, and under each p we list the values of F(Gλ(p)) corresponding to the partition λ in the same row.
Whenever a partition is omitted from a table, then it is implied that all omitted values of F(Gλ(p)) are zero.
Groups occuring in rows corresponding to negative cyclicity index (“sporadic groups”) are star/bold-marked
for emphasis (also see Section 1.3.2.)

c(λ) λ p = 3 5 7 11 13 17 19 23 29 31 37 41

3 (3) 88 279 607 1856 2904 5797 7963 12958 24407 29201 46981 62327
1 (2, 1) 5 11 13 19 17 25 22 29 35 26 39 37

−3 (1, 1, 1) 0 0 0 0 0 0 0 0 0 0 0 0

c(λ) λ p = 43 47 53 59 61 67 71 73 79 83 89 97

3 (3) 71617 91690 127190 170444 186988 242464 283998 306567 382770 438976 533751 678610
1 (2, 1) 39 29 46 48 57 55 60 66 51 73 66 69

−3 (1, 1, 1) 0 0 0 0 0 0 0 0 0 0 0 0

c(λ) λ p = 3 5 7 11 13 17 19 23 29 31

4 (4) 206 1093 3404 16290 29496 77693 116710 233027 548392 701408
2 (3, 1) 19 47 71 146 197 244 343 480 644 779
0 (2, 2) 3 0 0 0 2 1 2 1 0 1

−2 (2, 1, 1) 0 0 0 0 0 0 0 0 0 0
−8 (1, 1, 1, 1) 0 0 0 0 0 0 0 0 0 0

c(λ) λ p = 3 5 7 11 13
5 (5) 549 4610 19430 147009 314328
3 (4, 1) 56 218 444 1347 1894
1 (3, 2) 8 5 8 13 9

−1 (3, 1, 1) 0 1∗ 0 0 0
−3 (2, 2, 1) 0 0 0 0 0
−7 (2, 1, 1, 1) 0 0 0 0 0

−15 (1, 1, 1, 1, 1) 0 0 0 0 0

c(λ) λ p = 3 5 7
6 (6) 1512 19469 116278
4 (5, 1) 177 1024 2887
2 (4, 2) 18 37 58
0 (4, 1, 1) 0 3 0
0 (3, 3) 2 2 3

−2 (3, 2, 1) 0 0 0
−6 (3, 1, 1, 1) 0 0 0
−6 (2, 2, 2) 0 0 0
−8 (2, 2, 1, 1) 0 0 0

−14 (2, 1, 1, 1, 1) 0 0 0
−24 (1, 1, 1, 1, 1, 1) 0 0 0

c(λ) λ p = 3 5 7
7 (7) 3881 86038 711865
5 (6, 1) 571 4259 17057
3 (5, 2) 58 177 372
1 (5, 1, 1) 7 7 6
1 (4, 3) 8 11 7

−1 (4, 2, 1) 1∗ 0 0
−3 (3, 3, 1) 1∗ 0 0
−5 (4, 1, 1, 1) 0 0 0
−5 (3, 2, 2) 0 0 0
−7 (3, 2, 1, 1) 0 0 0

−11 (2, 2, 2, 1) 0 0 0
−13 (3, 1, 1, 1, 1) 0 0 0
−15 (2, 2, 1, 1, 1) 0 0 0
−23 (2, 1, 1, 1, 1, 1) 0 0 0
−35 (1, 1, 1, 1, 1, 1, 1) 0 0 0

c(λ) λ p = 3 5
8 (8) 10712 379751
6 (7, 1) 1585 18956
4 (6, 2) 180 719
2 (6, 1, 1) 18 30
2 (5, 3) 15 24
0 (5, 2, 1) 4 1
0 (4, 4) 2 0

−2 (4, 3, 1) 1∗ 0
−4 (5, 1, 1, 1) 0 0

...
...

...
...−48 (1, 1, 1, 1, 1, 1, 1, 1) 0 0

3The complete list of all F(Gλ(p)) is given in [21], and a complete list of all corresponding discriminants d and groups H(d)

is given in [22].
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c(λ) λ p = 3
9 (9) 28308
7 (8, 1) 4516
5 (7, 2) 454
3 (7, 1, 1) 42
3 (6, 3) 54
1 (6, 2, 1) 10
1 (5, 4) 4

−1 (5, 3, 1) 1∗
−3 (6, 1, 1, 1) 0

...
...

...−63 (1, 1, 1, 1, 1, 1, 1, 1, 1) 0

c(λ) λ p = 3
10 (10) 78657
8 (9, 1) 12433
6 (8, 2) 1446
4 (8, 1, 1) 160
4 (7, 3) 167
2 (7, 2, 1) 16
2 (6, 4) 14
0 (6, 3, 1) 1
0 (5, 5) 0
...
...

...−80 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 0

c(λ) λ p = 3
11 (11) 216520
9 (10, 1) 35544
7 (9, 2) 3880
5 (9, 1, 1) 437
5 (8, 3) 460
3 (8, 2, 1) 58
3 (7, 4) 49
1 (7, 3, 1) 10
1 (6, 5) 9

−1 (8, 1, 1, 1) 0
−1 (7, 2, 2) 1∗
−1 (6, 4, 1) 1∗
−3 (7, 2, 1, 1) 0

...
...

...−99 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 0

c(λ) λ p = 3
12 (12) 603525
10 (11, 1) 98421
8 (10, 2) 10988
6 (10, 1, 1) 1291
6 (9, 3) 1265
4 (9, 2, 1) 220
4 (8, 4) 133
2 (8, 3, 1) 26
2 (7, 5) 17
0 (9, 1, 1, 1) 2
0 (8, 2, 2) 1
0 (7, 4, 1) 1
0 (6, 6) 2

−2 (8, 2, 1, 1) 1∗
−2 (7, 3, 2) 0

...
...

...−120 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 0

Below we plot, for p ranging over odd primes, observed values F(Gλ(p)) (black dots) versus predicted
values P (Gλ(p)) · pred(|Gλ(p)|) (red dashed lines) for various partitions λ with positive cyclicity index
c(λ) > 0.
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We remark that each vanishing entry in the tables above corresponds to a “missing” group. In particular
we see that the group (Z/pZ)3 does not appear as the class group of a quadratic imaginary field for any
prime 2 < p < 100. Based on a combination of heuristics and numerics, it is reasonable to conjecture that
(Z/pZ)n does not occur for any odd prime p and any n ≥ 3.

Conjecture 1.10. For p odd, there are no elementary abelian p-groups of rank at least 3 which occur as the
class group of an imaginary quadratic field.

Indeed, by (1.2) and Conjecture 1.4, together with the observed (GRH-conditional) fact that no (Z/pZ)n

occurs as an imaginary quadratic class group for pn ≤ 106, we may bound the expected number of coun-
terexamples by

C
∑

p,n≥3
pn>106

c(pn)

npn2−2n log p
≤ C ·

∞∏

i=1

(
1− 1

2i

)−1 ∑

p,n≥3
pn>106

1

npn2−2n log p
.

Since the right-hand sum can then be bounded by 10−4, Conjecture 1.10 is heuristically justified.
Finally, we observe that none of the groups Gλ(p) of odd size < 106 with c(λ) > 0 are missing.

1.3.2. Sporadic groups in negative cyclicity index case. As just indicated with bold/star-marks in the tables,
each of the groups

Z
53Z
×
(

Z
5Z

)2

,
Z

34Z
× Z

32Z
× Z

3Z
,

(
Z

33Z

)2

× Z
3Z
,

Z
34Z
× Z

33Z
× Z

3Z
,

Z
35Z
× Z

33Z
× Z

3Z
,

Z
37Z
×
(

Z
32Z

)2

,

Z
36Z
× Z

34Z
× Z

3Z
,

Z
38Z
× Z

32Z
×
(

Z
3Z

)2

occurs exactly once as an imaginary quadratic class group, even though c(λ) < 0 for each corresponding
partition λ. From the point of view of Conjecture 1.7, these examples may be regarded as “sporadic,” since
conjecturally they do not belong to an infinite family.

1.3.3. Zero cyclicity index — the family F((Z/pZ)2). The case of c(λ) = 0 is intermediate in the sense that
infinitely many groups in the family should occur, and infinitely many should not. Here the data is quite
limited, and we restrict ourselves to the family G = (Z/pZ)2. The following table contains all odd primes p
such that p2 < 106, grouped according to the value of F((Z/pZ)2), assuming GRH.
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n All primes p < 1000 such that F((Z/pZ)2) = n

0 11, 19, 37, 79, 89, 97, 103, 139, 151, 167, 181, 191, 193, 227, 229, 233, 241, 251, 271,
281, 283, 311, 313, 317, 349, 353, 359, 383, 401, 409, 433, 443, 463, 467, 479, 491,
499, 523, 563, 571, 587, 601, 619, 631, 643, 673, 701, 709, 733, 757, 769, 787, 809,
829, 877, 887, 907, 919, 929, 947, 953, 977, 983

1 3, 17, 23, 41, 43, 47, 61, 67, 73, 107, 109, 113, 127, 131, 137, 157, 163, 173, 179, 199,
239, 257, 263, 269, 277, 293, 307, 331, 337, 347, 367, 373, 379, 397, 419, 439, 457, 487,
503, 509, 521, 547, 557, 577, 599, 613, 617, 641, 653, 659, 677, 683, 691, 719, 727, 739,
743, 761, 797, 811, 821, 823, 839, 853, 857, 859, 863, 881, 937, 941, 971, 991, 997

2 5, 7, 29, 31, 53, 59, 71, 83, 101, 197, 211, 223, 389, 431, 449, 461, 569, 593, 607, 647,
661, 827, 883, 911

3 149, 421, 541, 751, 967
4 773
5 13

The limited data seems to support intermediate behaviour.
One may ask how well our prediction of F(G), using equation (1.2), holds up. The following graph

compares the cumulants of the predictions with the observations.
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40
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140

160
Partition (1, 1) with cyclicity index 0

Figure 9. Cumulative observed values
∑
p<x F(G(1,1)(p)) (black dots) compared to cumu-

lative predicted values
∑
p<x P (G(1,1)(p)) pred(p2) (red dashed line), for each prime x <

1000.

1.4. Related work. Certain classes of finite abelian groups are already known not to occur as imaginary
quadratic class groups. For instance, letting H(d)[n] denote the n-torsion subgroup of H(d), it is known that

|H(d)[2]| � |H(d)|o(1)

(this is essentially genus theory together with Siegel’s lower bound on the class number; if H(d) has two rank
r, then d has at least r − 1 distinct prime factors). In particular, for any fixed ε > 0 there are only finitely
many imaginary quadratic class groups H(d) satisfying |H(d)[2]| � |H(d)|ε. Weaker bounds are known for
the size of the three torsion part; in [13] Venkatesh and Ellenberg (improving on Helfgott and Venkatesh [18]
and Pierce [33]) show that

|H(d)[3]| � |d|1/3+ε.
From this and the (GRH-conditional) lower bound d1/2 � |H(d)|, one sees that, for any ε > 0 there are only
finitely many imaginary quadratic class groups H(d) satisfying |H(d)[3]| � |H(d)|2/3−ε.
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The problem of realizing a given abelian group as an imaginary quadratic class group may be viewed in
the context of the following broader questions.

Question 1.11. Given a finite abelian group G, does there exist a number field K for which the ideal class
group of K is isomorphic to G?

The answer to this problem is believed to be yes (one ought to be able to take K to be a real quadratic
extension of Q) but the problem is open in general, in spite of various partial results. G. Cornell [11] proved
that every finite abelian group occurs as a subgroup of the ideal class group of some cyclotomic field, and Y.
Yamamoto [47] proved that, for any n ≥ 1, there are infinitely many imaginary quadratic fields whose class
group contains (Z/nZ)2 as a subgroup. We note that Ozaki [30] has shown that any (possibly non-abelian)
p-group occurs as the maximal unramified p-extension of some number field F .

Further broadening our perspective, we may also ask:

Question 1.12. Given an abelian group G, does there exist a Dedekind domain D for which the ideal class
group of D is isomorphic to G?

In [9], Claborn answered this question in the affirmative; Leedham-Green subsequently showed that the
Dedekind domain D can be taken to be a quadratic extension of a principal ideal ring.

Finally, we remark that the Cohen-Lenstra heuristics apply to a broader class of situations where finite
abelian groups arise as co-kernels of random sub-lattices of Zn. For instance, [12] contains average results
on the group of Z/pZ-rational points of an elliptic curve which are consistent with the Cohen-Lenstra
heuristics (of course the rank can be at most two in this setting), and (in much the same spirit as our present
consideration of missing class groups) [2] considers the question of which finite rank 2 abelian groups occur
as the group of Z/pZ-rational points of some elliptic curve E over Z/pZ.

We conclude with some remarks regarding the numerical computations. Removing the assumption of
GRH and making the computational results unconditional would be interesting, but probably very difficult
since effective unconditional lower bounds on class numbers are quite weak (the best know bound, due to
Oesterlé [29], is that h(−q) � log q for −q a negative prime fundamental discriminant.) In particular, it
would involve a major advance on Watkin’s solution [44] to Gauss’ class number problem for h ≤ 100. (Of
course, considering only odd h should be quite helpful.)

Determining h(−d) for d ∈ (0, D) and −d ranging over fundamental discriminants is somewhat easier
to do unconditionally, either by enumerating the primitive reduced quadratic forms in time O(D3/2) (cf.
[7]), or using GRH-conditional algorithms which, as suggested by A. Booker, can then be verified using the
Eichler-Selberg trace formula. The latter algorithm, due to Jacobson, Ramachandran, and Williams [23],
leads to a total running time of O(D5/4), and allowed them to take D = 1011. However, the verification
step relies on knowing h(−d) for all d in the relevant range, and seems difficult to adapt to a setting where
only h(−q) is known for 0 < q < D and −q ranging over negative prime fundamental discriminants. On
the other hand, Booker’s algorithm [5] gives the correct value of h(−d) in time O(d1/4) if GRH is true (in
time O(d1/2) otherwise), and his algorithm can easily be restricted to prime discriminants. It would also be
interesting to investigate the potential speedup from using Sutherland’s primorial-steps algorithm (cf. [41,
Ch. 4 and 11] — it exploits the smooth part of the class number, and results in better than O(d1/7) median
time to find h(−d).

1.5. Outline of the paper. The organization is as follows: Section 2 covers the preliminary material on
Cohen-Lenstra heuristics and the distribution of L(1, χd). In Section 3, we prove Theorem 1.5. In Section
4, we develop heuristics which lead to Conjectures 1.4 and 1.7. In Section 5, we discuss partition generating
functions and give a proof of Theorem 1.9. In Section 6, we sketch the techniques used to obtain the
numerical evidence.
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by the Swedish National Infrastructure for Computing (SNIC) at PDC Centre for High Performance Com-
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2. Preliminaries

In this section, we briefly review relevant background material.

2.1. Cohen-Lenstra heuristics. When a finite abelian p-group G occurs in nature, its likelihood of oc-
currence is often found to be proportional to 1/|Aut(G)|. This suggests constructing a discrete probability
measure µ on

Gp := {isomorphism classes of abelian p-groups}

by setting µ({G}) :=
c

|Aut(G)| for an appropriate positive constant c, if possible. The following lemma

shows that this indeed the case, and is also useful for evaluating c.

Lemma 2.1. We have that

∑

G∈Gp
|G|=pn

1

|Aut(G)| =
1

pn

n∏

i=1

(
1− 1

pi

)−1
,

∑

G∈Gp
|G|≤pn

1

|Aut(G)| =
n∏

i=1

(
1− 1

pi

)−1
.

Proof. The first equation is [10, Cor 3.8, p. 40]; the second follows from the first by induction on n. �

Let us set

η∞(p) :=

∞∏

i=1

(
1− 1

pi

)
. (2.1)

By taking n −→ ∞ in Lemma 2.1, we see that one must take c = η∞(p) in order for µ(Gp) = 1. In the
Cohen-Lenstra model, the probability of G occurring as the p-part of a class group is thus given by

µ({G}) :=
η∞(p)

|Aut(G)| . (2.2)

Lemma 2.1 also has the following useful corollary. Here and later in the paper, we will also make use of the
notation

D := {negative fundamental discriminants},
D(x) := {d ∈ D : −d ≤ x},

D′ := {q ∈ D : −q is prime},
D′(x) := {q ∈ D′ : −q ≤ x}.

Recall that by genus theory, we have

h(d) is odd ⇐⇒ −d is prime

for d ∈ D with d < −8. This observation explains the following notation, wherein P denotes any property
of positive odd integers.

Prob(h satisfies P : h is an odd class number) := lim
x→∞

#{q ∈ D′(x) : h(q) satisfies P}
#D′(x)

. (2.3)
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Corollary 2.2. Assuming the Cohen-Lenstra heuristics, for any n ≥ 0 we have

Prob(pn - h : h is an odd class number) =

∞∏

i=n

(
1− 1

pi

)

Prob(pn ‖ h : h is an odd class number) =
1

pn

∞∏

i=n+1

(
1− 1

pi

)
.

Proof. The Cohen-Lenstra heuristics specify that

Prob(pn - h : h is an odd class number) = µ({G ∈ Gp : |G| ≤ pn−1}).

Together with Lemma 2.1, this gives the first equation, and the second equation follows from the first since
Prob(pn ‖ h : h is an odd class number) is equal to

Prob(pn | h : h is an odd class number)− Prob(pn+1 | h : h is an odd class number). �

2.2. The class number formula and special values of L-functions. Recall the class number formula,
which in our context reads

L(1, χd) =
πh(d)√
|d|

(d ∈ D, d < −8), (2.4)

where L(s, χd) =
∑∞
n=1 χd(n)n−s is the L-function attached to the Kronecker symbol χd :=

(
d
·
)
. This

formula connects the statistical study of class numbers to that of the special values L(1, χd). Building upon
ideas that go back to P.D.T.A. Elliot, A. Granville and K. Soundararajan [15] proved that, on average over
d ∈ D, L(1, χd) behaves like a random Euler product. More precisely, if X(p) denotes the random variable
defined by

X(p) :=





1 with probability p
2(p+1)

0 with probability 1
p+1

−1 with probability p
2(p+1) ,

and L(1,X) denotes the random Euler product

L(1,X) :=
∏

p

(
1− X(p)

p

)−1
,

then [15, Theorem 2] (see also [40, p. 4]) implies that, for |z| ≤ log x/(500(log log x)2) and Re(z) > −1, we
have

∑

d∈D(x)

L(1, χd)
z = |D(x)| · E(L(1,X)z) +O

(
|D(x)| exp

(
− log x

5 log log x

))
, (2.5)

where E denotes the expected value. This leads to the average result

∑

h≤H
F(h) =

3ζ(2)

ζ(3)
H2 +O

(
H2(logH)−1/2+ε

)
, (2.6)

for any ε > 0 (see [40, Theorem 1]). In the interest of establishing the appropriate constant in Conjecture
1.4, we will next prove Theorem 1.5, which is an analogue of (2.6) averaged over odd values of h.

3. The average of F(h) over odd values of h

In this section we prove Theorem 1.5, that is we develop an asymptotic formula for
∑

h≤H
h odd

F(h). By genus

theory, the restriction for h ≥ 3 to be odd is equivalent to the condition that the associated discriminant d
be prime. As an auxiliary result, we begin by proving the analogue of (2.5) over prime discriminants.
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3.1. The distribution of L(1, χ) over prime discriminants. We now prove an asymptotic formula for
the general moment of L(1, χq) averaged over q ∈ D′(x). Our proof generally follows the methods used in [15,
Theorem 2], but the restriction to prime discriminants demands that we use a different probabilistic model
than the model X introduced earlier. Indeed, Prob(X(p) = 0) = 1/(p + 1) corresponds to the probability
that a random fundamental discriminant d ∈ D is divisible by the prime p, and one computes

Prob(p | d : d ∈ D) =
|pZ/p2Z− {0}|
|Z/p2Z− {0}| =

1

p+ 1
.

On the other hand, the event p | q can happen at most once for q ∈ D′, and so we replace X with Y, where
we recall that

Y(p) :=

{
1 with probability 1/2

−1 with probability 1/2.
(3.1)

The corresponding random Euler product is then

L(1,Y) :=
∏

p

(
1− Y(p)

p

)−1
.

We will also make use of the following estimate for the remainder term in the Chebotarev density theorem
for quadratic fields.

Proposition 3.1. Assume the Generalized Riemann Hypothesis for Dedekind Zeta functions of quadratic
number fields. Then for d ∈ N and any real non-principal Dirichlet character χ modulo d, we have

∑

p≤x
χ(p)=1

1 =
1

2
Li(x) +O(x1/2 log dx),

with an absolute implied constant.

Proof. This is a special case of a theorem of Lagarias-Odlyzko on the error term in the Chebotarev density
theorem for general number fields; see [24, Theorem 1.3] and [39, Théorème 2]. �

As an immediate corollary, one deduces the following analogue of the Polya-Vinogradov Theorem, which
gives square-root cancellation of characters sums over prime values.

Corollary 3.2. Assume the Generalized Riemann Hypothesis for Dedekind Zeta functions of quadratic
number fields. Then for n ∈ N which is not a square, we have

∣∣∣∣∣∣
∑

q∈D′(x)
χq(n)

∣∣∣∣∣∣
� x1/2 log(nx),

with an absolute implied constant.

The next theorem follows from Corollary 3.2, together with some technical lemmas from [15]. In particular,
its proof will utilize several properties of the z-th divisor function dz(n) for z ∈ C, which is characterized by
the equation

ζ(s)z =
∞∑

n=1

dz(n)

ns
(Re(s) > 1) .

Further note that dz(n) is a multiplicative function, and for prime powers n = pa we have that

dz(p
a) =

Γ(z + a)

a!Γ(z)
=
z(z + 1)(z + 2) . . . (z + a− 1)

a!
(3.2)

Theorem 3.3. Assume the Generalized Riemann Hypothesis and let ε > 0. Then, uniformly for |z| ≤
log x/(500(log log x)2), we have

∑

q∈D′(x)
L(1, χq)

z = |D′(x)| · E(L(1,Y)z) +Oε

(
x1/2+ε

)
.
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Proof. By Lemma 2.3 of [15], for any Z ∈ R with Z ≥ exp
(
(log q)10)

)
we have

L(1, χzq) =
∞∑

n=1

χq(n)
dz(n)

n
e−n/Z +O

(
1

q

)
.

(Note that, since we are assuming GRH, we may ignore any possible exceptional discriminants.) Thus we
have

∑

q∈D′(x)
L(1, χq)

z =

∞∑

n=1

dz(n)

n
e−n/Z

∑

q∈D′(x)
χq(n) +O(log log x). (3.3)

The main term in our asymptotic comes from the subsequence n = m2; the other values of n contribute to
the remainder term. Indeed, for n = m2, we have

∑

q∈D′(x)
χq(m

2) = |D′(x)|+O(ω(m)),

and the contribution of these terms to (3.3) is thus

|D′(x)|
∞∑

m=1

dz(m
2)

m2
e−m

2/Z +O

(
log log x+

∞∑

m=1

|dz(m2)ω(m)|
m2

e−m
2/Z

)
.

Using ω(m) ≤ d(m) together with the bounds

∞∑

m=1

dz(m
2)d(m)

m2
e−m

2/Z � log(|z|+ 2)4|z|+4 �ε x
ε

and
∞∑

m=1

dz(m
2)

m2

(
1− e−m2/Z

)
≤
∞∑

m=1

d(|z|+1)2(m)

m2

(
m2

Z

)1/4

=
ζ(3/2)(1+|z|)

2

Z1/4
≤ 1

x

(see [15, p. 1014]), one finds that the contribution of the n = m2 terms to (3.3) is thus

|D′(x)|
∞∑

m=1

dz(m
2)

m2
+Oε(x

ε) = |D′(x)|
∏

p



∞∑

j=0

dz(p
2j)

p2j


+Oε(x

ε)

= |D′(x)|
∏

p



∞∑

j=0

(−z
2j

)
1

p2j


+Oε(x

ε)

= |D′(x)|
∏

p

1

2

((
1 +

1

p

)−z
+

(
1− 1

p

)−z)
+Oε(x

ε)

= |D′(x)| · E(L(1,Y)z) +Oε(x
ε),

where we have used (3.2) together with the binomial series expansions of

(
1 +

1

p

)−z
and

(
1− 1

p

)−z
. In

order to handle the terms n 6= �, we begin by inserting the result of Corollary 3.2 into the right-hand side
of (3.3), obtaining

∣∣∣∣∣∣∣

∞∑

n=1
n6=�

dz(n)

n
e−n/Z

∑

q∈D′(x)
χq(n)

∣∣∣∣∣∣∣
� x1/2 log x

∞∑

n=1

|dz(n)|
n

e−n/Z log n

� x1/2 log x
∞∑

n=1

dd|z|e(n)

n
e−n/Z log n,

(3.4)

where we have used |dz(n)| ≤ d|z|(n) and dt1(n) ≤ dt2(n) for t1, t2 ∈ R>0 and t1 ≤ t2. In [15, (2.4), p. 1001]

it is observed that
∑∞
n=1

dk(n)
n e−n/Z ≤ (log 3Z)k for any positive integer k and real number Z ≥ 2. One
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may adapt that argument to obtain a similar bound for
∑∞
n=1

dk(n)
n e−n/Z log n by introducing the function

l̃og(t) :=

{
2 if t < e2

log t if t ≥ e2.
Note that, for any a1, a2, . . . , ak ∈ N we have

log(a1 · a2 · · · · · ak) ≤ l̃og(a1 · a2 · · · · · ak) ≤ l̃og(a1) · l̃og(a2) · · · · · l̃og(ak).

Furthermore, by estimating a discrete sum by a continuous integral we may see that, for Z large enough,
∞∑

a=1

e−a/Z

a
l̃og(a)� (log(e2 · Z))2.

Using these facts together with the inequality dk(n)e−n/Z ≤ ek/Z
∑

a1a2...ak=n

e−(a1+a2+···+ak)/Z , we find that

∞∑

n=1

dk(n)

n
e−n/Z log n ≤

(
e1/Z

∞∑

a=1

e−a/Z

a
l̃og(a)

)k
≤ (log(e2 · Z))3k,

for Z large enough. Inserting this into (3.4) and taking Z = exp
(
(log x)10

)
, we obtain

∣∣∣∣∣∣∣

∞∑

n=1
n 6=�

dz(n)

n
e−n/Z

∑

q∈D′(x)
χq(n)

∣∣∣∣∣∣∣
� x1/2 log x(log(e2 · Z))3d|z|e,

�ε x
1/2+ε.

This completes the proof of Theorem 3.3. �

3.2. The proof of Theorem 1.5. We will largely follow the proof of [40, Theorem 1] with critical mod-
ifications in appropriate places; we include the details here for completeness. We make use of the smooth
cut-off function

Hc,δ(x) :=
1

2πi

∫ c+i∞

c−i∞

xs

s

(
(1 + δ)s+1 − 1

δ(s+ 1)

)
ds,

where the parameters c, δ > 0 will be specified soon. For any c, δ > 0 we have

Hc,δ(x) =





1 if x ≥ 1

(1 + δ − 1/x)/δ if (1 + δ)−1 ≤ x ≤ 1

0 if x ≤ (1 + δ)−1.

(3.5)

Just as in [40], by using [15, Theorem 4] , one obtains that

∑

h≤H
h odd

F(h) =
∑

q∈D′(X)
hq≤H

1 +OA

(
H2

(logH)A

)
(3.6)

for any A > 0, where X := H2 log logH. By the class number formula, (3.6) and (3.5), it follows that

∑

h≤H
h odd

F(h) ≤
∑

q∈D′(X)

Hc,δ

(
πH√

qL(1, χq)

)
+OA

(
H2

(logH)A

)
≤

∑

h≤H(1+δ)
h odd

F(h).

We will now work with the main term in the middle above, which is

1

2πi

∫ c+i∞

c−i∞

∑

q∈D′(X)

(
π√

qL(1, χq)

)s
Hs

s

(
(1 + δ)s+1 − 1

δ(s+ 1)

)
ds. (3.7)

We will put c := 1/ logH and δ := 1/(logH)1/2. We furthermore set S := logX/(104(log logX)2) and
decompose the above interval into ∫

|s|≤S
+

∫

|s|>S
.
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The second term is easily seen to be

� D′(X)

δ

∫

|s|>S

1

|s(s+ 1)| |ds| �
H2

(logH)3/2−ε
.

For the integral over |s| ≤ S, we will use Theorem 3.3 to re-write the integrand in terms of the appropriate
moment of L(1,Y) and then reinterpret Hc,δ as a smooth cut-off function as in (3.5). First note that the
following equation follows immediately from Theorem 3.3 by partial summation:

∑

q∈D′(X)

(
√
qL(1, χq))

−s
= E(L(1,Y)−s)

∫ X

1

t−s/2dD′(t) +Oε(X
1/2+ε).

Thus, (3.7) is equal to

1

2πi

∫

|s|≤S
E(L(1,Y)−s)

∫ X

1

t−s/2dD′(t)
(πH)s

s

(
(1 + δ)s+1 − 1

δ(s+ 1)

)
ds+Oε

(
H2

(logH)3/2−ε

)

=E

(∫ X

1

1

2πi

∫

|s|≤S

(
πH√
tL(1,Y)

)s
1

s

(
(1 + δ)s+1 − 1

δ(s+ 1)

)
ds dD′(t)

)
+Oε

(
H2

(logH)3/2−ε

) (3.8)

Extending the integral to
∫ c+i∞
c−i∞ and managing the error, we find that

1

2πi

∫

|s|≤S

(
πH√
tL(1,Y)

)s
1

s

(
(1 + δ)s+1 − 1

δ(s+ 1)

)
ds = Hc,δ

(
πH√
tL(1,Y)

)
+Oε

(
L(1,Y)−c

(logH)3/2−ε

)
.

Inserting this into (3.8), we find that (3.7) is equal to

E



∫ min

(
π2H2

L(1,Y)2 ,X
)

1

dD′(t) +Oε

(
H2

(logH)3/2−ε
(1 + L(1,Y)−c)

)


=
1

2
E
(

Li

(
min

(
π2H2

L(1,Y)2
, X

)))
+Oε

(
H2

(logH)3/2−ε

)
.

(3.9)

Now using [15, Proposition 1], we find that min
(

π2H2

L(1,Y)2 , X
)

= π2H2

L(1,Y)2 + OA

(
H2

(logH)A

)
for any A > 0, and

so we find that (3.9) becomes

1

2
E
(

Li

(
π2H2

L(1,Y)2

))
+Oε

(
H2

(logH)3/2−ε

)
.

Finally, using the asymptotic Li(x) ∼ x

log x
together with the calculation

E(L(1,Y)−2) =
∏

p

E

((
1− Y(p)

p

)2
)

=
∏

p

(
1

2

(
1− 1

p

)2

+
1

2

(
1 +

1

p

)2
)

=
∏

p

(
1− 1

p4

)(
1− 1

p2

)−1
=
ζ(2)

ζ(4)
=

15

π2
,

(3.10)

the proof of Theorem 1.5 is concluded.

Remark 3.4. Our proof shows that in fact

∑

h≤H
h odd

F(h) =
1

2
E
(

Li

(
π2H2

L(1,Y)2

))
+Oε

(
H2

(logH)3/2−ε

)
.

We find that the main term in the above expression fits the numerical data much better than the asymptot-
ically equivalent formula given in Theorem 1.5, though it must be stressed that the corrections are of lower
order than the error term. In the tables presented in Sections 1 and 6, the number listed under “predicted”

refers to the higher order expansion of
C

15
· c(h) · h · E

(
1

L(1,Y)2 log(πh/L(1,Y))

)
given in (1.7).
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4. Heuristics

4.1. Heuristics for Conjecture 1.4. Recall from Remark 3.4 that we have

∑

h≤H
h odd

F(h) ≈ 1

2
E
(

Li

(
π2H2

L(1,Y)2

))
.

Denote the right-hand side by G(H). An average order of F is given by

G(h)−G(h− 2) ≈ 2
d

dh
G′(h) = E

(
d

dh
Li

(
π2h2

L(1,Y)2

))
=

2π2hE
(

1

L(1,Y)2 log (π2h2/L(1,Y)2)

)
=

π2h

log(πh)
E


 1

L(1,Y)2
1

1− logL(1,Y)
log(πh)


 .

With a high probability, we have logL(1,Y)/ log(πh) < 1 for large h, so the above can be approximated with

π2h

log(πh)
E
(

1

L(1,Y)2

(
1 +

logL(1,Y)

log(πh)
+

log2 L(1,Y)

log2(πh)
+ · · ·

))
. (4.1)

We will approximate this by keeping the first few terms in the innermost parentheses. In this regard, define

c0 := E
(

1
L(1,Y)2

)
, c1 := 1

c0
E
(

logL(1,Y)
L(1,Y)2

)
, c2 := 1

c0
E
(

log2 L(1,Y)
L(1,Y)2

)
, and c3 := 1

c0
E
(

log3 L(1,Y)
L(1,Y)2

)
. Recall from

(3.10) that c0 = 15/π2. The constants c1, c2 and c3 may be calculated to arbitrary precision as follows.

Write Lp := 1− Y(p)
p . Then L(1,Y) =

∏
p L
−1
p and logL(1,Y) = −∑p logLp. Now

E
(

logL(1,Y)

L(1,Y)2

)
= E

(
−
∑

p

logLp
∏

r

L2
r

)
= −

∑

p

E
(
L2
p logLp

)∏

r 6=p
E
(
L2
r

)
= −c0

∑

p

E
(
L2
p logLp

)

E
(
L2
p

) (4.2)

where E
(
L2
p

)
= 1 + 1

p2 and E
(
L2
p logLp

)
= 1

2

(
(1− 1

p )2 log(1− 1
p ) + (1 + 1

p )2 log(1 + 1
p )
)

. Next

E
(

log2 L(1,Y)

L(1,Y)2

)
= E

(∑

p,q

logLp logLq
∏

r

L2
r

)
=

E


∑

p 6=q
L2
pL

2
q logLp logLq

∏

r 6=p,q
L2
r +

∑

p

L2
p(logLp)

2
∏

r 6=p
L2
r


 =

∑

p 6=q
E
(
L2
p logLp

)
E
(
L2
q logLq

) ∏

r 6=p,q
E
(
L2
r

)
+
∑

p

E
(
L2
p(logLp)

2
)∏

r 6=p
E
(
L2
r

)
=

c0
∑

p 6=q

E
(
L2
p logLp

)
E
(
L2
q logLq

)

E
(
L2
p

)
E
(
L2
q

) + c0
∑

p

E
(
L2
p(logLp)

2
)

E
(
L2
p

) =

c0 ·



(∑

p

E
(
L2
p logLp

)

E
(
L2
p

)
)2

−
∑

p

(
E
(
L2
p logLp

)

E
(
L2
p

)
)2

+
∑

p

E
(
L2
p(logLp)

2
)

E
(
L2
p

)


 (4.3)

where E
(
L2
p(logLp)

2
)

= 1
2

(
(1− 1

p )2 log2(1− 1
p ) + (1 + 1

p )2 log2(1 + 1
p )
)

. One may similarly show that

− 1

c0
E
(

log3 L(1,Y)

L(1,Y)2

)
=

∑

p,q,r
distinct

E
(
(logLp)L

2
p

)

E
(
L2
p

) E
(
(logLq)L

2
q

)

E
(
L2
q

) E
(
(logLr)L

2
r

)

E (L2
r)

+

3
∑

p 6=r

E
(
(logLp)

2L2
p

)

E
(
L2
p

) E
(
(logLr)L

2
r

)

E (L2
r)

+
∑

p

E
(
(logLp)

3L2
p

)

E
(
L2
p

) . (4.4)
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Calculating the expressions (4.2), (4.3) and (4.4) with 105 prime terms yields

c1 ≈ −0.578071,

c2 ≈ +0.604049,

c3 ≈ −0.526259.

(4.5)

Thus, taking the first four terms of (4.1), an approximation of F(h) for odd h is

π2h

log(πh)

(
c0 +

c0c1
log(πh)

+
c0c2

log2(πh)
+

c0c3

log3(πh)

)
=

15h

log(πh)

(
1 +

c1
log(πh)

+
c2

log2(πh)
+

c3

log3(πh)

)
. (4.6)

However, this assumes that each number h occurs as h(d) with equal frequency, which is inconsistent with
Corollary 2.2. We thus introduce the correction factor

c̃(h) :=
∏

p≥3 prime
n≥0
pn‖h

Prob(pn ‖ h′ : h′ is an odd class number)

Prob(pn ‖ h′ : h′ is an odd integer)
=

∏

p≥3 prime
n≥0
pn‖h

p−n
∏∞
i=n+1

(
1− 1

pi

)

p−(n+1)(p− 1)

=
∏

p≥3 prime
n≥0
pn‖h

(
1− 1

p

)−1 ∞∏

i=n+1

(
1− 1

pi

) (4.7)

In the above, in addition to using (2.3), we are also using

Prob(h satisfies P : h is an odd integer) := lim
x→∞

#{h ∈ N : h is odd, h ≤ x, h satisfies P}
#{h ∈ N : h is odd, h ≤ x} .

We emphasize that n = 0 is allowed in (4.7), and so the expression defining c̃(h) is an infinite product. Note
that, heuristically at least, we have

∑

h≤H
h odd

c̃(h) ∼ H

2
, (H −→∞). (4.8)

Indeed, if
∑

h≤H
h odd

c̃(h) ∼ B · H
2

, then B has expected value

B =
∏

p odd

∞∑

n=0

Prob(pn ‖ h : h is an odd integer) · Prob(pn ‖ h : h is an odd class number)

Prob(pn ‖ h : h is an odd integer)

=
∏

p odd

∞∑

n=0

Prob(pn ‖ h : h is an odd class number)

= 1.

Noting that

c̃(h) =
∞∏

`=3
` prime

∞∏

i=2

(
1− 1

`i

)
· c(h) =

C

15
· c(h),

we get Conjecture 1.4 by multiplying the average order (4.6) with the local correction factor (4.7).

4.2. Dampening the three divisibility bias. Given an odd natural number h, let k ≤ 11 and n ≤ k − 3
be such that h ∈ [3k, 3k+1) and 3n ‖ h. We define the adjustment pred′(h) by replacing in pred(h) the factor

Prob(3n ‖ h′ : h′ is an odd class number) = 3−n
∞∏

i=n+1

(
1− 1

3i

)
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in c̃(h) coming from the Cohen-Lenstra heuristic, by the observed value

Prob(3n ‖ h′ : h′ is an odd class number ∈ [3k, 3k+1)) =
∑

h′∈[3k,3k+1)
h′ odd
3n‖h′

F(h′)

/ ∑

h′∈[3k,3k+1)
h′ odd

F(h′) (4.9)

using our computed values of F(h) (see Section 6).
As mentioned earlier, this three divisibility bias is connected to other recent work: Belabas [3] noted rather

slow convergence in the Davenport-Heilbronn asymptotic average of H(d)[3]; Roberts [35] later conjectured
that this was due to a negative second order term of size X5/6 (here the main term is of order X). Robert’s
conjecture was recently proved in [4, 42].

4.3. Heuristics for Conjecture 1.7. We now give heuristics supporting Conjecture 1.7. Let λ = (n1, n2, . . . , nr)
be a partition of n, so that

n1 ≥ n2 ≥ · · · ≥ nr ≥ 1 (4.10)

and n1 + n2 + · · · + nr = n, and let Gλ(p) :=

r⊕

i=1

Z/pniZ be the corresponding abelian group. By the

assumption (1.2), the expected value of F(Gλ(p)) is

F(Gλ(p)) ≈ P (Gλ(p)) · F(pn). (4.11)

The following proposition evaluates P (Gλ(p)) explicitly. Let k be the number of distinct parts of λ, and let
m1,m2, . . . ,mk be the multiplicity of each distinct part. Thus, (4.10) reads

n1 = · · · = nm1 > nm1+1 = · · · = nm1+m2 > · · · > n∑k−1
i=1 mi+1 = · · · = n∑k

i=1mi
.

Proposition 4.1. With the notation just given, we have

P (Gλ(p)) = pc(λ)−n ·
k∏

i=1

mi∏

j=1

(
1− 1

pj

)−1 n∏

i=1

(
1− 1

pi

)
, (4.12)

where c(λ) is given by (1.11). In particular, as p −→∞, we have that

P (Gλ(p)) ∼ pc(λ)−n. (4.13)

Proof. The statement follows immediately by combining Lemma 2.1 with the formula

|Aut(Gλ(p))| = p2n−c(λ)
k∏

i=1

mi∏

j=1

(
1− 1

pj

)
.

This formula is classical, having appeared in a 1907 paper of A. Ranum [34]. For a more modern exposition,
see [19] or [27]. �

Inserting (4.13) together with Conjecture 1.4 into the right-hand side of (4.11), and observing that
c(pn) −→ 1 as p −→∞, we see that Conjecture 1.7 follows. In the case c(λ) = 0 we write

∑

p≤x
F(Gλ(p)) ∼

∑

p≤x
P (Gλ(p)) · F(pn) ∼

∑

p≤x
C · pc(λ)

log(pn)

and use partial summation.

5. Attainable partitions are very rare

We now prove Theorem 1.9. To this end, let cn,r denote the number of attainable partitions of n into
r parts. Work of Sellers ([37],[38]) leads to a generating function for the number of partitions of n which
satisfy a certain type of linear inequality amongst their parts:
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Theorem 5.1 ([37],[38]). The number of partitions λ = (n1, n2, . . . , nr) of n into r non-negative parts
satisfying the inequality n1 ≥

∑r
i=2 bini, for some non-negative integers bi with b2 > 0, has generating

function
1

(1− x)(1− xb2+1)(1− xb2+b3+2)(1− xb2+b3+b4+3) · · · (1− xb2+b3+···+br+r−1)
.

Applying this result to our context requires a slight modification, and leads to the following generating
function for the attainable partitions.

Corollary 5.2. The generating function Cr(x) for the sequence cn,r of length-r attainable partitions of n is
given by

Cr(x) =

∞∑

n=0

cn,rx
n =

xr
2−r

(1− x)
∏r
j=2(1− xj2−j) .

Proof. First, observe that by definition we require our partitions to be comprised of positive (rather than
non-negative) parts. To accommodate this change, we use the easily-verified bijection between partitions of
n into r non-negative parts satisfying the inequality b1 ≥

∑r
i=2 bini and partitions of n+

∑r
i=2 bi + (r − 1)

into r positive parts satisfying the same inequality, given by

(n1, . . . , nr)→ (n1 +
r∑

i=2

bi, n2 + 1, ..., nr + 1)

Thus the analogous generating function to Seller’s above for partitions into positive parts is simply a shift
of indices away, given by

xb2+b3+···+br+r−1

(1− x)(1− xb2+1)(1− xb2+b3+2)(1− xb2+b3+b4+3) · · · (1− xb2+b3+···+br+r−1)
.

Finally, we apply this to attainable partitions, which by definition satisfy an inequality in the form of the
theorem, with coefficients bi = 2i− 3. The corollary then follows from the observation

j − 1 +

j∑

i=2

bi = j − 1 +

j∑

i=2

(2i− 3) = j2 − j

for any 2 ≤ j ≤ r.
�

Basic results about growth rates about coefficients of rational generating functions leads to an asymptotic
count of attainable partitions:

Corollary 5.3. For fixed r, the proportion of length-r partitions of n which are attainable is asymptotically
1

(r−1)! .

Proof. We rewrite our expression for Cr(x) to isolate its singularity on the unit circle with the highest
multiplicity (x = 1 with multiplicity r) and apply the techniques of singularity analysis. Namely, we write

∞∑

n=0

cn,rx
n =

1

(1− x)r
· xr

2−r+1

∏r
j=2(1 + x+ x2 + · · ·+ xj2−j−1)

=:
fr(x)

(1− x)r
,

where here fr(x) is analytic at x = 1. A partial fraction decomposition shows that the asymptotics for the
coefficients are governed by this singularity (see, e.g., [14, p. 256]), and we obtain

cn,r ∼
fr(1)nr−1

(r − 1)!
=

nr−1

(r − 1)!
∏r
j=2(j2 − j) =

nr−1

r!(r − 1)!2
.

Similarly, by the well-known generating function

∞∑

n=0

pn,rx
n =

xr∏r
j=1(1− xj) =

1

(1− x)r
· xr∏r

j=2(1 + x+ x2 + · · ·+ xj−1)
,
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for pn,r, the total number of length-r partitions of n, we conclude that

pn,r ∼
nr−1

r!(r − 1)!
.

Taking the ratio of these gives

lim
n→∞

cn,r
pn,r

= lim
n→∞

nr−1

r!(r−1)!2
nr−1

r!(r−1)!
=

1

(r − 1)!
,

proving the result. �

Moving from the fixed rank to the fixed order case, we set

cn =

n∑

r=1

cn,r,

the total number of partitions of n which are attainable.

Lemma 5.4. For fixed n, the numbers cn,r satisfy the recurrence relation

cn,r+1 =

bn−2r

r2+r
c∑

i=0

cn−2r−i(r2+r),r.

Proof. From Corollary 5.2 we easily deduce the recurrence relation between the successive generating func-
tions:

Cr+1(x) =
x2r

1− xr2+r Cr(x) = (1 + xr
2+r + x2(r

2+r) + · · · )(x2rCr(x)),

from which the lemma follows by equating coefficients. �

We prove by induction that for fixed n ≥ 1 we have cn,r ≤ nr−1

(r−1)!2 for all r. This is trivial for r = 1 since

cn,1 = 1. For the inductive step, the recurrence relation in Lemma 5.4 gives

cn,r+1 =

bn−2r

r2+r
c∑

i=0

cn−2r−i(r2+r),r ≤
1

(r − 1)!2

bn−2r

r2+r
c∑

i=0

(n− 2r − i(r2 + r))r−1.

The terms in this sum are positive and decreasing as a function of i, and so we can compare to the integral:

bn−2r

r2+r
c∑

i=0

(n− 2r − i(r2 + r))r−1 ≤ (n− 2r)r−1 +

∫ bn−2r

r2+r
c

0

(n− 2r − i(r2 + r))r−1 di

= nr−1 +
nr

r(r2 + r)
−

(n− 2r − bn−2rr2+r c(r2 + r))r

r(r2 + r)

Since the latter term is positive and r2 + r ≤ n, we can continue

cn,r+1 ≤
1

(r − 1)!2

bn−2r

r2+r
c∑

i=0

(n− 2r − i(r2 + r))r−1 ≤ 1

(r − 1)!2
rnr + nr

r(r2 + r)
=
nr

r!2
,

completing the induction. Now, summing over r gives

cn =
n∑

r=1

cn,r ≤
n∑

r=1

nr−1

(r − 1)!2
≤
∞∑

r=1

nr−1

(r − 1)!2
= I0(2

√
n),

where I0(x) denotes the 0-th modified Bessel function of the first kind. By the asymptotic I0(x) ∼ ex√
2πx

,

we can compare the formula for cn with the famous asymptotic of Hardy-Ramanujan [16], pn ∼ eπ
√

2n/3

4n
√
3

, for

the number of partitions of n. Taking the ratio of the two gives

cn
pn
� n3/4e(2−

√
2
3π)
√
n,
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proving Theorem 1.9.

Remark 5.5. Since cn,1 = 1 for all n ≥ 1 (and c0,1 = 0), Lemma 5.4 provides explicit formulas for the
number of attainable partitions of n into a small number of parts. For example,

cn,2 =

bn−2
2 c∑

i=0

cn−2−2i,1 =

⌊
n− 1

2

⌋
,

agreeing with the easily-checked fact that the partition [a, b] of n is attainable if and only if a > b. Less
trivially, if we temporarily adopt the simplifying convention that bxc = 0 for x < 0, we have

cn,3 =

bn−4
6 c∑

i=0

cn−4−6i,2 =

bn−4
6 c∑

i=0

⌊
n− 5− 6i

2

⌋
.

This leads to Rademacher-type formulas for computing the exact value of cn.

6. Numerical computations

With the aid of a supercomputer and assuming GRH, we have computed F(h) and F(G) for all odd
h < 106 and all p-groups G of odd size at most 106. We have made the computed values available online,
see the references [20], [21], [22]. In this section we will describe how this computation was accomplished.

As already noted, by genus theory, if −q < −8 is a fundamental discriminant, then h(−q) is odd precisely
when q is prime. Corollary 1.3 in [25] states that under GRH,

h(−q) ≥ π

12eγ
√
q

(
log log q − log 2 +

1

2
+

1

log log q
+

14 log log q

log q

)−1
(6.1)

if −q is a fundamental discriminant such that q ≥ 1010. It is easy to verify that the right-hand side above
is monotonic for q ≥ 1010. This implies that if q ≥ 1.1881 · 1015 then h(−q) > 106. Thus it suffices to
consider only discriminants in D′(1.1881 · 1015) (recall that D′(x) denotes the set of negative fundamental
discriminants −q such that q ≤ x is prime.)

We use the procedure quadclassunit0 in the computer package PARI 2.7.3 to compute the class groups
H(d); this procedure guarantees correct results assuming GRH, cf. [31, Section 3.4.70]. In principle, doing
this for every d ∈ D′(1.1881 · 1015) would suffice, but a number of practical speedups were necessary.

6.1. Brief description of the algorithm. We give a brief but not complete description of our algorithm.
Our computer program iterates over all d ∈ D′(1.1881 · 1015) and records for each odd h < 106 and each
noncyclic p-group G, how many times a group of order h or a group isomorphic to G is found, avoiding to
compute h(d) or H(d) whenever not necessary (note that if G is a cyclic p-group, then the value of F(G)
can be calculated from the data that we are keeping).

Given a fundamental discriminant d ∈ D′(1.1881 ·1015), we begin by calculating an approximation happrox

of h(d) together with an explicit error factor E, by setting happrox :=

√
|d|
π eν(x1,d) and E := eη(x1,x2,d) for

suitable x1, x2 using Proposition 6.1 below (e.g., towards the end of the discriminant range, it suffices to
only consider 7 terms in the truncated Euler product.) If we already at this stage can prove that h(d) > 106

(that is, if happrox/E > 106), then we discard d. This cuts down our search space by roughly a factor of 100,
as the lower bound (6.1) is overestimated by roughly this factor in our case.

Otherwise, we compute a candidate h∗ for h(d) using Shank’s baby-step/giant-step algorithm4 (specifically,
we find an integer h∗ near in value to happrox such that gh

∗
is the identity element for up to three different

group elements g ∈ H(d)). We only compute one such candidate, but in practice, this candidate agrees with
the true value of h(d) (assuming GRH) with a failure rate of about 1.5 · 10−7 for d in our range.

Next, we try to find the exponent of the group by determining the smallest divisor e∗ of h∗ such that ge
∗

is the identity element for up to 12 different group elements g ∈ H(d). We have that e∗ divides the order
of the group, and if moreover the error factor E is small enough such that h∗ is the unique multiple of e∗

in the interval happrox · [ 1
E , E] then we have proven that h(d) = h∗. In practice, this step in our program

4Using that h is odd we gain a speedup factor of
√

2. In a sense, this speedup is a weak form of Sutherland’s Primorial-Steps

Algorithm [41].
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only catches cyclic groups and groups of the form Z/mZ× Z/3Z and Z/mZ× Z/5Z (m ≥ 3), but since the
majority of the groups H(d) should be of this form5, our program stops at this step in 99.7% of all cases it
is reached.

If any of the above fails (that is, if gh
∗

was not the identity element for some g or if E was not small
enough) or if h(d) was determined to be an odd prime power, then we proceed to compute the structure of
the entire class group H(d) using PARI.

Proposition 6.1. Assume GRH. Let d < −8 be a fundamental discriminant and let x1 < x2 be two integers
such that x1 ≥ 1 and x2 ≥ 105. Then

1

eη(x1,x2,d)
≤ h(d)√

|d|
π eν(x1,d)

≤ eη(x1,x2,d) (6.2)

where

ν(x1, d) :=
∑

p≤x1

− log

(
1−

(dp )

p

)
,

η(x1, x2, d) :=
1.562 log |d|+ 0.655 log x2√

x2
+ log log x2 +B +

3 log x2 + 4

8π
√
x2

−
∑

p≤x1

1

p
+

1

x1
,

and B := lim
x→∞


∑

p≤x

1

p
− log log x


 ≈ 0.2614972128 . . . is the prime reciprocal constant.

Proof. Let χ be the real-valued character (d· ) of modulus |d| > 1. Theorem 9.1 combined with Table 4 in [1]
states that under GRH,

∣∣∣∣∣logL(1, χ)− log
∏

p<x2

1

1− χ(p)
p

∣∣∣∣∣ ≤
1.562 log |d|+ 0.655 log x2√

x2
(6.3)

for any x2 ≥ 105. By Taylor expansion, we have

log
∏

p<x2

1

1− χ(p)
p

=
∑

p<x2

− log

(
1− χ(p)

p

)

=
∑

p≤x1

− log

(
1− χ(p)

p

)
+

∑

x1<p<x2

∞∑

m=1

1

m

(
χ(p)

p

)m
.

(6.4)

We can bound the terms with m ≥ 2 by
∣∣∣∣∣
∑

x1<p<x2

∞∑

m=2

1

m

(
χ(p)

p

)m∣∣∣∣∣ ≤
∑

x1<p<x2

1

p2
≤
∫ ∞

x1

dt

t2
=

1

x1
. (6.5)

since
∣∣∑∞

2
xm

m

∣∣ ≤ 1
2

∑∞
2 |x|

m
= |x|2

2(1−|x|) ≤ x2 for any |x| ≤ 1
2 . For m = 1 we have

∣∣∣∣∣
∑

x1<p<x2

χ(p)

p

∣∣∣∣∣ ≤
∑

x1<p<x2

1

p
<
∑

p≤x2

1

p
−
∑

p≤x1

1

p
, (6.6)

where the first term on the right-hand side can be bounded using inequality (6.21) in [36], which states that
under RH,

∑

p≤x2

1

p
< log log x2 +B +

3 log x2 + 4

8π
√
x2

(6.7)

for any x2 ≥ 13.5.

5We expect the class group to be cyclic more than 97.7% of the time, and class groups containing Z/qZ × Z/qZ for prime

q > 5 are very rare (cf. [10, p. 56].)
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Combining the inequalities (6.3), (6.4), (6.5), (6.6), (6.7) we obtain

|logL(1, χ)− ν(x1, d)| ≤ η(x1, x2, d), (6.8)

and the inequality (6.2) follows from taking exponentials and applying the class number formula h(d) =√
|d|
π L(1, χ) for d < −8. �

6.2. Computer resources. Our program comprises 1500 lines of C++ code. The total time for the compu-
tation was 4.5 CPU years, requiring 1 TB of temporary memory storage.

We used the computer package PARI (cf. [31]) to compute the groups H(d) and we used the computer
package primesieve [43] to iterate through primes.
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On the free path length distribution for
linear motion in an n-dimensional box

Samuel Holmin Pär Kurlberg Daniel Månsson

November 12, 2015

We consider the distribution of free path lengths, or the distance between
consecutive bounces of random particles, in an n-dimensional rectangular box.
If each particle travels a distance R, then, as R→∞ the free path lengths
coincides with the distribution of the length of the intersection of a random
line with the box (for a natural ensemble of random lines) and we determine
the mean value of the path lengths. Moreover, we give an explicit formula
(piecewise real analytic) for the probability density function in dimension two
and three.
In dimension two we also consider a closely related model where each

particle is allowed to bounce N times, as N →∞, and give an explicit (again
piecewise real analytic) formula for its probability density function.
Further, in both models we can recover the side lengths of the box from

the location of the discontinuities of the probability density functions.

1. Introduction
We consider billiard dynamics on a rectangular domain, i.e., point shaped “balls” moving
with linear motion with specular reflections at the boundary, and similarly for rectangular
box shaped domains in three dimensions. We wish to determine the distribution of
free path lengths of ensembles of trajectories defined by selecting a starting point and
direction at random.
The question seems quite natural and interesting on its own, but we mention that it

originated from the study of electromagnetic fields in “reverberation chambers” under
the assumption of highly directional antennas [7]. Briefly, the connection is as follows
(we refer to the forthcoming paper [4] for more details): given an ideal highly directional
antenna and a highly transient signal, then the wave pulse dynamics is essentially the
same as a point shaped billiard ball traveling inside a chamber, with specular reflection
at the boundary. Signal loss is dominated by (linear) “spreading” of the electromagnetic
field and by absorption occurring at each interaction (“bounce”) with the walls. The first
simple model we use in this paper neglects absorption effects, and models signal loss from
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spreading by simply terminating the motion of the ball after it has travelled a certain
large distance. The second model only takes into account signal loss from absorption, and
completely neglects spreading; here the motion is terminated after the ball has bounced
a certain number of times.

We remark that the distribution of free path lengths is very well studied in the context
of the Lorentz gas — here a point particle interacts with hard spherical obstacles, either
placed randomly, or regularly on Euclidean lattices; recently quasicrystal configurations
have also been studied (cf. [1–3,5, 8–10,12,13].)
Let R > 0 be large and let a rectangular n-dimensional box K ⊆ Rn be given, where

n ≥ 2. We send off a large numberM > 0 of particles, each with a random initial position
p(i) ∈ K chosen with respect to a given probability measure µ on K, and each with a
uniformly random initial direction v(i) ∈ Sn−1 = {x ∈ Rn : ‖x‖ = 1}, i = 1, . . . ,M , for
a total distance R each. Each particle travels along straight lines, changing direction
precisely when it hits the boundary of the box, where it reflects specularly. We record the
distance travelled between each pair of consecutive bounces for each particle. (Note in
particular that we obtain more bounce lengths from some particles than from others.) Let
XM,R be the uniformly distributed random variable on this finite set of bounce lengths
of all the particles. More precisely, a random sample of XM,R is obtained as follows: first
take a random i.i.d. sample of points (with respect to the measure µ) p(1), . . . , p(M) ∈ K,
and a random sample of directions v(1), . . . , v(M) ∈ Sn−1 (with respect to the uniform
measure). Each pair (p(i), v(i)) then defines a trajectory T i of length R, and each such
trajectory gives rise to a finite multiset Bi of lengths between consecutive bounces.
Finally, with B = ⋃M

i=1B
i denoting the (multiset) union of bounce length multisets

B1, . . . , BM , we select an element of B with the uniform distribution. (That is, with 1B
denoting the integer valued set indicator function for B, and B′ = {x : 1B(x) ≥ 1} we
select the element b ∈ B′ with probability 1B(b)/∑x∈B′ 1B(x).)
We are interested in the distribution of XM,R for large M and R, and this turns out

to be closely related to a model arising from integral geometry. Namely, let d` denote
the unique (up to a constant) translation- and rotation-invariant measure on the set of
directed lines ` in Rn, and consider the restriction of this measure to the set of directed
lines ` intersecting K, normalized such that it becomes a probability measure. Denote
by X the random variable X := length(` ∩K) where ` is chosen at random using this
measure. Our first result is that XM,R converges in distribution to X as we take M →∞
and then R→∞ (or vice versa), and using techniques from integral geometry we find
that the mean value of X has a quite simple geometric interpretation.

Theorem 1. For any dimension n ≥ 2, and for any distribution µ on the starting points,
the random variable XM,R converges in distribution to the random variable X, as we take
R→∞ followed by taking M →∞, or vice versa. Moreover, the mean value of X is

E[X] = 2π |S
n−1|
|Sn|

Vol(K)
Area(K) = 2

√
π · Γ(n+1

2 )
Γ(n2 )

Vol(K)
Area(K)

where Area(K) is the (n − 1)-dimensional surface area of the box K, Vol(K) is the
volume of the box K, Γ is the gamma function, and where |Sn−1| = 2πn/2/Γ(n/2) is the
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(n− 1)-dimensional surface area of the sphere Sn−1 ⊆ Rn.

Throughout the paper, we will write pdfZ and cdfZ for the probability density function
and the cumulative distribution function of Z, respectively, for random variables Z. We
give explicit formulas for the probability density function of X in dimensions two and
three.

Theorem 2. For a box of dimension n = 2 with side-lengths a ≤ b, the probability
density function of X is given by

pdfX(t) = 1
a+ b

·





1, if t < a, b

a2b

t2
√
t2 − a2 , if a < t < b

−1 + 1
t2

(
a2b√
t2 − a2 + ab2

√
t2 − b2

)
, if a, b < t.

for 0 < t <
√
a2 + b2.

Remark 3. We note that the probability density function in Theorem 2 is analytic on
all open subintervals of (0,

√
a2 + b2) not containing a or b. Moreover, it is constant on

the interval (0,min(a, b)) and has singularities of type (t− a)−1/2 and (t− b)−1/2 just to
the right of a and b, respectively. See Figure 1 for more details. For an explanation of
these singularities, see Remark 25.

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 1: Simulation (blue histogram) vs explicit probability density function (red line)
given by Theorem 2 for (a, b) = (1, 2). (Simulation used 105 particles, each
starting at the origin with a uniformly random direction, going for a total
distance 1000 each.) The plot is cutoff at y = 1.3 since pdfX(t) tends to infinity
as t→ 1+ and t→ 2+.
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Theorem 4. For a box of dimension n = 3 with side-lengths a, b, c, the probability density
function of X is given by

pdfX(t) = F (a, b, c, t) + F (b, c, a, t) + F (c, a, b, t)
3πt3(ab+ ac+ bc)

where

F (a, b, c, t) = t3(8a− 3t)

for 0 < t < a, and by

F (a, b, c, t) =
(
6t4 − a4 + 6πa2bc

)
− 4(b+ c)

√
|t2 − a2|(a2 + 2t2)

for a < t <
√
a2 + b2, and by

F (a, b, c, t) = 6πa2bc+ b4 − 3t4 − 6a2b2+
√
|t2 − a2 − b2|4c

(
a2 + b2 + 2t2

)
+

+4a
√
|t2 − b2|(b2 + 2t2)− 12a2bc · arctan

(√
|t2 − a2 − b2|

b

)
+

−4c
√
|t2 − a2|(a2 + 2t2)− 12ab2c · arctan

(√
|t2 − a2 − b2|

a

)

for
√
a2 + b2 < t <

√
a2 + b2 + c2.
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Figure 2: Simulation (blue histogram) vs explicit probability density function (red line)
given by Theorem 4 for (a, b, c) = (3, 4, 6). (Simulation used 105 particles, each
starting at the origin with a uniformly random direction, going for a total
distance 1000 each.) The fact that pdfX(t) is not smooth at t = 5 is barely
noticeable.
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Remark 5. We note that the probability density function in Theorem 4 is analytic on
all open subintervals of (0,

√
a2 + b2 + c2) not containing any of the points

a, b, c,
√
a2 + b2,

√
a2 + c2,

√
b2 + c2.

Moreover, it is linear on the interval (0,min(a, b, c)) and has positive jump discontinu-
ities at the points a, b, c. At the points {

√
a2 + b2,

√
a2 + c2,

√
b2 + c2} \ {a, b, c}, it is

continuous and differentiable.

Note that the probability distribution XM,R gives a larger “weight” to some particles
than others, since some particles get more bounces than others for the same distance R.
One could also consider a similar problem where we send off each particle for a certain
number N > 0 of bounces, and then consider the limit as M → ∞ followed by taking
the limit N → ∞, where M is the number of particles. This would give each particle
the same “weight”. Denote the finite version of this distribution by YM,N and its limit
distribution as M →∞ and then N →∞ by Y . With regard to the previous discussion
about signal loss, we call the limit distribution X of XM,R the spreading model and we
call the limit distribution of YM,N the absorption model. Determining the probability
density function of the absorption model appears to be the more difficult problem, and
we give a formula only in dimension two:

Theorem 6. For a box of dimension n = 2 with side-lengths a ≤ b, the random variable
YM,N converges in distribution to the random variable Y , as we take M →∞ followed
by taking N →∞, where the probability density function pdfY (t) is given by

2
π

(
2(a+ b)
(a2 + b2) −

2ab
(a2 + b2)3/2

(
tanh−1

(
a√

a2 + b2

)
+ tanh−1

(
b√

a2 + b2

)))

for 0 < t < a, b, and by

2
π

(
a
(
b−
√
t2 − a2

)

t(b+
√
t2 − a2)

√
t2 − a2 + 2ab+ 2at− 2a

√
t2 − a2

t(a2 + b2) +

2ab
(
− tanh−1

(
t√

a2+b2

)
+ tanh−1

(√
t2−a2

√
a2+b2

tb

)
− tanh−1

(
b√

a2+b2

))

(a2 + b2)3/2

)

for a < t < b, and by

2
π

(
a(b−

√
t2 − a2)

t(b+
√
t2 − a2)

√
t2 − a2 + b(a−

√
t2 − b2)

t(a+
√
t2 − b2)

√
t2 − b2 + 22ab− a

√
t2 − a2 − b

√
t2 − b2

t(a2 + b2) +

2ab
(
−2 tanh−1

(
t√

a2+b2

)
+ tanh−1

(√
t2−a2

√
a2+b2

tb

)
+ tanh−1

(√
t2−b2

√
a2+b2

ta

))

(a2 + b2)3/2

)

for a, b < t <
√
a2 + b2.

5



0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 3: Probability density function for spreading model X (red line) from Theorem 2
vs absorption model (black dashed line) from Theorem 6, for (a, b) = (1, 2).

See Figure 3 for a comparison between the probability density functions for the two
different models in dimension 2.

Remark 7. It is not a priori obvious that the two limit distributions should differ, and
it is natural to ask how much, if at all, they differ. We start by remarking that the
expression for pdfY (t) does not simplify into the expression for pdfX(t); indeed, for
(a, b) = (1, 2) we have pdfX(t) = 1/3 but pdfY (t) ≈ 0.32553 on the interval (0, 1). For
very skew boxes, with a = 1 and b→∞, it is straightforward to show that

pdfY (b/2)
pdfX(b/2) →∞

as b→∞.
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2. Proof of Theorem 1
In this section, we prove Theorem 1. For notational simplicity, we give the proof in
dimension three; the general proof for n ≥ 2 dimensions is analogous.
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Given a particle with initial position p and initial direction v, let NR,p,v be the number
of bounce lengths we get from that particle as it has travelled a total distance R > 0, and
let NR,p,v(t) be the number of such bounce lengths of length at most t ≥ 0. The uniform
probability distribution on the set of bounce lengths of M particles with initial positions
p(1), . . . , p(M) and initial directions v(1), . . . , v(M) has the cumulative distribution function

cdfXM,R(t) =
∑M
i=1NR,p(i),v(i)(t)
∑M
i=1NR,p(i),v(i)

=

1
M

∑M
i=1

NR,p(i),v(i)

R

NR,p(i),v(i)(t)
NR,p(i),v(i)

1
M

∑M
i=1

NR,p(i),v(i)

R

. (8)

(Note that the denominator is uniformly bounded from below, which follows from equation
(10) below.) By the strong law of large numbers, the function (8) converges almost surely
to

∫
K

∫
S2
NR,p,v

R

NR,p,v(t)
NR,p,v

dS(v) dµ(p)

∫
K

∫
S2
NR,p,v

R
dS(v) dµ(p)

(9)

asM →∞, where dµ is the probability measure with which we choose the starting points,
and dS is the surface area measure on the sphere S2. By symmetry, we may restrict the
inner integrals to S2

+ := {(vx, vy, vz) ∈ S2 : vx, vy, vz > 0}. We now look at the limit of
(9) as R → ∞, and we note that since the integrands are uniformly bounded, we may
move the limit inside the integrals by the Lebesgue dominated convergence theorem.
Fix one of the integrands, and denote it by f(R, p, v, t). We will show that its limit
g(p, v, t) := limR→∞ f(R, p, v, t) exists for all t and all directions v ∈ S2. Moreover, if
p(i) and v(i) denote random variables corresponding to an initial position and an initial
direction, respectively, as above, then

h(p(i), v(i), t) := lim
R→∞

NR,p(i),v(i)

R

NR,p(i),v(i)(t)
NR,p(i),v(i)

is a random variable with finite variance (and similarly for the terms in the denominator
of (8); in particular recall it is uniformly bounded from below), and thus the strong
law of large numbers gives that the limit of (8) as R → ∞, and then M → ∞ almost
surely equals (9). This shows that limM→∞ limR→∞ cdfXM,R(t) exists almost surely and
is equal to limR→∞ limM→∞ cdfXM,R(t).
Consider a particle with initial position p and initial direction v = (vx, vy, vz) ∈ S2

+.
By “unfolding” its motion with specular reflections on the walls of the box to the motion
along a straight line in Rn — see Figure 4 for a 2D illustration — we see that the
particle’s set of bounce lengths is identical to the set of path lengths between consecutive
intersections of the straight line segment {p + tv : 0 ≤ t ≤ R} with any of the planes
x = na, y = nb, z = nc, n ∈ Z. Thus we see that

NR,p,v = R
vx
a

+R
vy
b

+R
vz
c

+O(1) (10)
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Figure 4: From left to right: Unfolding a motion with specular reflection in a 2D box to
a motion the plane and then projecting back to the box.

for large R, and therefore

NR,p,v

R
→ vx

a
+ vy

b
+ vz

c
(11)

as R→∞.
Now project the line {p+tv : 0 ≤ t ≤ R} to the torus R3/Λ where Λ = {(n1a, n2b, n3c) :

n1, n2, n3 ∈ Z} and let us identify the torus with the box K; see Figure 4. Each bounce
length corresponds to a line segment which starts in one of the three planes x = 0, y = 0
or z = 0 and runs in the direction v to one of the three planes x = a, y = b or z = c.
There are R vz

c + O(1) line segments which start from the plane z = 0, and thus the
probability that a line segment starts from the plane z = 0 is

vz
c

vx
a + vy

b + vz
c

as R →∞. By the ergodicity of the linear flow on tori (for almost all directions), the
starting points of these line segments become uniformly distributed on the rectangle
[0, a]× [0, b]× {0} for almost all v ∈ S2

+ as R→∞; from here we will assume that v is
such a direction, and we will ignore the measure zero set of directions for which we do not
have ergodicity. Consider one of these line segments and denote its length by T and its
starting point by (x0, y0, 0). For an arbitrary parameter t ≥ 0, we have T ≤ t if and only
if tvx ≥ a−x0 or tvy ≥ b− y0 or tvx ≥ c; the starting points (x0, y0) ∈ [0, a]× [0, b] which
satisfy this are precisely those outside the rectangle [0, a− tvx]× [0, b− tvy] assuming
that tvz ≤ c and otherwise it is the whole rectangle [0, a]× [0, b]. The area of that region
is

ab− (a− tvx)(b− tvy) (12)

if a ≥ tvx, b ≥ tvy, c ≥ tvz and otherwise it is ab. Since the starting points (x0, y0)
are uniformly distributed in the rectangle [0, a] × [0, b] as R → ∞, it follows that the
probability that T ≤ t is

1− (a− tvx)(b− tvy)
ab

χ(a ≥ tvx, b ≥ tvy, c ≥ tvz),
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where χ(P ) is the indicator function which is 1 whenever the condition P is true, and 0
otherwise. We get analogous expressions for the case when a line segment starts in the
plane x = 0 or y = 0 instead. Thus the proportion of all line segments with length at
most t as R→∞ is

lim
R→∞

NR,p,v(t)
NR,p,v

=
vx

a
vx

a + vy

b + vz

c

(
1− (b− tvy)(c− tvz)

bc
χ(a ≥ tvx, b ≥ tvy, c ≥ tvz)

)
+

vy

b
vx

a + vy

b + vz

c

(
1− (a− tvx)(c− tvz)

ac
χ(a ≥ tvx, b ≥ tvy, c ≥ tvz)

)
+

vz

c
vx

a + vy

b + vz

c

(
1− (a− tvx)(b− tvy)

ab
χ(a ≥ tvx, b ≥ tvy, c ≥ tvz)

)

which can be written

1− χ(a ≥ tvx, b ≥ tvy, c ≥ tvz)
abc(vxa + vy

b + vz
c ) ×

×
(
vx(b− tvy)(c− tvz) + vy(a− tvx)(c− tvz) + vz(a− tvx)(b− tvy)

)
. (13)

Recognizing that both integrands (11) and (13) are independent of the position p, we see
that the limit of (9) as R→∞ may be written as

lim
R→∞

lim
M→∞

cdfXM,R(t) = 1− 1∫
S2

+
(vxbc+ avyc+ abvz) dS(v)×

×
∫
v∈S2

+
vx≤a/t
vy≤b/t
vz≤c/t

((abvz + avyc+ vxbc)− 2t(avyvz + vxbvz + vxvyc) + 3t2vxvyvz) dS(v) (14)

for all t > 0. The corresponding formula in n dimensions is given by

lim
R→∞

lim
M→∞

cdfXM,R(t) = 1−

∫
v∈Sn−1

+
vi≤ai/t

for i=1,...,n




n∑

i=1
vi
∏

j 6=i
(ai − tvj)


 dS(v)

(
n∏

i=1
ai

)∫

Sn−1
+

(
n∑

i=1

vi
ai

)
dS(v)

(15)

for all t > 0, where the side-lengths of the box K are a1, . . . , an and dS is the surface area
measure on Sn−1

+ ∩ [0,∞)n. (The denominator can be given explicitly by using Lemma
27 below.)
We have thus proved that the random variable XM,R converges in distribution to a

random variable with probability density function given by (15) as we take M → ∞
followed by taking R → ∞, or alternatively, first taking R → ∞ followed by taking
M →∞. It remains to prove that this distribution agrees with the distribution of the
random variable X defined in the introduction, and to determine the mean value of X.
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2.1. Integral geometry
We start by recalling some standard facts from integral geometry (cf. [6, 11].) The set
of directed straight lines ` in R3 can be parametrized by pairs (v, q) where v ∈ S2 is a
unit vector pointing in the same direction as ` and q ∈ v⊥ is the unique point in ` which
intersects the plane through the origin which is orthogonal to v. The unique translation-
and rotation-invariant measure (up to a constant) on the set of directed straight lines in
R3 is d` := dA(q) dS(v) where dA is the surface measure on the plane through the origin
orthogonal to v ∈ S2, and dS is the surface area measure on S2.

Consider the set La,b,c of directed straight lines in R3 which intersect the box K. Now,
since abvz + avyc+ vxbc is the area of the projection of the box K onto the plane v⊥ for
v ∈ S2

+, it follows that the total measure of La,b,c with respect to d` is

Ca,b,c := 8
∫

S2
+

(abvz + avyc+ vxbc) dS(v) = 2π(ab+ ac+ bc)

where we used symmetry, and the integral may be evaluated by switching to spherical
coordinates. It follows that d` /Ca,b,c is a probability measure on the set of directed
lines intersecting the box La,b,c. Let ` be a random directed line with respect to this
measure, and define the random variable X := length(` ∩K), as in the introduction. Let
us determine the probability that X ≤ t for an arbitrary parameter t ≥ 0. By symmetry
it suffices to consider only directed lines with v ∈ S2

+. The set of all intersection points
between the rectangle [0, a]× [0, b]×{0} and the lines ` with X ≤ t and direction v ∈ S2

+
has area ab− (a− tvx)(b− tvy)χ(a ≥ tvx, b ≥ tvy, c ≥ tvz), as in (12), and its projection
onto the plane v⊥ has area

vz[ab− (a− tvx)(b− tvy)χ(a ≥ tvx, b ≥ tvy, c ≥ tvz)].

By symmetry it follows that the area of the set of directed lines ` ∈ La,b,c with X ≤ t
and direction v ∈ S2

+ projected down to v⊥ is

U(v, t) := vx[bc− (b− tvy)(c− tvz)χ(a ≥ tvx, b ≥ tvy, c ≥ tvz)]+
vy[ac− (a− tvx)(c− tvz)χ(a ≥ tvx, b ≥ tvy, c ≥ tvz)]+
vz[ab− (a− tvx)(b− tvy)χ(a ≥ tvx, b ≥ tvy, c ≥ tvz)],

and it follows that

Prob[X ≤ t] = 1
Ca,b,c

∫

X≤t
d` = 8

Ca,b,c

∫

S2
+

U(v, t) dS(v),

which we see is identical to (14), and we have thus proved that XM,R converges in
distribution to X as we take M →∞ and then R→∞.

2.2. Computing the mean value
It remains to determine the mean value of X, and we will do this by exploiting the integral
geometry interpretation of the random variable X. By symmetry it suffices to restrict to
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directed lines ` with v ∈ S2
+. For fixed v ∈ S2

+, denote by Q(v) = (K + span(v)) ∩ v⊥
the set of q ∈ v⊥ such that the directed line ` parametrized by (v, q) intersects K. We
note that X dA(q) is a volume element of the box K for any fixed v ∈ S2

+, and thus
integrating X dA(q) over all q yields the volume of the box. Hence the mean value is
essentially given by the ratio of the volume of the box to the surface area of the box, or
more precisely,

E[X] = 8
Ca,b,c

∫

S2
+

∫

Q(v)
X dA(q) dS(v) = 8abc

Ca,b,c

∫

S2
+

dS(v) = 2abc
ab+ ac+ bc

.

In n dimensions we get a normalizing factor Area(K)
2 · 2n ∫Sn−1

+
vn dS(v), so with the aid

of the Lemma 27 in the Appendix, it follows that the mean value in n dimensions is

E[X] = 1

2n 1
π

|Sn|
2n

Area(K)
2

2n Vol(K) |S
n−1|
2n = 2π |S

n−1|
|Sn|

Vol(K)
Area(K)

where Area(K) is the (n− 1)-dimensional surface area of the box K, and Vol(K) is the
volume of the box K. This concludes the proof of Theorem 1.

3. Proof of Theorem 2
Using formula (15) in dimension n = 2, we get

cdfX(t) = 1−

∫
v∈S1

+
vx≤a/t
vy≤b/t

(vx(b− tvy) + vy(a− tvx)) dS(v)

ab

∫

S1
+

(
vx
a

+ vy
b

)
dS(v)

.

We use polar coordinates vx = cos θ, vy = sin θ so that dS(v) = dθ. Then the above
becomes

1−

∫ sin−1(min(b/t,1))

cos−1(min(a/t,1))
(b cos θ + a sin θ − 2t sin θ cos θ) dθ

∫ π/2

0
(b cos θ + a sin θ) dθ

=

1− 1
a+ b

[
b sin θ − a cos θ + t cos2 θ

]sin−1(min(b/t,1))

cos−1(min(a/t,1))
. (16)

The numerator of the second term may be written

χ(b < t)


b · b

t
− a

√

1− b2

t2
+ t

(
1− b2

t2

)
+ χ(b ≥ t)(b− a · 0 + t · 0)+

−χ(a < t)


b

√

1− a2

t2
− a · a

t
+ t · a

2

t2


− χ(a ≥ t)(b · 0− a+ t)
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which can be simplified to

χ(b < t)


t− b− a

√

1− b2

t2


+ χ(a < t)


t− a− b

√

1− a2

t2


+ (a+ b− t).

Inserting this into (16) and differentiating yields Theorem 2.

4. Proof of Theorem 4
We will evaluate the cumulative distribution function (14) and then differentiate. The
denominator of the second term of (14) is

∫

S2
+

(abvz + avyc+ vxbc) dS(v) = π

4 (ab+ ac+ bc),

as may be evaluated by switching to spherical coordinates. Define

f(a, b, c) := bc

∫
v∈S2

+
vx≤a/t
vy≤b/t
vz≤c/t

vx dS(v),

g(a, b, c) := −2tc
∫
v∈S2

+
vx≤a/t
vy≤b/t
vz≤c/t

vxvy dS(v),

h(a, b, c) := 3t2
∫
v∈S2

+
vx≤a/t
vy≤b/t
vz≤c/t

vxvyvz dS(v).

By symmetry, we have

f(c, a, b) = ab

∫
v∈S2

+
vx≤c/t
vy≤a/t
vz≤b/t

vx dS(v) = ab

∫
v∈S2

+
vx≤a/t
vy≤b/t
vz≤c/t

vz dS(v),

f(b, c, a) = ac

∫
v∈S2

+
vx≤b/t
vy≤c/t
vz≤a/t

vx dS(v) = ac

∫
v∈S2

+
vx≤a/t
vy≤b/t
vz≤c/t

vy dS(v),

g(c, a, b) = −2tb
∫
v∈S2

+
vx≤c/t
vy≤a/t
vz≤b/t

vxvy dS(v) = −2tb
∫
v∈S2

+
vx≤a/t
vy≤b/t
vz≤c/t

vxvz dS(v),

g(b, c, a) = −2ta
∫
v∈S2

+
vx≤b/t
vy≤c/t
vz≤a/t

vxvy dS(v) = −2ta
∫
v∈S2

+
vx≤a/t
vy≤b/t
vz≤c/t

vyvz dS(v),
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and thus we can write the numerator in the second term of (14) as

f(a, b, c) + f(c, a, b) + f(b, c, a) + g(a, b, c) + g(c, a, b) + g(b, c, a) + h(a, b, c).

Exploiting the symmetries, it suffices to evaluate h(a, b, c), g(a, b, c) and f(b, c, a) (note
the order of the arguments to f). We will evaluate these integrals by switching to
spherical coordinates, but first we need to parametrize the part of the sphere inside the
box 0 ≤ vx ≤ a/t, 0 ≤ vy ≤ b/t, 0 ≤ vz ≤ c/t.
Lemma 17. Fix t ∈ (0,

√
a2 + b2 + c2). We have
∫
v∈S2

+
vx≤a/t
vy≤b/t
vz≤c/t

F (vx, vy, vz) dS(v) =

(∫ θa

θmin

∫ π/2

0
+
∫ θmax

θa

∫ π/2

ϕa
−
∫ θmax

θb

∫ π/2

ϕb

)
F̃ (θ, ϕ) sin θ dϕ dθ

for any integrable function F : S2
+ → R, where F̃ (θ, ϕ) := F (sin θ cosϕ, sin θ sinϕ, cos θ),

where

θmin := cos−1
{
c

t

}

1
,

θa := max(θmin, sin−1
{
a

t

}

1
),

θb := max(θmin, sin−1
{
b

t

}

1
),

θmax := sin−1
{√

a2 + b2

t

}

1
,

ϕa := cos−1 a

t sin θ (whenever a ≤ t sin θ),

ϕb := sin−1 b

t sin θ (whenever b ≤ t sin θ).

and where we have used the shorthand {u}1 := min(u, 1).

Proof. We will parametrize the set of points v = (vx, vy, vz) on the sphere S2 such that

0 < vx ≤ a/t,
0 < vy ≤ b/t, (18)
0 < vz ≤ c/t.

Switch to spherical coordinates vx = sin θ cosϕ, vy = sin θ sinϕ, vz = cos θ. The non-
negativity conditions of (18) are equivalent to the condition θ, ϕ ∈ (0, π/2). For such
angles, the condition vz ≤ c/t is equivalent to

cos−1
{
c

t

}

1
≤ θ,
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and the conditions vx ≤ a/t, vy ≤ b/t are equivalent to

cos−1
{

a

t sin θ

}

1
≤ ϕ ≤ sin−1

{
b

t sin θ

}

1
. (19)

The interval (19) is non-empty for precisely those θ ∈ (0, π/2) such that θ ≤ θmax since

1 ≤
{

a

t sin θ

}2

1
+
{

b

t sin θ

}2

1
⇐⇒ 1 ≤

(
a

t sin θ

)2
+
(

b

t sin θ

)2
⇐⇒

sin θ ≤
√
a2 + b2

t
⇐⇒ θ ≤ sin−1

{√
a2 + b2

t

}

1
.

Thus we may restrict θ to the interval given by the inequalities

θmin ≤ θ ≤ θmax.

Note that we have θmin ≤ θmax for all t ≤
√
a2 + b2 + c2 since

θmin ≤ θmax ⇐⇒ 1 ≤
{
c

t

}2

1
+
{√

a2 + b2

t

}2

1
⇐⇒

1 ≤
(
c

t

)2
+
(√

a2 + b2

t

)2

⇐⇒ t2 ≤ a2 + b2 + c2.

We conclude that we can write
∫
v∈S2

+
vx≤a/t
vy≤b/t
vz≤c/t

F (vx, vy, vz) dS(v) =
∫ θmax

θmin

∫ sin−1{ b
t sin θ}1

cos−1{ a
t sin θ}1

F̃ (θ, ϕ) sin θ dϕ dθ . (20)

For θ ∈ (0, π/2), note that cos−1 a
t sin θ is defined precisely when sin−1{a

t

}
1 ≤ θ and

that sin−1 b
t sin θ is defined precisely when sin−1

{
b
t

}
1
≤ θ. We have θmin < θa if and only

if t <
√
a2 + c2, and we have θmin < θb if and only if t <

√
b2 + c2. Moreover we note

that we always have θa, θb ∈ [θmin, θmax].
Let us rewrite the integration limits in the right-hand side of (20) in terms of ϕa and

ϕb. A priori, we need to distinguish between the two cases θa ≤ θb and θb < θa. If θa ≤ θb
then we get

(∫ θmax

θmin

∫ sin−1{ y
t sin θ}1

cos−1{ x
t sin θ}1

)
=
(∫ θa

θmin

∫ π/2

0
+
∫ θb

θa

∫ π/2

ϕa
+
∫ θmax

θb

∫ ϕb

ϕa

)
=

(∫ θa

θmin

∫ π/2

0
+
∫ θmax

θa

∫ π/2

ϕa
−
∫ θmax

θb

∫ π/2

ϕa
+
∫ θmax

θb

∫ π/2

ϕa
−
∫ θmax

θb

∫ π/2

ϕb

)
=

(∫ θa

θmin

∫ π/2

0
+
∫ θmax

θa

∫ π/2

ϕa
−
∫ θmax

θb

∫ π/2

ϕb

)
. (21)
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If on the other hand θb < θa then
(∫ θmax

θmin

∫ sin−1{ y
t sin θ}1

cos−1{ x
t sin θ}1

)
=
(∫ θb

θmin

∫ π/2

0
+
∫ θa

θb

∫ ϕb

0
+
∫ θmax

θa

∫ ϕb

ϕa

)
=

(∫ θb

θmin

∫ π/2

0
+
∫ θa

θb

∫ π/2

0
−
∫ θa

θb

∫ π/2

ϕb

+
∫ θmax

θa

∫ π/2

ϕa
−
∫ θmax

θa

∫ π/2

ϕb

)

which we see is identical to (21). Combining (20) and (21) we get the conclusion of the
lemma.

Applying Lemma 17 we get

h(a, b, c) = 3t2
∫
v∈S2

+
vx≤a/t
vy≤b/t
vz≤c/t

vxvyvz dS(v) =

3t2
(∫ θa

θmin

∫ π/2

0
+
∫ θmax

θa

∫ π/2

ϕa
−
∫ θmax

θb

∫ π/2

ϕb

)
(sin2 θ cos θ cosϕ sinϕ) sin θ dϕ dθ .

An antiderivative of the integrand cosϕ sinϕ·sin3 θ cos θ with respect to ϕ is−1
2 cos2 ϕ sin3 θ cos θ,

and thus the above is

3t2
(∫ θa

θmin
cos2 ϕ

∣∣∣
ϕ=0

+
∫ θmax

θa
cos2 ϕ

∣∣∣
ϕ=ϕa

−
∫ θmax

θb

cos2 ϕ
∣∣∣
ϕ=ϕb

)
1
2 sin3 θ cos θ dθ =

3t2
(∫ θa

θmin
1 +

∫ θmax

θa

a2

t2 sin2 θ
+
∫ θmax

θb

(
b2

t2 sin2 θ
− 1

))
1
2 sin3 θ cos θ dθ =

3
2

(∫ θa

θmin
t2 sin3 θ cos θ dθ+

∫ θmax

θa
a2 sin θ cos θ dθ+

∫ θmax

θb

(
b2 sin θ − t2 sin3 θ

)
cos θ dθ

)
=

3
2

([
t2

1
4 sin4 θ

]θa

θmin

+
[
a2 1

2 sin2 θ

]θmax

θa

+
[
b2 1

2 sin2 θ − t2 1
4 sin4 θ

]θmax

θb

)
. (22)

Next consider

g(a, b, c) = −2tc
∫
v∈S2

+
vx≤a/t
vy≤b/t
vz≤c/t

vxvy dS(v) =

−2tc
(∫ θa

θmin

∫ π/2

0
+
∫ θmax

θa

∫ π/2

ϕa
−
∫ θmax

θb

∫ π/2

ϕb

)
(sin2 θ cosϕ sinϕ) sin θ dϕ dθ .

An antiderivative of the integrand cosϕ sinϕ · sin3 θ with respect to ϕ is −1
2 cos2 ϕ sin3 θ,
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and thus the above is

g(a, b, c) = −2tc
∫
v∈S2

+
vx≤a/t
vy≤b/t
vz≤c/t

vxvy dS(v) =

−tc
(∫ θa

θmin
cos2 ϕ

∣∣∣
ϕ=0

+
∫ θmax

θa
cos2 ϕ

∣∣∣
ϕ=ϕa

−
∫ θmax

θb

cos2 ϕ
∣∣∣
ϕ=ϕb

)
sin3 θ dθ =

−tc
(∫ θa

θmin
1 +

∫ θmax

θa

a2

t2 sin2 θ
+
∫ θmax

θb

(
b2

t2 sin2 θ
− 1

))
sin3 θ dθ =

−tc
(∫ θa

θmin
sin3 θ dθ+

∫ θmax

θa

a2 sin θ
t2

dθ+
∫ θmax

θb

(
b2 sin θ
t2

− sin3 θ

)
dθ

)
=

−tc


[

cos3 θ

3 − cos θ
]θa

θmin

+ a2

t2
[− cos θ]θmax

θa
+
[
−b

2 cos θ
t2

− cos3 θ

3 + cos θ
]θmax

θb


.(23)

We obtain g(b, c, a) and g(c, a, b) by switching the roles of a, b, c in (23). We remark that
trying to obtain g(b, c, a) and g(c, a, b) directly, by integrating vyvz and vxvz, respectively,
by first integrating with respect to ϕ, taking the limits ϕ→ ϕa and ϕ→ ϕb, and then
finding an antiderivative with respect to θ, seem to result in much more complicated
expressions.
Finally consider

f(b, c, a) = ac

∫
v∈S2

+
vx≤a/t
vy≤b/t
vz≤c/t

vy dS(v) =

ac

(∫ θa

θmin

∫ π/2

0
+
∫ θmax

θa

∫ π/2

ϕa
−
∫ θmax

θb

∫ π/2

ϕb

)
(sin θ sinϕ) sin θ dϕ dθ .

An antiderivative of the integrand sinϕ · sin2 θ with respect to ϕ is − cosϕ · sin2 θ, and
thus the above is

ac

(∫ θa

θmin
cosϕ|ϕ=0 +

∫ θmax

θa
cosϕ|ϕ=ϕa −

∫ θmax

θb

cosϕ|ϕ=ϕb

)
sin2 θ dθ =

ac



∫ θa

θmin
1 +

∫ θmax

θa

a

t sin θ −
∫ θmax

θb

√

1− b2

t2 sin2 θ


 sin2 θ dθ =

ac



∫ θa

θmin
sin2 θ dθ+

∫ θmax

θa

a sin θ
t

dθ−
∫ θmax

θb

√

sin2 θ − b2

t2
sin θ dθ


 =

ac


1

2[θ − sin θ cos θ]θaθmin
+
[−a cos θ

t

]θmax

θa

−
∫ θmax

θb

√

1− b2

t2
− cos2 θ sin θ dθ


 (24)
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where the last integral inside the parentheses may be written as


−1

2




cos θ

√

1− b2

t2
− cos2 θ +

(
1− b2

t2

)
tan−1




cos θ√

1− b2

t2
− cos2 θ










θmax

θb

=



−1

2




cos θ

√

sin2 θ − b2

t2
+
(

1− b2

t2

)
tan−1




cos θ√

sin2 θ − b2

t2










θmax

θb

whenever θb < π/2, by using the fact that 1
2

(
x
√
c− x2 + c tan−1

(
x√
c−x2

))
is an an-

tiderivative of
√
c− x2 with respect to x when c is a constant. We obtain f(b, c, a) and

f(c, a, b) by switching the roles of a, b, c in (24).
It remains to insert the limits θmin, θa, θb, θmax into the antiderivatives (22), (23) and

(24) above. Noting that θmin, θa, θb, θmax are expressed in terms of piecewise-defined
functions, the following manipulations will be useful. For any function ψ, we have

ψ(θmin) = ψ

(
cos−1 c

t

)
χc + ψ(cos−1 1)(1− χc)

=
(
ψ

(
cos−1 c

t

)
− ψ(0)

)
χc + ψ(0)

where χc := χ(t > c). Similarly,

ψ(θmax) =
(
ψ

(
sin−1

√
a2 + b2

t

)
− ψ(π/2)

)
χa,b + ψ(π/2)

where χa,b := χ(
√
a2 + b2 > t), and

ψ(θa) = (1− χa)ψ(π/2) + (χa − χa,c)ψ
(

sin−1 a

t

)
+ χa,cψ

(
cos−1 c

t

)

= χa,c ·
(
ψ

(
cos−1 c

t

)
− ψ

(
sin−1 a

t

))
+ χa ·

(
ψ

(
sin−1 a

t

)
− ψ(π/2)

)
+ ψ(π/2)

and similarly, ψ(θb) can be written as

χb,c ·
(
ψ

(
cos−1 c

t

)
− ψ

(
sin−1 b

t

))
+ χb ·

(
ψ

(
sin−1 b

t

)
− ψ(π/2)

)
+ ψ(π/2).

With this we can evaluate [ψ]θaθmin
, [ψ]θmax

θa
, [ψ]θmax

θb
. But since we know that we will get

a function symmetric with respect to the values a, b, c, it suffices to keep only those terms
with χa and χa,b, say, and then the other terms may be evaluated by just switching the
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order of a, b, c. Upon inserting the limits and differentiating, one obtains (after tedious
calculations) that

pdfX(t) = F (a, b, c, t) + F (b, c, a, t) + F (c, a, b, t)
3πt3(ab+ ac+ bc)

where

F (a, b, c, t) := (8at3 − 3t4)+

χ(t ≥ a)
((

6t4 − a4 + 6πa2bc
)
−(8at3 − 3t4)− 4(b+ c)

√
|t2 − a2|(a2 + 2t2)

)
+

χ(t ≥
√
a2 + b2)

[
a4 + b4 − 9t4 − 6a2b2 +

√
|t2 − a2 − b2|4c

(
a2 + b2 + 2t2

)
+

4a
√
|t2 − b2|(b2 + 2t2)− 12a2bc · arctan

(√
|t2 − a2 − b2|

b

)
+

4b
√
|t2 − a2|(a2 + 2t2)− 12ab2c · arctan

(√
|t2 − a2 − b2|

a

)]
.

Rewriting F as a piecewise function, we get Theorem (4).

5. Proof of Theorem 6
Consider the distribution of the random variable YM,N . Since we record the same number
of bounces for each choice of angle ϕ we may replace the M -particle system with a one
particle system YN as follows: randomly select, with uniform distribution, the angle ϕ
and generate N bounce lengths and randomly select one of these bounce lengths (with
uniform distribution); by the strong law of large numbers, YM,N converges in distribution
to YN as M →∞.

We now determine the limit distribution of YN . As before, we first unfold the motion,
and replace motion in a box with specular reflections on the walls with motion in R2; see
Figure 4. The path lengths between bounces is then the same as the lengths between the
intersections with horizontal or vertical grid lines. To understand the spatial distribution,
we project the dynamics to the torus R2/Λ where Λ is the lattice

Λ = {(n1a, n2b) : n1, n2 ∈ Z},

and we may identify the torus with the rectangle [0, a]× [0, b].
Let us first consider the motion of a single particle with an arbitrary initial position,

and direction of motion given by an angle ϕ. Taking symmetries into account, we may
assume that ϕ ∈ [0, π/2]. (Note that dϕ

π/2 gives a probability measure on these angles.) If
the particle travels a large distance R > 0, the number of intersections with horizontal,
respectively vertical, grid lines is R sinϕ

b +O(1), respectively R cosϕ
a +O(1). Thus, in the

limit R→∞, the probability of a line segment beginning at a horizontal (respectively
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vertical) grid line is given by Ph, respectively Pv (here we suppress the dependence on ϕ)
where

Ph :=
sinϕ
b

sinϕ
b + cosϕ

a

, Pv :=
cosϕ
a

sinϕ
b + cosϕ

a

.

The unfolded flow on the torus is ergodic for almost all ϕ, and thus the starting points of
the line segments becomes uniformly distributed as R→∞ for almost all ϕ.
Let

T = T (ϕ) := a/ cosϕ.

Since sinϕ =
√
T 2 − a2/T , we obtain that

Ph =
√
T 2 − a2

b+
√
T 2 − a2 , Pv = b

b+
√
T 2 − a2 .

Let θ = arctan b/a denote the angle of the diagonal in the box, and assume that
0 ≤ ϕ ≤ θ. We then observe the following regarding the line segment lengths.

First, if the segment begins at a horizontal line, it must end at a vertical line, and the
possible lengths of these segment lie between 0 and T . We find that these lengths are
uniformly distributed in [0, T ] since the starting points of the segments are uniformly
distributed.
On the other hand, if the line segment begins at a vertical line, it can either end at a

vertical or horizontal line. Since the starting points are uniformly distributed, the former
happens with probability

a tanϕ
b

=
a
√
T 2−a2
a

b
=
√
T 2 − a2

b

and the length of the segment is again uniformly distributed in [0, T ], whereas the latter
happens with probability

b− a tanϕ
b

= 1−
√
T 2 − a2

b

in which case the segment is always of length T .
Now, ϕ ∈ [0, θ] implies that T ∈ [a,

√
a2 + b2], and noting that

dϕ

dT
= a

T
√
T 2 − a2

we find that the probability of observing a line segment of length t is the sum of a
“singular part” (the segment begins and ends on vertical lines; note that all such segments
have the same lengths) and a “smooth part” (the segment does not begin and end on
vertical lines). Moreover, the smooth part contribution equals

1
π/2

∫ √a2+b2

max(a,t)

1
T

(
Ph + Pv

a tanϕ
b

)
dϕ

dT
dT
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which, on inserting (5), equals

1
π/2

∫ √a2+b2

max(a,t)

1
T
·
( √

T 2 − a2

b+
√
T 2 − a2 + b

b+
√
T 2 − a2

a tanϕ
b

)
· a

T
√
T 2 − a2 dT =

1
π/2

∫ √a2+b2

max(a,t)

1
T
·
( √

T 2 − a2

b+
√
T 2 − a2 + b

b+
√
T 2 − a2

√
T 2 − a2

b

)
· a

T
√
T 2 − a2 dT =

1
π/2

∫ √a2+b2

max(a,t)

2a
b+
√
T 2 − a2 ·

dT

T 2 .

On the other hand, the “singular part contribution”, provided t ≥ a, to the probability
of a segment having length t equals

Pv
π/2 ·

b− a tanϕ
b

· dϕ
dt

= 1
π/2 ·

b

b+
√
t2 − a2 ·

(
1−
√
t2 − a2

b

)
· a

t
√
t2 − a2 =

1
π/2 ·

a

t(b+
√
t2 − a2)

√
t2 − a2 ·

(
b−

√
t2 − a2

)
.

In case θ ≤ ϕ ≤ π/2, a similar argument (we simple reverse the roles of a and b) shows
that the smooth contribution equals

1
π/2

∫ √a2+b2

max(b,t)

2b
a+
√
T 2 − b2 ·

dT

T 2

and that the singular contribution (if t ≥ b) equals
1
π/2 ·

b

t(a+
√
t2 − b2)

√
t2 − b2 ·

(
a−

√
t2 − b2

)
.

Thus, if we let Psing(t) denote the “singular contribution” to the probability density
function we find the following: if t < a, then

Psing(t) = 0

if t ∈ [a, b], then

Psing(t) = 1
π/2 ·

a
(
b−
√
t2 − a2

)

t(b+
√
t2 − a2)

√
t2 − a2

and if t ∈ [b,
√
a2 + b2], then

Psing(t) = 1
π/2 ·

(
a(b−

√
t2 − a2)

t(b+
√
t2 − a2)

√
t2 − a2 + b(a−

√
t2 − b2)

t(a+
√
t2 − b2)

√
t2 − b2

)
.

Remark 25. Note that Psing has a singularity of type (t − a)−1/2 just to the right of
t = a (and similarly just to the right of t = b). In a sense this singularity arises from the
singularity in the change of variables ϕ 7→ T since dϕ

dT = a
T
√
T 2−a2 . The reason for the

singularities in the spreading model for n = 2 is similar, as the spreading model can be
obtained from the absorption model by a smooth change of the angular measure.
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Similarly, the “smooth part” of the contribution is (for t ∈ [0,
√
a2 + b2]) given by

Psmooth(t) = 1
π/2

(∫ √a2+b2

max(a,t)

2a
b+
√
T 2 − a2 ·

dT

T 2 +
∫ √a2+b2

max(b,t)

2b
a+
√
T 2 − b2 ·

dT

T 2

)

Hence the probability density function of the distribution of the segment length t is
given by

pdfY (t) = Psing(t) + Psmooth(t).

We will now evaluate Psmooth(t). An antiderivative of 2a
b+
√
T 2−a2 · 1

T 2 with respect to T
for T ∈ (a,

√
a2 + b2) is

2a(
√
T 2 − a2 − b)

T (a2 + b2) +
2ab

(
tanh−1

(
T√
a2+b2

)
− tanh−1

(√
T 2−a2

√
a2+b2

Tb

))

(a2 + b2)3/2 (26)

where tanh−1(z) = 1
2 log 1+z

1−z for |z| < 1. (A quick calculation shows that
√
T 2−a2

√
a2+b2

Tb <

1 whenever a < T <
√
a2 + b2.) We can rewrite (26) as

2a(
√
T 2 − a2 − b)

T (a2 + b2) +
ab log

(
(√a2+b2+T)(Tb−√T 2−a2

√
a2+b2)

(√a2+b2−T)(Tb+√T 2−a2
√
a2+b2)

)

(a2 + b2)3/2

By l’Hôpital’s rule we have

lim
T→
√
a2+b2+

Tb−
√
T 2 − a2

√
a2 + b2

√
a2 + b2 − T

= lim
T→
√
a2+b2+

b− T√
T 2−a2

√
a2 + b2

−1 = a2

b

so the limit of (26) as T →
√
a2 + b2+ is

ab log
((

a2

b

)
· (√a2+b2+

√
a2+b2)

(b√a2+b2+b
√
a2+b2)

)

(a2 + b2)3/2 =
2ab log

(
a
b

)

(a2 + b2)3/2 .

The limit of (26) as T → a+ is

−2b
(a2 + b2) +

2ab tanh−1
(

a√
a2+b2

)

(a2 + b2)3/2 .

Thus, assuming a < b, we can write π
2Psmooth(t) as

2(a+ b)
(a2 + b2) −

2ab
(a2 + b2)3/2

(
tanh−1

(
a√

a2 + b2

)
+ tanh−1

(
b√

a2 + b2

))
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if t < a, b, or as

2ab+ 2at− 2a
√
t2 − a2

t(a2 + b2) +

2ab
(
− tanh−1

(
t√

a2+b2

)
+ tanh−1

(√
t2−a2

√
a2+b2

tb

)
− tanh−1

(
b√

a2+b2

))

(a2 + b2)3/2

if a < t < b or as

22ab− a
√
t2 − a2 − b

√
t2 − b2

t(a2 + b2) +

2ab
(
−2 tanh−1

(
t√

a2+b2

)
+ tanh−1

(√
t2−a2

√
a2+b2

tb

)
+ tanh−1

(√
t2−b2

√
a2+b2

ta

))

(a2 + b2)3/2

if a, b < t. Adding Psing(t) to this, we get Theorem 6.

A. Calculation of an integral
Lemma 27. Write |Sn−1| for the (n− 1)-dimensional surface area of the sphere Sn−1 ⊆
Rn. Then we have

∫

Sn−1
+

vn dS(v) = 1
π

|Sn|
2n .

where Sn−1
+ := Sn−1 ∩ (0,∞)n is the part of the sphere Sn−1 with positive coordinates.

Proof. We may parametrize v = (v1, . . . , vn) ∈ Sn−1
+ with

v1 = cos θ1

v2 = sin θ1 cos θ2

v3 = sin θ1 sin θ2 cos θ3
...

vn−1 = sin θ1 · · · sin θn−2 cos θn−1

vn = sin θ1 · · · sin θn−2 sin θn−1

for θ1, . . . , θn−1 ∈ (0, π/2). We have the spherical area element

dS(v) = sinn−2 θ1 sinn−3 θ2 · · · sin θn−2 dθ1 · · · dθn−1 .

Thus we get
∫

Sn−1
+

vn dS(v) =
n−1∏

i=1

∫ π/2

0
sinn−1−i θi dθi .
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Introducing an additional integration variable θn, we recognize the integrand as the
spherical area element in n+ 1 dimensions, and thus the above is

1
∫ π/2

0 dθn

n∏

i=1

∫ π/2

0
sinn−1−i θi dθi = 1

π/2
|Sn|
2n+1 .

since
∫
Sn+
dS(v) = |Sn|/2n+1.
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