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Abstract

Building on work by Bouc and by Shareshian and Wachs, we provide a toolbox
of long exact sequences for the reduced simplicial homology of the matching com-
plex Mn, which is the simplicial complex of matchings in the complete graph Kn.
Combining these sequences in different ways, we prove several results about the
3-torsion part of the homology of Mn. First, we demonstrate that there is nonva-
nishing 3-torsion in H̃d(Mn; Z) whenever νn ≤ d ≤ bn−6

2 c, where νn = dn−4
3 e. By

results due to Bouc and to Shareshian and Wachs, H̃νn(Mn; Z) is a nontrivial ele-
mentary 3-group for almost all n and the bottom nonvanishing homology group of
Mn for all n 6= 2. Second, we prove that H̃d(Mn; Z) is a nontrivial 3-group whenever
νn ≤ d ≤ b2n−9

5 c. Third, for each k ≥ 0, we show that there is a polynomial fk(r)
of degree 3k such that the dimension of H̃k−1+r(M2k+1+3r; Z3), viewed as a vector
space over Z3, is at most fk(r) for all r ≥ k + 2.

1 Introduction

Given a family ∆ of graphs on a fixed vertex set, we identify each member of
∆ with its edge set. In particular, if ∆ is closed under deletion of edges, then
∆ is an abstract simplicial complex.

A matching in a simple graph G is a subset σ of the edge set of G such that
no vertex appears in more than one edge in σ. Let M(G) be the family of
matchings in G; M(G) is a simplicial complex. We write Mn = M(Kn), where
Kn is the complete graph on the vertex set [n] = {1, . . . , n}.

? This research was financed by a grant sponsored by Professor Günter M. Ziegler
via his “Förderpreis für deutsche Wissenschaftler im Gottfried Wilhelm Leibniz-
Programm der Deutschen Forschungsgemeinschaft.”

Email address: jakobj@math.kth.se (Jakob Jonsson).

Preprint submitted to Elsevier 22 October 2008



The topology of Mn and related complexes has been subject to analysis in a
number of theses [1,6,9–11,13,15] and papers [2–5,7,8,14,16,17,20]; see Wachs
[19] for an excellent survey and further references.

Despite the simplicity of the definition, the homology of the matching complex
Mn turns out to have a complicated structure. The rational homology is well-
understood and easy to describe thanks to a beautiful result due to Bouc [5],
but very little is known about the integral homology and the homology over
finite fields.

Over the integers, the bottom nonvanishing reduced homology group of Mn

is known to appear in degree νn = dn−4
3
e and is an elementary 3-group for

almost all n. For n ≡ 1 (mod 3), this result is due to Bouc [5], who proved that
H̃r−1(M3r+1; Z) ∼= Z3 for r ≥ 2; see Section 4.1. Shareshian and Wachs [17]
settled the general case, proving that H̃νn(Mn; Z) ∼= (Z3)

en for some en ≥ 1
whenever n ≥ 15 or n ∈ {7, 10, 12, 13}; see Section 4.2. Regarding the exact
value of en when n 6≡ 1 (mod 3), the best previously known upper bound is
superexponential in n [17]. In Section 5.4, we improve on this bound as follows:

Theorem 1 We have that e3r+3 is bounded by a polynomial in r of degree three
and that e3r+5 is bounded by a polynomial in r of degree six. More generally,
for every k ≥ 0, the dimension of the Z3-vector space H̃k−1+r(M2k+1+3r; Z3) is
bounded by a polynomial in r of degree 3k.

To establish Theorem 1, we construct a new long exact sequence for the match-
ing complex, relating the homology of Mn \ e to that of Mn−2 \ e, Mn−3, and
Mn−5, where e is an edge and Mn \ e is the complex obtained from Mn by
removing the 0-cell corresponding to this edge. See Section 3.5 for details.
Combining this sequence with the long exact sequence for the pair (Mn,Mn\e)
(see Section 3.4) and using an induction argument, we derive bounds of the
form

β̂k,r ≤ β̂k,r−1 + Ckr
3k−1(1 +O(1/r)),

where β̂k,r = dimZ3 H̃k−1+r(M2k+1+3r; Z3). Summing over r, we obtain the
desired result.

As it turns out, for any fixed k ≥ 0 and for sufficiently large r, we have that
H̃k−1+r(M2k+1+3r; Z) is a nontrivial 3-group. In fact, we prove the following
result in Section 5.2:

Theorem 2 H̃d(Mn; Z) is a nontrivial 3-group whenever dn−4
3
e ≤ d ≤ b2n−9

5
c.

The groups being finite in the given interval is a consequence of Bouc’s formula
for the rational homology [5]; see Section 1.2. To settle the nonexistence of
p-torsion in H̃d(Mn; Z) for p 6= 3, we use three long exact sequences. Bouc [5]
introduced two of these sequences, one of which relates Mn to Mn−1 and Mn−2
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and the other Mn to Mn−3 and Mn−4; see Sections 3.1 and 3.2, respectively.
The third sequence is new but based on the same idea and relates Mn to Mn−3,
Mn−5, and Mn−6; see Section 3.3.

These three sequences are all special cases of a more general construction
involving a filtration of Mn with respect to a given parameter m ∈ [n]:

∆0
n ⊆ ∆1

n ⊆ · · · ⊆ ∆min{m,n−m}
n = Mn.

We obtain ∆i
n from Mn by removing all matchings containing at least i+1 edges

ab = {a, b} such that a ∈ [m] and b ∈ [m+1, n] = {m+1,m+2, . . . , n−1, n}. It
is a straightforward exercise to show that the relative homology of (∆i

n,∆
i−1
n )

is isomorphic to a direct sum of homology groups of Mm−i ∗Mn−m−i, where ∗
denotes simplicial join. For m ∈ {1, 2}, the construction boils down to Bouc’s
two exact sequences, whereas the parameter choice m = 3 yields our new exact
sequence. For larger m, one would need more than one exact sequence to fully
describe the correlations between the different matching complexes involved.
See Section 2 for basic properties of the filtration.

The group H̃d(Mn; Z) being nontrivial when d falls within the bounds of The-
orem 2 is a consequence of the following result, which we prove in Section 5.1:

Theorem 3 For n ≥ 1, there is nonvanishing 3-torsion in H̃d(Mn; Z) when-
ever dn−4

3
e ≤ d ≤ bn−6

2
c. In particular, H̃d(Mn; Z) is nonzero if and only if

dn−4
3
e ≤ d ≤ bn−3

2
c.

To prove the first statement in Theorem 3, we only need Bouc’s original two
sequences and the results of Bouc and of Shareshian and Wachs about the
bottom nonvanishing homology. The second statement is a consequence of the
first statement and Bouc’s formula for the rational homology of Mn.

In Section 4.1, we find another application of the new long exact sequence
introduced in Section 3.3 as we present a new proof of Bouc’s result that
H̃r−1(M3r+1; Z) ∼= Z3 for r ≥ 2.

So far, all our results have been about the existence of 3-torsion and the
nonexistence of other torsion. Almost nothing is known about p-torsion when
p 6= 3, but in a previous paper [12], the author used a result due to Andersen
[1] to prove that H̃4(M14; Z) is a finite nontrivial group of exponent a multiple
of 15. We have not been able to detect 5-torsion in any other homology group
H̃d(Mn; Z), but in Section 5.3, we show that the case 5d = 2n − 8 is crucial
for the general behavior:

Theorem 4 For q ≥ 3, if H̃2q(M5q+4; Z) contains nonvanishing 5-torsion,
then so does H̃2q+u(M5q+4+2u; Z) for each u ≥ 0. In particular, if H̃2q(M5q+4; Z)
contains nonvanishing 5-torsion for each q ≥ 3, then so does H̃d(Mn; Z) when-
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ever d2n−8
5
e ≤ d ≤ bn−7

2
c.

See Figure 1 for the homology of Mn for n ≤ 14. Many values were obtained
via computer calculations [3]; we have yet to find a computer-free method for
calculating H̃d(Mn; Z) in the case that the group is not free and not of size 3.

1.1 Notation

For a finite set S, we let MS denote the matching complex on the complete
graph with vertex set S. In particular, M[n] = Mn, where [n] = {1, . . . , n}. For
integers a ≤ b, we write [a, b] = {a, a+ 1, . . . , b− 1, b}.

The join of two families of sets ∆ and Σ, assumed to be defined on disjoint
ground sets, is the family ∆ ∗ Σ = {δ ∪ σ : δ ∈ ∆, σ ∈ Σ}.

Whenever we discuss the homology of a simplicial complex or the relative
homology of a pair of simplicial complexes, we mean reduced simplicial ho-
mology. For a simplicial complex Σ and a coefficient ring F, we denote the
generator of C̃d(Σ; F) corresponding to a set {e0, . . . , ed} ∈ Σ as e0 ∧ · · · ∧ ed.
Given a cycle z in a chain group C̃d(Σ; F), whenever we talk about z as an el-
ement in the induced homology group H̃d(Σ; F), we really mean the homology
class of z.

We will often consider pairs of complexes (Γ,∆) such that Γ \∆ is a union of
families of the form

Σ = {σ} ∗MS,

where σ = {e1, . . . , es} is a set of pairwise disjoint edges and S is a subset of
[n] such that S ∩ ei = ∅ for each i. We may write the chain complex of Σ as

C̃d(Σ; F) = (e1 ∧ · · · ∧ es)F⊗F C̃d−s(MS; F),

defining the boundary operator as

∂(e1 ∧ · · · ∧ es ⊗F c) = (−1)se1 ∧ · · · ∧ es ⊗F ∂(c).

For simplicity, we will often suppress F from notation. For example, by some
abuse of notation, we will write

〈e1 ∧ · · · ∧ es〉 ⊗ C̃d−s(MS) = (e1 ∧ · · · ∧ es)F⊗F C̃d−s(MS; F).

We say that a cycle z in C̃d−1(Mn; F) has type
[
n1

d1

]
∧ · · · ∧

[
ns

ds

]
if there is a

partition [n] =
⋃s
i=1 Si such that size of Si is ni and such that z = z1∧· · ·∧zs,

where zi is a cycle in C̃di−1(MSi
; F) for each i. We define a refinement of a
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type in the natural manner;
[
n1

d1

]
∧ · · · ∧

[
ns−2

ds−2

]
∧
[
ns−1

ds−1

]
∧
[
ns

ds

]
is a refinement of[

n1

d1

]
∧ · · · ∧

[
ns−2

ds−2

]
∧
[
ns−1+ns

ds−1+ds

]
and so on. We write T ≺ T ′ to denote that the

type T is a refinement of the type T ′. If z is of type T and T ≺ T ′, then z is

also of type T ′. Finally, we write
[
n
d

]2
=
[
n
d

]
∧
[
n
d

]
,
[
n
d

]3
=
[
n
d

]
∧
[
n
d

]
∧
[
n
d

]
, and so

on.

When dealing with the group H̃d(Mn; Z), we will find the following transfor-
mation very useful: k = 3d− n+ 4

r = n− 2d− 3
⇐⇒

n = 2k + 1 + 3r

d = k − 1 + r.
(1)

In particular, we have the equivalences

⌈
n− 4

3

⌉
≤ d ≤

⌊
n− 3

2

⌋
⇐⇒ 2d+ 3 ≤ n ≤ 3d+ 4 ⇐⇒

 k ≥ 0

r ≥ 0.

For n ≥ 1, Theorem 3 yields that H̃d(Mn; Z) is nonzero if and only if these
inequalities are satisfied.

1.2 Two classical results

Before proceeding, we list two classical results pertaining to the topology of
the matching complex.

Theorem 1.1 (Bouc [5]) For n ≥ 1, the homology group H̃d(Mn; Q) =
H̃k−1+r(M2k+1+3r; Q) is nonzero if and only if

⌈
n− b

√
nc − 2

2

⌉
≤ d ≤

⌊
n− 3

2

⌋
⇐⇒

 k ≥
(
r
2

)
r ≥ 0.

Theorem 1.1 is an immediate consequence of a concrete formula for the rational
homology of Mn; see Bouc [5] for details and Wachs’ survey [19] for an overview.

Theorem 1.2 (Björner et al. [4]) For n ≥ 1, Mn is (νn − 1)-connected,
where νn = dn−4

3
e.

Indeed, the νn-skeleton of Mn is shellable [17] and even vertex decomposable
[2]. As already mentioned in the introduction, there is nonvanishing homology
in degree νn for all n 6= 2; see Section 4 for details.
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2 Filtration of Mn with respect to a fixed vertex set

The following general construction forms the basis of the three exact sequences
presented in Sections 3.1, 3.2, and 3.3. The first two sequences already ap-
peared in the work of Bouc [5], whereas the third one is new.

Given a vertex set S ⊆ [n], form a sequence

∆0
n ⊆ ∆1

n ⊆ · · · ⊆ ∆min{#S,n−#S}
n

of simplicial complexes, where we obtain ∆i−1
n from Mn by removing all match-

ings σ containing at least i edges ab such that a ∈ S and b ∈ [n] \ S. We also
define ∆−1

n = ∅. Assuming that S = [m], one easily checks that

∆i
n \∆i−1

n =
⋃
{{a1b1, . . . , aibi}} ∗M[m]\A ∗M[m+1,n]\B, (2)

where the union is over all pairs of sequences (a1, . . . , ai) and (b1, . . . , bi) of
distinct elements such that 1 ≤ a1 < · · · < ai ≤ m and b1, . . . , bi ∈ [m+ 1, n];
A = {a1, . . . , ai} and B = {b1, . . . , bi}. The families in the union form an
antichain under inclusion, meaning that if σ belongs to one of the families and
τ to another, then σ 6⊆ τ and τ 6⊆ σ. One readily verifies that this implies the
following:

Lemma 2.1 For 0 ≤ i ≤ min{m,n−m} and all d, we have that

H̃d(∆
i
n,∆

i−1
n ) ∼=

⊕
〈a1b1 ∧ · · · ∧ aibi〉 ⊗ H̃d−i(M[m]\A ∗M[m+1,n]\B),

where the direct sum is over all pairs of ordered sequences (a1, . . . , ai) and
(b1, . . . , bi) with properties as above.

As a consequence, we have a long exact sequence of the form

· · · −−−→
⊕
t

H̃d−i+1(Mm−i ∗Mn−m−i)

−−−→ H̃d(∆
i−1
n ) −−−→ H̃d(∆

i
n) −−−→

⊕
t

H̃d−i(Mm−i ∗Mn−m−i)

−−−→ H̃d−1(∆
i−1
n ) −−−→ · · · ,

where t = i!
(
m
i

)(
n−m
i

)
. For m− i ≤ 3, the situation is particularly simple, as

Mm−i is then either the empty complex {∅}, a single point, or three isolated
points. We will exploit this fact in Sections 3.1, 3.2, and 3.3.
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3 Five long exact sequences

We present five long exact sequences relating different families of matching
complexes. Throughout this section, we consider an arbitrary coefficient ring
F with unit, which we suppress from notation for convenience.

3.1 Long exact sequence relating Mn, Mn−1, and Mn−2

The choice m = 1 yields the simplest special case of the construction in
Section 2. Inserting i = 0 and i = 1 in (2), we obtain families involving
complexes isomorphic to Mn−1 and Mn−2, respectively. More exactly, we have
the following result:

Theorem 3.1 (Bouc [5]) For each n ≥ 2, we have a long exact sequence

· · · −−−→
n⊕
s=2

〈1s〉 ⊗ H̃d(M[2,n]\{s})

−−−→ H̃d(M[2,n]) −−−→ H̃d(Mn)
ω−−−→

n⊕
s=2

〈1s〉 ⊗ H̃d−1(M[2,n]\{s})

−−−→ H̃d−1(M[2,n]) −−−→ · · · ,

where ω is induced by the natural projection map.

We refer to this sequence as the 0-1-2 sequence, thereby indicating that the
sequence relates Mn−0, Mn−1, and Mn−2.

3.2 Long exact sequence relating Mn, Mn−3, and Mn−4

We proceed with the case m = 2 of the construction in Section 2. In this
case, i ∈ {1, 2} inserted into (2) yields families involving complexes isomor-
phic to Mn−3 and Mn−4, whereas i = 0 yields a family involving contractible
complexes; M2 is a point. This turns out to imply the following result:

Theorem 3.2 (Bouc [5]) Let n ≥ 4 and define

Qn−4
d =

⊕
s 6=t∈[3,n]

〈1s ∧ 2t〉 ⊗ H̃d(M[3,n]\{s,t});

Rn−3
d =

2⊕
a=1

n⊕
u=3

〈au〉 ⊗ H̃d(M[3,n]\{u}).
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Then we have a long exact sequence

· · · −−−→ Qn−4
d−1

ψ∗−−−→ Rn−3
d−1

ϕ∗−−−→ H̃d(Mn)
κ∗−−−→ Qn−4

d−2

ψ∗−−−→ Rn−3
d−2 −−−→ · · · ,

where ψ∗ is induced by the map ψ : 1s∧2t⊗x 7→ 2t⊗x−1s⊗x, ϕ∗ is induced
by the map ϕ : au ⊗ x 7→ (au − 12) ∧ x, and κ∗ is induced by the natural
projection map.

We refer to this sequence as the 0-3-4 sequence.

3.3 Long exact sequence relating Mn, Mn−3, Mn−5, and Mn−6

For our third application of the construction in Section 2, we consider m = 3.
In this case, the relevant matching complexes are isomorphic to Mn−3,Mn−5,
and Mn−6.

As in Section 2, we define ∆i
n to be the complex of matchings σ such that at

most i of the vertices in {1, 2, 3} are matched in σ \ {12, 13, 23}.

Lemma 3.3 Let n ≥ 5. We have an isomorphism

ϕ∗ : P n−5
d−2 ⊕Qn−3

d−1 → H̃d(∆
2
n),

where
P n−5
d =

⊕
1≤a<b≤3

⊕
s 6=t∈[4,n]

〈as ∧ bt〉 ⊗ H̃d(M[4,n]\{s,t})

and

Qn−3
d =

3⊕
c=2

〈1c〉 ⊗ H̃d(M[4,n]).

The isomorphism ϕ∗ is induced by the map ϕ defined by ϕ(1c⊗x) = ϕ(1c)∧x,
where ϕ(1c) = 1c− 23, and ϕ(as ∧ bt⊗ x) = ϕ(as ∧ bt) ∧ x, where

ϕ(as ∧ bt) = as ∧ bt+ ac ∧ (st− bt) + bc ∧ (as− st)

and {a, b, c} = {1, 2, 3}.

Proof. First, we show that the sequence

0 −−−→ H̃d(∆
1
n) −−−→ H̃d(∆

2
n) −−−→ H̃d(∆

2
n,∆

1
n) −−−→ 0 (3)

is split exact for each d. To see this, first note that H̃d(∆
2
n,∆

1
n)
∼= P n−5

d−2 ; apply

Lemma 2.1. Next, define ϕ̂ to be the restriction of ϕ to C̃d(∆
2
n,∆

1
n) and note
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that the projection of ϕ̂(as∧bt⊗x) on C̃i(∆
2
n,∆

1
n) is again as∧bt⊗x. Since ϕ̂

clearly commutes with the boundary operator, the sequence (3) is split exact
as desired. We conclude that we have an isomorphism

H̃d(∆
2
n)
∼= H̃d(∆

1
n)⊕ P n−5

d−2 .

It remains to prove that the restriction of ϕ∗ to Qn−3
d−1 defines an isomorphism

from Qn−3
d−1 to H̃d(∆

1
n). By Lemma 2.1, that would be true if we replaced ∆1

n

with ∆0
n. Thus to conclude the proof, it suffices to prove that the relative

homology of the pair (∆1
n,∆

0
n) vanishes. By Lemma 2.1, we obtain that

H̃d(∆
1
n,∆

0
n)
∼=

3⊕
a=1

n⊕
u=4

〈au〉 ⊗ H̃d−1(M{1,2,3}\{a} ∗M[4,n]\{u}) = 0;

the latter equality is a consequence of the fact that M{1,2,3}\{a} ∼= M2 is a point.
2

Theorem 3.4 Let n ≥ 6. Define P n−5
d , Qn−3

d , and ϕ∗ as in Lemma 3.3 and
let

Rn−6
d =

⊕
(s,t,u)

〈1s ∧ 2t ∧ 3u〉 ⊗ H̃d(M[4,n]\{s,t,u}),

where the sum is over all triples of distinct integers (s, t, u) such that s, t, u ∈
[4, n]. Then we have a long exact sequence

· · · −−−→ Rn−6
d−2

ψ∗−−−→ P n−5
d−2 ⊕Qn−3

d−1

ι∗◦ϕ∗−−−→ H̃d(Mn) −−−→ Rn−6
d−3

ψ∗−−−→ P n−5
d−3 ⊕Qn−3

d−2 −−−→ · · · ,

where ψ∗ is induced by the map

ψ(1s ∧ 2t ∧ 3u⊗ x) = 1s ∧ 2t⊗ x+ 2t ∧ 3u⊗ x− 1s ∧ 3u⊗ x

+ 12⊗ (su− tu) ∧ x+ 13⊗ (tu− st) ∧ x

and ι∗ is induced by the natural inclusion map ι : C̃d(∆
2
n) → C̃d(Mn).

Proof. By Lemma 2.1, H̃d(∆
3
n,∆

2
n)
∼= Rn−6

d−3 . Hence by Lemma 3.3, it remains
to prove that ψ∗ has properties as stated in the theorem. For this, note that
the natural map

ψ̂ : C̃d(∆
3
n,∆

2
n) → C̃d(∆

2
n)

is given by

ψ̂(1s ∧ 2t ∧ 3u) = ∂(1s ∧ 2t ∧ 3u) = 1s ∧ 2t+ 2t ∧ 3u− 1s ∧ 3u,

suppressing “⊗x” from notation. Moreover, note that
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ϕ(12⊗ (su− tu) + 13⊗ (tu− st))

= (12− 23) ∧ (su− tu) + (13− 23) ∧ (tu− st)

= 12 ∧ (su− tu) + 13 ∧ (tu− st) + 23 ∧ (st− su)

and

ϕ(1s ∧ 2t+ 2t ∧ 3u− 1s ∧ 3u)− ∂(1s ∧ 2t ∧ 3u)

= 13 ∧ (st− 2t) + 23 ∧ (1s− st) + 12 ∧ (tu− 3u) + 13 ∧ (2t− tu)

− 12 ∧ (su− 3u)− 23 ∧ (1s− su)

= 12 ∧ (tu− su) + 13 ∧ (st− tu) + 23 ∧ (su− st).

Since ψ is given by ϕ−1 ◦ ψ̂, we are done. 2

We refer to this sequence as the 0-3-5-6 sequence.

Corollary 3.5 For each n ≥ 6, we have the exact sequence

Rn−6
νn−2

ψ∗−−−→ P n−5
νn−2 ⊕Qn−3

νn−1
ι∗◦ϕ∗−−−→ H̃νn(Mn) −−−→ 0,

where νn = dn−4
3
e. If n ≡ 1 (mod 3), then P n−5

νn−2 = 0.

Proof. This is immediate by Theorems 1.2 and 3.4. 2

3.4 Long exact sequence relating Mn, Mn \ e and Mn−2

We proceed with the long exact sequence for the pair (Mn,Mn \ e), where e is
any edge and Mn \ e is the complex obtained by removing the 0-cell e.

Theorem 3.6 For each n ≥ 2 and each edge e in the complete graph Kn, we
have a long exact sequence

· · · −−−→ 〈e〉 ⊗ H̃d(M[n]\e)

−−−→ H̃d(Mn \ e) −−−→ H̃d(Mn)
ω−−−→ 〈e〉 ⊗ H̃d−1(M[n]\e)

−−−→ H̃d−1(Mn \ e) −−−→ · · · ,

where ω is induced by the natural projection map.

Proof. Simply note that Mn \ (Mn \ e) = {{e}} ∗M[n]\e. 2

We refer to this sequence as the 0-e-2 sequence. We will make use of this
sequence when providing bounds on the homology in Section 5.4.
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3.5 Long exact sequence relating Mn \ e, Mn−2 \ e, Mn−3, and Mn−5

Using an approach similar to the one in Section 3.3, we construct a long exact
sequence relating Mn \ e, Mn−2 \ e, Mn−3, and Mn−5, where e is any edge. The
main benefit of this sequence is that it provides good bounds on the homology
when combined with the sequence in Section 3.4; see Section 5.4. Since we will
not make use of the homomorphisms in this exact sequence, we do not define
them explicitly; the interested reader will note that they are straightforward,
though a bit cumbersome, to derive from the proof.

Theorem 3.7 Let n ≥ 5. Define

P n−5
d =

⊕
s 6=t∈[4,n]

〈1s ∧ 2t〉 ⊗ H̃d(M[4,n]\{s,t})

and

Qn−2
d =

n⊕
i=4

〈3u〉 ⊗ H̃d(M[n]\{3,u} \ 12).

Then we have a long exact sequence

· · · −−−→ Qn−2
d

−−−→ 〈13〉 ⊗ H̃d−1(M[4,n])⊕ P n−5
d−2 −−−→ H̃d(Mn \ 12) −−−→ Qn−2

d−1

−−−→ 〈13〉 ⊗ H̃d−2(M[4,n])⊕ P n−5
d−3 −−−→ · · · .

Proof. Consider the long exact sequence for the pair (Mn \ 12,∆2
n), where ∆2

n

is the complex obtained from Mn \ 12 by removing the elements 34, . . . , 3n.
Analogously to Lemma 2.1, we have that H̃d(Mn \ 12,∆2

n)
∼= Qn−2

d−1 .

To settle the theorem, it suffices to prove that

H̃d(∆
2
n)
∼= 〈13〉 ⊗ H̃d−1(M[4,n])⊕ P n−5

d−2 .

To achieve this goal, define ∆1
n to be the subcomplex of ∆2

n obtained by
removing all faces containing {1s, 2t} for some s, t ∈ [4, n]. Analogously to
Lemma 2.1, we have that H̃d(∆

2
n,∆

1
n)

∼= P n−5
d−2 . A homomorphism ϕ∗ from

P n−5
d−2 to ∆2

n is given by mapping 1s ∧ 2t to the cycle

1s ∧ 2t+ 2t ∧ 13 + 13 ∧ st+ st ∧ 23 + 23 ∧ 1s.

It is clear that the natural map back to P n−5
d−2 has the property that ϕ∗(1s ∧

2t⊗ z) is mapped to 1s ∧ 2t⊗ z; hence we have a split exact sequence just as
in (3) in the proof of Lemma 3.3. This implies that

H̃d(∆
2
n)
∼= H̃d(∆

1
n)⊕ P n−5

d−2 ,

11



again as in the proof of Lemma 3.3, except that the complexes and groups are
different.

It remains to prove that H̃d(∆
1
n)
∼= 〈13〉 ⊗ H̃d−1(M[4,n]). Let ∆0

n be the sub-
complex of ∆1

n obtained by removing the elements 14, . . . , 1n and 24, . . . , 2n.
Since

∆0
n = {∅, 13, 23} ∗M[4,n],

we obtain that H̃d(∆
0
n)
∼= 〈13〉 ⊗ H̃d−1(M[4,n]). Thus the only thing remaining

is to prove that H̃d(∆
1
n)
∼= H̃d(∆

0
n). Now,

∆1
n \∆0

n =
2⋃

a=1

n⋃
u=4

{{au}} ∗M{3−a,3} ∗M[4,n]\{u},

which yields that

H̃d(∆
1
n,∆

0
n)
∼=

2⊕
a=1

n⊕
u=4

〈au〉 ⊗ H̃d−1(M{3−a,3} ∗M[4,n]\{u}) = 0;

the homology of a cone vanishes. 2

We refer to this sequence as the 0-2-3-5 sequence.

4 Bottom nonvanishing homology

We consider the bottom nonvanishing homology group H̃νn(Mn; Z), starting
with the case n ≡ 1 (mod 3) in Section 4.1 and proceeding with the general
case in Section 4.2.

Before examining the different cases, we present a nice result due to Shareshian
and Wachs about the structure of the bottom nonvanishing homology group
of Mn. Using the 0-3-5-6 sequence from Section 3.3, we may provide a more
streamlined proof for the case n ≡ 2 (mod 3).

Recall the concept of type introduced in Section 1.1.

Lemma 4.1 (Shareshian & Wachs [17]) For k ∈ {0, 1, 2} and r ≥ 0, the

group H̃k−1+r(M2k+1+3r) is generated by cycles of type
[
3
1

]r
∧
[
2k+1
k

]
.

Proof. For k ∈ {0, 1}, Shareshian and Wachs [17, Lemmas 2.3 & 2.5] pro-
vided a straightforward proof based on the tail end of the 0-3-4 sequence
in Section 3.2. Assume that k = 2 and write n(k, r) = 2k + 1 + 3r and
d(k, r) = k − 1 + r; recall (1). The case r = 0 is trivially true; hence assume

12



that r ≥ 1. The tail end in Corollary 3.5 becomes

P
n(1,r−1)
d(1,r−1) ⊕Q

n(2,r−1)
d(2,r−1)

ι∗◦ϕ∗−−−→ H̃d(2,r)(Mn(2,r)) −−−→ 0.

By properties of ι∗ ◦ ϕ∗, it follows that H̃d(2,r)(Mn(2,r)) is generated by cycles

of type
[
5
2

]
∧
[
n(1,r−1)
d(1,r−1)+1

]
and

[
3
1

]
∧
[
n(2,r−1)
d(2,r−1)+1

]
. Now, a cycle of type

[
n(1,r−1)
d(1,r−1)+1

]
is a sum of cycles of type

[
3
1

]r
, whereas induction on r yields that a cycle of

type
[
n(2,r−1)
d(2,r−1)+1

]
is a sum of cycles of type

[
3
1

]r−1
∧
[
5
2

]
. 2

Lemma 4.1 does not generalize to arbitrary k. For example, for (k, r) = (6, 4),
we obtain H̃9(M25; Z), which is infinite by Theorem 1.1. In particular, this

group cannot be generated by cycles of type
[
3
1

]4
∧
[
13
6

]
≺
[
12
4

]
∧
[
13
6

]
, as these

cycles all have finite exponent dividing three; H̃3(M12; Z) is finite of exponent
three.

4.1 The case n ≡ 1 (mod 3)

For r ≥ 0, define

γ3r = (12− 23) ∧ (45− 56) ∧ (78− 89)

∧ · · · ∧ ((3r − 2)(3r − 1)− (3r − 1)(3r)); (4)

this is a cycle in both C̃r−1(M3r; Z) and C̃r−1(M3r+1; Z). By Lemma 4.1,
H̃r−1(M3r+1; Z) is generated by {π(γ3r) : π ∈ S3r+1}, where the action of
S3r+1 on H̃r−1(M3r+1; Z) is the one induced by the natural action on the un-
derlying vertex set [3r + 1].

Using the long exact 0-3-5-6 sequence in Section 3.3, we give a new proof of
a celebrated result due to Bouc about the bottom nonvanishing homology of
Mn for n ≡ 1 (mod 3).

Theorem 4.2 (Bouc [5]) For r ≥ 2, we have that H̃r−1(M3r+1; Z) ∼= Z3.

Proof. By Corollary 3.5, we have the exact sequence

R3r−5
r−3

ψ∗−−−→ Q3r−2
r−2

ι∗◦ϕ∗−−−→ H̃r−1(M3r+1) −−−→ 0.

For r = 2, this becomes

⊕
s,t,u

〈1s ∧ 2t ∧ 3u〉 ψ∗−−−→
3⊕
c=2

〈1c〉 ⊗ H̃0(M[4,7])
ι∗◦ϕ∗−−−→ H̃1(M7) −→ 0,

13



where the first direct sum ranges over all triples of distinct vertices s, t, u ∈
[4, 7]. A basis for M[4,7] is given by {45− 56, 46− 56}; hence a basis for Q4

0 is
given by {e25, e26, e35, e36}, where ecd = 1c⊗ (4d− 56). Now,

ψ∗(1s ∧ 2t ∧ 3u) = 12⊗ (su− tu) + 13⊗ (tu− st);

apply Theorem 3.4 and Corollary 3.5. In particular, if {s, t, u} = {4, 5, 6},
then

ψ∗(1s ∧ 2t ∧ 37) = 12⊗ (s7− t7) + 13⊗ (t7− st)

= 12⊗ (tu− su) + 13⊗ (su− st)

=ψ∗(1t ∧ 2s ∧ 3u).

Similarly, ψ∗(1s∧ 27∧ 3u) = ψ∗(1u∧ 2t∧ 3s) and ψ∗(17∧ 2t∧ 3u) = ψ∗(1s∧
2u ∧ 3t). Moreover, one easily checks that

ψ∗(1s ∧ 2t ∧ 3u) + ψ∗(1t ∧ 2u ∧ 3s) + ψ∗(1u ∧ 2s ∧ 3t) = 0.

In particular, the image under ψ∗ is generated by the four elements

ψ∗(14 ∧ 25 ∧ 36) =12⊗ (46− 56) + 13⊗ (56− 45) = e26 − e35;

ψ∗(14 ∧ 26 ∧ 35) =12⊗ (45− 56) + 13⊗ (56− 46) = e25 − e36;

ψ∗(15 ∧ 24 ∧ 36) =12⊗ (56− 46) + 13⊗ (46− 45)

=−e26 − e35 + e36;

ψ∗(15 ∧ 26 ∧ 34) =12⊗ (45− 46) + 13⊗ (46− 56)

= e25 − e26 + e36.

Since

det



0 1 −1 0

1 0 0 −1

0 −1 −1 1

1 −1 0 1


= 3,

it follows that H̃1(M7; Z) ∼= Z3. Moreover, by Lemma 4.1 and symmetry,
γ6 = (12− 23) ∧ (45− 56) must be a generator of H̃1(M7; Z).

For r > 2, assume by induction that H̃r−2(M3r−2; Z) is a group of order three.
Again by Lemma 4.1, this group is generated by any element of the form
π(γ3r−3), where γ3r−3 is defined as in (4) and π ∈ S3r−2. Flipping π(1) and
π(3) yields −π(γ3r−3); hence the action of S3r−2 on H̃r−2(M3r−2; Z) is given
by π(z) = sgn(π) · z.

14



By induction, we have the following exact sequence:

R3r−5
r−3

ψ∗−−−→ 〈12〉 ⊗ Z3 ⊕ 〈13〉 ⊗ Z3
ι∗◦ϕ∗−−−→ H̃r−1(M3r+1) −−−→ 0.

Another application of Theorem 3.4 and Corollary 3.5 yields that

ψ∗(1s ∧ 2t ∧ 3u⊗ z) = 12⊗ (su− tu) ∧ z + 13⊗ (tu− st) ∧ z
=: 12⊗ δ + 13⊗ δ′.

Note that δ = (s, t, u)(δ′) = δ′, which implies that the image under ψ∗ is
contained in (12 + 13)⊗ Z3. Moreover,

ψ∗(14 ∧ 25 ∧ 36⊗ γ
(6)
3r−6) = 12⊗ (46− 56) ∧ γ(6)

3r−6 + 13⊗ (56− 45) ∧ γ(6)
3r−6,

where γ
(6)
3r−6 is defined as in (4) but with all elements shifted six steps up. This

is nonzero; hence the image under ψ∗ is indeed equal to (12 + 13) ⊗ Z3. We
conclude that H̃r−1(M3r+1; Z) ∼= Z3. 2

4.2 The general case

Bouc [5] proved that the exponent of H̃νn(Mn; Z) divides nine whenever n =
3r+3 for some r ≥ 3. Using the exact 0-3-4 sequence in Section 3.2, Shareshian
and Wachs extended and improved this result:

Theorem 4.3 (Shareshian and Wachs [17]) For n ∈ {7, 10, 12, 13} and
for n ≥ 15, H̃νn(Mn; Z) is of the form (Z3)

en for some en ≥ 1. The torsion
subgroup of H̃νn(Mn; Z) is again an elementary 3-group for n ∈ {9, 11} and
zero for n ∈ {1, 2, 3, 4, 5, 6, 8}. For the remaining case n = 14, H̃νn(Mn; Z) is
a finite group with nonvanishing 3-torsion.

The only existing proofs for the cases n ∈ {9, 11, 12} are computer-based. Our
hope is that one may exploit properties of the exact sequences in this paper
to find a proof without computer assistance.

By Theorem 4.2, e3r+1 = 1 whenever r ≥ 2. In Section 5.1, we show that
e3r+3 is bounded by a polynomial of degree 3 and that e3r+5 is bounded by a
polynomial of degree 6.

Corollary 4.4 For n = 1 and for n ≥ 3, the group H̃νn(Mn; Z) is nonzero.
In particular, the connectivity degree of Mn equals νn − 1.

For n = 14, the following is known:

Theorem 4.5 (Jonsson [12]) H̃4(M14; Z) is a finite nontrivial group of ex-
ponent a multiple of 15.
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5 Higher-degree homology

In Section 5.1, we detect 3-torsion in higher-degree homology groups of Mn.
In Section 5.2, we demonstrate that whenever the degree falls within a given
interval, the whole homology group is a 3-group. We discuss the situation
outside this interval in Section 5.3, providing some loose evidence for the
existence of large intervals with 5-torsion. In Section 5.4, we proceed with
upper bounds on the dimension of the homology over Z3.

5.1 3-torsion in higher-degree homology groups

This section builds on work previously published in the author’s thesis [10].
First, let us state an elementary but useful result; the proof is straightforward.

Lemma 5.1 Let k ≥ 1 and let G be a graph on 2k vertices. Then M(G)
admits a collapse to a complex of dimension at most k − 2.

Let k0 ≥ 0 and let G = {Gk : k ≥ k0} be a family of graphs such that the
following conditions hold:

• For each k ≥ k0, the vertex set of Gk is [2k + 1].
• For each k > k0 and for each vertex s such that 1s is an edge in Gk, the

induced subgraph Gk([2k + 1] \ {1, s}) is isomorphic to Gk−1.

We say that such a family is compatible.

Proposition 5.2 In each of the following three cases, G = {Gk : k ≥ k0} is
a compatible family:

(1) Gk = K2k+1 for all k.
(2) Gk = Kk+1,k for all k, where Kk+1,k is the complete bipartite graph with

blocks [k + 1] and [k + 2, 2k + 1].
(3) Gk = K2k+1 \ {23, 45, 67, . . . , 2k(2k + 1)} for all k.

Proof. It suffices to prove that Gk([2k + 1] \ {1, s}) is isomorphic to Gk−1

whenever 1s is an edge in Gk and k > k0. This is immediate in all three cases.
2

Now, fix k0, n, d ≥ 0. Let G = {Gk : k ≥ k0} be a family of compatible graphs

and let γ be an element in H̃d−1(Mn; Z), hence a cycle of type
[
n
d

]
. For each
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k ≥ k0, define a map θk : H̃k−1(M(Gk); Z) → H̃k−1+d(M2k+1+n; Z)

θk(z) = z ∧ γ(2k+1),

where we obtain γ(2k+1) from γ by replacing each occurrence of the vertex i
with i+2k+1 for every i ∈ [n]. Note that H̃k−1(M(Gk); Z) is the top homology
group of M(Gk) (provided Gk contains matchings of size k). For any prime p,
we have that θk induces a homomorphism

θk ⊗Z ιp : H̃k−1(M(Gk); Z)⊗Z Zp → H̃k−1+d(M2k+1+n; Z)⊗Z Zp,

where ιp : Zp → Zp is the identity.

Theorem 5.3 With notation and assumptions as above, if θk0 ⊗Z ιp is a
monomorphism, then θk ⊗Z ιp is a monomorphism for each k ≥ k0. If, in
addition, the exponent of γ in H̃d−1(Mn; Z) is p, then we have a monomor-
phism  θ̂k : H̃k−1(M(Gk); Z)⊗Z Zp → H̃k−1+d(M2k+1+n; Z)

θ̂k(z ⊗Z λ) = θk(λz) = λz ∧ γ(2k+1)

for each k ≥ k0. In particular, the group H̃k−1+d(M2k+1+n; Z) contains p-
torsion of rank at least the rank of H̃k−1(M(Gk); Z).

Proof. To prove the first part of the theorem, we use induction on k; the base
case k = k0 is true by assumption. Assume that k > k0 and consider the
head end of the long exact sequence for the pair (M(Gk),M(Gk \ {1})), where
Gk \ {1} = Gk([2k + 1] \ {1}):

0 −−−→ H̃k−1(M(Gk \ {1}); Z)

−→ H̃k−1(M(Gk); Z)
ω̂−−−→ Pk−2(Gk) −−−→ H̃k−2(M(Gk \ {1}); Z).

Here,
Pk−2(Gk) =

⊕
s:1s∈Gk

〈1s〉 ⊗ H̃k−2(M(Gk \ {1, s}); Z)

and ω̂ is defined in the natural manner.

Now, the group H̃k−1(M(Gk\{1}); Z) is zero by Lemma 5.1. As a consequence,
ω̂ is a monomorphism. Moreover, all groups in the second row of the above
sequence are torsion-free. Namely, the dimensions of M(Gk) and M(Gk\{1, s})
are at most k−1 and k−2, respectively, and Lemma 5.1 yields that M(Gk\{1})
is homotopy equivalent to a complex of dimension at most k − 2. It follows
that the induced homomorphism

ω̂ ⊗ ιp : H̃k−1(M(Gk); Z)⊗ Zp → Pk−2(Gk)⊗ Zp
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remains a monomorphism.

Now, consider the following diagram:

H̃k−1(M(Gk); Z)⊗ Zp
ω̂⊗ιp−−−→ Pk−2(Gk)⊗ Zp

θk⊗ιp

y θ⊕
k−1

⊗ιp

y
H̃k−1+d(M2k+1+n; Z)⊗ Zp

ω⊗ιp−−−→ P 2k−1+n
k−2+d ⊗ Zp.

Here,

P 2k−1+n
k−2+d =

2k+1+n⊕
s=2

〈1s〉 ⊗ H̃k−2+d(M[2,2k+1+n]\{s}; Z),

ω is defined as in Theorem 3.1, and θ⊕k−1 is defined by

θ⊕k−1(1s⊗ z) = 1s⊗ z ∧ γ(2k+1).

One easily checks that the diagram commutes; going to the right and then
down or going down and then to the right both give the same map

(c1 +
∑

s:1s∈Gk

1s ∧ z1s)⊗ 1 7→
∑

s:1s∈Gk

(1s⊗ z1s ∧ γ(2k+1))⊗ 1,

where c1 is a sum of oriented simplices from M(Gk \ {1}) and each z1s is
a sum of oriented simplices from M(Gk \ {1, s}) satisfying ∂(z1s) = 0 and
∂(c1) +

∑
s z1s = 0. Moreover, θ⊕k−1 ⊗ ιp is a monomorphism, because the

restriction to each summand is a monomorphism by induction on k. Namely,
since G is compatible, Gk \ {1, s} is isomorphic to Gk−1 for each s such that
1s ∈ Gk. As a consequence, (θ⊕k−1 ◦ ω̂)⊗ ιp is a monomorphism, which implies
that θk ⊗ ιp is a monomorphism.

For the very last statement, it suffices to prove that θ̂k is a well-defined homo-
morphism, which is true if and only if θk(pz) = 0 for each z ∈ H̃k−1(M(Gk); Z).
Now, let c ∈ C̃d(Mn; Z) be such that ∂(c) = pγ; such a c exists by assumption.
We obtain that

∂(z ∧ c(2k+1)) = ±z ∧ (pγ(2k+1)) = ±(pz) ∧ γ(2k+1);

hence θk(pz) = 0 as desired. 2

One may generalize Theorem 5.3 by allowing a whole family Gk of graphs for
each k rather than just one single graph Gk. The condition for compatibility
would then be that for any G ∈ Gk and for any s such that 1s ∈ G, the induced
subgraph G([2k + 1] \ {1, s}) is isomorphic to some graph in Gk−1. We do not
need this generalization in this paper.

Theorem 5.4 For k ≥ 0 and r ≥ 4, there is 3-torsion of rank at least
(

2k
k

)
in

H̃k−1+r(M2k+1+3r; Z). Moreover, for k ≥ 0, there is 3-torsion of rank at least
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(
k+1

b(k+1)/2c

)
in H̃k+2(M2k+10; Z). To summarize, H̃k−1+r(M2k+1+3r; Z) contains

nonvanishing 3-torsion whenever k ≥ 0 and r ≥ 3.

Proof. For the first statement, consider the compatible family {K2k+1 : k ≥ 0}
and the cycle γ3r ∈ H̃r−1(M3r; Z) defined as in (4). By Theorem 4.2 and
Lemma 4.1,

θ0 ⊗ ι3 : H̃−1(M1; Z)⊗Z Z3
∼= Z⊗Z Z3 → H̃r−1(M3r+1; Z)⊗Z Z3

defines an isomorphism, where θ0(λ) = λγ
(1)
3r . By Lemma 4.1 and Theorem 4.3,

γ3r has exponent 3 in H̃r−1(M3r; Z); hence Theorem 5.3 yields that the group
H̃k−1+r(M2k+1+3r; Z) contains 3-torsion of rank at least the rank of the group

H̃k−1(M2k+1; Z). By a result due to Bouc [5], this rank equals
(

2k
k

)
.

For the second statement, consider the compatible family {Gk = K2k+1 \
{23, 45, 67, . . . , 2k(2k+1)} : k ≥ 1} and the cycle γ6 = (12− 23)∧ (45− 56) ∈
H̃1(M7; Z). For k = 1, we obtain that G1 is the graph P3 on three vertices
with edge set {12, 13}; clearly, H̃0(M(P3); Z) ∼= Z. As a consequence,

θ1 ⊗ ι3 : H̃0(M(P3); Z)⊗Z Z3 → H̃2(M10; Z)⊗Z Z3

is an isomorphism; apply Theorem 4.2. Proceeding as in the first case and using
the fact that γ6 has exponent 3 in H̃1(M7; Z), we conclude that H̃k+1(M2k+8; Z)
contains 3-torsion of rank at least the rank of H̃k−1(M(Gk); Z) for each k ≥ 1.

It remains to show that the rank of H̃k−1(M(Gk); Z) is at least
(

k
bk/2c

)
. Let A

be any subset of the removed edge set

E = {23, 45, . . . , 2k(2k + 1)}

such that the size of A is bk/2c; write B = E \ A. Consider the complete
bipartite graph GA

k with one block equal to {1} ∪ ⋃e∈A e and the other block
equal to

⋃
e∈B e. For even k, the size of the “A” block is k + 1; for odd k, the

size of the “A” block is k. It is clear that GA
k is a subgraph of Gk.

Label the vertices in [2, 2k + 1] as s1, t1, s2, t2, . . . , sk, tk such that siti ∈ A for
even i and siti ∈ B for odd i. Consider the matching

σA = {1s1, t1s2, t2s3, . . . , tk−1sk}.

One easily checks that σA ∈ M(GA′
k ) if and only if A = A′. Now, as observed

by Shareshian and Wachs [17, (6.2)], M(GA
k ) is an orientable pseudomanifold.

Defining zA to be the fundamental cycle of M(GA
k ), we obtain that {zA :

A ⊂ E,#A = bk/2c} forms an independent set in H̃k−1(M(Gk); Z), which
concludes the proof. 2
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Let Gk = K2k+1 \ {23, 45, 67, . . . , 2k(2k+1)} be the graph in the above proof.
Based on computer calculations for k ≤ 5, we conjecture that the rank rk of
H̃k−1(M(Gk); Z) equals the coefficient of xk in (1 + x + x2)k; this is sequence
A002426 in Sloane’s Encyclopedia [18]. Equivalently,

∑
k≥0

rkx
k =

1√
1− 2x− 3x2

.

Proposition 5.5 (Jonsson [12]) We have that H̃4(M13; Z) ∼= T ⊕ Z24596,
where T is a finite group containing Z10

3 as a subgroup.

Corollary 5.6 For n ≥ 1, there is nonvanishing 3-torsion in the homology
group H̃d(Mn; Z) = H̃k−1+r(M2k+1+3r; Z) whenever

⌈
n− 4

3

⌉
≤ d ≤

⌊
n− 6

2

⌋
⇐⇒

 k ≥ 0

r ≥ 3

or r = 2 and k ∈ {0, 1, 2, 3}. Moreover, H̃d(Mn; Z) is nonzero if and only if

⌈
n− 4

3

⌉
≤ d ≤

⌊
n− 3

2

⌋
⇐⇒

 k ≥ 0

r ≥ 0.

Proof. The first statement is a consequence of Theorem 5.4, Proposition 5.5,
and Figure 1. For the second statement, Theorem 1.1 yields that the group
H̃k−1+r(M2k+1+3r; Z) is infinite if and only if r ≥ 0 and k ≥

(
r
2

)
. In particular,

the group is infinite for all k ≥ 0 and 0 ≤ r ≤ 2 except (k, r) = (0, 2). Since
H̃k−1+r(M2k+1+3r; Z) ∼= Z3 when k = 0 and r = 2, we are done by Theorem 1.2
and Lemma 5.1. 2

Corollary 5.6 suggests the following conjecture:

Conjecture 5.7 The group H̃d(Mn; Z) = H̃k−1+r(M2k+1+3r; Z) contains 3-
torsion if and only if

⌈
n− 4

3

⌉
≤ d ≤

⌊
n− 5

2

⌋
⇐⇒

 k ≥ 0

r ≥ 2.

By Corollary 5.6, the conjecture remains unsettled if and only if r = 2 and
k ≥ 4; for the cases r = 0 and r = 1, one easily checks that the homology is
free. The conjecture would follow if we were able to settle Conjecture 6.2 in
Section 6.
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5.2 Intervals with vanishing homology over Zp for p 6= 3

Throughout this section, let p be a prime different from 3. Using the exact
sequences in Sections 3.1, 3.2, and 3.3, we provide bounds on d and n such
that H̃d(Mn; Zp) is zero.

Theorem 5.8 The group H̃d(Mn; Zp) = H̃k−1+r(M2k+1+3r; Zp) is zero unless
2n − 8 ≤ 5d ⇐⇒ r ≤ k + 1. Moreover, for each q ≥ 0, the following hold
(notation as in Section 1.1):

• H̃2q−1(M5q) is generated by cycles of type
[
5
2

]q
and

[
3
1

]
∧
[
5q−3
2q−1

]
.

• H̃2q−1(M5q+1) is generated by cycles of type
[
1
0

]
∧
[
5
2

]q
.

• H̃2q(M5q+3) is generated by cycles of type
[
3
1

]
∧
[
5
2

]q
.

• H̃2q(M5q+4) is generated by cycles of type
[
1
0

]
∧
[
3
1

]
∧
[
5
2

]q
.

Proof. Writing µn = d2n−8
5
e, we obtain Figure 2, which might be of some help

when reading this proof.

One easily checks the theorem for n ≤ 5; thus assume that n ≥ 6. Assume
inductively that the theorem is true for all m ≤ n− 1. We have five cases for
n:

• n = 5q. The first case is perhaps the hardest. By the long exact 0-3-4
sequence in Section 3.2, we have an exact sequence of the form

⊕
H̃d−1(M5q−3) −−−→ H̃d(M5q) −−−→

⊕
H̃d−2(M5q−4).

By induction, the groups on the left and right are zero whenever d < 2q − 1,
which implies that the same is true for the group in the middle.

It remains to prove that H̃2q−1(M5q) is generated by cycles of type
[
5
2

]q
and[

3
1

]
∧
[
5q−3
2q−1

]
. For this, consider the tail end of the long exact 0-3-4 sequence:

⊕
a,u

〈au〉 ⊗ H̃2q−2(M[3,5q]\{u})
ϕ∗−−−→ H̃2q−1(M5q)

κ∗−−−→
⊕
s,t

〈1s ∧ 2t〉 ⊗ H̃2q−3(M[3,5q]\{s,t}) −−−→ 0;

see Theorem 3.2. To generate H̃2q−1(M5q), we will combine two sets of cycles:

(1) The first set consists of the image under ϕ∗ of an appropriate set of gener-
ators of the first group in the exact sequence.

(2) The second set consists of an appropriate set of cycles in H̃2q−1(M5q) such
that the image under κ∗ of this set generates the third group in the sequence.
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(1) By properties of ϕ∗, the image of any cycle in the leftmost group has type[
3
1

]
∧
[
5q−3
2q−1

]
.

(2) Induction yields that H̃2q−3(M[3,5q]\{s,t}) ∼= H̃2q−3(M5q−4) is generated by

cycles of type
[
1
0

]
∧
[
5
2

]q−1
. Now, consider a cycle z ∈ H̃2q−3(M[3,5q]\{s,t}) of type[

1
0

]
∧
[
5
2

]q−1
; let x be the unused element in z corresponding to the empty cycle

of type
[
1
0

]
. Define

γ = 1s ∧ 2t+ 2t ∧ sx+ sx ∧ 12 + 12 ∧ tx+ tx ∧ 1s.

It is clear that κ∗ maps γ ∧ z to 1s∧ 2t⊗ z and that γ ∧ z has type
[
5
2

]q
. Thus

we are done.

• n = 5q + 1. Again using the long exact 0-3-4 sequence in Section 3.2, we
deduce that H̃d(M5q+1) is zero whenever H̃d−1(M5q−2) and H̃d−2(M5q−3) are
zero, which is true for d < 2q − 1. For d = 2q − 1, we obtain the exact
sequence

⊕
a,u

〈au〉 ⊗ H̃2q−2(M[3,5q+1]\{u})
ϕ∗−−−→ H̃2q−1(M5q+1) −−−→ 0.

By induction, H̃2q−2(M[3,5q+1]\{u}) ∼= H̃2q−2(M5q−2) is generated by cycles of

type
[
3
1

]
∧
[
5
2

]q−1
. Hence properties of ϕ∗ yield that H̃2q−1(M5q+1) is generated

by cycles of type
[
3
1

]
∧
[
3
1

]
∧
[
5
2

]q−1
. By the exact sequence for the pair (M7,M6)

in Section 3.1 and the fact that H̃1(M7) = 0, we have that H̃1(M6; Z) is

generated by cycles of type
[
1
0

]
∧
[
5
2

]
; use Theorem 3.1. As a consequence,

any cycle of type
[
3
1

]
∧
[
3
1

]
∧
[
5
2

]q−1
can be written as a sum of cycles of type[

1
0

]
∧
[
5
2

]
∧
[
5
2

]q−1
=
[
1
0

]
∧
[
5
2

]q
.

• n = 5q + 2. Using the long exact 0-1-2 sequence in Section 3.1, we conclude
that H̃d(M5q+2) is zero whenever H̃d(M5q+1) and H̃d−1(M5q) are zero, which is
true for d < 2q − 1. For d = 2q − 1, we have the exact sequence

H̃2q−1(M[2,5q+2])
ι∗−−−→ H̃2q−1(M5q+2) −−−→ 0,

where ι∗ is induced by the inclusion map. By induction, H̃2q−1(M[2,5q+2]) ∼=
H̃2q−1(M5q+1) is generated by cycles of type

[
1
0

]
∧
[
5
2

]q
. It follows that the

group H̃2q−1(M5q+2) is generated by cycles of type
[
2
0

]
∧
[
5
2

]q
, which means that

H̃2q−1(M5q+2) = 0.

• n = 5q + 3. This time, we use the long exact 0-3-5-6 sequence from Sec-
tion 3.3. By properties of this sequence, the group H̃d(M5q+3) is zero whenever
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H̃d−1(M5q), H̃d−2(M5q−2), and H̃d−3(M5q−3) are zero, which is true for d < 2q.
For d = 2q, we have a surjection⊕〈as ∧ bt〉 ⊗ H̃2q−2(M[4,5q+3]\{s,t})⊕

⊕〈1c〉 ⊗ H̃2q−1(M[4,5q+3])

ϕ∗

y
H̃2q(M5q+3)

defined as in Lemma 3.3. To establish that H̃2q(M5q+3) is generated by cycles

of type
[
3
1

]
∧
[
5
2

]q
, it suffices to prove that H̃2q(M5q+3) is generated by cycles of

type
[
5
2

]
∧
[
5q−2
2q−1

]
. Namely, by induction, H̃2q−2(M5q−2) is generated by cycles

of type
[
3
1

]
∧
[
5
2

]q−1
.

Induction yields that H̃2q−2(M[4,5q+3]\{s,t}) ∼= H̃2q−2(M5q−2) is generated by cy-

cles of type
[
3
1

]
∧
[
5q−5
2q−2

]q−1
and that H̃2q−1(M[4,5q+3]) ∼= H̃2q−1(M5q) is generated

by cycles of type
[
5
2

]
∧
[
5q−5
2q−2

]
and

[
3
1

]
∧
[
5q−3
2q−1

]
. By properties of ϕ∗, it follows

that H̃2q(M5q+3) is generated by cycles of the following types:

•
[
5
2

]
∧
[
3
1

]
∧
[
5q−5
2q−2

]
≺
[
5
2

]
∧
[
5q−2
2q−1

]
;

•
[
3
1

]
∧
[
5
2

]
∧
[
5q−5
2q−2

]
≺
[
5
2

]
∧
[
5q−2
2q−1

]
;

•
[
3
1

]
∧
[
3
1

]
∧
[
5q−3
2q−1

]
.

By the discussion at the end of the case n = 5q+1, cycles of the very last type
can be written as a sum of cycles of type

[
1
0

]
∧
[
5
2

]
∧
[
5q−3
2q−1

]
. As a consequence,

H̃2q(M5q+3) is generated by cycles of type
[
5
2

]
∧
[
5q
2q

]
.

• n = 5q+4. For the final case, we again consider the long exact 0-1-2 sequence
from Section 3.1. We obtain that H̃d(M5q+4) is zero whenever H̃d(M5q+3) and
H̃d−1(M5q+2) are zero, which is true for d < 2q.

To conclude the proof, it remains to show that H̃2q(M5q+4) is generated by

cycles of type
[
1
0

]
∧
[
3
1

]
∧
[
5
2

]q
. Now, induction yields that H̃2q(M5q+3) is generated

by cycles of type
[
3
1

]
∧
[
5
2

]q
. Hence H̃2q(M5q+4) is generated by cycles of type[

1
0

]
∧
[
3
1

]
∧
[
5
2

]q
as desired. 2

Corollary 5.9 If⌈
n− 4

3

⌉
≤ d ≤

⌊
2n− 9

5

⌋
⇐⇒ 0 ≤ k ≤ r − 2,

then H̃d(Mn; Z) = H̃k−1+r(M2k+1+3r; Z) is a nontrivial 3-group.

Proof. This is an immediate consequence of Corollary 5.6, Theorem 5.8, and
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the universal coefficient theorem. 2

While the bottom nonvanishing groups are elementary 3-groups by Theo-
rem 4.3, we do not know whether this is true in general for the groups under
consideration.

The smallest n for which Corollary 5.9 implies something previously unknown
is n = 22, in which case we may conclude that H̃7(M22; Z) is a 3-group; note
that ν22 = 6.

5.3 On the existence of further 5-torsion

One may ask whether the upper bound 2n−9
5

in Corollary 5.9 is best possible,
meaning that there is p-torsion for some p 6= 3, most likely p = 5, in degree
d2n−8

5
e of the homology of Mn whenever the group under consideration is finite.

Our hope is that this is indeed the case. While we do not have much evidence
to support this hope, we can provide the following potentially useful result:

Theorem 5.10 For each q ≥ 3, there is nonvanishing 5-torsion in the group
H̃2q(M5q+4; Z) if and only if there is a cycle γ ∈ H̃2q(M5q+4; Z) of type

[
1
0

]
∧
[
3
1

]
∧[

5
2

]q
such that γ has exponent 5. If this is the case, then there is nonvanishing

5-torsion in H̃2q+u(M5q+4+2u; Z) for each u ≥ 0.

Proof. The first statement is an immediate consequence of Theorem 5.8.

For the second statement, assume that γ is a cycle with properties as in
the theorem. Write γ = γ5 ∧ γ′, where γ5 is of type

[
5
2

]
and γ′ is of type[

1
0

]
∧
[
3
1

]
∧
[
5
2

]q−1
. It is clear that the exponent of γ′ in H̃2q−2(M5q−1; Z) is a

finite multiple of 5. Namely, γ′ is of type
[
14
5

]
∧
[
5q−15
2q−6

]
and γ has exponent 5.

Now, consider the compatible family G = {Kk+1,k : k ≥ 2}; recall Proposi-
tion 5.2. We claim that every element z ∈ H̃1(M5; Z) has the property that 2z
is a sum of cycles, each having the form

ac ∧ bd+ bd ∧ ae+ ae ∧ bc+ bc ∧ ad+ ad ∧ be+ be ∧ ac,

where {a, b, c, d, e} = [5]; this is the fundamental cycle of MGa,b
, where Ga,b

is the complete bipartite graph with blocks {a, b} and {c, d, e}. To prove the
claim, let T be the subgroup of H̃1(M5; Z) generated by the fundamental cycles
of G1,2, G2,3, G3,4, G4,5,G5,1, and G1,3. One easily checks that the matrix of the
natural projection from T to the group generated by 51∧ 23, 12∧ 34, 23∧ 45,
34 ∧ 51, 45 ∧ 12, and 13 ∧ 24 has determinant ±2. Since H̃1(M5; Z) ∼= Z6, the
claim is settled.
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As a consequence, we may assume that γ5 is the fundamental cycle of M(K3,2).
In particular, the map

θ2 ⊗ ι5 : H̃1(M(K3,2); Z)⊗Z Z5 → H̃2q(M5q+4; Z)⊗Z Z5

defined by θ2(z) = z ∧ γ′ is a monomorphism; γ = γ5 ∧ γ′. Now, applying
Theorem 5.3, we deduce that we have a monomorphism

θ2+u ⊗ ι5 : H̃1+u(M(K3+u,2+u); Z)⊗Z Z5 → H̃2q+u(M5q+4+2u; Z)⊗Z Z5

defined by θ2+u(z) = z ∧ (γ′)(2u) for each u ≥ 0; notation is as in Section 5.1.
Since the exponent of γ′ in H̃2q−2(M5q−1; Z) is a finite multiple of 5, there is
indeed nonvanishing 5-torsion in H̃2q+u(M5q+4+2u; Z). 2

Corollary 5.11 If there is nonvanishing 5-torsion in the group H̃2q(M5q+4; Z)
for each q ≥ 3, then H̃d(Mn; Z) = H̃k−1+r(M2k+1+3r; Z) contains nonvanishing
5-torsion whenever⌈

2n− 8

5

⌉
≤ d ≤

⌊
n− 7

2

⌋
⇐⇒ 4 ≤ r ≤ k + 1.

5.4 Bounds on the homology over Z3

The goal of this section is to provide nontrivial upper bounds on the dimension
of H̃d(Mn; Z3) when n and d satisfy the conditions in Corollary 5.9. To achieve
this, we use the long exact 0-e-2 sequence from Section 3.4 and the long exact
0-2-3-5 sequence from Section 3.5.

Define 
βnd = dimZ3 H̃d(Mn; Z3)

αnd = dimZ3 H̃d(Mn \ 12; Z3).

Lemma 5.12 For all n ≥ 2 and all d, we have that

βnd ≤ αnd + βn−2
d−1 .

For n ≥ 5 and all d, we have that

αnd ≤ βn−3
d−1 + 2

(
n−3

2

)
βn−5
d−2 + (n− 3)αn−2

d−1 .

Proof. The inequalities are immediate consequences of Theorems 3.6 and 3.7.
2
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Define β̂k,r = βnd and α̂k,r = αnd , where k and r are defined as in (1).

Corollary 5.13 For k ≥ 0, r ≥ 0, and k + r ≥ 1, we have that

β̂k,r≤ α̂k,r + β̂k−1,r;

α̂k,r≤ β̂k,r−1 + 2
(

2k+3r−2
2

)
β̂k−1,r−1 + (2k + 3r − 2)α̂k−1,r.

Theorem 5.14 For each k ≥ 0, there are polynomials fk(r) and gk(r) of

degree 3k with dominating term 3k

k!
r3k such that
β̂k,r ≤ fk(r)

α̂k,r ≤ gk(r)

for all r ≥ k + 2. Equivalently,
βnd ≤ f3d−n+4(n− 2d− 3)

αnd ≤ g3d−n+4(n− 2d− 3)

for all n ≥ 7 and dn−4
3
e ≤ d ≤ b2n−9

5
c.

Proof. For k = 0, we have that β̂0,r = 1 for all r ≥ 2; use Theorem 4.2. It
is known that α̂0,2 ≤ 1 [10, Th. 11.20]; indeed, it is not hard to prove that
H̃1(M7 \ e; Z) ∼= H̃1(M7 \ e; Z3) ∼= Z3. Moreover, Lemma 5.12 implies that
1 = β̂0,r ≤ α̂0,r ≤ β̂0,r−1 = 1 for r ≥ 3.

Assume that k ≥ 1 and r ≥ k + 3. By Corollary 5.13 and induction on k, we
obtain that

α̂k,r≤ β̂k,r−1 + 2
(

2k+3r−2
2

)
fk−1(r − 1) + (2k + 3r − 2)gk−1(r);

β̂k,r≤ α̂k,r + fk−1(r),

where fk−1 and gk−1(r) are polynomials with properties as in the theorem. As
a consequence,

β̂k,r − β̂k,r−1 ≤ 2
(

2k+3r−2
2

)
fk−1(r − 1) + (2k + 3r − 2)gk−1(r) + fk−1(r).

Now, the right-hand side is of the form

hk(r) = (3r)2 · 3k−1r3k−3

(k − 1)!
+ ρk(r) =

3k+1r3k−1

(k − 1)!
+ ρk(r),
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where ρk(r) is a polynomial of degree at most 3k − 2. Summing over r, we
obtain that

β̂k,r ≤ β̂k,k+2 +
r∑

i=k+3

hk(r).

The right-hand side is a polynomial fk(r) in r with dominating term

3k+1

(k − 1)!
· r

3k

3k
=

3kr3k

k!
.

Defining

gk(r) = fk(r − 1) + 2
(

2k+3r−2
2

)
fk−1(r − 1) + (2k + 3r − 2)gk−1(r),

we obtain a bound on α̂k,r with similar properties, which concludes the proof.
2

For k ≥ 1, one may extend the theorem to all r ≥ 0 by adding a sufficiently
large constant to each of fk(r) and gk(r).

Let us provide a more precise bound for the case k = 1.

Theorem 5.15 We have that β3
0 = 2, β6

1 = 16, β9
2 = 50, β12

3 = 56, and

β3r+3
r ≤ 6r3 + 9r2 + 5r

2
− 73

for r ≥ 4.

Proof. With notation as in the proof of Theorem 5.14, Lemma 5.12 implies
that

β̂1,r ≤ β̂1,r−1 + 2
(

3r
2

)
+ 3r + 1 = β̂1,r−1 + 9r2 + 1.

Figure 1 and a straightforward computation yield the theorem. 2

The first few values on the bound in Theorem 5.15, starting with r = 4, are
201, 427, 752, 1194, and 1771.

The set of pairs (n, d) corresponding to a given k in Theorem 5.14 is of the
form {v + rw : r ≥ k + 2}, where v = (2k + 1, k − 1) and w = (3, 1).
Choosing other vectors v and w, we obtain other sequences of Betti numbers.
In this more general situation, it might be of interest to study other fields than
Z3. For w = (2, 1) and any field, the growth is at least exponential as soon as
v = (n0, d0) for some n0 and d0 satisfying n0 ≥ 2d0+3. Namely, over Q, βn0+2q

d0+q

is known to equal the number of self-conjugate standard Young tableaux of
size n0 + 2q with a Durfee square of size n0 − 2d0 − 2 [5]. One easily checks
that the number of such tableaux grows at least exponentially when q tends to
infinity. Yet, if we were to pick a vector w = (a, b) such that a/b > 2, then the
rational homology would disappear for sufficiently large q; apply Theorem 1.1.
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By Theorem 5.4, there is 3-torsion of rank at least
(

2k
k

)
in H̃k−1+r(M2k+1+3r; Z)

for k ≥ 0 and r ≥ 4. As a consequence, for Z3, the growth is at least exponen-
tial for every (a, b) satisfying 2 ≤ a/b < 3. Namely, writing k0 = 3d0 − n0 + 4
and δ = 3b− a and assuming that 2 < a/b < 3, we have that

βn0+aq
d0+bq = β̂k0+qδ,n0−2d0+q(a−2b)−3 ≥

(
2(k0 + qδ)

k0 + qδ

)

as soon as n0 − 2d0 + q(a− 2b) ≥ 7.

Finally, let us consider Zp for p 6= 3. By Theorem 5.8, whenever a/b > 5/2, we
have that βn0+aq

d0+bq is zero over Zp for sufficiently large q. The situation remains
unclear for 2 < a/b ≤ 5/2.

6 Concluding remarks and open problems

From our viewpoint, the most important open problem regarding the homol-
ogy of Mn is whether there exists other torsion than 3-torsion for n 6= 14.
In light of the discussion in Section 5.3, we are tempted to conjecture the
following:

Conjecture 6.1 H̃d(Mn; Z) = H̃k−1+r(M2k+3r+1; Z) contains nonvanishing 5-
torsion whenever⌈

2n− 8

5

⌉
≤ d ≤

⌊
n− 6

2

⌋
⇐⇒ 3 ≤ r ≤ k + 1.

The bounds are exactly the same as in Corollary 5.11, except that the upper
bound in the corollary is bn−7

2
c rather than bn−6

2
c. In fact, the conjecture

would be true for d = n−6
2

and all even n ≥ 14 if the following conjecture were
true:

Conjecture 6.2 The sequence

0 −→ H̃d(Mn \ e; Z) −→ H̃d(Mn; Z) −→ 〈e〉 ⊗ H̃d−1(M[n]\e; Z) −→ 0,

cut from the long exact 0-e-2 sequence in Section 3.4, is split exact for every
n ≥ 3 and every d.

We have checked the conjecture up to n = 11 using computer; see Figure 3
and compare to Figure 1. If Conjecture 6.2 were true for all n, then we would
have p-torsion in H̃d+k(Mn+2k; Z) for all k ≥ 0 whenever H̃d(Mn; Z) contains
p-torsion.

28



Define β̂k,r = dimZ3 H̃k−1+r(M2k+1+3r; Z3). Conjecture 6.2 being true for the

coefficient ring Z3 would imply that β̂k−1,r ≤ β̂k,r. Combined with a quite

modest conjecture about the behavior of {β̂k,r : r ≥ 1} for each fixed k, this

would yield nontrivial lower bounds on β̂k,r for every k, r ≥ 0:

Proposition 6.3 Suppose that β̂k−1,r ≤ β̂k,r for all k ≥ 1 and r ≥ 0. Suppose

further that there are positive numbers {Ck : k ≥ 0} such that Ckβ̂k,r ≥ β̂k,r−1

for all k ≥ 0 and r ≥ 1. Then β̂k,r is bounded from below by a polynomial of
degree k.

Proof. By the long exact 0-1-2 sequence, we have that

(2k + 3r)β̂k−1,r−1 ≤ β̂k,r−1 + β̂k−2,r

for r ≥ 1. Applying our assumptions, we obtain that

(2k + 3r)β̂k−1,r−1 ≤ Ckβ̂k,r + β̂k,r = (Ck + 1)β̂k,r,

which yields that β̂k,r ≥ (Ck + 1)−1(2k + 3r)β̂k−1,r−1. 2

For k ≤ 2, β̂k,r is indeed bounded from below by a polynomial of degree k [17].

We conclude with Table 4, which provides a list of possible exponents in
H̃k−1+r(M2k+1+3r; Z) for small k and r; apply Theorems 1.1, 4.3, 4.5, 5.4, and
5.8 and Proposition 5.5. Note that (k, r) = (0, 2) yields the first occurrence
of 3-torsion and that (k, r) = (2, 3) yields the only known occurrence of 5-
torsion. These two pairs share the property that k is maximal for the given r
such that the group at (k, r) is finite. Speculating wildly, one may ask whether
there is further torsion to discover at other pairs (k, r) with this property, that

is, k =
(
r
2

)
− 1; use Theorem 1.1.
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H̃d(Mn; Z) d = 0 1 2 3 4 5

n = 3 Z2 - - - - -

4 Z2 - - - - -

5 - Z6 - - - -

6 - Z16 - - - -

7 - Z3 Z20 - - -

8 - - Z132 - - -

9 - - Z8
3 ⊕ Z42 Z70 - -

10 - - Z3 Z1216 - -

11 - - - Z45
3 ⊕ Z1188 Z252 -

12 - - - Z56
3 Z12440 -

13 - - - Z3 T1 ⊕ Z24596 Z924

14 - - - - T2 Z138048

Fig. 1. The homology of Mn for n ≤ 14. T1 and T2 are nontrivial finite groups of
exponent a multiple of 3 and 15, respectively; see Proposition 5.5 and Theorem 4.5.
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n µn n µn

5q − 5 2q − 3 5q 2q − 1

5q − 4 2q − 3 5q + 1 2q − 1

5q − 3 2q − 2 5q + 2 2q

5q − 2 2q − 2 5q + 3 2q

5q − 1 2q − 2 5q + 4 2q

Fig. 2. µn = d2n−8
5 e for different values of n.
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H̃i(Mn \ e; Z) i = −1 0 1 2 3 4

n = 2 Z - - - - -

3 - Z - - - -

4 - Z2 - - - -

5 - - Z4 - - -

6 - - Z14 - - -

7 - - Z3 Z14 - -

8 - - - Z116 - -

9 - - - Z7
3 ⊕ Z42 Z50 - -

10 - - - Z3 Z1084 - -

11 - - - - Z37
3 ⊕ Z1146 Z182

Fig. 3. The homology of Mn \ e for n ≤ 11.
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Exponents k = 0 1 2 3 4 5

r = 0 ∞ ∞ ∞ ∞ ∞ ∞

1 ∞ ∞ ∞ ∞ ∞ ∞

2 3 ∞, 3 ∞, 3 ∞, 3∗, e? ∞, e? ∞, e?

3 3 3 3∗, 5∗, e? ∞, 3∗, e? ∞, 3∗, e? ∞, 3∗, e?

4 3 3 3 3∗, e? 3∗, e? 3∗, e?

5 3 3 3 3∗ 3∗, e? 3∗, e?

6 3 3 3 3∗ 3∗ 3∗, e?

7 3 3 3 3∗ 3∗ 3∗

Fig. 4. List of all possible infinite and prime power exponents of elements in
H̃k−1+r(M2k+1+3r; Z) for k ≤ 5 and r ≤ 7. Legend: ∞ = infinite exponent; p∗

= exponent an unknown positive power of p; e? = possibly other prime power
exponents than those listed.
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