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Abstract. We calculate the expected size of the volume of a ran-
dom tetrahedron inside a cube. The result is not new, but the
method is different from that of previous calculations.

1. Introduction

Four points are generated at random inside a cube C. Let T be
the tetrahedron spanned by the random points. We shall consider the
random variable X = volume(T )/volume(C). It is well known that
any affine transformation will preserve the ratio X. This follows from
the fact that the volume scaling is constant for an affine transforma-
tion. The scale equals the determinant of the homogeneous part of the
transformation. This means that our results hold for any parallelotope
C.
Various aspects of our problem have been considered in the field

of geometric probability, see e.g. [12]. J. J. Sylvester considered the
plane problem of a random triangle T in an arbitrary convex set K and
the variable X = area(T )/area(K). He posed the following problem:
Determine the shape of K for which the expected value κ = E(X)
is maximal and minimal. A first attempt to solve the problem was
published by M. W. Crofton in 1885. Wilhelm Blaschke [3] proved in
1917 that 35

48π2 ≤ κ ≤ 1
12
, where the minimum is attained only when K

is an ellipse and the maximum only when K is a triangle. The upper
and lower bounds of κ only differ by about 13%. It has been shown,
[2] that κ = 11

144
for K a square.

A. Reńyi and R. Sulanke, [10] and [11], consider the area ratio when
the triangle T is replaced by the convex hull of n random points. They
obtain asymptotic estimates of κ for large n and for various convex K.
H. A. Alikoski [2] has given expressions for κ when n = 3 and K a
regular r-polygon. We have given the whole probability distribution of
X for n = 3 and n = 4 and K a parallelogram [7] and for K a triangle
[8].
R. E. Miles [6] generalizes the asymptotic estimates for K a circle to

higher dimensions. C. Buchta and M. Reitzner, [4], has given values of
κ for n ≥ 4 and K a triangle and the three-dimensional generalization
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toK a tetrahedron. The same value was also calculated by D. Mannion
[5] and J. Philip. [9]. The value of κ for a tetrahedron in a cube that
we consider in this paper was calculated by A. Zinani [13] to

κ =
3977

216000
−

π2

2160
≈ .013842776.

The calculations of this paper are done with the aid of Maple 10.
The Maple worksheet ETC.mw is available at
www.math.kth.se/~johanph.

2. Notation and formulation.

As C, we will chose a unit cube in the positive orthant having one
vertex at the origin. We use a constant probability density in C for
generating 4 random points in C. The points will be denoted Pk and
have coordinates (xk, yk, zk) for 1 ≤ k ≤ 4. Let T be the tetrahedron
spanned by the 4 points. We shall consider the probability distribution
of the random variable X = volume(T )/volume(C).
The generated T spans a parallelotope with sides parallell to the

sides of C. We will call this spanned parallelotope B. The random
variable X, that we study will be written as the product of the two
random variables

U = volume(T )/volume(B) and V = volume(B)/volume(C).

Roughly speaking, U describes the shape of T and V its size. It’s not
obvious that the size V is independent of the shape U . The indepen-
dence will be shown in section 6. We shall determine the averages of
U and V and combine them to get E(X) = E(U) · E(V ).

3. The six geometrical cases for calculating E(U).

The way B is spanned by the four points gives rise to the six cases
characterized primarily by the number of faces of B that a point de-
termines. In table 1, the points have been reindexed so that a higher
index corresponds to more faces. Cases 5 and 6, are equal combinator-
ically but differ in that Case 5 occurs when points 1 and 2 determine
two opposite faces of B and case 6 when they determine two adjacent
faces
In case 1 depicted in Figure 1, we have without loss of generality

(WLOG) chosen P4 to sit in the vertex nearest to the origin and P3 to
sit in the opposite vertex. P1 and P2 are interior. In the other cases,
the point numbering and their positions have (WLOG) been chosen in
a similar way. When studying the ratio U , we have enlarged B to a
unit cube. The six cases are depicted in Figure 2, where we show six
enlarged B with their point positions.
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case P1 P2 P3 P4 pj E(Uj)

1 0 0 3 3 1
36

11
432

2 0 1 2 3 1
3

605
7776

− π2

324

3 1 1 1 3 1
9

2281
3888

− 11π2

216

4 0 2 2 2 1
9

19
1944

+ π2

216

5 1 1 2 2 1
12

23
1944

+ π2

324

6 1 1 2 2 1
3

- 101
3888

+ 11π2

972

Table 1. Giving, for each of the 6 cases, the number of
faces determined by each Pk, their probability to occur
(=pj), and the expectation of Uj . Cases 5 and 6 have
different geometries described in the text.

B

P3
P1

y

x

P2

P4

z

Case  1

Figure 1. The unit cube and the parallelotope B
spanned by the vertices of the tetrahedron in Case 1.
P4 sits in one vertex of B, P3 in the opposite vertex. P1

and P2 are interior in B.

3.1. The probabilities for the six cases. We shall show that the
six cases occur with the probabilities given in table 1.
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The Cases 5 and 6 are equal combinatorically but differ in that Case
5 occurs when points 1 and 2 determine two opposite faces of B and
case 6 when they determine two adjacent faces. The calculation of each
pj has a geometrical and a combinatorial part.
Case 1 is in the x-direction characterized by

x4 ≤ x1 ≤ x3 and x4 ≤ x2 ≤ x3 .

The probality that this shall occur is

p0 =

∫ 1

0

dx4

∫ 1

x4

dx3

∫ x3

x4

dx2

∫ x3

x4

dx1 =
1

12
.

The geometry is the same in the y- and z-directions so the total prob-
ability for the configuration in Figure 1 to occur is p0

3. Case 1 occurs
also when the points are reindexed. With the numbers 0, 0, 3, 3 for
case 1, this can be done in 4!

2!2!
= 6 ways. The point P4 can be put in

8 vertices. Altogether, we get the probability for case 1:

p1 = 6 · 8 · p0
3 =

1

36
.

When doing the other cases, we have the same integrations as above
but with other names on the integration variables, so the geometrical
probability is the same in all cases.
In case 2, the numbers in the table are all different and we have
4!

1!1!1!1!
= 24 reindexings. Point P4 can be put in 8 corners and P3 on 3

edges, giving

p2 = 24 · 8 · 3 · p0
3 =

1

3
.

In case 3, we have 4!
3!1!

= 4 reindexings. Point P4 can be put in 8
corners, P3 on 3 edges and P2 in 2 faces, giving

p3 = 4 · 8 · 3 · 2 · p0
3 =

1

9
.

In case 4, we have 4!
1!3!

= 4 reindexings. Point P4 can be put on 12
edges and P3 and on 4 edges, giving

p4 = 4 · 12 · 3 · p0
3 =

1

9
.

In case 5, we have 4!
2!2!

= 6 reindexings. Point P4 can be put on 12
edges, P3 on 1 edge and P2 in 2 faces, giving

p5 = 6 · 12 · 1 · 2 · p0
3 =

1

12
.

In case 6, we have 4!
2!2!

= 6 reindexings. Point P4 can be put on 12
edges, P3 on 4 edges and P2 on 2 faces, giving

p6 = 6 · 12 · 4 · 2 · p0
3 =

1

3
.
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P1

x

P4

Case  1

P2

z

y

P3

P2

P4 P3
P1

z

x

y

Case  2

P4

Case  3

y

P2

x

P3

P1

z

P1

x

P4
Case  4

P2

z

y

P3

y

P1

Case  5

P2
P3

z

x

P4

y

P1

Case  6

P2

P3

z

x

P4

Figure 2. The figure shows the enlarged B in the six
cases. Points sitting in a face are marked with an arrow
orthogonal to th face.
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P3

z

y
P4

x

P1

P2

Figure 3. The plane f = 0 in Case 1.

4. The expectation of U in each of the six cases.

When calculating the expectation of U , we enlarge the parallelotope
B so that it fills up C. This doesn’t affect the ratio U . We will continue
to call the points Pk even though the problem has been translated and
rescaled. The transformed tetrahedron T is spanned by, e.g., the three
vectors

P1 − P4, P2 − P4, and P3 − P4.

The side spanned by P2 − P4 and P3 − P4 has the normal n = (P2 −
P4)× (P3 − P4). The volume fraction U = |f |/6, where f is the scalar
product

(1) f = n · (P1 − P4).

The complexity of the calculation stems from the absolute value. We
have to identify the sets where f is positive and negative. Let B+ and
B− be these subsets of the enlarged B. We have B = B+ +B−. To get
the expectation of U , we are going to integrate f over the whole of B
and subtract twice its integral over B−.

4.1. Calculation of E(U1). In case 1, we use the n and f defined
above. With P4 at the origin, all components of P2 − P4 and P3 − P4

are positive, implying that the nk cannot all have the same sign. To
determine where f is negative, we assume WLOG that

n1 ≥ n2 ≥ 0.
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This implies that n3 ≤ 0. With these inequalities, we single out one
of twelve cases which all have the same probability of occurring and all
have the same expectation of E(U1).
We start by integrating over (x1, y1, z1) for fixed P2, Cf. Figure 3.

With n3 ≤ 0, we have f < 0 above the plane f = 0. Let z(x1, y1) be the
solution of f = 0 for z1. With the assumed inequalities for the nk, one
can show that 0 ≤ z(x1, y1) ≤ 1. We get the conditional expectation

e1(x2, y2, z2) =

∫ 1

0

dx1

∫ 1

0

dy1

∫ 1

z(x1,y1)

f dz1.

The inequalities n2 ≥ 0, n3 ≤ 0, and n1 ≥ n2 imply respectively
z2 ≥ x2, y2 ≥ x2, and x2 + y2 ≥ 2z2. The whole integral over B− is

e2 =

∫ 1

0

dx2

∫ 1

x2

dy2

∫ (x2+y2)/2

x2

e1 dz2 = −
11

1728
.

By symmetry, the integral of f over the whole of B is zero. We get

E(U1) = −12 · 2 · e2/6 =
11

432
.

4.2. Calculation of E(U2). In this case we have P4 at the origin,
P3 = (1, 1, z3), P2 = (x2, y2, 1), and P1 interior. Cf. Figure 4. In this
case, we define

n = (P3 − P4)× (P2 − P4)

and

f = n · (P1 − P4) = n1x1 + n2y1 + n3z1.

The plane separating positive and negative f goes though P2, P3, and
P4. We assume WLOG that y2 ≥ x2, implying n1 ≥ 0, n2 ≤ 0, and
n3 ≥ 0. With n3 ≥ 0, we have f ≤ 0 below the plane z(x1, y1). In this
case, we do not have 0 ≤ z(x1, y1) ≤ 1 so the bounds of z1 are those
indicated in Figure 4.
We have y10 = −n1/n2, y20 = −n3/n2, and x20 = −(n2+n3)/n1 and

all three numbers are between 0 and 1. We get

(2) e =

∫ 1

0

dx2

∫ 1

x2

dy2

∫ 1

0

dz3

∫ 1

0

dx1

∫ 1

0

dy1

∫ min(1,z)

max(0,z)

f dz1 = −
497

5184
+

π2

216
.

In this case, the integral of f over the part of B where y2 ≥ x2 is not
zero but equals 1

6
. We get

E(U2) = 2(
1

6
− 2e)/6 =

605

7776
−

π2

324
,

where the factor 2 stems from the condition y2 ≥ x2.
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y

P2

P3

x

P4

z

y10

x20

y20

Figure 4. The upper bounds for z1 in the calculation of E(U2).

4.3. Calculation of E(U3). In this case we have P4 at the origin and
the other points in the non-adjacent faces. Let P3 = (x3, y3, 1), P2 =
(x2, 1, z2), and P1 = (1, y1, z1) Cf. Figure 5. Because the points P1,
P2, and P3 sit in a similar position, we have a three-fold symmetry.
WLOG, we are going to treat one of the three equivalent cases and
define

n = (P1 − P4)× (P2 − P4)

and

f = n · (P3 − P4) = n1x3 + n2y3 + n3.

Typically, f ≤ 0 when z1, z2, x3, and y3 are big, compare Figure
5. More precisely, assume that n1 ≤ 0 and n2 ≤ 0. We always have
n3 ≥ 0. The area to integrate x3 and y3 over is seen in Figure 5. We
have x31 = −(n2 + n3)/n1 and y31 = −(n1 + n3)/n2. We have x31 ≤ 1
and y31 ≤ 1 when n1 + n2 + n3 ≤ 0. As can be seen in Figure 6, this
condition does also imply that x31 ≥ 0 and y31 ≥ 0.
Let y(x3, ...) be the solution of f = 0 for y3 and let z(z1, ...) be the

solution of n1 + n2 + n3 = 0 for z2. We get

(3) e =

∫ 1

0

dx2

∫ 1

0

dy1

∫ 1

y1

dz1

∫ 1

z(z1,...)

dz2

∫ 1

x31

dx3

∫ 1

y(x3,..)

dy3

= −
1957

3888
+

11

216
π2.

In this case, the integral of f over B equals 1
2
. We get
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P2P3

x

z

P1

y

x31

P4

y31

Figure 5. The plane f = 0 in Case 3. f is negative
below the plane and x3 and y3 shall be integrated over
the triangle in the top front corner.

E(U3) = (
1

2
− 2 · 3 · e)/6 =

2281

3888
−

11

216
π2.

4.4. Calculation of E(U4). In this case we have P2, P3 and P4 all sit
on edges and P1 is interior. Let P2 = (0, 1, z2), P3 = (x3, 0, 1), and
P4 = (1, y4, 0) Cf. Figure 7.
Define

n = (P2 − P4)× (P3 − P4)

making all nk positive. We get

f = n · (P1 − P4) = n1x1 + n2y1 + n3z1 − x3y4z2 − 1,

and f is negative below the plane f = 0 in Figure 7. This plane
cuts three edges without points at the coordinates x0 = z2n3/n1, y0 =
x3n1/n2, and z0 = y4n2/n3 and these three coordinates are between 0
and 1. Let z(x1, y1, ...) be the solution of f = 0 for z1. The integral
over negative f is

(4) e =

∫ 1

0

dx3

∫ 1

0

dy4

∫ 1

0

dz2

∫ 1

0

dx1

∫ 1

0

dy1

∫ min(z(x1,y1,...),1)

max(z(x1,y1,...),0)

dz1

= −
19

648
−

π2

72
.

By symmetry, the integral of f over B equals 0. We get
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x31 > 0

z1

n1+n2+n3 < 0

y31 > 0

x2

y1
z2

Figure 6. The area to integrate z1 and z2 over when
calculating E(U3). The figure alse shows that the condi-
tions x31 ≥ 0 and y31 ≥ 0 are fulfilled in this area.

E(U4) = −2e/6 =
19

1944
+

π2

216
.

4.5. Calculation of E(U5). In this case P1 and P2 shall sit in opposite
faces. We put P4 on the x-axis and let P3 = (x3, 1, 1), P2 = (0, y2, z2),
and P1 = (1, y1, z1) Cf. Figure 8. Define

n = (P3 − P4)× (P2 − P4)

and

f = n · (P1 − P4) = n1(1− x4) + n2y1 + n3z1.

We have n2 ≤ 0 and n3 ≥ 0. Assuming, WLOG, that z2 ≥ y2, we
have n1 ≥ 0. We have f negative below the plane f = 0 so we shall
integrate over P1 sitting in the triangle in the lower right corner of the
front of the cube. Let z(y1, ...) be the equation of the line through y10
and z10. This triangle exists if y10 = −(1−x4)n1/n2 ≤ 1 (and z10 ≥ 0).



VOLUME OF TETRHEDRON 11

x0

P2

P3

P4

z1

y0

x1

z0

y1

Figure 7. The upper bound of z1 when calculating E(U4).

z10

z

x

y20

P3

P2

y

y10

P4
P1

Figure 8. The plane f = 0 when calculating E(U5).

Explicitely, this condition reads

z2x3 + (1− z2)x4 ≥ (1− x4)(z2 − y2).

Let x(x3, ...) be the solution of this expression for x4. We get
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e =

∫ 1

0

dy2

∫ 1

y2

dz2

∫ 1

0

dx3

∫ 1

max(0,x(x3,...))

dx4

∫ 1

y10

dy1

∫ z(y1,...)

0

f dz1.

This case is not symmetric and the integral of f over the part of B
where z2 ≥ y2 equals 1

12
. Taking the condition z2 ≥ y2 into account,

we get

E(U5) = 2(
1

12
− 2e)/6 =

23

1944
+

π2

324
.

4.6. Calculation of E(U6). This case is similar to case 5, but P1

and P2 shall sit in adjacent faces. We put P4 on the x-axis and let
P3 = (0, y3, 1), P2 = (x2, 1, z2), and P1 = (1, y1, z1) Cf. Figure 9.
Define

n = (P2 − P4)× (P3 − P4)

and

f = n · (P1 − P4) = n1(1− x4) + n2y1 + n3z1.

Here, we have n1 ≥ 0, n3 ≥ 0, while n2 can have any sign. For
f to be negative for positive y1, we must have n2 ≤ 0. Then, y10 =
−(1−x4)n1/n2 ≥ 0. Let z(y1, ...) be the equation of the line through y10
and z10. The triangle to integrate over exists if y10 ≤ 1 (and z10 ≥ 0).
Explicitely, this condition reads

x2 + (x4 + y3 − x4y3)z2 ≥ 1.

Let x(z2, ...) be the solution of this expression for x2. The smallest value
of x(z2, ...) is obtained for z2 = 1 and is x20 = (1− y3)(1−x4) ≥ 0. We
get

e =

∫ 1

0

dx4

∫ 1

0

dy3

∫ 1

0

dz2

∫ 1

x(z2,...)

dx2

∫ 1

y10

dy1

∫ z(y1,...)

0

f dz1.

The integral of f over B equals 1
2
. We get

E(U6) = (
1

2
− 2e)/6 = −

101

3888
+

11

972
π2.

5. The expectation of U .

We get the expectation of U by weighting together the expectations
of the six cases by their probabilities. The required numbers can be
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y10

z10

z

y

x

P4

P3

P2

P1

Figure 9. The plane f = 0 when calculating E(U6).

read from Table 1. We get

E(U) =
6

∑

j=1

pj · E(Uj)

=
1

36
·
11

432
+

1

3
· (

605

7776
−

π2

324
) +

1

9
· (
2281

3888
−

11π2

216
) +

1

9
· (

19

1944
+

π2

216
)

+
1

12
· (

23

1944
+

π2

324
) +

1

3
· (−

101

3888
+

11π2

972
) =

3977

46656
−

25π2

11664
.

6. The independence of U and V .

U and V are independent because they are functions of separate
coordinates of the points Pk and the coordinates are independent. The
separation varies from case to case. For instance in case 1, V is a
function of the six variables x3, y3, z3, x4, y4, and z4. The remaining
six variables are those integrated over when calculating U1. In case 6,
for instance, V is a function of the six variables x1, x3, y4, y2, z4, and
z3 while U6 is a function of the remaining variables.

7. The expectation of V .

We shall calulate the expectation of V = volume(B)/volume(A).
The sidelength of B in the x-direction is

sx = max
1≤k≤4

xk − min
1≤k≤4

xk.

In the average, the four xk divide the unit length of the cube side into
five intervals of equal length We get E(sx) =

3
5
. The average in the y-,
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and z-directions are the same so we have

E(V ) =

(

3

5

)3

.

8. The expectation of the volume of a tetrahedron in a

cube.

Having calculated the expectations of the independent random vari-
ables U and V , we get the expectation of their product X, which is the
sought expectation of the volume of a random tetrahedron in a unit
cube:

E(X) =E(U) · E(V ) = (
3977

46656
−

25π2

11664
) ·

27

125

=
3977

216000
−

π2

2160
≈ .013842776.

This number coincides with that obtained by Zinani [13] and with
Monte Carlo tests.

9. Comments.

Even though the multiple integrals of this paper seem harmless to
evaluate, they are not. They involve integrals of unbounded functions
and several boundary insertions require a limiting process. Relations
between dilogarithmic functions must be employed, see [1]. The order
of integration is crucial. In many places the number of terms is of
the order one hundred and we rely heavily on the use of a symbolic
calculation program, in this case Maple 10.
Like us, Zinani [13] considers several geometrical cases. He has five

cases and we have six. There is no correspondence between these case.
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