# THE AREA OF A RANDOM CONVEX POLYGON IN A TRIANGLE. 

JOHAN PHILIP


#### Abstract

We deduced the probability distribution function for the area of the convex hull of three, and of four random points in a triangle. We also give some results about the number of vertices of these convex hulls.


## 1. Introduction

Either three or four points are generated at random inside a triangle $A$. Let $T$ be the triangle or quadrangle spanned by the random points. We shall consider the random variable $X=\operatorname{area}(T) / \operatorname{area}(A)$. It is well known that any affine transformation will preserve the ratio $X$. This follows from the fact that the area scaling is constant for an affine transformation. The scale equals the determinant of the homogeneous part of the transformation. This means that our results hold for any shape of $A$.

Various aspects of our problem have been considered in the field of geometric probability, see e.g. [10]. J. J. Sylvester considered the problem of a random triangle $T$ in an arbitrary convex set $K$ and posed the following problem: Determine the shape of $K$ for which the expected value $\kappa=E(X)$ is maximal and minimal. A first attempt to solve the problem was published by M. W. Crofton in 1885. Wilhelm Blaschke [3] proved in 1917 that $\frac{35}{48 \pi^{2}} \leq \kappa \leq \frac{1}{12}$, where the minimum is attained only when $K$ is an ellipse and the maximum only when $K$ is a triangle. The upper and lower bounds of $\kappa$ only differ by about $13 \%$. It has been shown, $[2]$ that $\kappa=\frac{11}{144}$ for $K$ a square.
A. Reńyi and R. Sulanke, [8] and [9], consider the area ratio when the triangle $T$ is replaced by the convex hull of $n$ random points. They obtain asymptotic estimates of $\kappa$ for large $n$ and for various convex $K$. R. E. Miles [6] generalizes these asymptotic estimates for $K$ a circle to higher dimensions. C. Buchta and M. Reitzner, [4], has given values of $\kappa$ (generalized to three dimensions) for $n \geq 4$ points in a tetrahedron.
H. A. Alikoski [2] has given expressions for $\kappa$ when $n=3$ and $K$ a regular $r$-polygon. In a previous paper, [7], we have given the whole probability distribution of $X$ for $n=3$ and $n=4$ and $K$ a parallelogram. We also gave some asymptotic estimates in the spirit of Reńyi

[^0]and Sulanke. Here we deduce the whole distribution of $X$ for $n=3$ and $n=4$ when $K$ is a triangle. From these distributions we calculate some probabilities for the number of vertices of random convex polygons. All calculated quantities of this paper have been confirmed by Monte Carlo tests.

## 2. Notation and formulation.

As $A$, we will chose a triangle having vertices in $(0,0),(0,1)$, and $(1,0)$. We use a constant probability density in $A$ for generating $n$ random points in $A$. The points will be denoted $P_{k}$ and have coordinates $\left(x_{k}, y_{k}\right)$ for $1 \leq k \leq n$. Let $T$ be the convex hull of the $n$ points. We shall determine the probability distribution of the random variable $X=\operatorname{area}(T) / \operatorname{area}(A)$ when $n=3$ and 4 .

The generated $T$ spans a triangle with sides parallell to the sides of $A$. We will call this spanned triangle $B$. The random variable $X$, that we study will be written as the product of the two independent random variables

$$
U=\operatorname{area}(T) / \operatorname{area}(B) \text { and } V=\operatorname{area}(B) / \operatorname{area}(A) .
$$

Roughly speaking, $U$ describes the shape of $T$ and $V$ its size. It's not obvious that the size $V$ is independent of the shape $U$. The independence will be shown in section 3.3. We shall determine the distributions for $U$ and $V$ and combine them to get the distribution of $X=U V$.

## 3. The convex hull of three points.

The convex hull of three points is with probability one a triangle.

### 3.1. The two geometrical cases for three points and their prob-

abilities. Since $B$ is spanned by $T$, two or three of the vertices of $T$ sit on the boundary of $B$. We have two cases: (1) Two vertices sit on the boundary and one is interior and (2) All three vertices sit on the boundary. These two cases are pictured in Figures 1 and 2.

In Figure 1, we have without loss of generality (WLOG) chosen $P_{1}$ to be the point that sits in a vertex of $B$, and this vertex is chosen to be the lower left vertex. The point $P_{2}$ sits on the opposite side and $P_{3}$ is interior.

When studying the ratio $U$, we have enlarged $B$ so that its vertices are $(0,0),(0,1)$, and $(1,0)$.

We shall show that the cases 1 and 2 occur with the probabilities $p_{1}=\frac{3}{5}$ and $p_{2}=\frac{2}{5}$, respectively.

To this end, we shall calculate the probability that $P_{1}, P_{2}$, and $P_{3}$ sit as in Figure 1. This is the case if

$$
x_{1} \leq x_{2}, \quad x_{1} \leq x_{3}, \quad y_{1} \leq y_{2}, \quad y_{1} \leq y_{3}, \quad \text { and } x_{3}+y_{3} \leq x_{2}+y_{2} .
$$



Figure 1. Triangle with point 1 in a vertex, point 2 on the opposite side, and point 3 interior in the 'big' subtriangle B that it spanns (Case 1).


Figure 2. Triangle with points 1, 2, and 3 on the boundary of the 'big' subtriangle B that it spanns (Case 2).

We write the expression first and explain it afterwards.

$$
\begin{aligned}
& \operatorname{Prob}\left(\text { The } P_{k} \text { sit as in Figure } 1 \text { ) }=8 \int_{0}^{1} d x_{1} \int_{0}^{1-x_{1}} d y_{1}\right. \\
& \int_{x_{1}}^{1-y_{1}} d x_{2} \int_{y_{1}}^{1-x_{2}} d y_{2} \int_{x_{1}}^{x_{2}+y_{2}-y 1} d x_{3} \int_{y_{1}}^{x_{2}+y_{2}-x_{3}} d y_{3}=\frac{1}{30} .
\end{aligned}
$$

The factor 8 is $2^{3}$, where the factor 2 is the inverse of the triangle area. The three points can be put in the three positions: lower left corner, interior, and right side in $\frac{3!}{1!1!!!}=6$ ways. It follows from the affine invariance that all three vertices of $B$ have the same probability of coinciding with one of the generated points, so Case 1 occurs with the probability $p_{1}=\frac{6 \cdot 3}{30}=\frac{3}{5}$. The complementary event, Case 2 , has the probability $p_{2}=\frac{2}{5}$.


Figure 3. The triangle area fraction $U$ is less than $u$ if the point $P_{3}$ sits between the lines marked $\pm u$. This doesn't happen in this figure.
3.2. The distribution of $U$. We denote the distribution functions of the fraction $U$ by $H_{3,1}(u)$ and $H_{3,2}(u)$, respectively, in the two cases.
3.2.1. Calculation of $H_{3,1}(u)$ for Case 1. Referring on Figure 3, we let $P_{1}$ be in the vertex, $P_{2}$ be the point on the side opposite to $P_{1}$ and $P_{3}$ be interior. Once $P_{2}$ is known to sit on the side of $B$, its conditional density is the restriction to the side of the density in the triangle, meaning that the density is constant along the side. The side $P_{1} P_{2}$ of $T$ has length $d=\sqrt{x_{2}^{2}+\left(1-x_{2}\right)^{2}}$. We have $\operatorname{area}(T) / \operatorname{area}(B) \leq u$ if the distance from $P_{1} P_{2}$ to $P_{3}$ is smaller than $u / d$. This happens if $P_{3}$ sits between the lines

$$
-\frac{\xi}{x_{2}}+\frac{\eta}{1-x_{2}}= \pm \frac{u}{x_{2}\left(1-x_{2}\right)}
$$

For fixed $u$ and $x_{2}$, the area between the lines takes up the following fraction of $B$ when $0 \leq u \leq 1 / 2$.

$$
f\left(u \mid x_{2}\right)= \begin{cases}1-\frac{\left(1-u-x_{2}\right)^{2}}{1-x_{2}}, & 0 \leq x_{2} \leq u  \tag{1}\\ 1-\frac{\left(1-u-x_{2}\right)^{2}}{1-x_{2}}-\frac{\left(x_{2}-u\right)^{2}}{x_{2}}, & u \leq x_{2} \leq 1-u \\ 1-\frac{\left(x_{2}-u\right)^{2}}{x_{2}}, & 1-u \leq x_{2} \leq 1\end{cases}
$$

For $1 / 2 \leq u \leq 1$, we have instead.

$$
f\left(u \mid x_{2}\right)= \begin{cases}1-\frac{\left(1-u-x_{2}\right)^{2}}{1-x_{2}}, & 0 \leq x_{2} \leq 1-u  \tag{2}\\ 1, & 1-u \leq x_{2} \leq u \\ 1-\frac{\left(x_{2}-u\right)^{2}}{x_{2}}, & u \leq x_{2} \leq 1\end{cases}
$$

We get the wanted distribution function by integrating the conditional probability $f\left(u \mid x_{2}\right)$ over $x_{2}$ :


Figure 4. The triangle area fraction $U$ is less than $u$ if the point $P 3$ sits to the left of the line marked $1+u / x_{1} y_{2}$, as it does in this figure.

$$
\begin{equation*}
\operatorname{Prob}(U \leq u)=H_{3,1}(u)=\int_{0}^{1} f\left(u \mid x_{2}\right) d x_{2} \tag{3}
\end{equation*}
$$

Even though the expressions (1) and (2) are different, we get one analytic expression for $H_{3,1}(u)$ valid for all $u$. We will not carry out the integrations in detail, but just present the results ${ }^{1}$

$$
\begin{equation*}
H_{3,1}(u)=4 u-3 u^{2}+2 u^{2} \log (u), \quad 0 \leq u \leq 1 . \tag{4}
\end{equation*}
$$

3.2.2. Calculation of $H_{3,2}(u)$ for Case 2. In Case 2, we have the situation depicted in Figure 4 with one point on each side of $B$. Let $P_{1}$ be the point on the $x$-axis, $P_{2}$ on the $y$-axis and let $P_{3}$ sit on the slanted side. For fixed $x_{1}$ and $y_{2}$, one side of $T$ has the length $d=\sqrt{x_{1}^{2}+y_{2}^{2}}$. If the orthogonal distance from this side to $P_{3}$ is less than $u / d$, we have an area fraction less than $u$. This happens if $P_{3}$ is to the left of the line

$$
\frac{\xi}{x_{1}}+\frac{\eta}{y_{2}}=1+\frac{u}{x_{1} y_{2}} .
$$

This line intersects the $P_{3}$-line $x_{3}+y_{3}=1$ in the point

$$
\begin{equation*}
\xi_{3}=\frac{u-x_{1}\left(1-y_{2}\right)}{y_{2}-x_{1}} . \tag{5}
\end{equation*}
$$

When handling this expression, WLOG, we can assume that $y_{2}>x_{1}$.
We have $x_{3}$ evenly distributed in $(0,1)$, so the area fraction $f\left(u \mid x_{1}, y_{2}\right)$ will be less than $u$ when $x_{3} \leq \xi_{3}$ provided $0 \leq \xi_{3} \leq 1$, otherwise zero or one. We get

[^1]

Figure 5. Area to integrate $f\left(u \mid x_{1}, y_{2}\right)$ over when $u \leq 1 / 4$.
(6) $\quad f\left(u \mid x_{1}, y_{2}\right)= \begin{cases}0, & u \leq x_{1}\left(1-y_{2}\right), \\ \frac{u-x_{1}\left(1-y_{2}\right)}{y_{2}-x_{1}}, & x_{1}\left(1-y_{2}\right) \leq u \leq y_{2}\left(1-x_{1}\right), \\ 1, & y_{2}\left(1-x_{1}\right) \leq u .\end{cases}$

Like in Case 1, we get

$$
\begin{equation*}
\operatorname{Prob}(U \leq u)=H_{3,2}(u)=2 \int_{0}^{1} d x_{1} \int_{x_{1}}^{1} f\left(u \mid x_{1}, y_{2}\right) d y_{2} \tag{7}
\end{equation*}
$$

The factor 2 accounts for the restriction $y_{2}>x_{1}$. The nonlinear boundaries of the domain of definition of $f\left(u \mid x_{1}, y_{2}\right)$, requires two different ways of calculating this integral, one for $u \leq 1 / 4$ and one for $u>1 / 4$. The areas to integrate over in the two cases are depicted in Figures 5 and 6 . For $u \leq 1 / 4$, we use the substitution $t=x_{1}-\frac{1}{2}+\sqrt{1 / 4-u}$ when carrying out the integration in 7 .

We get

$$
H_{3,2}(u)= \begin{cases}\frac{1}{3}\left(\log \frac{1-3 u+(1-u) \sqrt{1-4 u}}{2 u^{3 / 2}}\right)(1-4 u)^{3 / 2} &  \tag{8}\\ +\frac{1}{2}(1-6 u) \log u+u, & 0 \leq u \leq 1 / 4, \\ \frac{1}{3}\left(\arccos \frac{1-3 u}{2 u^{3 / 2}}-\pi\right)(4 u-1)^{3 / 2} & \\ +\frac{1}{2}(1-6 u) \log u+u, & 1 / 4<u \leq 1\end{cases}
$$

The density functions for Case 1 and 2 are shown in Figure 7.
3.3. The distribution of $V$ for three generated points. We shall calulate the distribution $G_{3}(v)$ of the ratio $V=\operatorname{area}(B) / \operatorname{area}(A)$. One could suspect that the distribution of $V$ might be different in the Cases


Figure 6. Area to integrate $f\left(u \mid x_{1}, y_{2}\right)$ over when $u>1 / 4$.


Figure 7. Density functions $d H_{3,1} / d u$ and $d H_{3,2} / d u$ for cases 1 and 2.

1 and 2 , so that $V$ would be dependent of $U$. This is not the case, but we have found no simple way of proving it. Therefore, we shall calculate the distribution function of $V$ for both cases and we will find that they are identical. We do Case 1 here and Case 2 in Appendix B.

Case 1 is characterized by the following set of inequalities

$$
x_{1} \leq x_{2} \quad x_{1} \leq x_{3} \quad y_{1} \leq y_{2} \quad y_{1} \leq y_{3}
$$

WLOG, we can add the inequality $x_{3}+y_{3} \leq x_{2}+y_{2}$. We start by calculating the probability that this situation occurs .

$$
\begin{align*}
& p_{c 1}=\operatorname{Prob}(\text { Case } 1)=  \tag{9}\\
& \int_{0}^{1} d x_{1} \int_{0}^{1-x_{1}} d y_{1} \int_{x_{1}}^{1-y_{1}} d x_{3} \int_{y_{1}}^{1-x_{3}} d y_{3} \int_{x_{1}}^{1-y_{1}} d x_{2} \int_{y_{1}}^{1-x_{2}} 1 d y_{2}=\frac{1}{120 .}
\end{align*}
$$



Figure 8. Area to integrate $k_{a}$ and $k_{b}$ over in the $x_{1}, y_{1}$-plane
We continue by calculating the probability that the horisontal side length of $B$, which is $S=x_{2}+y_{2}-x_{1}-y_{1}$, is less than $s$. We have two different integrations over $x_{2}, y_{2}, x_{3}$, and $y_{3}$ depending on whether $s+x_{1}+y_{1}-1$ is negative or positive. Calling the two cases a and b , we have the following conditional probabilities

$$
k_{1 a}\left(s \mid x_{1}, y_{1} ; s+x_{1}+y_{1} \leq 1\right)=
$$

$$
\begin{equation*}
\int_{x_{1}}^{s+x_{1}} d x_{3} \int_{y_{1}}^{s+x_{1}+y_{1}-x_{3}} d y_{3} \int_{x_{1}}^{s+x_{1}} d x_{2} \int_{y_{1}}^{s+x_{1}+y_{1}-x_{2}} d y_{2}=\frac{s^{4}}{4} \tag{10}
\end{equation*}
$$

and

$$
\begin{align*}
& k_{1 b}\left(s \mid x_{1}, y_{1} ; s+x_{1}+y_{1}>1\right)= \\
& \int_{x_{1}}^{1-y_{1}} d x_{3} \int_{y_{1}}^{1-x_{3}} d y_{3} \int_{x_{1}}^{1-y_{1}} d x_{2} \int_{y_{1}}^{1-x_{2}} d y_{2}=\frac{\left(1-x_{1}-y_{1}\right)^{4}}{4} . \tag{11}
\end{align*}
$$

The areas to integrate over in the $x_{1} y_{1}$-plane are shown in Figure 8. We get

$$
\begin{align*}
& K_{3,1}(s)=\operatorname{Prob}(S \leq s)=\frac{1}{p_{c 1}}\left(\int_{0}^{1-s} d x_{1} \int_{0}^{1-s-x_{1}} k_{1 a} d y_{1}\right. \\
& \left.+\int_{0}^{1-s} d x_{1} \int_{1-s-x_{1}}^{1-x_{1}} k_{1 b} d y_{1}+\int_{1-s}^{1} d x_{1} \int_{0}^{1-x_{1}} k_{1 b} d y_{1}\right)  \tag{12}\\
& =15 s^{4}-24 s^{5}+10 s^{6} .
\end{align*}
$$

The corresponding calculation in Case 2 (compare Figure 2) is more complicated and deferred to appendix B. It results in the same distribution function as in (12).

Since the area ratio $V=\frac{\operatorname{area}(B)}{\operatorname{area}(A)}=\frac{S^{2} / 2}{1 / 2}=S^{2}$, we get the distribution function for $V$ directly

$$
\begin{equation*}
G_{3}(v)=15 v^{2}-24 v^{5 / 2}+10 v^{3}, \quad 0 \leq v \leq 1 \tag{13}
\end{equation*}
$$

3.4. The distribution of $X$ for three generated points. Having the distribution functions $H_{3,1}(u), H_{3,2}(u)$ and $G_{3}(v)$ of $U$ and $V$, we can start calculating the distribution function $F_{3}(x)$ of $X=U V$. We have

$$
\begin{aligned}
& \operatorname{Prob}(X \leq x)=F_{3}(x)= \\
& \operatorname{Prob}\left(\text { Case 1) } F_{3}(x \mid \text { Case 1 })+\operatorname{Prob}\left(\text { Case 2) } F_{3}(x \mid \text { Case 2). }\right.\right.
\end{aligned}
$$

For $i=1$ or 2 , we have

$$
F_{3}(x \mid \text { Case i })=\operatorname{Prob}\left(X=U_{i} V_{i} \leq x\right)=\int_{0}^{1} G_{3, i}(x / u) d H_{3, i}(u)
$$

Since $G$ is the same in both cases, we form

$$
H_{3}(u)=p_{c 1} H_{3,1}(u)+p_{c 2} H_{3,2}(u)=\frac{3}{5} H_{3,1}(u)+\frac{2}{5} H_{3,2}(u),
$$

and can write

$$
\begin{align*}
& F_{3}(x)=\int_{0}^{1} G_{3}(x / u) d H_{3}(u)= \\
& =\left[G_{3}(x / u) H_{3}(u)\right]_{0}^{1}-\int_{x}^{1} H_{3}(u) \frac{d}{d u} G_{3}(x / u) d u=  \tag{14}\\
& =G_{3}(x)-\int_{x}^{1} H_{3}(u) \frac{d}{d u} G_{3}(x / u) d u, \quad 0 \leq x \leq 1 .
\end{align*}
$$

The partial intergration in (14) is used to avoid integrating to the lower bound $u=0$.

We will not carry out the integration (14) in detail, but will just give the result


Figure 9. Density function $d F_{3}(x) / d x$ for the area fraction of the convex hull of three random points inside a triangle.
(15)

$$
\begin{aligned}
& F_{3}(x)= \\
& \left\{\begin{array}{c}
8\left(2 x^{3}+3 x^{2}\right)\left(3 \log \frac{1+\sqrt{1-4 x}}{2} \log \frac{1+\sqrt{1-4 x}}{2 x}-\pi^{2} / 3\right) \\
+\frac{1}{5}\left(324 x^{2}+28 x-1\right)\left(\log x-2 \log \frac{1+\sqrt{1-4 x}}{2}\right) \sqrt{1-4 x} \\
+12 x^{3}(\log x)^{2}-\left(54 x^{2}+6 x-1 / 5\right) \log x-57 x^{2} / 5+62 x / 5 \\
0 \leq x \leq 1 / 4 \\
8\left(2 x^{3}+3 x^{2}\right)\left(\left(2 \pi-3 \arccos \frac{1}{2 \sqrt{x}}\right) \arccos \frac{1}{2 \sqrt{x}}-\pi^{2} / 3\right) \\
+\frac{2}{5}\left(324 x^{2}+28 x-1\right)\left(\arccos \frac{1}{2 \sqrt{x}}-\pi / 3\right) \sqrt{4 x-1} \\
-18 x^{2}(\log x)^{2}-\left(54 x^{2}+6 x-1 / 5\right) \log x-57 x^{2} / 5+62 x / 5 \\
1 / 4<x \leq 1
\end{array}\right.
\end{aligned}
$$

The density $d F_{3}(x) / d x$ is shown in Figure 9.

The first moments and the standard deviation of $X$ are

$$
\begin{align*}
\alpha_{1} & =\int_{0}^{1} x d F_{3}(x)=\frac{1}{12}  \tag{16}\\
\alpha_{2} & =\int_{0}^{1} x^{2} d F_{3}(x)=\frac{1}{72}  \tag{17}\\
\sigma & =\sqrt{\alpha_{2}-\alpha_{1}^{2}}=\frac{1}{12}  \tag{18}\\
\alpha_{3} & =\int_{0}^{1} x^{3} d F_{3}(x)=\frac{31}{9000} \approx .00344 . \tag{19}
\end{align*}
$$

## 4. The convex hull of four points.

With four generated points, the convex hull can be either a triangle or a quadrangle.
4.1. The five geometrical cases for four points and their probabilities. We have the same cases as with three points characterized by the number of generated points that span the 'big' subtriangle $B$, but these cases split up into subcases depending on the position of the fourth point. The cases and their probabilities are described in table I. The points will be denoted $P_{1}, P_{2}, P_{3}$, and $P_{4}$. The indices have nothing to do with the order in which they were generated or anything else.

It can be read from the total probability row of table 1 that the probability that four points generate a triangle is $\frac{1}{3}$. This is in accordance with the following arguement: The probability that the fourth point shall sit in the triangle generated by the first three points equals the average area fraction for three points which is $\frac{1}{12}$. The fourth point can be chosen in 4 ways, so the probability for triangle is $\frac{4}{12}=\frac{1}{3}$.
4.2. Case probabilities for four points. We shall calculate the probabilities listed in table 1 and the $U$-distributions for the five cases. We start with the probabilities $\frac{3}{7}$ and $\frac{4}{7}$, for the main cases which correspond to to cases 1 and 2 for three points. Case 1 encompasses cases a , b , and c, Case 2 cases d, and e. The calculations are analogous to those in section 3.1.

To this end, we shall calculate the probability that $P_{1}$ with coordinates $x_{1}$ and $y_{1}$ is the lower left vertex of $B$ and $P_{2}$ sits on the opposite side of $B$. This is the case if

$$
\begin{gathered}
x_{1} \leq x_{2}, \quad x_{1} \leq x_{3}, \quad x_{1} \leq x_{4}, \quad y_{1} \leq y_{2}, \quad y_{1} \leq y_{3} \quad y_{1} \leq y_{4}, \\
\\
x_{3}+y_{3} \leq x_{2}+y_{2} \text { and } x_{4}+y_{4} \leq x_{2}+y_{2} .
\end{gathered}
$$

We write the expression first and explain it afterwards.

| case | a | b | c | d | e |
| :---: | :---: | :---: | :---: | :---: | :---: |
| char. | $P_{1}$ in vertex of B |  |  | $\begin{gathered} P_{1}, P_{2}, \text { and } P_{3} \\ \text { on the sides of B } \end{gathered}$ |  |
| Prob | $\frac{3}{7}$ |  |  | $\frac{4}{7}$ |  |
| char. | $P_{3}$ and $P_{4}$ on same side |  | $P_{3}$ and $P_{4}$ on opposite sides | $P_{4}$ interior | $P_{4}$ exterior |
| Prob | $\frac{2}{3}$ |  | $\frac{1}{3}$ | $\frac{1}{4}$ | $\frac{3}{4}$ |
|  |  |  | quadrangle | triangle | quadrangle |
| char. | triangle | quadra |  |  |  |
| Prob | $\frac{2}{3}$ | $\frac{1}{3}$ |  |  |  |
| total <br> Prob | $\frac{4}{21}$ | $\frac{2}{21}$ | $\frac{1}{7}$ | $\frac{1}{7}$ | $\frac{3}{7}$ |
| $E_{U}$ | $\frac{3}{8}$ | $\frac{1}{3}$ | $\frac{1}{3}$ | $\frac{1}{3}$ | $\frac{10}{27}$ |

Table 1. The 5 geometrical cases for four points, their characterizations and their probabilities. The last row holds the mathematical expectation of $U$ in each case.
$\operatorname{Prob}\left(\right.$ the $P_{i}$ sit as described above $)=$
$16 \int_{0}^{1} d x_{1} \int_{0}^{1-x_{1}} d y_{1} \int_{x_{1}}^{1-y_{1}} d x_{2} \int_{y_{1}}^{1-x_{2}} d y_{2} \int_{x_{1}}^{x_{2}+y_{2}-y 1} d x_{3}$
$\int_{y_{1}}^{x_{2}+y_{2}-x_{3}} d y_{3} \int_{x_{1}}^{x_{2}+y_{2}-y_{1}} d x_{4} \int_{y_{1}}^{x_{2}+y_{2}-x_{4}} d y_{4}=\frac{1}{84}$.
The factor 16 is $2^{4}$, where factor 2 is the inverse of the triangle area. The four points can be put in the three positions: lower left corner, two interior, and one on the right side in $\frac{4!}{1!2!1!}=12$ ways. It follows from the affine invariance that all three vertices of $B$ have the same probability of coinciding with one of the generated points, so Case 1 occurs with the probability $p_{1}=\frac{12 \cdot 3}{84}=\frac{3}{7}$. The complementary event, Case 2, has the probability $p_{2}=\frac{4}{7}$.

Moving to the second level in table 1, we start by considering the splitting of case 1 into cases $\mathrm{a}+\mathrm{b}$ and case c . Case c is characterized by that the points $P_{3}$ and $P_{4}$ sit on opposite sides of the line $P_{1} P_{2}$. When calculating the probability for this to happen, we scale up $B$ so that it fills the whole $A$. For fixed $x_{2}$, the probability is $x_{2}$ that a point sits to


Figure 10. The areas relevant for calculation of cases a and b .
the left of $P_{1} P_{2}$. We get

$$
\operatorname{Prob}(\text { one on each side })=\binom{2}{1} \int_{0}^{1} x_{2}\left(1-x_{2}\right) d x_{2}=\frac{1}{3} .
$$

Case d, which is a subcase of 2 occurs when $P_{4}$ sits in the triangle $T=P_{1} P_{2} P_{3}$, cf. Figure 2. The area of $T$ is $\frac{1}{2}\left(x_{1}\left(1-y_{2}\right)+x_{3}\left(y_{2}-x_{1}\right)\right)$. We get

$$
\operatorname{Prob}\left(P_{4} \text { in } T\right)=\int_{0}^{1} d x_{1} \int_{0}^{1} d y_{2} \int_{0}^{1}\left(x_{1}\left(1-y_{2}\right)+x_{3}\left(y_{2}-x_{1}\right)\right) d x_{2}=\frac{1}{4}
$$

In studying the discrimination between cases a and b on the third level of table 1, we refer to Figure 10. This Figure shows an affine transformation of the triangle with vertices: top vertex of $B, P_{1}$, and $P_{2}$ on the vertices $(0,1),(0,0)$, and $(1,0)$, respectively. The point $P_{3}$ is assumed to sit in this triangle and is mapped on $(x, y)$. The point $(x, y)$ determines the four triangles $T_{1}-T_{4}$ in Figure 10. Let $q_{i}=\operatorname{Prob}\left(P_{4} \in T_{i}\right)$. We have $q_{i}$ is proportional to the area of $T_{i}$ :

$$
q_{1}=\frac{x y}{1-x}, \quad q_{2}=\frac{x}{x+y}-\frac{x y}{1-x}, \quad q_{3}=\frac{y}{x+y}-y, \quad q_{4}=y .
$$

The quadrangle case b occurs if $P_{4}$ sits in $T_{1}$ or $T_{3}$ and by the affine invariance, the probabilities are the same for these two triangles. We get

$$
\operatorname{Prob}(\text { quadrangle })=2\binom{2}{1} \int_{0}^{1} d x \int_{0}^{1-x} q_{1} d y=\frac{1}{3} .
$$

We get the total probabilities for each case in table 1 by multiplying together the case splitting probabilities above them.
4.3. Calculation of the $U$-distributions for the five cases. Each case requires its own calculation. As it turns out, the complexity of the calculations increases from case a through $b, c$, and $d$ to the most complicated case e. The cases a, b, and c are similar and we will do cases a and b here and case c in Appendix C. Case d will be done here and case e in Appendix D.
4.3.1. Calculation of $H_{4 a}(u)$. In cases a and b, we have $P_{1}, P_{2}$, and $P_{3}$ as in Figure 3 and $P_{4}$ falling on the same side of $P_{1} P_{2}$ as $P_{3}$. Case a occurs when $P_{4}$ sits in $T_{2}$ or $T_{4}$ in Figure 10. By the affine invariance, the distributions for these two sets are the same and we will do the calculations for $T_{4}$. We have

$$
\operatorname{Prob}(U<z)=\operatorname{Prob}\left(2 T_{4}<z\right)=\operatorname{Prob}(y<z)= \begin{cases}1, & y<z \\ 0, & y \geq z\end{cases}
$$

We integrate this conditional probability times the probability that it occurs $=q_{4}=y$ and get

$$
\begin{equation*}
K_{a}(z)=\left(\frac{1}{2}\right)^{-1}\left(\frac{1}{3}\right)^{-1} \int_{0}^{z} d y \int_{0}^{1-y} y d x=3 z^{2}-2 z^{3}, \quad 0 \leq z \leq 1 \tag{20}
\end{equation*}
$$

The whole triangle in Figure 10 is the affine image of the triangle to the left of $P_{1} P_{2}$ of size $x_{2} / 2$. This implies that the conditional distribution for $U$ is $f\left(u \mid x_{2}\right)=K_{a}\left(u / x_{2}\right)$, when $x_{2} \geq u$ else 1 . We get the distribution function for $U$ by integrating $f\left(u \mid x_{2}\right)$ times the probability $=3 x_{2}^{2}$ that $P_{3}$ and $P_{4}$ sit to the left of $P_{1} P_{2}$

$$
\begin{array}{r}
H_{4 a}(u)=\int_{0}^{u} 3 x_{2}^{2} d x_{2}+\int_{u}^{1} 3 x_{2}^{2} K_{a}\left(u / x_{2}\right) d x_{2}=u^{2}(9-8 u+6 u \log u),  \tag{21}\\
0 \leq u \leq 1 .
\end{array}
$$

4.3.2. Calculation of $H_{4 b}(u)$. In case b, we have again the situation depicted in Figure 3 with $P_{3}$ and $P_{4}$ falling on the same side of $P_{1} P_{2}$. Case b occurs when $P_{4}$ sits in $T_{1}$ or $T_{3}$ in Figure 10. By the affine invariance, the distributions for these two sets are the same and we will do the calculations for $P_{4} \in T_{1}$. Let $w$ be the fraction of $T_{1}$ that together with $T_{4}$ forms the quadrangle. We get the quadrangle area $Z=w q_{1}+q_{4}$. The distribution function for the fraction that the area nearest to the base takes up of a triangle is

$$
\begin{equation*}
\phi(w)=1-(1-w)^{2}=2 w-w^{2} \text { when } 0 \leq w \leq 1 \text {, else } 0 \text { or } 1 \tag{22}
\end{equation*}
$$

We get

$$
f(z \mid x, y)=\phi(w)=\phi\left(\frac{z-q_{4}}{q_{1}}\right)=\phi\left(\frac{(z-y)(1-x)}{x y}\right),
$$

when $y<z \leq y /(1-x)$, else 0 or 1 . We get the $Z$-distribution by integrating $f(z \mid x, y)$ times the probability density $\left(=q_{1}\right)$ for $(x, y)$

$$
\begin{aligned}
K_{b}(z) & =\left(\frac{1}{6}\right)^{-1} \int_{0}^{z} d y\left(\int_{0}^{1-y / z} q_{1} d x+\int_{1-y / z}^{1-y} q_{1} \phi\left(\frac{(z-y)(1-x)}{x y}\right) d x\right) \\
& =6(1-3 z)(1-z) \log (1-z)-8 z^{3}+3 z^{2}+6 z \\
& +2 z^{2}\left(6 \operatorname{Li}_{2}(z)-\pi^{2}\right)
\end{aligned}
$$

where $\mathrm{Li}_{2}(z)$ is the dilogarithm function, see Appendix A. With the same argument as in case a, we get (compare (21))

$$
\begin{align*}
H_{4 b}(u) & =\int_{0}^{u} 3 x_{2}^{2} d x_{2}+\int_{u}^{1} 3 x_{2}^{2} K_{b}\left(u / x_{2}\right) d x_{2} \\
& =u\left(-44 u^{2}+39 u+6\right)+12 u^{3} \log u  \tag{23}\\
& -6\left(2 u^{2}+5 u-1\right)(1-u) \log (1-u)+6 u^{2}\left(6 \operatorname{Li}_{2}(u)-\pi^{2}\right) \\
& 0 \leq u \leq 1 .
\end{align*}
$$

4.3.3. Calculation of $H_{4 d}(u)$. In case d, we have the situation depicted in Figure 4 with $P_{4}$ falling inside $T$. The calculations are similar to those in section 3.2.2. There, we got $f\left(u \mid x_{1}, y_{2}\right)$ by integrating 1 from 0 to $\xi_{3}$. Here, we shall not integrate 1, but the probability that $P_{4}$ sits in $T$ over the same interval. This probability is proportional to the size of $T=x_{1}\left(1-y_{2}\right)+x_{3}\left(y_{2}-x_{1}\right)$. Integrating over $x_{3}$, we get (compare (6))

$$
f\left(u \mid x_{1}, y_{2}\right)=\left\{\begin{array}{lr}
0, & u \leq x_{1}\left(1-y_{2}\right)  \tag{24}\\
x_{1}\left(1-y_{2}\right) \xi_{3}+\left(y_{2}-x_{1}\right) \xi_{3}^{2} / 2, & x_{1}\left(1-y_{2}\right) \leq u \leq y_{2}\left(1-x_{1}\right) \\
\left(x_{1}+y_{2}\right) / 2-x_{1} y_{2}, & y_{2}\left(1-x_{1}\right) \leq u
\end{array}\right.
$$

where $\xi_{3}$ is given in (5). Like in (3), we get

$$
\begin{equation*}
\operatorname{Prob}(U \leq u)=H_{4 d}(u)=2\left(\frac{1}{4}\right)^{-1} \int_{0}^{1} d x_{1} \int_{x_{1}}^{1} f\left(u \mid x_{1}, y_{2}\right) d y_{2} \tag{25}
\end{equation*}
$$

The areas to integrate over are the same as in Figures 5 and 6, but the value of $f\left(u \mid x_{1}, y_{2}\right.$ is not 1 in the corners as given in the Figures but the value given above.


Figure 11. Density function $d H_{4 d}(u) / d u$ for $U$ in case d. The peak value is $6 \log (2)$.

We get

$$
\begin{equation*}
H_{4 d}(u)=\left\{\right. \tag{26}
\end{equation*}
$$

4.4. The distribution of $U$ for four generated points. We get the total fraction distribution $H_{4}(u)$ by weighting together the five case distributions with the weights given on the last line but one in table 1.


Figure 12. Density function $d H_{4}(u) / d u$ for the area fraction of the 'big' subtriangle for four random points in a triangle.

$$
\begin{align*}
H_{4}(u) & =\frac{4}{21} H_{4 a}(u)+\frac{2}{21} H_{4 b}(u)+\frac{1}{7} H_{4 c}(u)+\frac{1}{7} H_{4 d}(u)+\frac{3}{7} H_{4 e}(u)=  \tag{27}\\
& =\left\{\begin{array}{l}
+\frac{16}{35}\left(9 u^{2}+13 u-1\right) \sqrt{1-4 u}\left(\log \left(\frac{1+\sqrt{1-4 u}}{2}\right)-\log (u) / 2\right) \\
-\frac{72}{7} u^{2} \log \left(\frac{1+\sqrt{1-4 u}}{2}\right)\left(\log \left(\frac{1+\sqrt{1-4 u}}{2}\right)-\log (u)\right) \\
-\frac{2}{35}\left(5 u^{4}-20 u^{3}+60 u^{2}-60 u+4\right) \log (u) \\
-\frac{2}{7}\left(u^{3}+9 u^{2}+33 u-7\right)(1-u) \log (1-u) \\
\left.-\frac{1}{35}\left(230 u^{3}-211 u^{2}-54 u\right)+\frac{4}{7} u^{2}\left(18 \operatorname{Li}_{2}(u)-\pi^{2}\right)\right), \\
0 \leq u \leq 1 / 4 . \\
+\frac{16}{35}\left(9 u^{2}+13 u-1\right) \sqrt{4 u-1}\left(\pi / 3-\arccos \frac{1}{2 \sqrt{u}}\right) \\
-\frac{72}{7} u^{2}\left(2 \pi / 3-\arccos \frac{1}{2 \sqrt{u}}\right) \arccos \frac{1}{2 \sqrt{u}}+\frac{18}{7} u^{2}(\log (u))^{2} \\
-\frac{2}{35}\left(5 u^{4}-20 u^{3}+60 u^{2}-60 u+4\right) \log (u) \\
-\frac{2}{7}\left(u^{3}+9 u^{2}+33 u-7\right)(1-u) \log (1-u) \\
\left.-\frac{1}{35}\left(230 u^{3}-211 u^{2}-54 u\right)+\frac{4}{7} u^{2}\left(18 \operatorname{Li}_{2}(u)-\pi^{2}\right)\right), \\
1 / 4 \leq u \leq 1 .
\end{array}\right.
\end{align*}
$$

The expected value of $U$ is $E(U)=\frac{5}{14}$. Calculating the expectation for the triangle cases a and d separately gives $E\left(U_{\text {triangle }}\right)=\frac{5}{14}$ so $E\left(U_{\text {quadrangle }}\right)$ must also have this value.
4.5. The distribution of $V$ for four generated points. We shall calulate the distribution $G_{4}(v)$ of the ratio $V=\operatorname{area}(B) / \operatorname{area}(A)$..

The calculations are similar to those for $G_{3}(v)$. Like for $G_{3}(v)$, we shall do the calculations for the main Case 1 , which is characterized by the following set of inequalities

$$
x_{1} \leq x_{2} \quad x_{1} \leq x_{3} \quad x_{1} \leq x_{4} \quad y_{1} \leq y_{2} \quad y_{1} \leq y_{3} \quad y_{1} \leq y_{4} .
$$

WLOG, we can add the inequality $x_{4}+y_{4} \leq x_{3}+y_{3} \leq x_{2}+y_{2}$. The probability that this situation occurs is the one in (9) extended with integration over $x_{4}$ and $y_{4}$. The result is $p_{c 1}=\frac{1}{448}$.

The side length of $B$ is $S=x_{2}+y_{2}-x_{1}-y_{1}$. The calculation of its distribution goes as in (10) extended with integration over $x_{4}$ and $y_{4}$. We get

$$
k_{1 a}\left(s \mid x_{1}, y_{1} ; s+x_{1}+y_{1} \leq 1\right)=\frac{s^{6}}{8}
$$

and

$$
k_{1 b}\left(s \mid x_{1}, y_{1} ; s+x_{1}+y_{1}>1\right)=\frac{\left(1-x_{1}-y_{1}\right)^{6}}{8}
$$

The areas to integrate over in the $x_{1} y_{1}$-plane are shown in Figure 8 and the integration is exactly the same as in (11). We get

$$
K_{4}(s)=\operatorname{Prob}(S \leq s)=28 s^{6}-48 s^{7}+21 s^{8},
$$

which gives

$$
\begin{equation*}
G_{4}(v)=28 v^{3}-48 v^{7 / 2}+21 v^{4}, \quad 0 \leq v \leq 1 \tag{28}
\end{equation*}
$$

The expectation of $V$ is $E(V)=\frac{7}{15}$. Combining this with $E(U)=\frac{5}{14}$, we get $E(X)=\frac{5}{14} \cdot \frac{7}{15}=\frac{1}{6}$.
4.6. The distribution of $X$ for four generated points. The combination of the distributions of $U$ and $V$ to get the distribution of $X=U V$ is done exactly in the same way as for three points. We shall calculate (compare (14))

$$
\begin{align*}
F_{4}(x) & =\int_{0}^{1} G_{4}(x / u) d H_{4}(u)=  \tag{29}\\
& =G_{4}(x)-\int_{x}^{1} H_{4}(u) \frac{d}{d u} G_{4}(x / u) d u, \quad 0 \leq x \leq 1 .
\end{align*}
$$

We get


Figure 13. Density function $d F_{4}(x) / d x$ for the area fraction of the convex hull of four random points inside a triangle.
(30)

$$
\begin{aligned}
& F_{4}(x)= \\
& =\left\{\begin{array}{l}
48 x^{2}\left(6 x^{2}+4 x-3\right) \log \left(\frac{1+\sqrt{(1-4 x)}}{2}\right) \log \left(\frac{1+\sqrt{1-4 x}}{2 x}\right) \\
-\frac{8}{35}\left(2826 x^{3}-1101 x^{2}-80 x+2\right) \sqrt{1-4 x} \log \left(\frac{1+\sqrt{1-4 x}}{2 \sqrt{x}}\right) \\
+84 x^{4}(\log x)^{2} \\
-\frac{2}{35}\left(1505 x^{4}+7840 x^{3}-1890 x^{2}-168 x+4\right) \log x \\
-2\left(43 x^{3}+123 x^{2}+15 x-1\right)(1-x) \log (1-x) \\
-\frac{4}{3}\left(27 x^{2}+40 x+6\right) x^{2} \pi^{2} \\
-\frac{1}{35}\left(4622 x^{2}-4603 x-54\right) x+24 x^{2}\left(x^{2}+8 x+6\right) \operatorname{Li}_{2}(x), \\
\quad 0 \leq x \leq 1 / 4, \\
48 x^{2}\left(6 x^{2}+4 x-3\right)\left(2 \pi / 3-\arccos \frac{1}{2 \sqrt{x}}\right) \arccos \frac{1}{2 \sqrt{x}} \\
-\frac{8}{35}\left(2826 x^{3}-1101 x^{2}-80 x+2\right) \sqrt{4 x-1}\left(\pi / 3-\arccos \frac{1}{2 \sqrt{x}}\right) \\
+12 x^{2}(x-1)(x-3)(\log x)^{2} \\
-\frac{2}{35}\left(1505 x^{4}+7840 x^{3}-1890 x^{2}-168 x+4\right) \log x \\
-2\left(43 x^{3}+123 x^{2}+15 x-1\right)(1-x) \log (1-x) \\
-\frac{4}{3}\left(27 x^{2}+40 x+6\right) x^{2} \pi^{2} \\
-\frac{1}{35}\left(4622 x^{2}-4603 x-54\right) x+24 x^{2}\left(x^{2}+8 x+6\right) \operatorname{Li}_{2}(x), \\
1 / 4 \leq x \leq 1 .
\end{array}\right.
\end{aligned}
$$

The density $d F_{4}(x) / d x$ is shown in Figure 13.

The first moments and the standard deviation of $X$ are

$$
\begin{align*}
\alpha_{1} & =\int_{0}^{1} x d F_{4}(x)=\frac{1}{6} \\
\alpha_{2} & =\int_{0}^{1} x^{2} d F_{4}(x)=\frac{181}{4500}  \tag{31}\\
\sigma & =\sqrt{\alpha_{2}-\alpha_{1}^{2}}=\frac{1}{75} \sqrt{70} \approx .1116 \\
\alpha_{3} & =\int_{0}^{1} x^{3} d F_{4}(x)=\frac{14}{1125}
\end{align*}
$$

## 5. The number of vertices of the convex hull.

Like in [7], we define for $k \leq n$
$q_{n}(k)=\operatorname{Prob}(n$ points generate a convex polygon with $k$ vertices).
Of course, $q_{3}(3)=1$. We noted in the beginning of section 4.1 that $q_{4}(3)=\frac{1}{3}$ implying $q_{4}(4)=\frac{2}{3}$. From [7], we have for all $n \geq 3$

$$
\begin{equation*}
q_{n}(3)=\binom{n}{3} \int_{0}^{1} x^{n-3} d F_{3}(x) \tag{32}
\end{equation*}
$$

Some values are

$$
\begin{gathered}
q_{5}(3)=\frac{5}{36} \approx .1389, \quad q_{6}(3)=\frac{31}{450} \approx .0689, \quad q_{7}(3)=\frac{7}{180} \approx .0389 \\
q_{8}(3)=\frac{1063}{44100} \approx .0241, \quad q_{9}(3)=\frac{403}{25200} \approx .0160 .
\end{gathered}
$$

For $k=4$, we need the conditional probability that points 5 through $n$ are generated inside the area generated by the first four points, provided these four points span a quadrangle. Cases b, c, and e are quadrangles, so summing the $H_{4}$ for these cases multiplied by their weights will give us the wanted conditional distribution function $H_{4 q}(u)$. Combining $H_{4 q}$ with $G_{4}$ will give the conditional distribution function $F_{4 q}(x)$. Including the probability $\frac{2}{3}$ of getting a quadrangle, we get

$$
\begin{equation*}
q_{n}(4)=\frac{2}{3}\binom{n}{4} \int_{0}^{1} x^{n-4} d F_{4 q}(x) \tag{33}
\end{equation*}
$$

Some values are

$$
q_{5}(4)=\frac{5}{9}, \quad q_{6}(4)=\frac{119}{300} \approx .3966, \quad q_{7}(4)=\frac{7}{25} .
$$

From the above, we can deduce $q_{5}(5)=1-\frac{5}{36}-\frac{5}{9}=\frac{11}{36} \approx .3056$

## 6. Asymptotic estimates.

For $n \geq 5$, we cite two asymptotic estimates from [8], [9], and [7] . The average area of the convex hull of $n$ points in a triangle with unit area is

$$
E(\text { area })=1-2 \frac{\log (n)+\gamma}{n}+\mathrm{O}\left(\frac{1}{n^{2}}\right)
$$

where $\gamma=.5772$ is Euler's constant. The average number of vertices of the convex hull of $n$ points in a triangle is

$$
E(\# \text { vertices })=2(\log (n / 2)+\gamma)+\mathrm{o}(1), \quad n \rightarrow \infty
$$

The latter estimate is very good even for small $n$.

## 7. Concluding comment.

We have not shown any integral calculations in detail. In principle, they are elementary, which doesn't mean that they don't require a substantial effort. As indicated, the calculations have been done in Maple. The calculations would not have been possible without some tool for handling the huge number of terms that come out of the integrations, sometimes more than a hundred. This doesn't mean that Maple performs the integrations automatically. Generally, we had to split up the integrands in parts and use a particular substitution for each part. Often, we had to do partial integrations manually. Many integrals were improper, calling for a limiting process. We will supply any interested reader with Maple files describing the calculations.

## Appendix A

The dilogarithm function $\operatorname{Li}_{2}(x)$ is defined in [5] for complex $x$ as

$$
\begin{equation*}
\mathrm{Li}_{2}(x)=-\int_{0}^{x} \frac{\log (1-t)}{t} d t \tag{34}
\end{equation*}
$$

In this paper, we use this function for $0 \leq x \leq 1$ for which $\operatorname{Li}_{2}$ is real.

We have the series expansion

$$
\begin{equation*}
\operatorname{Li}_{2}(x)=\sum_{k=1}^{\infty} \frac{x^{k}}{k^{2}}, \quad-1 \leq x \leq 1 \tag{35}
\end{equation*}
$$

Although the series is only convergent for $|x| \leq 1$, the integral in (34) is not restricted to these limits. With a suitable branch cut, the $\mathrm{Li}_{2}$ function is defined and is real on the whole real axis. See Figure 14.

The definition of the dilogarithm function has varied a little from author to author. Maple has the function polylog $(2, x)$ which is defined by the series expansion (35) for $|x| \leq 1$ otherwise by analytic continuation. Maple also has a function $\operatorname{dilog}(x)=\operatorname{Li}_{2}(1-x)$ defined


Figure 14. The function $\mathrm{Li}_{2}(x)$.
on the whole real axis. Maple's dilog function is the same as the dilog function given in [1], page 1004.
$\mathrm{Li}_{2}(x)$ is increasing from $\mathrm{Li}_{2}(0)=0$ via $\mathrm{Li}_{2}(1)=\pi^{2} / 6$ to $\mathrm{Li}_{2}(2)=$ $\pi^{2} / 4$.

The integrals involving $\operatorname{Li}_{2}(x)$ needed for calculating the moments of various distributions take rational values like

$$
\int_{0}^{1} x d \mathrm{Li}_{2}(x)=1, \quad \int_{0}^{1} x^{2} d \mathrm{Li}_{2}(x)=\frac{3}{4}, \quad \int_{0}^{1} x^{3} d \mathrm{Li}_{2}(x)=\frac{11}{18} .
$$

## Appendix B

We shall calculate the distribution function $K_{3.2}(s)$ for the side length in Case 2 for three generated points. This case is depicted in Figure 2 and is characterized by

$$
x_{2} \leq x_{1}, x_{2} \leq x_{3}, y_{1} \leq y_{2}, y_{1} \leq y_{3} .
$$

WLOG, we can use

$$
x_{1}+y_{1} \leq x_{2}+y_{2} \leq x_{3}+y_{3} .
$$

We start by calculating the probability that this situation occurs The integration over $x_{3}$ and $y_{3}$ gives

$$
t\left(x_{2}, y_{1}, y_{2}\right)=\frac{\left(1-x_{2}-y_{1}\right)^{2}}{2}-\frac{\left(y_{2}-y_{1}\right)^{2}}{2} .
$$

We get the probability

$$
p_{c 2}=\int_{0}^{1} d y_{1} \int_{y_{1}}^{1} d y_{2} \int_{0}^{1-y_{2}} d x_{2} \int_{x_{2}}^{x_{2}+y_{2}-y_{1}} t\left(x_{2}, y_{1}, y_{2}\right) d x_{1}=\frac{1}{240} .
$$

Notice the integration order $d x_{1}, d x_{2}, d y_{2}, d y_{1}$. Any other order makes the integration much more complicated.

Here, the side length of $B$ is $S=x_{3}+y_{3}-x_{2}-y_{1}$. Define

$$
t s\left(s, y_{1}, y_{2}\right)=\frac{s^{2}}{2}-\frac{\left(y_{2}-y_{1}\right)^{2}}{2}
$$

The integration over $x_{3}$ and $y_{3}$ and $S \leq s$ gives

$$
k_{2}\left(s, x_{2}, y_{1}, y_{2}\right)= \begin{cases}0, & s<y_{2}-y_{1} \\ t s\left(s, y_{1}, y_{2}\right), & y_{2}-y_{1} \leq s<1-x_{2}-y_{1} \\ t\left(x_{2}, y_{1}, y_{2}\right), & 1-x_{2}-y_{1} \leq s\end{cases}
$$

The integration of $k_{2}$ over $x_{1}$ and $x_{2}$ splits into two cases (a) when $y_{1} \leq 1-s$ and (b) when $y_{1}>1-s$. We get

$$
\begin{aligned}
k_{2 a}\left(s, y_{1}, y_{2}\right) & =\int_{0}^{1-s-y_{1}} d x_{2} \int_{x_{2}}^{x_{2}+y_{2}-y_{1}} t s\left(s, y_{1}, y_{2}\right) d x_{1} \\
& +\int_{1-s-y_{1}}^{1-y_{2}} d x_{2} \int_{x_{2}}^{x_{2}+y_{2}-y_{1}} t\left(x_{2}, y_{1}, y_{2}\right) d x_{1} \\
& =\left(y_{1}-y_{2}\right)\left(y_{2}-y_{1}-s\right)\left(y_{1}^{2}+y_{1} y_{2}-2 y_{2}^{2}\right. \\
& \left.-(3+s) y_{1}+(3+2 s) y_{2}-2 s^{2}+3 s\right) / 6
\end{aligned}
$$

and

$$
\begin{aligned}
k_{2 b}\left(s, y_{1}, y_{2}\right) & =\int_{0}^{1-y_{2}} d x_{2} \int_{x_{2}}^{x_{2}+y_{2}-y_{1}} t\left(x_{2}, y_{1}, y_{2}\right) d x_{1} \\
& =\left(1-y_{2}\right)^{2}\left(y_{2}-y_{1}\right)\left(1+2 y_{2}-3 y_{1}\right) / 6
\end{aligned}
$$

The final integration over $y_{1}$ and $y_{2}$ gives

$$
\begin{align*}
K_{3,2}(s) & =\operatorname{Prob}(S \leq s) \\
& =\frac{1}{p_{c 2}}\left(\int_{0}^{1-s} d y_{1} \int_{y_{1}}^{y_{1}+s} k_{2 a} d y_{2}+\int_{1-s}^{1} d y_{1} \int_{y_{1}}^{1} k_{2 b} d y_{2}\right)  \tag{36}\\
& =15 s^{4}-24 s^{5}+10 s^{6} .
\end{align*}
$$

This implies that $K_{3,1}(s)=K_{3,2}(s)$.

## Appendix C. Calculation of $H_{4 c}(u)$.

In case c, we have $P_{1}, P_{2}$, and $P_{3}$ as in Figure 3 and $P_{4}$ falling on opposite sides of $P_{1} P_{2}$ from $P_{3}$. The polygon is the sum of the triangles $T_{1}=P_{1} P_{2} P_{3}$ and $T_{2}=P_{1} P_{2} P_{4}$. We shall convolve the distributions of these two triangles to get the distribution for $U=T_{1}+T_{2}$. The


Figure 15. Areas to integrate $f(u \mid x)$ over in case c.
distribution function for the fraction of a triangle with area $=1$, is given in (22). For the two triangles, we get

$$
f_{1}\left(z \mid x_{2}\right)=\phi\left(z / x_{2}\right) \text { and } f_{2}\left(v \mid x_{2}\right)=\phi\left(v /\left(1-x_{2}\right)\right) .
$$

Because the expressions for $f_{1}$ and $f_{2}$ vary over the intervals of $z$ and $v$, the expression for the conditional distribution $f\left(u \mid x_{2}\right)$ varies in the $\left(u, x_{2}\right)$-plane. Let $\psi(u, v)=f_{2}(v) f_{1}^{\prime}(u-v)$. In the sequel, we shall skip the index 2 and replace $x_{2}$ by $x$. We get

$$
\begin{align*}
& f(u \mid x)= \\
& \begin{cases}\int_{u-x}^{u} \psi(u, v) d v, & 0 \leq x \leq u \leq \min (u, 1-u), \\
\int_{0}^{u} \psi(u, v) d v, & u \leq x \leq 1-u \\
\int_{u-x}^{1-x} \psi(u, v) d v+\int_{1-x}^{u} f_{1}^{\prime}(u-v) d v, & 1-u \leq x \leq u \\
\int_{0}^{1-x} \psi(u, v) d v+\int_{1-x}^{u} f_{1}^{\prime}(u-v) d v, & \max (u, 1-u) \leq x \leq 1 .\end{cases}
\end{align*}
$$

Performing the integrations in (37), we get the following expressions valid in the regions depicted in Figure 15

$$
f(u \mid x)= \begin{cases}g_{1}=\frac{3 x^{2}-8 u x-4 x-6 u^{2}+12 u}{6(1-x)^{2}}, & 0 \leq x \leq u \leq \min (u, 1-u),  \tag{38}\\ g_{21}=\frac{2 u^{2}}{x(1-x)}-\frac{(4-u) u^{3}}{6 x^{2}(1-x)^{2}}, & u \leq x \leq 1-u, \\ g_{22}=1-\frac{(1--u)^{4}}{6 x^{2}(1-x)^{2}}, & 1-u \leq x \leq u, \\ g_{3}=\frac{3 x^{2}+8 u x-2 x-6 u^{2}+4 u-1}{6 x^{2}}, & \max (u, 1-u) \leq x \leq 1 .\end{cases}
$$

We get

$$
\begin{array}{r}
\operatorname{Prob}(U \leq u)=H_{4 c}(u)=\binom{2}{1}\left(\frac{1}{3}\right)^{-1} \int_{0}^{1} x(1-x) f(u \mid x) d x \\
=2(4-u) u^{3} \log (u)+2(1-u)^{4} \log (1-u)-u\left(6 u^{2}-5 u-2\right)  \tag{39}\\
0 \leq u \leq 1
\end{array}
$$

## Appendix D. Calculation of $H_{4 e}(u)$.

The geometry is described in Figure 4. The $x$-coordinate of $P_{1}$ will be denoted $x$ and the $y$-coordinate of $P_{2}$ will be denoted $y$. We will have a quadrangle if $P_{4}$ sits in one of the three corner triangles. These are affinely equivalent and we do the calculations for $P_{4}$ in the lower left triangle. The probability for this to happen is $x y$. The quadrangle area $U=T_{1}+T_{2}$. For fixed $x$ and $y$, we get the conditional distribution of $U$ by convolving the conditional distributions $f_{1}(v \mid x, y)$ and $f_{2}(v \mid x, y)$ of $T_{1}$ and $T_{2}$.

$$
\begin{equation*}
f(u \mid x, y)=\int_{0}^{1} f_{2}(v \mid x, y) \frac{d f_{1}}{d v}(u-v \mid x, y) d v \tag{40}
\end{equation*}
$$

Like in (6), we assume $x \leq y$ and get for fixed $x$ and $y, \frac{d f_{1}}{d v}(v \mid x, y)=$ $\frac{1}{y-x}$ when $x(1-y) \leq v \leq y(1-x)$, otherwise zero. We have

$$
f_{2}(v \mid x, y)= \begin{cases}1-\left(1-\frac{v}{x y}\right)^{2}, & 0 \leq v \leq x y  \tag{41}\\ 1, & x y \leq v \leq 1\end{cases}
$$

Because the expressions for $f_{1}$ and $f_{2}$ vary from interval to interval, we get different expressions for $f(u \mid x, y)$ valid in different sets of $u$, $x$, and $y$. These sets are depicted in Figure 16 for $0 \leq u \leq 1 / 4$, and Figure 17 for $1 / 2 \leq u \leq 1$. The figure for $1 / 4 \leq u \leq 1 / 2$ is not shown. In fact, integrating for $u$ in this interval gives the same result as for $1 / 2 \leq u \leq 1$. We have


Figure 16. Areas to integrate (40) over for $0 \leq u \leq 1 / 4$.


Figure 17. Areas to integrate (40) over for $1 / 2 \leq u \leq 1$.
(42)

$$
\begin{cases}0, & 0 \leq u \leq x(1-y), \\ \frac{1}{y-x} \int_{0}^{u-x+x y} f_{2}(v) d v, & x(1-y) \leq u \leq y(1-x), \\ \frac{1}{y-x} \int_{u-x+x y}^{u-y+x y} f_{2}(v) d v, & y(1-x) \leq u \leq x, \\ \frac{u-x}{y-x}+\frac{1}{y-x} \int_{u-x+x y}^{x y} f_{2}(v) d v, & y(1-x) \leq u \leq y \text { and } x \leq u, \\ \frac{u-x}{y-x}+\frac{1}{y-x} \int_{0}^{x y} f_{2}(v) d v, & x \leq u \leq y(1-x), \\ 1, & y \leq u \leq 1\end{cases}
$$

Performing the integrations in (42), we get

$$
\begin{align*}
& f(u \mid x, y)=  \tag{43}\\
& \qquad \begin{array}{ll}
g_{0}=0, & 0 \leq u \leq x(1-y), \\
g_{1}=\frac{(u-x+x y)(x-u+2 x y)}{3 x^{2} y^{2}(y-x)}, & x(1-y) \leq u \leq y(1-x), \\
g_{2}=\frac{3 x^{2} y^{2}-x^{2}-y^{2}-x y+3 u(x+y-u)}{33 y^{2} y^{2}(3)}, & y(1-x) \leq u \leq x, \\
g_{3}=\frac{3 y\left(u y-u^{2}+x^{2} y^{2}-x^{3} y\right)+u^{3}-y^{3}}{3 y^{2} y^{2}(y-x)}, & y(1-x) \leq u \leq y \text { and } x \leq u, \\
g_{4}=\frac{3 u-3 x+2 x y}{3(y-x)}, & x \leq u \leq y(1-x), \\
g_{5}=1, & y \leq u \leq 1 .
\end{array}
\end{align*}
$$

We get $H_{4 e}$ by integrating $f(u \mid x, y)$ multiplied by the probability $=x y$ that this case occurs

$$
\begin{equation*}
H_{4 e}(u)=2\binom{3}{1}\left(\frac{3}{4}\right)^{-1} \int_{0}^{1} d x \int_{x}^{1} x y f(u \mid x, y) d y \tag{44}
\end{equation*}
$$

We get

$$
H_{4 e}(u)= \begin{cases}\frac{2}{5}\left(32 u^{2}+34 u-3\right) \sqrt{1-4 u}\left(\log \left(\frac{1+\sqrt{1-4 u}}{2}\right)-\log (u) / 2\right)  \tag{45}\\ -24 u^{2} \log \left(\frac{1+\sqrt{1-4 u}}{2}\right)\left(\log \left(\frac{1+\sqrt{1-4 u}}{2}\right)-\log (u)\right) \\ -\frac{1}{15}\left(80 u^{3}+90 u^{2}-120 u+9\right) \log (u) \\ -\frac{8}{3}\left(2 u^{2}+5 u-1\right)(1-u) \log (1-u) \\ -\frac{7}{15} u^{2}+\frac{22}{15} u+\frac{8}{3} \pi^{2} u^{2}-16 u^{2} \operatorname{Li}_{2}(u), & \\ \frac{2}{5}\left(32 u^{2}+34 u-3\right) \sqrt{4 u-1}\left(\pi / 3-\arccos \frac{1}{2 \sqrt{u}}\right) \\ -24 u^{2}\left(2 \pi / 3-\arccos \frac{1}{2 \sqrt{u}}\right) \arccos \frac{1}{2 \sqrt{u}} & \\ -\frac{1}{15}\left(80 u^{3}+90 u^{2}-120 u+9\right) \log (u) \\ -\frac{8}{3}\left(2 u^{2}+5 u-1\right)(1-u) \log (1-u) \\ -\frac{7}{15} u^{2}+\frac{22}{15} u+\frac{8}{3} \pi^{2} u^{2}-16 u^{2} \operatorname{Li}_{2}(u), & \\ & 1 / 4 \leq u \leq 1 .\end{cases}
$$

## References

[1] M. Abramowitz and I. Segun Handbook of Mathematical Functions Dover Publications, Inc., New York, 1965
[2] H. A. Alikoski, Über das Sylvestersche Vierpunktproblem Ann. Acad. Sci. Fenn. 51 (1938), no. 7, pp. 1-10.
[3] W. Blaschke, Vorlesungen über Differentialgeometrie Vol 2. Springer, Berlin 1923.
[4] C. Buchta and M. Reitzner, The convex hull of random points in a tetrahedron: Solution of Blaschke's problem and more general results J. reine angew. Math. 536 (2001), 1-29.
[5] L. Lewin Polylogarithms and Associated functions North Holland, New York, Oxford, 1981.
[6] R. E. Miles Isotropic Random Simplices Advances in Appl. Probability 3 (1971), pp. 353-382.
[7] J. Philip The Area of a Random Convex Polygon Techn. Report: TRITA MAT 04 MA 07
[8] A. Rényi and R. Sulanke, Über die konvexe Hülle von $n$ zufällig gewählte Punkten Z. Wahrscheinlichkeitstheorie 2(1963), pp. 75-84.
[9] A. Rényi and R. Sulanke, Über die konvexe Hülle von $n$ zufällig gewählte Punkten, II Z. Wahrscheinlichkeitstheorie 3(1964), pp. 138-147.
[10] L. Santaló, Integral Geometry and Geometric Probability Encyclopedia of mathematics and its Applications, Addison-Wesley 1976

Department of Mathematics, Royal Institute of Technology, S10044 Stockholm Sweden

E-mail address: johanph@kth.se


[^0]:    1991 Mathematics Subject Classification. Primary: 60D05: Secondary: 52A22.
    Key words and phrases. Area, random polygon, Sylvester problem.

[^1]:    ${ }^{1}$ We are indebted to Maple for helping us with the integrations of this paper.

