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Abstract. We deduced the probability distribution function for
the area of the convex hull of three, and of four random points in
a triangle. We also give some results about the number of vertices
of these convex hulls.

1. Introduction

Either three or four points are generated at random inside a triangle
A. Let T be the triangle or quadrangle spanned by the random points.
We shall consider the random variable X = area(T )/area(A). It is
well known that any affine transformation will preserve the ratio X.
This follows from the fact that the area scaling is constant for an affine
transformation. The scale equals the determinant of the homogeneous
part of the transformation. This means that our results hold for any
shape of A.

Various aspects of our problem have been considered in the field
of geometric probability, see e.g. [10]. J. J. Sylvester considered the
problem of a random triangle T in an arbitrary convex set K and
posed the following problem: Determine the shape of K for which the
expected value κ = E(X) is maximal and minimal. A first attempt to
solve the problem was published by M. W. Crofton in 1885. Wilhelm
Blaschke [3] proved in 1917 that 35

48π2 ≤ κ ≤ 1
12

, where the minimum is
attained only when K is an ellipse and the maximum only when K is
a triangle. The upper and lower bounds of κ only differ by about 13%.
It has been shown, [2] that κ = 11

144
for K a square.

A. Reńyi and R. Sulanke, [8] and [9], consider the area ratio when
the triangle T is replaced by the convex hull of n random points. They
obtain asymptotic estimates of κ for large n and for various convex K.
R. E. Miles [6] generalizes these asymptotic estimates for K a circle to
higher dimensions. C. Buchta and M. Reitzner, [4], has given values of
κ (generalized to three dimensions) for n ≥ 4 points in a tetrahedron.

H. A. Alikoski [2] has given expressions for κ when n = 3 and K a
regular r-polygon. In a previous paper, [7], we have given the whole
probability distribution of X for n = 3 and n = 4 and K a parallelo-
gram. We also gave some asymptotic estimates in the spirit of Reńyi
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and Sulanke. Here we deduce the whole distribution of X for n = 3
and n = 4 when K is a triangle. From these distributions we calculate
some probabilities for the number of vertices of random convex poly-
gons. All calculated quantities of this paper have been confirmed by
Monte Carlo tests.

2. Notation and formulation.

As A, we will chose a triangle having vertices in (0, 0), (0, 1), and
(1, 0). We use a constant probability density in A for generating n
random points in A. The points will be denoted Pk and have coordi-
nates (xk, yk) for 1 ≤ k ≤ n. Let T be the convex hull of the n points.
We shall determine the probability distribution of the random variable
X = area(T )/area(A) when n = 3 and 4.

The generated T spans a triangle with sides parallell to the sides of
A. We will call this spanned triangle B. The random variable X, that
we study will be written as the product of the two independent random
variables

U = area(T )/area(B) and V = area(B)/area(A).

Roughly speaking, U describes the shape of T and V its size. It’s not
obvious that the size V is independent of the shape U . The indepen-
dence will be shown in section 3.3. We shall determine the distributions
for U and V and combine them to get the distribution of X = UV .

3. The convex hull of three points.

The convex hull of three points is with probability one a triangle.

3.1. The two geometrical cases for three points and their prob-

abilities. Since B is spanned by T , two or three of the vertices of T
sit on the boundary of B. We have two cases: (1) Two vertices sit on
the boundary and one is interior and (2) All three vertices sit on the
boundary. These two cases are pictured in Figures 1 and 2.

In Figure 1, we have without loss of generality (WLOG) chosen P1

to be the point that sits in a vertex of B, and this vertex is chosen to
be the lower left vertex. The point P2 sits on the opposite side and P3

is interior.
When studying the ratio U , we have enlarged B so that its vertices

are (0, 0), (0, 1), and (1, 0).
We shall show that the cases 1 and 2 occur with the probabilities

p1 = 3
5

and p2 = 2
5
, respectively.

To this end, we shall calculate the probability that P1, P2, and P3

sit as in Figure 1. This is the case if

x1 ≤ x2, x1 ≤ x3, y1 ≤ y2, y1 ≤ y3, and x3 + y3 ≤ x2 + y2.
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Figure 1. Triangle with point 1 in a vertex, point 2
on the opposite side, and point 3 interior in the ’big’
subtriangle B that it spanns (Case 1) .
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Figure 2. Triangle with points 1, 2, and 3 on the
boundary of the ’big’ subtriangle B that it spanns (Case
2) .

We write the expression first and explain it afterwards.

Prob( The Pk sit as in Figure 1 ) = 8

∫ 1

0

dx1

∫ 1−x1

0

dy1

∫ 1−y1

x1

dx2

∫ 1−x2

y1

dy2

∫ x2+y2−y1

x1

dx3

∫ x2+y2−x3

y1

dy3 =
1

30
.

The factor 8 is 23, where the factor 2 is the inverse of the triangle
area. The three points can be put in the three positions: lower left
corner, interior, and right side in 3!

1!1!1!
= 6 ways. It follows from the

affine invariance that all three vertices of B have the same probability
of coinciding with one of the generated points, so Case 1 occurs with
the probability p1 = 6·3

30
= 3

5
. The complementary event, Case 2, has

the probability p2 = 2
5
.
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Figure 3. The triangle area fraction U is less than u
if the point P3 sits between the lines marked ±u. This
doesn’t happen in this figure.

3.2. The distribution of U . We denote the distribution functions of
the fraction U by H3,1(u) and H3,2(u), respectively, in the two cases.

3.2.1. Calculation of H3,1(u) for Case 1. Referring on Figure 3, we let
P1 be in the vertex, P2 be the point on the side opposite to P1 and P3

be interior. Once P2 is known to sit on the side of B, its conditional
density is the restriction to the side of the density in the triangle,
meaning that the density is constant along the side. The side P1P2 of
T has length d =

√

x2
2 + (1 − x2)2. We have area(T )/area(B) ≤ u if

the distance from P1P2 to P3 is smaller than u/d. This happens if P3

sits between the lines

− ξ

x2
+

η

1 − x2
= ± u

x2(1 − x2)
.

For fixed u and x2, the area between the lines takes up the following
fraction of B when 0 ≤ u ≤ 1/2.

(1) f(u|x2) =











1 − (1−u−x2)2

1−x2
, 0 ≤ x2 ≤ u

1 − (1−u−x2)2

1−x2

− (x2−u)2

x2

, u ≤ x2 ≤ 1 − u

1 − (x2−u)2

x2
, 1 − u ≤ x2 ≤ 1.

For 1/2 ≤ u ≤ 1, we have instead.

(2) f(u|x2) =











1 − (1−u−x2)2

1−x2
, 0 ≤ x2 ≤ 1 − u

1, 1 − u ≤ x2 ≤ u

1 − (x2−u)2

x2

, u ≤ x2 ≤ 1.

We get the wanted distribution function by integrating the condi-
tional probability f(u|x2) over x2:
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1+u/x1y2

Figure 4. The triangle area fraction U is less than u if
the point P3 sits to the left of the line marked 1+u/x1y2,
as it does in this figure.

(3) Prob(U ≤ u) = H3,1(u) =

∫ 1

0

f(u|x2) dx2.

Even though the expressions (1) and (2) are different, we get one
analytic expression for H3,1(u) valid for all u. We will not carry out
the integrations in detail, but just present the results 1

(4) H3,1(u) = 4u− 3u2 + 2u2 log(u), 0 ≤ u ≤ 1.

3.2.2. Calculation of H3,2(u) for Case 2. In Case 2, we have the situa-
tion depicted in Figure 4 with one point on each side of B. Let P1 be
the point on the x-axis, P2 on the y-axis and let P3 sit on the slanted
side. For fixed x1 and y2, one side of T has the length d =

√

x2
1 + y2

2.
If the orthogonal distance from this side to P3 is less than u/d, we have
an area fraction less than u. This happens if P3 is to the left of the line

ξ

x1
+
η

y2
= 1 +

u

x1y2
.

This line intersects the P3-line x3 + y3 = 1 in the point

(5) ξ3 =
u− x1(1 − y2)

y2 − x1
.

When handling this expression, WLOG, we can assume that y2 > x1.
We have x3 evenly distributed in (0, 1), so the area fraction f(u|x1, y2)

will be less than u when x3 ≤ ξ3 provided 0 ≤ ξ3 ≤ 1, otherwise zero
or one. We get

1We are indebted to Maple for helping us with the integrations of this paper.
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f2(u,x1,y2)

u < 1/4

x1

y2

1

1

0

y = 1-u/x

y=u/(1-x)

Figure 5. Area to integrate f(u| x1, y2) over when u ≤ 1/4.

f(u|x1, y2) =











0, u ≤ x1(1 − y2),
u−x1(1−y2)

y2−x1

, x1(1 − y2) ≤ u ≤ y2(1 − x1),

1, y2(1 − x1) ≤ u.

(6)

Like in Case 1, we get

(7) Prob(U ≤ u) = H3,2(u) = 2

∫ 1

0

dx1

∫ 1

x1

f(u|x1, y2) dy2.

The factor 2 accounts for the restriction y2 > x1. The nonlinear bound-
aries of the domain of definition of f(u|x1, y2), requires two different
ways of calculating this integral, one for u ≤ 1/4 and one for u > 1/4.
The areas to integrate over in the two cases are depicted in Figures 5
and 6. For u ≤ 1/4, we use the substitution t = x1 − 1

2
+
√

1/4 − u
when carrying out the integration in 7.

We get

H3,2(u) =







































1
3
(log 1−3u+(1−u)

√
1−4u

2u3/2
)(1 − 4u)3/2

+1
2
(1 − 6u) log u+ u,

0 ≤ u ≤ 1/4,
1
3
(arccos 1−3u

2u3/2
− π)(4u− 1)3/2

+1
2
(1 − 6u) log u+ u,

1/4 < u ≤ 1.

(8)

The density functions for Case 1 and 2 are shown in Figure 7.

3.3. The distribution of V for three generated points. We shall
calulate the distribution G3(v) of the ratio V = area(B)/area(A). One
could suspect that the distribution of V might be different in the Cases
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f2(u,x1,y2)

1/4 < u

x1

y2

1

1

y = u/(1-x)

Figure 6. Area to integrate f(u| x1, y2) over when u > 1/4.
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Figure 7. Density functions dH3,1/du and dH3,2/du for
cases 1 and 2.

1 and 2, so that V would be dependent of U . This is not the case, but
we have found no simple way of proving it. Therefore, we shall calculate
the distribution function of V for both cases and we will find that they
are identical. We do Case 1 here and Case 2 in Appendix B.

Case 1 is characterized by the following set of inequalities

x1 ≤ x2 x1 ≤ x3 y1 ≤ y2 y1 ≤ y3.

WLOG, we can add the inequality x3 + y3 ≤ x2 + y2. We start by
calculating the probability that this situation occurs .

pc1 = Prob(Case 1) =
∫ 1

0

dx1

∫ 1−x1

0

dy1

∫ 1−y1

x1

dx3

∫ 1−x3

y1

dy3

∫ 1−y1

x1

dx2

∫ 1−x2

y1

1 dy2 =
1

120
.

(9)
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kb

ka
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x1

y1

P1

P2

P3

11-s

1-s

1

Figure 8. Area to integrate ka and kb over in the x1, y1-plane

We continue by calculating the probability that the horisontal side
length of B, which is S = x2 + y2 − x1 − y1, is less than s. We have
two different integrations over x2, y2, x3, and y3 depending on whether
s + x1 + y1 − 1 is negative or positive. Calling the two cases a and b,
we have the following conditional probabilities

k1a(s|x1, y1; s+ x1 + y1 ≤ 1) =
∫ s+x1

x1

dx3

∫ s+x1+y1−x3

y1

dy3

∫ s+x1

x1

dx2

∫ s+x1+y1−x2

y1

dy2 =
s4

4

(10)

and

k1b(s|x1, y1; s+ x1 + y1 > 1) =
∫ 1−y1

x1

dx3

∫ 1−x3

y1

dy3

∫ 1−y1

x1

dx2

∫ 1−x2

y1

dy2 =
(1 − x1 − y1)

4

4
.

(11)

The areas to integrate over in the x1y1-plane are shown in Figure 8.
We get

K3,1(s) = Prob(S ≤ s) =
1

pc1

(
∫ 1−s

0

dx1

∫ 1−s−x1

0

k1a dy1

+

∫ 1−s

0

dx1

∫ 1−x1

1−s−x1

k1b dy1 +

∫ 1

1−s

dx1

∫ 1−x1

0

k1b dy1

)

= 15s4 − 24s5 + 10s6.

(12)

The corresponding calculation in Case 2 (compare Figure 2) is more
complicated and deferred to appendix B. It results in the same distri-
bution function as in (12).

Since the area ratio V = area(B)
area(A)

= S2/2
1/2

= S2, we get the distribution

function for V directly
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(13) G3(v) = 15v2 − 24v5/2 + 10v3, 0 ≤ v ≤ 1 .

3.4. The distribution of X for three generated points. Having
the distribution functions H3,1(u), H3,2(u) and G3(v) of U and V , we
can start calculating the distribution function F3(x) of X = UV . We
have

Prob(X ≤ x) = F3(x) =

Prob(Case 1)F3(x|Case 1) + Prob(Case 2)F3(x|Case 2).

For i = 1 or 2, we have

F3(x|Case i) = Prob(X = UiVi ≤ x) =

∫ 1

0

G3,i(x/u) dH3,i(u).

Since G is the same in both cases, we form

H3(u) = pc1H3,1(u) + pc2H3,2(u) =
3

5
H3,1(u) +

2

5
H3,2(u),

and can write

F3(x) =

∫ 1

0

G3(x/u) dH3(u) =

= [G3(x/u)H3(u)]
1
0 −

∫ 1

x

H3(u)
d

du
G3(x/u) du =

= G3(x) −
∫ 1

x

H3(u)
d

du
G3(x/u) du, 0 ≤ x ≤ 1.

(14)

The partial intergration in (14) is used to avoid integrating to the
lower bound u = 0.

We will not carry out the integration (14) in detail, but will just give
the result
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Figure 9. Density function dF3(x)/dx for the area frac-
tion of the convex hull of three random points inside a
triangle.

F3(x) =


































































8(2x3 + 3x2)
(

3 log 1+
√

1−4x
2

log 1+
√

1−4x
2x

− π2/3
)

+1
5
(324x2 + 28x− 1)

(

log x− 2 log 1+
√

1−4x
2

)√
1 − 4x

+12x3(log x)2 − (54x2 + 6x− 1/5) log x− 57x2/5 + 62x/5,

0 ≤ x ≤ 1/4,

8(2x3 + 3x2)
(

(2π − 3 arccos 1
2
√

x
) arccos 1

2
√

x
− π2/3

)

+2
5
(324x2 + 28x− 1)

(

arccos 1
2
√

x
− π/3

)√
4x− 1

−18x2(log x)2 − (54x2 + 6x− 1/5) logx− 57x2/5 + 62x/5,

1/4 < x ≤ 1.

(15)

The density dF3(x)/dx is shown in Figure 9.
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The first moments and the standard deviation of X are

α1 =

∫ 1

0

x dF3(x) =
1

12
,(16)

α2 =

∫ 1

0

x2 dF3(x) =
1

72
,(17)

σ =
√

α2 − α1
2 =

1

12
,(18)

α3 =

∫ 1

0

x3 dF3(x) =
31

9000
≈ .00344.(19)

4. The convex hull of four points.

With four generated points, the convex hull can be either a triangle
or a quadrangle.

4.1. The five geometrical cases for four points and their prob-

abilities. We have the same cases as with three points characterized
by the number of generated points that span the ’big’ subtriangle B,
but these cases split up into subcases depending on the position of the
fourth point. The cases and their probabilities are described in table
I. The points will be denoted P1, P2, P3, and P4. The indices have
nothing to do with the order in which they were generated or anything
else.

It can be read from the total probability row of table 1 that the prob-
ability that four points generate a triangle is 1

3
. This is in accordance

with the following arguement: The probability that the fourth point
shall sit in the triangle generated by the first three points equals the
average area fraction for three points which is 1

12
. The fourth point can

be chosen in 4 ways, so the probability for triangle is 4
12

= 1
3
.

4.2. Case probabilities for four points. We shall calculate the
probabilities listed in table 1 and the U−distributions for the five cases.
We start with the probabilities 3

7
and 4

7
, for the main cases which cor-

respond to to cases 1 and 2 for three points. Case 1 encompasses cases
a, b, and c, Case 2 cases d, and e. The calculations are analogous to
those in section 3.1.

To this end, we shall calculate the probability that P1 with coordi-
nates x1 and y1 is the lower left vertex of B and P2 sits on the opposite
side of B. This is the case if

x1 ≤ x2, x1 ≤ x3, x1 ≤ x4, y1 ≤ y2, y1 ≤ y3 y1 ≤ y4,

x3 + y3 ≤ x2 + y2 and x4 + y4 ≤ x2 + y2.

We write the expression first and explain it afterwards.
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case a b c d e

char. P1 in vertex of B P1, P2, and P3

on the sides of B

Prob 3
7

4
7

char. P3 and P4 on P3 and P4 on P4 interior P4 exterior

same side opposite sides

Prob 2
3

1
3

1
4

3
4

quadrangle triangle quadrangle

char. triangle quadrangle

Prob 2
3

1
3

total
Prob

4
21

2
21

1
7

1
7

3
7

EU
3
8

1
3

1
3

1
3

10
27

Table 1. The 5 geometrical cases for four points, their
characterizations and their probabilities. The last row
holds the mathematical expectation of U in each case.

Prob(the Pi sit as described above) =

16

∫ 1

0

dx1

∫ 1−x1

0

dy1

∫ 1−y1

x1

dx2

∫ 1−x2

y1

dy2

∫ x2+y2−y1

x1

dx3

∫ x2+y2−x3

y1

dy3

∫ x2+y2−y1

x1

dx4

∫ x2+y2−x4

y1

dy4 =
1

84
.

The factor 16 is 24, where factor 2 is the inverse of the triangle area.
The four points can be put in the three positions: lower left corner,
two interior, and one on the right side in 4!

1!2!1!
= 12 ways. It follows

from the affine invariance that all three vertices of B have the same
probability of coinciding with one of the generated points, so Case 1
occurs with the probability p1 = 12·3

84
= 3

7
. The complementary event,

Case 2, has the probability p2 = 4
7
.

Moving to the second level in table 1, we start by considering the
splitting of case 1 into cases a+b and case c. Case c is characterized by
that the points P3 and P4 sit on opposite sides of the line P1P2. When
calculating the probability for this to happen, we scale up B so that it
fills the whole A. For fixed x2, the probability is x2 that a point sits to
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T4

T3

T2

T1

x

y

P1 P2

P3

Figure 10. The areas relevant for calculation of cases
a and b.

the left of P1P2. We get

Prob(one on each side) =

(

2

1

)
∫ 1

0

x2(1 − x2)dx2 =
1

3
.

Case d, which is a subcase of 2 occurs when P4 sits in the triangle
T = P1P2P3, cf. Figure 2. The area of T is 1

2
(x1(1− y2)+x3(y2 −x1)).

We get

Prob(P4 in T ) =

∫ 1

0

dx1

∫ 1

0

dy2

∫ 1

0

(x1(1 − y2) + x3(y2 − x1))dx2 =
1

4

In studying the discrimination between cases a and b on the third
level of table 1, we refer to Figure 10. This Figure shows an affine
transformation of the triangle with vertices: top vertex of B, P1, and
P2 on the vertices (0, 1), (0, 0), and (1, 0), respectively. The point
P3 is assumed to sit in this triangle and is mapped on (x, y). The
point (x, y) determines the four triangles T1 - T4 in Figure 10. Let
qi = Prob(P4 ∈ Ti ). We have qi is proportional to the area of Ti:

q1 =
xy

1 − x
, q2 =

x

x+ y
− xy

1 − x
, q3 =

y

x + y
− y, q4 = y.

The quadrangle case b occurs if P4 sits in T1 or T3 and by the affine
invariance, the probabilities are the same for these two triangles. We
get

Prob(quadrangle) = 2

(

2

1

)
∫ 1

0

dx

∫ 1−x

0

q1dy =
1

3
.
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We get the total probabilities for each case in table 1 by multiplying
together the case splitting probabilities above them.

4.3. Calculation of the U-distributions for the five cases. Each
case requires its own calculation. As it turns out, the complexity of
the calculations increases from case a through b, c, and d to the most
complicated case e. The cases a, b, and c are similar and we will do
cases a and b here and case c in Appendix C. Case d will be done here
and case e in Appendix D.

4.3.1. Calculation of H4a(u). In cases a and b, we have P1, P2, and P3

as in Figure 3 and P4 falling on the same side of P1P2 as P3. Case a
occurs when P4 sits in T2 or T4 in Figure 10. By the affine invariance,
the distributions for these two sets are the same and we will do the
calculations for T4. We have

Prob(U < z) = Prob(2T4 < z) = Prob(y < z) =

{

1, y < z

0, y ≥ z.

We integrate this conditional probability times the probability that it
occurs = q4 = y and get

(20)

Ka(z) =

(

1

2

)−1(
1

3

)−1 ∫ z

0

dy

∫ 1−y

0

y dx = 3z2 − 2z3, 0 ≤ z ≤ 1.

The whole triangle in Figure 10 is the affine image of the triangle
to the left of P1P2 of size x2/2. This implies that the conditional
distribution for U is f(u | x2) = Ka(u/x2), when x2 ≥ u else 1. We
get the distribution function for U by integrating f(u | x2) times the
probability = 3x2

2 that P3 and P4 sit to the left of P1P2

H4a(u) =

∫ u

0

3x2
2 dx2 +

∫ 1

u

3x2
2Ka(u/x2) dx2 = u2(9 − 8u+ 6u log u),

0 ≤ u ≤ 1.

(21)

4.3.2. Calculation of H4b(u). In case b, we have again the situation
depicted in Figure 3 with P3 and P4 falling on the same side of P1P2.
Case b occurs when P4 sits in T1 or T3 in Figure 10. By the affine
invariance, the distributions for these two sets are the same and we
will do the calculations for P4 ∈ T1. Let w be the fraction of T1 that
together with T4 forms the quadrangle. We get the quadrangle area
Z = wq1 + q4. The distribution function for the fraction that the area
nearest to the base takes up of a triangle is

(22) φ(w) = 1 − (1 − w)2 = 2w − w2 when 0 ≤ w ≤ 1, else 0 or 1.
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We get

f(z | x, y) = φ(w) = φ(
z − q4
q1

) = φ(
(z − y)(1 − x)

xy
),

when y < z ≤ y/(1 − x), else 0 or 1. We get the Z-distribution by
integrating f(z | x, y) times the probability density (= q1) for (x, y)

Kb(z) =

(

1

6

)−1 ∫ z

0

dy

(

∫ 1−y/z

0

q1dx+

∫ 1−y

1−y/z

q1φ(
(z − y)(1 − x)

xy
) dx

)

= 6(1 − 3z)(1 − z) log(1 − z) − 8z3 + 3z2 + 6z

+ 2z2(6Li2(z) − π2),

where Li2(z) is the dilogarithm function, see Appendix A. With the
same argument as in case a, we get (compare (21))

H4b(u) =

∫ u

0

3x2
2 dx2 +

∫ 1

u

3x2
2Kb(u/x2) dx2

= u(−44u2 + 39u+ 6) + 12u3 log u

− 6(2u2 + 5u− 1)(1 − u) log(1 − u) + 6u2(6Li2(u) − π2),

0 ≤ u ≤ 1.

(23)

4.3.3. Calculation of H4d(u). In case d, we have the situation depicted
in Figure 4 with P4 falling inside T . The calculations are similar to
those in section 3.2.2. There, we got f(u | x1, y2) by integrating 1 from
0 to ξ3. Here, we shall not integrate 1, but the probability that P4 sits
in T over the same interval. This probability is proportional to the size
of T = x1(1 − y2) + x3(y2 − x1). Integrating over x3, we get (compare
(6))

f(u|x1, y2) =



















0, u ≤ x1(1 − y2),

x1(1 − y2) ξ3 + (y2 − x1) ξ3
2/2,

x1(1 − y2) ≤ u ≤ y2(1 − x1),

(x1 + y2)/2 − x1y2, y2(1 − x1) ≤ u,

(24)

where ξ3 is given in (5). Like in (3), we get

(25) Prob(U ≤ u) = H4d(u) = 2

(

1

4

)−1 ∫ 1

0

dx1

∫ 1

x1

f(u|x1, y2) dy2.

The areas to integrate over are the same as in Figures 5 and 6, but
the value of f(u|x1, y2 is not 1 in the corners as given in the Figures
but the value given above.



16 JOHAN PHILIP

0
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0.2 0.4 0.6 0.8 1

u

Figure 11. Density function dH4d(u)/du for U in case
d. The peak value is 6 log(2).

We get

H4d(u) =







































2
5
(6u+ 1)(1 − 4u)3/2(log 1+

√
1−4u
2

− log(u)/2)

+1
5
(1 − 30u2) log(u) + 1

5
u(3u+ 2),

0 ≤ u ≤ 1/4,
2
5
(6u+ 1)(4u− 1)3/2(arccos 1

2
√

u
− π/3)

+1
5
(1 − 30u2) log(u) + 1

5
u(3u+ 2),

1/4 ≤ u ≤ 1.

(26)

4.4. The distribution of U for four generated points. We get
the total fraction distribution H4(u) by weighting together the five
case distributions with the weights given on the last line but one in
table 1.
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Figure 12. Density function dH4(u)/du for the area
fraction of the ’big’ subtriangle for four random points
in a triangle.

H4(u) =
4

21
H4a(u) +

2

21
H4b(u) +

1

7
H4c(u) +

1

7
H4d(u) +

3

7
H4e(u) =

=































































































+16
35

(9u2 + 13u− 1)
√

1 − 4u (log( 1+
√

1−4u
2

) − log(u)/2)

−72
7
u2 log(1+

√
1−4u
2

) (log(1+
√

1−4u
2

) − log(u))

− 2
35

(5u4 − 20u3 + 60u2 − 60u+ 4) log(u)

−2
7
(u3 + 9u2 + 33u− 7)(1 − u) log(1 − u)

− 1
35

(230u3 − 211u2 − 54u) + 4
7
u2(18Li2(u) − π2)),

0 ≤ u ≤ 1/4.

+16
35

(9u2 + 13u− 1)
√

4u− 1(π/3 − arccos 1
2
√

u
)

−72
7
u2(2π/3 − arccos 1

2
√

u
) arccos 1

2
√

u
+ 18

7
u2(log(u))2

− 2
35

(5u4 − 20u3 + 60u2 − 60u+ 4) log(u)

−2
7
(u3 + 9u2 + 33u− 7)(1 − u) log(1 − u)

− 1
35

(230u3 − 211u2 − 54u) + 4
7
u2(18Li2(u) − π2)),

1/4 ≤ u ≤ 1.

(27)

The expected value of U is E(U) = 5
14

. Calculating the expectation

for the triangle cases a and d separately gives E(Utriangle) = 5
14

so
E(Uquadrangle) must also have this value.

4.5. The distribution of V for four generated points. We shall
calulate the distribution G4(v) of the ratio V = area(B)/area(A)..
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The calculations are similar to those for G3(v). Like for G3(v), we
shall do the calculations for the main Case 1, which is characterized by
the following set of inequalities

x1 ≤ x2 x1 ≤ x3 x1 ≤ x4 y1 ≤ y2 y1 ≤ y3 y1 ≤ y4.

WLOG, we can add the inequality x4 + y4 ≤ x3 + y3 ≤ x2 + y2. The
probability that this situation occurs is the one in (9) extended with
integration over x4 and y4. The result is pc1 = 1

448
.

The side length of B is S = x2 + y2 − x1 − y1. The calculation of its
distribution goes as in (10) extended with integration over x4 and y4.
We get

k1a(s|x1, y1; s+ x1 + y1 ≤ 1) =
s6

8

and

k1b(s|x1, y1; s+ x1 + y1 > 1) =
(1 − x1 − y1)

6

8
.

The areas to integrate over in the x1y1-plane are shown in Figure 8 and
the integration is exactly the same as in (11). We get

K4(s) = Prob(S ≤ s) = 28s6 − 48s7 + 21s8,

which gives

(28) G4(v) = 28v3 − 48v7/2 + 21v4, 0 ≤ v ≤ 1 .

The expectation of V is E(V ) = 7
15

. Combining this with E(U) = 5
14

,

we get E(X) = 5
14

· 7
15

= 1
6
.

4.6. The distribution of X for four generated points. The com-
bination of the distributions of U and V to get the distribution of
X = UV is done exactly in the same way as for three points. We shall
calculate (compare (14))

F4(x) =

∫ 1

0

G4(x/u) dH4(u) =

= G4(x) −
∫ 1

x

H4(u)
d

du
G4(x/u) du, 0 ≤ x ≤ 1.

(29)

We get
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Figure 13. Density function dF4(x)/dx for the area
fraction of the convex hull of four random points inside
a triangle.

F4(x) =

=







































































































































48x2(6x2 + 4x− 3) log(
1+
√

(1−4x)

2
) log(1+

√
1−4x

2x
)

− 8
35

(2826x3 − 1101x2 − 80x+ 2)
√

1 − 4x log(1+
√

1−4x
2
√

x
)

+84x4(log x)2

− 2
35

(1505x4 + 7840x3 − 1890x2 − 168x+ 4) log x

−2(43x3 + 123x2 + 15x− 1)(1 − x) log(1 − x)

−4
3
(27x2 + 40x+ 6)x2π2

− 1
35

(4622x2 − 4603x− 54)x+ 24x2(x2 + 8x+ 6)Li2(x),

0 ≤ x ≤ 1/4,

48x2(6x2 + 4x− 3)(2π/3 − arccos 1
2
√

x
) arccos 1

2
√

x

− 8
35

(2826x3 − 1101x2 − 80x+ 2)
√

4x− 1(π/3 − arccos 1
2
√

x
)

+12x2(x− 1)(x− 3)(log x)2

− 2
35

(1505x4 + 7840x3 − 1890x2 − 168x+ 4) log x

−2(43x3 + 123x2 + 15x− 1)(1 − x) log(1 − x)

−4
3
(27x2 + 40x+ 6)x2π2

− 1
35

(4622x2 − 4603x− 54)x+ 24x2(x2 + 8x+ 6)Li2(x),

1/4 ≤ x ≤ 1.

(30)

The density dF4(x)/dx is shown in Figure 13.
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The first moments and the standard deviation of X are

α1 =

∫ 1

0

x dF4(x) =
1

6
,

α2 =

∫ 1

0

x2 dF4(x) =
181

4500
,

σ =
√

α2 − α1
2 =

1

75

√
70 ≈ .1116,

α3 =

∫ 1

0

x3 dF4(x) =
14

1125
.

(31)

5. The number of vertices of the convex hull.

Like in [7], we define for k ≤ n

qn(k) = Prob( n points generate a convex polygon with k vertices).

Of course, q3(3) = 1. We noted in the beginning of section 4.1 that
q4(3) = 1

3
implying q4(4) = 2

3
. From [7], we have for all n ≥ 3

(32) qn(3) =

(

n

3

)
∫ 1

0

xn−3 dF3(x).

Some values are

q5(3) =
5

36
≈ .1389, q6(3) =

31

450
≈ .0689, q7(3) =

7

180
≈ .0389,

q8(3) =
1063

44100
≈ .0241, q9(3) =

403

25200
≈ .0160.

For k = 4, we need the conditional probability that points 5 through
n are generated inside the area generated by the first four points,
provided these four points span a quadrangle. Cases b, c, and e
are quadrangles, so summing the H4 for these cases multiplied by
their weights will give us the wanted conditional distribution function
H4q(u). Combining H4q with G4 will give the conditional distribution
function F4q(x). Including the probability 2

3
of getting a quadrangle,

we get

(33) qn(4) =
2

3

(

n

4

)
∫ 1

0

xn−4 dF4q(x).

Some values are

q5(4) =
5

9
, q6(4) =

119

300
≈ .3966, q7(4) =

7

25
.

From the above, we can deduce q5(5) = 1 − 5
36

− 5
9

= 11
36

≈ .3056
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6. Asymptotic estimates.

For n ≥ 5 , we cite two asymptotic estimates from [8], [9], and [7] .
The average area of the convex hull of n points in a triangle with unit
area is

E(area) = 1 − 2
log(n) + γ

n
+ O

(

1

n2

)

,

where γ = .5772 is Euler’s constant. The average number of vertices
of the convex hull of n points in a triangle is

E(# vertices) = 2(log(n/2) + γ) + o(1), n→ ∞.

The latter estimate is very good even for small n.

7. Concluding comment.

We have not shown any integral calculations in detail. In princi-
ple, they are elementary, which doesn’t mean that they don’t require
a substantial effort. As indicated, the calculations have been done in
Maple. The calculations would not have been possible without some
tool for handling the huge number of terms that come out of the in-
tegrations, sometimes more than a hundred. This doesn’t mean that
Maple performs the integrations automatically. Generally, we had to
split up the integrands in parts and use a particular substitution for
each part. Often, we had to do partial integrations manually. Many
integrals were improper, calling for a limiting process. We will supply
any interested reader with Maple files describing the calculations.

Appendix A

The dilogarithm function Li2(x) is defined in [5] for complex x as

Li2(x) = −
∫ x

0

log(1 − t)

t
dt.(34)

In this paper, we use this function for 0 ≤ x ≤ 1 for which Li2 is
real.

We have the series expansion

Li2(x) =

∞
∑

k=1

xk

k2
, − 1 ≤ x ≤ 1.(35)

Although the series is only convergent for |x| ≤ 1, the integral in
(34) is not restricted to these limits. With a suitable branch cut, the
Li2 function is defined and is real on the whole real axis. See Figure
14.

The definition of the dilogarithm function has varied a little from
author to author. Maple has the function polylog(2, x) which is de-
fined by the series expansion (35) for |x| ≤ 1 otherwise by analytic
continuation. Maple also has a function dilog(x) = Li2(1 − x) defined
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2
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x

864

−1

0

0

1

−2

Figure 14. The function Li2(x).

on the whole real axis. Maple’s dilog function is the same as the dilog
function given in [1], page 1004.

Li2(x) is increasing from Li2(0) = 0 via Li2(1) = π2/6 to Li2(2) =
π2/4.

The integrals involving Li2(x) needed for calculating the moments of
various distributions take rational values like

∫ 1

0

x dLi2(x) = 1,

∫ 1

0

x2 dLi2(x) =
3

4
,

∫ 1

0

x3 dLi2(x) =
11

18
.

Appendix B

We shall calculate the distribution functionK3.2(s) for the side length
in Case 2 for three generated points. This case is depicted in Figure 2
and is characterized by

x2 ≤ x1, x2 ≤ x3, y1 ≤ y2, y1 ≤ y3 .

WLOG, we can use

x1 + y1 ≤ x2 + y2 ≤ x3 + y3.

We start by calculating the probability that this situation occurs The
integration over x3 and y3 gives

t(x2, y1, y2) =
(1 − x2 − y1)

2

2
− (y2 − y1)

2

2
.
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We get the probability

pc2 =

∫ 1

0

dy1

∫ 1

y1

dy2

∫ 1−y2

0

dx2

∫ x2+y2−y1

x2

t(x2, y1, y2) dx1 =
1

240
.

Notice the integration order dx1, dx2, dy2, dy1. Any other order makes
the integration much more complicated.

Here, the side length of B is S = x3 + y3 − x2 − y1. Define

ts(s, y1, y2) =
s2

2
− (y2 − y1)

2

2
.

The integration over x3 and y3 and S ≤ s gives

k2(s, x2, y1, y2) =











0, s < y2 − y1,

ts(s, y1, y2), y2 − y1 ≤ s < 1 − x2 − y1,

t(x2, y1, y2), 1 − x2 − y1 ≤ s.

The integration of k2 over x1 and x2 splits into two cases (a) when
y1 ≤ 1 − s and (b) when y1 > 1 − s. We get

k2a(s, y1, y2) =

∫ 1−s−y1

0

dx2

∫ x2+y2−y1

x2

ts(s, y1, y2) dx1

+

∫ 1−y2

1−s−y1

dx2

∫ x2+y2−y1

x2

t(x2, y1, y2) dx1

= (y1 − y2)(y2 − y1 − s)(y1
2 + y1y2 − 2y2

2

− (3 + s)y1 + (3 + 2s)y2 − 2s2 + 3s)/6,

and

k2b(s, y1, y2) =

∫ 1−y2

0

dx2

∫ x2+y2−y1

x2

t(x2, y1, y2) dx1

= (1 − y2)
2(y2 − y1)(1 + 2y2 − 3y1)/6.

The final integration over y1 and y2 gives

K3,2(s) = Prob(S ≤ s)

=
1

pc2

(
∫ 1−s

0

dy1

∫ y1+s

y1

k2a dy2 +

∫ 1

1−s

dy1

∫ 1

y1

k2b dy2

)

= 15s4 − 24s5 + 10s6.

(36)

This implies that K3,1(s) = K3,2(s).

Appendix C. Calculation of H4c(u).

In case c, we have P1, P2, and P3 as in Figure 3 and P4 falling on
opposite sides of P1P2 from P3. The polygon is the sum of the triangles
T1 = P1P2P3 and T2 = P1P2P4. We shall convolve the distributions
of these two triangles to get the distribution for U = T1 + T2. The
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g3

u

x

g1

g22g21

Figure 15. Areas to integrate f(u | x) over in case c.

distribution function for the fraction of a triangle with area = 1, is
given in (22). For the two triangles, we get

f1(z | x2) = φ(z/x2) and f2(v | x2) = φ(v/(1 − x2)).

Because the expressions for f1 and f2 vary over the intervals of z and
v, the expression for the conditional distribution f(u | x2) varies in the
(u, x2)-plane. Let ψ(u, v) = f2(v)f

′
1(u− v). In the sequel, we shall skip

the index 2 and replace x2 by x. We get

f(u|x) =


















∫ u

u−x
ψ(u, v)dv, 0 ≤ x ≤ u ≤ min(u, 1 − u),

∫ u

0
ψ(u, v)dv, u ≤ x ≤ 1 − u,

∫ 1−x

u−x
ψ(u, v)dv +

∫ u

1−x
f ′

1(u− v)dv, 1 − u ≤ x ≤ u,
∫ 1−x

0
ψ(u, v)dv +

∫ u

1−x
f ′

1(u− v)dv, max(u, 1 − u) ≤ x ≤ 1.

(37)

Performing the integrations in (37), we get the following expressions
valid in the regions depicted in Figure 15
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f(u|x) =























g1 = 3x2−8ux−4x−6u2+12u
6(1−x)2

, 0 ≤ x ≤ u ≤ min(u, 1 − u),

g21 = 2u2

x(1−x)
− (4−u)u3

6x2(1−x)2
, u ≤ x ≤ 1 − u,

g22 = 1 − (1−u)4

6x2(1−x)2
, 1 − u ≤ x ≤ u,

g3 = 3x2+8ux−2x−6u2+4u−1
6x2 , max(u, 1 − u) ≤ x ≤ 1.

(38)

We get

Prob(U ≤ u) = H4c(u) =

(

2

1

)(

1

3

)−1 ∫ 1

0

x(1 − x)f(u | x)dx

= 2(4 − u)u3 log(u) + 2(1 − u)4 log(1 − u) − u(6u2 − 5u− 2),

0 ≤ u ≤ 1.

(39)

Appendix D. Calculation of H4e(u).

The geometry is described in Figure 4. The x-coordinate of P1 will
be denoted x and the y-coordinate of P2 will be denoted y. We will
have a quadrangle if P4 sits in one of the three corner triangles. These
are affinely equivalent and we do the calculations for P4 in the lower left
triangle. The probability for this to happen is xy. The quadrangle area
U = T1+T2. For fixed x and y, we get the conditional distribution of U
by convolving the conditional distributions f1(v | x, y) and f2(v | x, y)
of T1 and T2.

(40) f(u | x, y) =

∫ 1

0

f2(v | x, y) df1

dv
(u− v | x, y) dv

Like in (6), we assume x ≤ y and get for fixed x and y, df1

dv
(v | x, y) =

1
y−x

when x(1 − y) ≤ v ≤ y(1 − x), otherwise zero. We have

f2(v | x, y) =







1 −
(

1 − v
xy

)2

, 0 ≤ v ≤ xy,

1, xy ≤ v ≤ 1.
(41)

Because the expressions for f1 and f2 vary from interval to interval,
we get different expressions for f(u | x, y) valid in different sets of u,
x, and y. These sets are depicted in Figure 16 for 0 ≤ u ≤ 1/4, and
Figure 17 for 1/2 ≤ u ≤ 1. The figure for 1/4 ≤ u ≤ 1/2 is not shown.
In fact, integrating for u in this interval gives the same result as for
1/2 ≤ u ≤ 1. We have
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1-u
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g1

u < 1/4
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y

g2

1

0

y = 1-u/x

y=u/(1-x)

Figure 16. Areas to integrate (40) over for 0 ≤ u ≤ 1/4.

1-u

u

g3

g4

1/2 < u

x

y

g2

1
y = 1-u/x

y=u/(1-x)

Figure 17. Areas to integrate (40) over for 1/2 ≤ u ≤ 1.

f(u | x, y) =






































0, 0 ≤ u ≤ x(1 − y),
1

y−x

∫ u−x+xy

0
f2(v)dv, x(1 − y) ≤ u ≤ y(1 − x),

1
y−x

∫ u−y+xy

u−x+xy
f2(v)dv, y(1 − x) ≤ u ≤ x,

u−x
y−x

+ 1
y−x

∫ xy

u−x+xy
f2(v)dv, y(1 − x) ≤ u ≤ y and x ≤ u,

u−x
y−x

+ 1
y−x

∫ xy

0
f2(v)dv, x ≤ u ≤ y(1 − x),

1, y ≤ u ≤ 1.

(42)
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Performing the integrations in (42), we get

f(u | x, y) =










































g0 = 0, 0 ≤ u ≤ x(1 − y),

g1 = (u−x+xy)(x−u+2xy)
3x2y2(y−x)

, x(1 − y) ≤ u ≤ y(1 − x),

g2 = 3x2y2−x2−y2−xy+3u(x+y−u)
3x2y2 , y(1 − x) ≤ u ≤ x,

g3 = 3y(uy−u2+x2y2−x3y)+u3−y3

3x2y2(y−x)
, y(1 − x) ≤ u ≤ y and x ≤ u,

g4 = 3u−3x+2xy
3(y−x)

, x ≤ u ≤ y(1 − x),

g5 = 1, y ≤ u ≤ 1.

(43)

We get H4e by integrating f(u | x, y) multiplied by the probability
= xy that this case occurs

(44) H4e(u) = 2

(

3

1

)(

3

4

)−1 ∫ 1

0

dx

∫ 1

x

x y f(u | x, y) dy.

We get

H4e(u) =































































































2
5
(32u2 + 34u− 3)

√
1 − 4u (log( 1+

√
1−4u
2

) − log(u)/2)

−24u2 log(1+
√

1−4u
2

) (log(1+
√

1−4u
2

) − log(u))

− 1
15

(80u3 + 90u2 − 120u+ 9) log(u)

−8
3
(2u2 + 5u− 1)(1 − u) log(1 − u)

− 7
15
u2 + 22

15
u+ 8

3
π2u2 − 16u2Li2(u),

0 ≤ u ≤ 1/4,
2
5
(32u2 + 34u− 3)

√
4u− 1(π/3 − arccos 1

2
√

u
)

−24u2(2π/3 − arccos 1
2
√

u
) arccos 1

2
√

u

− 1
15

(80u3 + 90u2 − 120u+ 9) log(u)

−8
3
(2u2 + 5u− 1)(1 − u) log(1 − u)

− 7
15
u2 + 22

15
u+ 8

3
π2u2 − 16u2Li2(u),

1/4 ≤ u ≤ 1.

(45)
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