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Abstract. We determine the distribution function for the area
of a random triangle in a regular hexagon.

1. Introduction

We shall denote the regular hexagon by K and the random triangle
by T and shall consider the random variable X = area(T )/area(K).
It is well known that an affine transformation will preserve the ratio X.
This follows from the fact that the area scaling is constant for an affine
transformation. The scale equals the determinant of the homogeneous
part of the transformation.

Various aspects of our problem have been considered in the field
of geometric probability, see e.g. [13]. J. J. Sylvester considered the
problem of a random triangle T in an arbitrary convex set K and
posed the following problem: Determine the shape of K for which the
expected value κ = E(X) is maximal and minimal. A first attempt to
solve the problem was published by M. W. Crofton in 1885. Wilhelm
Blaschke [3] proved in 1917 that 35

48π2 ≤ κ ≤ 1
12

, where the minimum is
attained only when K is an ellipse and the maximum only when K is
a triangle. The upper and lower bounds of κ only differ by about 13%.
It has been shown [2], that κ = 289

3888
for K a regular hexagon.

A. Reńyi and R. Sulanke, [11] and [12], consider the area ratio when
the triangle T is replaced by the convex hull of n random points. They
obtain asymptotic estimates of κ for large n and for various convex K.
R. E. Miles [7] generalizes these asymptotic estimates for K a circle to
higher dimensions. C. Buchta and M. Reitzner, [4], has given values of
κ (generalized to three dimensions) for n ≥ 4 points in a tetrahedron.
H. A. Alikoski [2] has given expressions for κ when T is a triangle and
K a regular r-polygon.

Here, we shall deduce the distribution function for X. We have done
this before when K is a square in, [8] and [9] and when K is a triangle
in [10]. The method used here is the same as in [9]. We hope to be
able to present the result of applying the same method to a regular
pentagon.
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Figure 1. The regular hexagon K, the random triangle
T and the shrunken hexagon B .

2. Notation and formulation.

We use a constant probability density for generating three random
points in the regular hexagon K. Let T be the convex hull of the
three points. Compare Figure 1. We shall determine the probability
distribution of the random variable X = area(T )/area(K).

Our method will be to shrink the hexagon around its midpoint until
one of its sides hits a triangle point. The shrunken hexagon is denoted
B. The random variableX that we study will be written as the product
of two random variables

V = area(B)/area(K) and W = area(T )/area(B).

One of the triangle points stops the shrinking and determines V . Since
the density of the points is rotation invariant, we can use a local co-
ordinate system at the stopping point with one axis along the side of
the hexagon and one orthogonal to the side. It’s the point’s orthogonal
coordinate that determines the shrink. The coordinate along this side
is independent of the former and is consequently evenly distributed
along the side. Since the coordinates of the other two triangle points
are independent of the hitting point, it follows that V and W are in-
dependent.
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We shall determine the distributions of V and W and combine them
to get the distribution of X = VW .

3. The distribution of V .

V is the area of the shrunken hexagon B. The hexagon K is the
sum of six equilateral triangles. Each of the three points of the random
triangle sits in one of these equilateral triangles. Focussing on such an
equilateral triangle, we measure the distance from the random point to
the center of the hexagon othogonally to the side of the triangle that
is part of the hexagon. Denote this distance by S. The distribution
function for S is L(s) = c · s2 , where c is a constant. Choosing a scale
so that s = 1 on the boundary, we have c = 1. The largest of the three
distances has the distribution function L(smax)

3 = (smax)
6. The area

of B is v = area(K) · (smax)
2. We get

(1) G(v) = Prob(V < v) = (smax)
6 = v3, 0 ≤ v ≤ 1.

By the argument used here, thisG(v) holds for any regular r-polygon.

4. The distribution of W.

W is the area of a random triangle having one vertex on the bound-
ary of a regular hexagon = B and the other two vertices in the interior
of the hexagon. Since the area ratio W is invariant under affine trans-
formations of B, we will use the B shown in Figures 2 and 4, having
area(B) = 3. Without loss of generality, we will number the three
triangle vertices so that vertex one is the one sitting on the boundary
and we let this boundary be the x-axis, so that vertex one is (x, 0).
The position of the second vertex is (x2, y2). Let l0 be the line through
vertices one and two. It contains one side of the triangle. Our calcu-
lations will be divided into five cases depending on where l0 intersects
B. More precisely, we shall number the sides clockwise around the
hexagon beginning with the side along the y-axis as number one.

4.1. Case 1. Case 1, depicted in Figure 2, occurs when l0 itersects side
one of the hexagon i.e. the y-axis in the point (0, y), 0 ≤ y ≤ 1. This
means that l0 itersects two adjacent sides of B. The equation for l0 is

l0 : η = −y
x
ξ + y.

Let s =
√

(x− x2)
2 + y2

2 be the distance between vertices one and

two. For fixed x and y, the maximal value of s is r1 =
√

x2 + y2.
The variable W = area(T )/area(B) = area(T )/3 will be less than

w if the distance between l0 and the third vertex is less than 6w/s. To
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Figure 2. Case 1. The line l0 trough vertices one and
two intersects the left side of the hexagon.

avoid the factor 6 in numerous places below, we shall use the “normal-
ized” double area u = 6w in the calculations. The lines l1 and l2 have
the distance u/s to l0.

l1 : η = −y
x
ξ + y − u r1

s x
.

l2 : η = −y
x
ξ + y +

u r1
s x

.

This means that the conditional probability P (W ≤ u/6 | x, y, s)
is proportional to the area between the lines l1 and l2 in the hexagon
in Figure 2. The hexagon B has area 3 and we shall use the formula
3− T1 − S1 (see Figure 2) for this area and we shall average T1 and S1

over x, y, and s to get the contribution to P (W ≤ u/6) from Case 1.
In fact, when we consider all possible directions of l0 in all our cases, it
follows from a symmetry argument that the areas to the left of l1 will
be the same as those to the right of l2. This implies that it suffices to
calculate the areas to the left and then double the result. Thus, we will
average 2T1 over x, y, and s and neglect S1. Another way of putting
this is to say that we treat T1 here in Case 1 and S1 in Case 5.

Putting 2T1 = α and and using the equation of l1, we get
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Figure 3. Area to integrate s and y over in Case 1 when
u = 1/6 and x = 1/2.

(2) α =
x

y

(

y − u r1
s x

)2

if s >
u r1
x y

, otherwise 0 .

We shall determine the densities of x, y, and s. As we noted, x
is evenly distributed over (0, 1). The area to the left of l0 is xy/2,
so for fixed x, the density is the differential x

2
dy. For fixed x and y

consider the small triangle with vertices in (x, 0), (0, y), and (0, y+dy).
The fraction of the small triangle below s is ( s

r1
)2 and the density is the

differential 2s
r1

2 ds. A calculation gives that the integral of the combined

density ρ1 = x s/r1
2 over the whole range of (x, y, s) equals 1

4
. Divided

by the area of the hexagon, it gives the probability 1
12

for the occurence
of Case 1.

Figure 3 shows the range in (s, y)-space to integrate over for fixed
u and x. The increasing curve is the upper bound r1 for s and the
decreasing curve is its lower bound sα = u r1

x y
. The intersection of the

lower and upper s-bounds is the lower bound yα = u/x for y. We have
yα < 1 when x > u.

The contribution from Case 1 is the weighted average of α:
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Figure 4. Case 2 when u/s = .35, x = 1.3, and y = 1.9 .

(3) h1(u) =

∫ 1

u

xdx

∫ 1

u/x

r1
−2dy

∫ r1

u r1/x y

x

y

(

y − u r1
s x

)2

sds.

Maple is helpful in solving integrals of this kind and delivers the
following result valid for 0 ≤ u ≤ 1

(4) h11(u) = −1

3
u3 +

5

4
u2 − u+

1

12
− 1

2
u2 log(u) (1 − log(u)).

4.2. Case 2. This case occurs when l0 itersects sides zero and two of
the hexagon, meaning that the intersected sides of B are separated by
one side. We shall use the affine transformation of B shown in Figure 4
in the calculations. The expression for l0 is the same as in Case 1, but
here, 1 ≤ x ≤ 2 and 1 ≤ y ≤ 2. The maximal value of s and the density
ρ2 have the same expressions as in Case 1. They are r2 =

√

x2 + y2

and ρ2 = xs/r2
2.

Let the intersections between l1 and the coordinate axes be ξ1 and η1

respectively and let the intersection between l1 and the line ξ + η = 1
have ξ-coordinate ξ2. Compare Figure 4. The figure is drawn with
x < y and 0 < ξ2 < 1. The contribution to P (W ≤ u/6) from Case 2
is twice the area in the hexagon to the left of l1. We call this quantity
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Figure 5. Case 2 when u/s = .1, x = 1.3, and y = 1.9 .

α and in the figure it is

α = (η1 − 1) · ξ2 =
x

y − x

(

y − 1 − ur2
sx

)2

.

Figure 5 shows the situation in Case 2 with a smaller u/s. Here, ξ2 > 1
and the area to the left of l1 is instead α + β, where

β = (ξ1 − 1) · (1 − ξ2) =
y

x− y

(

x− 1 − ur2
sy

)2

.

Here, α extends outside the hexagon and β equals minus the part of
α outside the hexagon. We have α ≥ 0 whenever η1 ≥ 1, which is
equivalent to s ≥ sα = u·r2

x·(y−1)
. Otherwise, α = 0. We have β ≤ 0

whenever ξ1 ≥ 1, which is equivalent to s ≥ sβ = u·r2

y·(x−1)
. Otherwise

β = 0.
The areas to integrate s and y over are shown in Figure 6. Figures

4 and 5 are drawn for y > x, so we should consider only the part of
Figure 6 where y > x. In fact, Figure 6 is valid also for y < x. The
only difference is that β ≥ 0 and α ≤ 0 for y < x. Incidentally, sα and
sβ intersect at y = x. Thus, we shall integrate α from sα to r2 and
β from sβ to r2. Noting that β equals α with x and y switched, one
could hope that their integration would give the same result. However,
ρ2 is not symmetric in x and y. The reason is that the y-density is
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Figure 6. The areas to integrate s and y over in Case
2 when u = .65 and x = 1.6.

calculated for fixed x as is the s-density calculated for fixed x and y.
The integrations shall be performed first in s, then in y and last in x.
As long as 1 < yα < 2 and 1 < yβ < 2, we shall calculate

kα(u, x) =

∫ 2

yα

dy

∫ r2

sα

ρ2 α ds and kβ(u, x) =

∫ 2

yβ

dy

∫ r2

sβ

ρ2 β ds .

Here, the intersection between sα and r2 is yα = 1 + u/x, and that
between sβ and r2 is yβ = u/(x− 1). Whenever yα and yβ are smaller
than one, they shall be replaced by one and the integrals are zero when
they are bigger than two. In Figure 7, we show the lines in (x,u)-space
where yα and yβ are one and two and indicate where kα and kβ hold.
In the area marked kβ,0 we have yβ < 1 so that the kβ(u, x) given above
is not valid and shall be replaced by

kβ,0(u, x) =

∫ 2

1

dy

∫ r2

sβ

ρ2 β ds ,

where we have added the index 0 to indicate that the lower bound for
y is at its bottom value.

We have
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Figure 7. The x-intervals to integrate kα, kβ, and kβ,0

over for different u in Case 2.

h21(u) =

∫ 2

1

kα dx+

∫ 1+u

1+u/2

kβ dx+

∫ 2

1+u

kβ,0 dx, 0 ≤ u ≤ 1,(5)

h22(u) =

∫ 2

u

kα dx+

∫ 2

1+u/2

kβ dx. 1 ≤ u ≤ 2.

To give an idea of what the evaluation of these integrals look like
we give h21(u). We will supply any interested reader with Maple-files
giving explicit expressions for other results.
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h21(u) = 2u2

[

dilog
(u

2

)

− dilog

(

3 +
√

1 + 4u

4

)

− dilog

(

3 −
√

1 + 4u

4

)

(6)

+ ln(1 +
√

1 + 4u)
2 − log (4u) log (1 +

√
1 + 4u)

]

+
1

60
(64u2 − 18u− 1)

√
1 + 4u

[

2 log

(

3 +
√

1 + 4u

1 +
√

1 + 4u

)

+ log (
u

2 − u
)

]

+

[(

3

2
+ 2 log

u

2

)

u2 + 3u− 21

20

]

log (2 − u)

+

[

−
(

1

2
+ log (2)

)

u2 +
1

3
u+

1

60

]

log (u)

+
1

6
u3 +

(

11

2
log (2)2 − 3

2
log (2) +

37

30

)

u2 −
(

8

3
log (2) +

53

15

)

u

+
16

15
log (2) + 1, 0 ≤ u < 1.

Here, dilog is Maple’s dilog function. See Appendix A.

4.3. Case 3. This case occurs when l0 itersects the bottom and top
sides of B, see Figure 8. Denote the coordinate for the intersection
with the top side by z. We let z increase from zero to one along the
top side. The expression for l1 is

η =
2

1 + z − x
(ξ − x+

ur3
2s

),

where r3 =
√

22 + (1 + z − x)2. The density is ρ3 = 2s/r3
2. Like in

Case 2, we describe the area to the left of l1 as the difference between
triangles. In Figure 8, α is twice the area of the big triangle with
vertices in the points marked ξ2, η1, and the point (0, 1). The quantities
called β, and γ are minus twice the areas marked β and γ in the
figure, so that the quantity to be integrated is α+ β + γ. We have the
expressions

α =
1

1 − (z − x)2

(

1 + z + x− ur3
s

)2

,

β = − 1

2(1 + z − x)

(

2x− ur3
s

)2

,

γ = − 1

2(1 − z + x)

(

2z − ur3
s

)2

.

We have α ≥ 0 whenever s > sα = ur3

1+z+x
, otherwise 0, β ≤ 0

whenever s > sβ = ur3

2x
, otherwise 0, and γ ≤ 0 whenever s > sγ = ur3

2z
,

otherwise 0.
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Figure 8. Case 3 when u/s = 1/3, x = z = .6.

The intersection of sα and r3 is zα = u − 1 − x. sβ and r3 don’t
intersect but sβ < r3 when u < 2x. sγ and r3 intersect at zγ = u/2.
We have 0 < zα < 1 when u− 2 < x < u− 1. We shall calculate

kα(u, x) =

∫ 1

zα

dz

∫ r3

sα

ρ3 α ds and kα,0(u, x) =

∫ 1

0

dz

∫ r3

sα

ρ3 α ds ,

kβ(u, x) =

∫ 1

0

dz

∫ r3

sβ

ρ3 β ds and kγ(u, x) =

∫ 1

zγ

dz

∫ r3

sγ

ρ3 γ ds .

These functions shall be integrated over the x-intervals shown in
Figure 9. We get

h31(u) =

∫ 1

0

kα,0 dx+

∫ 1

u/2

kβ dx+

∫ 1

0

kγ dx, 0 ≤ u ≤ 1,

(7)

h32(u) =

∫ u−1

0

kα dx+

∫ 1

u−1

kα,0 dx+

∫ 1

u/2

kβ dx+

∫ 1

0

kγ dx, 1 ≤ u ≤ 2.

h33(u) =

∫ 1

u−2

kα dx, 2 ≤ u ≤ 3.
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Figure 9. The x-intervals to integrate over for fixed u
in Case 3.

We shall not burden this account with the explicit expressions.

4.4. Case 4. This case occurs when l0 intersects sides zero and four.
Like in Case 2, this implies that there is one side between the intersected
sides and we shall use the same transformation of the hexagon as in
Case 2. See Figure 4. The two cases are complementary. In Case 2, we
studied the area to the left of l1. Here we shall study the area to the
right of l1 in Figure 10.

The expression for l1 is

η = −y
x
ξ + y +

ur4
sx

,

where r4 = r2 =
√

x2 + y2. The density is ρ4 = ρ2 = sx/r4
2. The

signed double triangle areas in Figure 10 are

α = (1 − η2)(2 − ξ2) =
(y(x− 2) − x+ ur4/s)

2

x(y − x)
,

β = (1 − ξ2)(ξ3 − 1) =
(x(y − 2) − y + ur4/s)

2

y(x− y)
,

γ = η2(2 − ξ1) = −(y(x− 2) + ur4/s)
2

xy
,
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Figure 10. Case 4 when x = 1.2 and y = 1.6. To
demonstrate the various triangles, two versions of l1 are
drawn, namely l11 for u/s = .1 and l12 for u/s = 1.

δ = ξ3(2 − η1) = −(x(y − 2) + ur4/s)
2

xy
.

The area to integrate over s, y, and x is α+ β + γ + δ. With y > x as
in Figure 10, we have α ≥ 0, β ≤ 0. With y < x it is the other way
around. γ and δ are always negative.

As before, the above expressions hold respectively when

s ≥ sα =
ur4

y(2 − x) + x
, s ≥ sβ =

ur4
x(2 − y) + y

s ≥ sγ =
ur4

y(2 − x)
, s ≥ sδ =

ur4
x(2 − y)

,

and are zero otherwise. The intersections between r4 and the lower
s-bounds are yα = u−x

2−x
, yβ = 2x−u

x−1
, yγ = u

2−x
, and yδ = 2 − u

x
. These

intersections are not always between one and two so we shall calculate

kα(u, x) =

∫ 2

yα

dy

∫ r4

sα

ρ4 α ds and kα,0(u, x) =

∫ 2

1

dy

∫ r4

sα

ρ4 α ds ,

kβ(u, x) =

∫ yβ

1

dy

∫ r4

sβ

ρ4 β ds and kβ,0(u, x) =

∫ 2

1

dy

∫ r4

sβ

ρ4 β ds ,
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Figure 11. The intervals to integrate x over for fixed u
in Case 4.

kγ(u, x) =

∫ 2

yγ

dy

∫ r4

sγ

ρ4 γ ds and kγ,0(u, x) =

∫ 2

1

dy

∫ r4

sγ

ρ4 γ ds ,

kδ(u, x) =

∫ yδ

1

dy

∫ r4

sδ

ρ4 δ ds .

Notice that the y-integrations of β and δ go from one to yβ and yδ,
respectively. We always have yδ ≤ 2.

These functions shall be integrated over the x-intervals shown in
Figure 11.
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h41(u) =

∫ 2

1

kα,0 dx+

∫ 2

1

kβ,0 dx+

∫ 2−u

1

kγ,0 dx(8)

+

∫ 2−u/2

2−u

kγ dx+

∫ 2

1

kδ dx, 0 ≤ u ≤ 1,

h42(u) =

∫ 2

1

kα,0 dx+

∫ 2

1

kβ,0 dx

+

∫ 2−u/2

1

kγ dx+

∫ 2

u

kδ dx, 1 ≤ u ≤ 2.

h43(u) =

∫ 4−u

1

kα dx+

∫ 2

u−1

kβ dx, 2 ≤ u ≤ 3.

The explicit expressions are not given here.

4.5. Case 5. This case occurs when l0 intersects sides zero and five,
meaning that it intersects adjacent sides like in Case 1. Case 5 is
complementary to Case 1, and we shall use the hexagon in Figure 2.
The line marked l2 there will be our l1 in Figure 12 and we shall consider
the area to the right of l1. In fact, Figure 12 has two versions of l1 drawn
for different values of u.

The expression for l1 is

η = −y
x
ξ + y +

ur5
sx

,

where r5 = r1 =
√

x2 + y2. The density is ρ5 = ρ1 = sx/r5
2. The

signed double triangle areas in Figure 12 are

α = (2 − η1)(2 − ξ3) =
(xy − 2x− 2y + ur5/s)

2

xy
,

β = −(1 − η1)(2 − ξ4) = −(xy − x− 2y + ur5/s)
2

x(x+ y)
,

γ = −(1 − ξ2(1 − ξ3) = −(xy − y − 2x+ ur5/s)
2

y(x+ y)
,

δ = −(1 − ξ1)(1 − ξ4) = −(xy − y + ur5/s)
2

y(x+ y)
,

ǫ = −ξ2(1 − η2) = −(xy − x+ ur5/s)
2

x(x+ y)
.

The function to integrate over s, y, and x is α + β + γ + δ + ǫ. We
always have α positive and the others negative.

As before, the above expressions hold respectively when

s ≥ sα =
ur5

2x+ 2y − xy
, s ≥ sβ =

ur5
x+ y(2 − x)

s ≥ sγ =
ur5

y + x(2 − y)
, s ≥ sδ =

ur5
y(1 − x)

,
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Figure 12. Case 5 when x = .5 and y = .7. To demon-
strate the various triangles, two versions of l1 are drawn,
namely l11 for u/s = .1 and l12 for u/s = 1.2.

s ≥ sǫ =
ur5

x(1 − y)
,

and are zero otherwise. The intersections between r5 and the lower s-
bounds are yα = u−2x

2−x
, yβ = u−x

2−x
, yγ = u−2x

1−x
, yδ = u

1−x
, and yǫ = 1 − u

x
.

These intersections are not always between zero and one so we shall
calculate

kα(u, x) =

∫ 1

yα

dy

∫ r5

sα

ρ5 α ds and kα,0(u, x) =

∫ 1

0

dy

∫ r5

sα

ρ5 α ds ,

kβ(u, x) =

∫ 1

yβ

dy

∫ r5

sβ

ρ5 β ds and kβ,0(u, x) =

∫ 1

0

dy

∫ r5

sβ

ρ5 β ds ,

kγ(u, x) =

∫ 1

yγ

dy

∫ r5

sγ

ρ5 γ ds and kγ,0(u, x) =

∫ 1

0

dy

∫ r5

sγ

ρ5 γ ds ,

kδ(u, x) =

∫ 1

yδ

dy

∫ r5

sδ

ρ5 δ ds .

kǫ(u, x) =

∫ yǫ

0

dy

∫ r5

sǫ

ρ5 ǫ ds .
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Figure 13. The intervals to integrate x over for fixed u
in Case 5.

Notice that the y-integration of ǫ goes from zero to yǫ. We always
have yδ ≥ 0 and yǫ ≤ 1.

These functions shall be integrated over the x-intervals shown in
Figure 13.

h51(u) =

∫ u/2

0

(kα + kγ) dx+

∫ 1

u/2

(kα,0 + kγ,0) dx

(9)

+

∫ u

0

kβ dx+

∫ 1

u

(kβ,0 + kǫ) dx+

∫ 1−u

0

kδ dx, 0 ≤ u ≤ 1,

h52(u) =

∫ u/2

0

(kα + kγ) dx+

∫ 1

u/2

(kα,0 + kγ,0) dx

+

∫ 1

0

kβ dx, 1 ≤ u ≤ 2.

h53(u) =

∫ 1

u−2

kα dx, 2 ≤ u ≤ 3.

The explicit expressions are not given here.
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4.6. Combination of cases. The probabilities for the five cases are
included in the ρi. Integrating the ρi over the whole s-, y- and x-range
in each case gives 1

4
, 3

4
, 1, 3

4
, 1

4
, respectively. These numbers sum to

3, which is the area of the used hexagon. Dividing each integral by 3
produces the probability for the case.

Since the probabilities are included in the calculations, we just have
to add the calculated hnm(u). We shall divide by 3 to have the prob-
abilities add to one and divide by another 3 because our integrals are
over the area 3 instead of 1. We get the probability distribution func-
tion H(u) for twice the area of a random triangle in a hexagon, when
one of the triangle vertices sits on the boundary of the hexagon:

H1(u) = 1 − 1

9
(h11 + h21 + h31 + h41 + h51), 0 ≤ u < 1,(10)

H2(u) = 1 − 1

9
(h22 + h32 + h42 + h52), 1 ≤ u < 2,

H3(u) = 1 − 1

9
(h33 + h43 + h53), 2 ≤ u < 3.

5. Combination of the V- and W-distributions.

Let F (x) be the distribution function for the triangle area X in a
regular hexagon with unit area. We have X ≤ x when VW = UV/6 ≤
x. Putting x = y/6, this happens when UV ≤ y and we get

F (y/6) =

∫ 3

0

G(y/u) dH(u) =

= [G(y/u)H(u)]30 −
∫ 3

y

H(u)
d

du
G(y/u) du =

= G(y/3) −
∫ 3

y

H(u)
d

du
G(y/u) du, 0 ≤ y ≤ 3.

(11)

The partial intergration in (11) is used to avoid integrating to the
lower bound u = 0. Substituting y = 6x in the result will give us the
wanted F (x). To write the result, we need the function

(12) Li2(x) = −
∫ x

0

log(1 − t)

t
dt.

This is the dilogarithm function discussed by Euler in 1768 and
named by Hill, [5]. Some properties of Li2(x) are given in Appendix A.

We will not carry out the integration (11) in detail, but will give as
result the density function f(x) = dF

dx
. We save the comments on our

way to the result and on the result to the next section.
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f1(x) = 48x(1 − 6x)

[

Li2

(

1 −
√

1 + 24x

4

)

+ Li2

(

1 +
√

1 + 24x

4

)

(13)

−log (1 +
√

1 + 24x)
2
+ log (24x) log (1 +

√
1 + 24x)

]

+ 48x[Li2(1 − 3x) + (3x+ 4) Li2(3x/2)]

+ (52x− 1

3
)
√

1 + 24x

[

2 log

(

1 +
√

1 + 24x

3 +
√

1 + 24x

)

+ log (1 − 3x)

]

− [360x2 + 48x (1 − log (3x)) − 5] log (1 − 3x)

− 8(15x+ 2) (2 − 3x) log (2 − 3x) + 72 x2 log (24x)2

+ 48(1 − log(2)) x log (24x) −
[

1

3
+ (52x− 1

3
)
√

1 + 24x

]

log (3x)

+ 8 π2 x2 + 4 [18 log (2)2 + 36 log (2) − 7π2 − 8] x

+
94

3
log (2) + 12,

0 ≤ x <
1

6
.

f2(x) = 48x(1 − 6x) log

(

1 +
√

1 + 24x

24x

)

log (1 +
√

1 + 24x)

(14)

+

(

52x− 1

3

) √
1 + 24x

(

log (24x) − 2 log (1 +
√

1 + 24x)
)

− 8 (15x+ 2) (2 − 3x) log (2 − 3x) + 48x(3x+ 4) Li2(3x/2)

+

[

1

3
− 72(8 log (2) + 5) x2 − 48(1 − log (2))x

]

log (24x)

+ 8 (135 log (2) + 144 log (2)2 − 2π2) x2

+ 4
[

96 log (2) − 12 log (2)2 − 5π2 − 13
]

x+ 26 log (2) +
46

3
,

1

6
≤ x <

1

3
.
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f3(x) = 144 x(2x+ 3)

[

π2

9
− Li2

(

1 +
√

9 − 24x

4

)

− Li2

(

1 −
√

9 − 24x

4

)

(15)

+ log (2)
(

2 log (12x) − 3 log (3 +
√

9 − 24x)
)

]

+ 48 x [Li2(1 − 3x) − (3x+ 4) Li2(3x/2)]

+ 6 [48x (2x+ 3) log (3 +
√

9 − 24x) − (52x+ 3)
√

9 − 24x

− (2x+ 3) 24x log (24x)] log (1 +
√

9 − 24x)

+ 3 [−48 x (2x+ 3) log (3 +
√

9 − 24x) + (52x+ 3)
√

9 − 24x

+ 16x log (24x) + 48x(4x+ 5) log (2)

+ 120x2 − 80x− 7] log (3x− 1)

+ 8(15x+ 2)(2 − 3x) log (2 − 3x)

+ 9 (52x+ 3) log (2)
√

9 − 24x

+ (24 x (log (2) − 2) + 11) log (2) + 12 x− 6,

1

3
≤ x <

3

8
.

f4(x) = 144 x(2x+ 3)

[

π2

9
− Li2

(

1 + i
√

24x− 9

4

)

(16)

−Li2

(

1 − i
√

24x− 9

4

)

+
1

2
log (2) log (3x/2)

−2
(

arctan (
√

24x− 9) − π

3

)

arctan (
1

3

√
24x− 9)

]

+ 48 x [Li2(1 − 3x) − (3x+ 4) Li2(3x/2)]

+ 6 (52x+ 3)
√

24x− 9 arctan (
√

24x− 9)

+ 3 [−8x(6x+ 7) log (3x/2) + 16x log (2)

+ 120x2 − 80x− 7] log (3x− 1)

+ 8 (15x+ 2)(2 − 3x) log (2 − 3x) − 2π(52x+ 3)
√

24x− 9

+ (24 x (log (2) − 2) + 11) log (2) + 12x− 6,

3

8
≤ x <

1

2
.

The functions f3(x) and f4(x) are the same but written in different
ways because

√
9 − 24x is imaginary when x > 3/8. The only remain-

ing imaginary arguments are in the terms on the first and second line
of f4(x). Since Li2 is analytic, the sum of these two terms with complex
conjugate arguments is real. See the Appendix.
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Figure 14. The density f(x) for the area fraction of a
random triangle in a regular hexagon.

In may look as if the terms of f3(x) haven’t been collected in an
optimal way. The reason is that we have written the expression so that
each term is finite in every point of its domain.

The first, second, and third moments of the distribution are obtained
by integration

α1 =

∫ 1

2

0

x f(x)dx =
289

3888
=

172

24 · 35
= .07433,

α2 =

∫ 1

2

0

x2 f(x)dx =
25

2592
=

52

25 · 34
= .009645.

α3 =

∫ 1

2

0

x3 f(x)dx =
57709

34992000
=

57709

27 · 37 · 53
= .001649.

6. The calculation of H21.

We want to describe in more detail how the calculations are carried
out. The obstacles are similar in all cases and we have chosen to discuss
them for H21, compare (6).

First, when integrating with respect to s, one can substitute s by
t = s/r2. Doing so, r2 disappears from the calculation. The resulting
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integral with respect to t is in principal the same for all the triangles
α, β,.. etc. and has the form

∫ 1

tα

a (b− ct)2 dt

t
= ...− ab2 log (|tα|)... ,

where a, b, c, and tα are functions of u, x, and y. Any singularities of
a and b and any zeroes of tα will be singular points in the result. Here,
a has the factor (x− y)−1.

Continuing to the integration with respect to y, we refer to Fig.5,
which is drawn for y > x. If y approaches x, ξ2 → ∞ so that α → ∞
and β → −∞. However α + β, which is the quantity to be integrated
remains finite at y = x.

To keep down the number of cases to be considered, we integrate α
and β separately and hope that the integrals shall be finite even if the
integrands are not. Only in one place did we have to take the limit
below for two triangles together, but else, we could do them separately.
Since y is integrated across x , we encounter singular integrals of the
form

lim
ǫ→0+

(
∫ x−ǫ

yα

+

∫ 2

x+ǫ

)

φ(u, x, y)
1

x− y
dy,

for some function φ.
Instead of doing these limts, we let Maple do the integration formally

as if there were no singularities. Maple treats x and y as complex
variables and produces

∫

φ(u, x, y)
1

x− y
dy = ...− φ(u, x, y) log (x− y) + ... .

Taking the limit above on this expression gives

...− φ(u, x, x) lim
ǫ→0+

(log (ǫ) − log (−ǫ)) = ... iπφ(u, x, x) + ... .

Maple answers with the correct real result plus an erronous imaginary
part. Our tactic is to ignore the singularities and remove the imaginary
part at the end of the calculation.

In the following integration with respect to x, it turns out that we
have a term ψ(u, x) log (u+ x− x2) to integrate. The log here has a
zero for x = 1

2
(1+

√
1 + 4u) with no simple geometrical interpretation.

We don’t bother about this and just remove any resulting imaginary
term.

Much effort is spent on simplifying the integrals that Maple produces
so we want to describe a simplification technique used over and over
again. The H21 produced by Maple has the following dilog terms all
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multiplied by u2.

tmp1 = − dilog

(−3 +
√

1 + 4u

−1 +
√

1 + 4u

)

− dilog

(

3 +
√

1 + 4u

1 +
√

1 + 4u

)

+ dilog

(−1 +
√

1 + 4u− 2u

−1 +
√

1 + 4u

)

− dilog

(−1 +
√

1 + 4u− u

−1 +
√

1 + 4u

)

− dilog

(

1 +
√

1 + 4u+ u

1 +
√

1 + 4u

)

+ dilog

(

1 +
√

1 + 4u+ 2u

1 +
√

1 + 4u

)

.

Candidates for our simplifications are terms like this which have a
power of u as a common factor and consists of functions that we would
like to be spared from in the result. Our technique is to take the de-
rivative Du(tmp1), simplify the obtained expression and then integrate
it to get tmp2, satisfying

tmp2 = tmp1 + C ,

where C = constant. C is determined by insertion of a value of u,
usually one of the boundary values of the domain of definition. In the
present case we had to form limu→0+(tmp2−tmp1) to get C. The result
is

tmp2 = − dilog
(u

2

)

− 2dilog

(

3 +
√

1 + 4u

4

)

− 2dilog

(

3 −
√

1 + 4u

4

)

+ logarithm terms + constant .

For the simplification of the derivative, we use ordinary logarithmic
and trigonometric formulas and relations for dilog functions from [1]
and [6].

7. Concluding comment.

We have not shown any integral calculations in detail. In principle,
they are elementary, which doesn’t mean that they don’t require a sub-
stantial effort. The calculations would not have been possible without
some tool like Maple or Mathematica for handling the large number of
terms that come out of the integrations. This doesn’t mean that Maple

performs the integrations automatically. Often, we had to split up the
integrands into parts and treat each part in a special way. We had to
do some partial integrations manually. A substantial part of the work
has been spent on simplifying the integrals that Maple produces.

It should be pointed out that Maple isn’t reproducible in the sense
that it doesn’t always give exactly the same answer. The terms often
come in a different order when you rerun a calculation. An integration
leading to e.g. dilog(λ(u)) for some λ(u) as in tmp1 above may come
out as -dilog(1 − λ(u)) + logarithmic terms or as -dilog(1/λ(u)) +
logarithmic terms. All three answers are correct, but the simplification
of them is not the same. This implies that partial results must be
saved.
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We will supply any interested reader with Maple files describing the
calculations.

Appendix A

The dilogarithm function Li2(x) is defined in [6] for complex x as

Li2(x) = −
∫ x

0

log(1 − t)

t
dt.(17)

When x is real and greater than unity, the logarithm is complex. A
branch cut from 1 to ∞ can give it a definite value.

We have the series expansion

Li2(x) =
∞

∑

k=1

xk

k2
, |x| ≤ 1.(18)

This implies that Li2(x) is analytic in the unit circle. Consequently,
the first term of f4(x) is real since the two Li2(x) there have complex
conjugate arguments. Ref. [6], gives the expression

Li2(re
iθ) + Li2(r

−iθ) = −
∫ r

0

log (1 − 2t cos θ + t2)

t
dt, when 0 ≤ r ≤ 1.

Although the series (18) is only convergent for |x| ≤ 1, the integral
in (17) is not restricted to these limits and Re(Li2(x)) is defined and is
real on the whole real axis. We use this function for |x| < 1.

2

2

x

864

−1

0

0

1

−2

Figure 15. The function Re(Li2(x)).
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The definition of the dilogarithm function has varied a little from
author to author. Maple has the function polylog(2, x) which is de-
fined by the series expansion (18) for |x| ≤ 1 otherwise by analytic
continuation. Maple also has a function dilog(x) = Li2(1 − x) defined
on the whole real axis. Maple’s dilog function is the same as the dilog
function given in [1], page 1004.

Re(Li2(x)) is increasing from Re(Li2(0)) = 0 via Re(Li2(1)) =π2/6
to its maximum Re(Li2(2)) = π2/4.
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