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Abstract. We determine the distribution functions for the area
and the perimeter of a random spherical triangle. We consider two
natural ‘polar’ ways of generating the random triangle. It turns
out that the distribution for the area in the first way is closely
related to the distribution of the perimeter in the second way, and
vice versa.

1. Introduction

Various problem in the field of geometric probability have been con-
sidered over the years, see e.g. [19]. J. J. Sylvester considered the
problem of a random triangle T in an arbitrary convex set K. Assum-
ing that the density for the vertices of the triangle is constant in K
and defining X = area(T )/area(K), he posed the problem: Determine
the shape of K for which the expected value κ = E(X) is maximal
and minimal. A first attempt to solve the problem was published by
M. W. Crofton in 1885. Wilhelm Blaschke [3] proved in 1917 that
35

48π2 ≤ κ ≤ 1
12
, where the minimum is attained only when K is an

ellipse and the maximum only when K is a triangle. The upper and
lower bounds of κ only differ by about 13%. H. A. Alikoski [2] has given
expressions for κ when T is a triangle and K a regular r-polygon. A.
Reńyi and R. Sulanke, [17] and [18], consider the area ratio when the
triangle T is replaced by the convex hull of n random points. They
obtain asymptotic estimates of κ for large n and for various convex K.
R. E. Miles [10] generalizes these asymptotic estimates for K a circle to
higher dimensions. C. Buchta and M. Reitzner, [4], have given values of
κ (generalized to three dimensions) for n ≥ 4 points in a tetrahedron.
The distribution function for X when K is a triangle is given by V.

S. Alagar [1] and J. Philip[14] , when K is a square by N. Henze [6]
and J.Philip [12]. We also have given the distributions for a regular
pentagon [16], and hexagon [15]. A. M. Mathai [9] used a method en-
tirely different from that for polygons to find the distribution function
for X when K is a circle. The distribution function when K is the
whole plane equipped with the normal density has also been studied.
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2. Notation and formulation.

Our space is the unit sphere in three dimensions centered at the
origin and equipped with a constant probability density equal to 1

4π
.

We use three random points on the sphere to construct a spherical
triangle T . This can be done in two ways, which we shall call Case 1
and Case 2. We discuss the generation of random points on the sphere
in section 10.
Case 1: The random points are used to construct the three angles of

the triangle. Let the three random points give the tips of three vectors
from the origin and at let these vectors define three half spaces These
half spaces cut out the spherical triangle T from the sphere.
Case 2: The random points are taken as the vertices of the spherical

triangle T . Then, the sides are parts of great circles.
We rule out the events, with probability zero, that two of the random

points are opposite to each other and that all three sit on a great circle.
Three great circles divide the sphere into eight triangles. Of them,

two opposite triangles have all three angles less than π. These are
called Euler triangles and our T is one of them. Compare Figure 1.
We shall determine the probability distributions of the random vari-

ables X = area(T ) and Y = perimeter(T ) in the two cases.
We will denote the three sides of T by a, b, and c and the three angles

by α, β, and γ. All six elements are anglemeasured and less than π.
From any text book on spherical trigonometry e.g. [20] , we take the

following equations

(1) 0 < a+ b+ c < 2 π and π < α + β + γ < 3 π

(2)
sin(α)

sin(a)
=

sin(β)

sin(b)
=

sin(γ)

sin(c)
.

and further the following equalities and inequalities and their cyclic
permutations

(3) a+ b > c, α + β < γ + π.

(4) cos(a) = cos(b) cos(c) + sin(b) sin(c) cos(α).

3. The three-dimensional distribution of α, β, and γ
in Case 1.

The three angles α, β, and γ all lie between 0 and π, so that their
common probability density sits in a cube with side π. The inequalities
(1) and (3) restrict their volume of definition to the tetrahedron shown
in Figure 2.
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Figure 1. A spherical triangle with angles α, β, and γ
all less than π.

Let us study the bounding plane α+ β = γ+ π in Figure 2 . We get

cos(α + β) = cos(γ + π) = − cos(γ)

or

cos(α) cos(β)−
√

1− cos(α)2
√

1− cos(β)2 = − cos(γ).

Moving the square roots to one side and squaring, we get

(5) 1− cos(α)2 − cos(β)2 − cos(γ)2 − 2 cos(α) cos(β) cos(γ) = 0.

Since cosine is an even function and because we used squaring in de-
ducing equation (5), it turns out that this equation is also the boundary
resulting from the other three boundaries in Figure 2.
Turning to the random points, we let φ be the angle between the

random unit vectors n1 and n2. Without loss of generality, assume for
the moment that n1 is the north pole (0, 0, 1) . We have
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Figure 2. The tetrahedron in which α, β, and γ take
their values.

Prob( cos(φ) < t) = 1− Prob(φ < arccos(t)) =

1− the fraction of the globe area above the meridian arccos(t) =

1− 2π(1− t)

4π
=

1 + t

2
, − 1 ≤ t ≤ 1.

(6)

We have found that it is not φ but cos(φ) that is evenly distributed
with a constant density equal to 1

2
. The angle between the planes

orthogonal to n1 and n2 will be π − φ. The angles of the random
spherical triangle are such angles. Let us change to the variables

t1 = cos(π − α) = − cos(α)

t2 = cos(π − β) = − cos(β)

t3 = cos(π − γ) = − cos(γ).

(7)

Equation (5) then reads

(8) 1− t1
2 − t2

2 − t3
2 + 2 t1 t2 t3 = 0.

The volume bounded by (8) in t-space is the “blown up tetrahedron”
shown in Figure 3.
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Figure 3. The domain of definition in t-space.

We are looking for a probability density ρt(t1, t2, t3) in the volume
of Figure 3, which then can be transformed to α-, β-, γ-space. The
density ρt shall be invariant under all permutations of t1, t2, and t3.
All four inequalities in (1) and (3) bounding the tetrahedron in Fig-

ure 2 involve all three angles and there is no other inequality with only
two variables. This implies that the ti are pairwise independent in the
sense that the two-dimensional marginal distribution in say t1 and t2
is of the form ρ1(t1) ·ρ2(t2) = 1

2
· 1
2
= 1

4
, i.e. constant. This implies that

(9)

∫

ρt(t1, t2, t3) dt3 =
1

4
for − 1 < t1 < 1, −1 < t2 < 1.

For this to hold all the way to the boundary of the bulging domain,
ρt must tend to infinity at the boundary. Since ρt also shall be invariant
under permutation of the variables, we try

ρt = C · (1− t1
2 − t2

2 − t3
2 + 2 t1 t2 t3)

p,

where C is a normalizing function of t1 and t2. The power p shall be
negative so that ρt tends to infinity at the boundary and bigger than
−1 so that the integral exists. We shall show that the choice p = −1

2
satisfies the conditions on ρt.
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For the integration, we substitute t3 by v = t3 − t1 t2. Then ρt =

C · k2p (1− v2

k2
)
p
, where k =

√

(1− t1
2)(1− t2

2). The boundaries for v
are −k < v < k. This ρt can be integrated and gives

(10)

∫

ρt dv = C · v · Hypergeom([−p, 1
2
], [

3

2
],
v2

k2
).

Insertion of the boundaries gives

(11)

∫ k

−k

ρt dv = C · k2p+1Γ(p+ 1)
√
π

Γ(p+ 3
2
)

.

This is constant if C = const. · k−(2p+1) so that

ρt = const. · 1
k
· (1− v2

k2
)p = const. · (1− v2

k2
)p

√

(1− t21)(1− t22)
.

This ρt tends to infinity at the same rate when t1 or t2 tends to 1 as
when v tends to k, only if p = −1

2
.

For p = −1
2
, the integral in (10) takes the more familiar form

(12)

∫

ρt dv = C · arcsine(v
k
).

With the boundaries inserted, we get
∫

ρt dv = C · π. Integrating
also over t1 and t2 gives 4C π. The ρt having total mass = 1 is

(13) ρt =
1

4 π
√

1− t1
2 − t2

2 − t3
2 + 2 t1 t2 t3

One could have imagined ρt to be a linear combination of terms with
different p, but this would not have given the right infinity rate in all
three directions. We shall show that (13) gives the correct first and
second moments and that it is in accordance with Monte Carlo tests.
Using (7) to transform back to the angles and including the Jacobian,

we get

(14)

ρ(α, β, γ) =
sinα sin β sin γ

4 π
√

1− cosα2 − cos β2 − cos γ2 − 2 cosα cos β cos γ

4. The first and second moments in Case 1.

The area X of the spherical triangle is

X = α + β + γ − π, 0 ≤ X ≤ 2π.(15)

For the first moment, we have
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(16) E(X) = E(α+β+γ−π) = E(α)+E(β)+E(γ)−π = 3·E(α)−π.

To get E(α), we shall integrate over the tetrahedron in Figure 2.
We see in the Figure that the boundaries in the γ-direction depend on
α and β. The upper bound changes along the diagonal α = β while
the lower bound changes along the diagonal α + β = π. This splits
the (α, β)-region into four triangles with different bounds. Integrating
ρ over γ , we get the arcsine function in (12) and insertion of the
boundaries gives the same result in all four regions, namely

∫

ρ dγ =
1

4
sinα sin β.

This is the density for two independent variables and we can continue
with

(17) E(α) =
1

4

∫ π

0

∫ π

0

α sinα sin β dβ dα =
π

2
.

Invoking (16), we have

(18) E(X) =
π

2
.

In the same way as in (17), we have

(19) E(α2) =
1

4

∫ π

0

∫ π

0

α2 sinα sin β dβ dα =
π2

2
− 2 .

Using E(αβ) = E(α) · E(β) = E(α)2, we have

E(X2) =E((α + β + γ − π)2) = 3E(α2) + π2 + 6E(αβ)− 6 π E(α)

= 3

(

π2

2
− 2

)

+ π2 + 6
(π

2

)2

− 3 π2 = π2 − 6 ≈ 3.8696.

(20)

and

(21) σ(X) =

√

E(X2)− E(X)2 =
1

2

√
3 π2 − 24 ≈ 1.1841 .

We cannot compute higher moments of X in this way because the
independence argument doesn’t hold for three variables.
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5. The probability density of the area in Case 1.

The distribution function of the area X of the spherical triangle is

F (x) =Prob(X ≤ x) = Prob(α + β + γ ≤ π + x)

=

∫ ∫

B

∫

ρ dα dβ dγ,
(22)

where B is the intersection of the bounding tetrahedron in Figure 2.
and the halfspace α + β + γ ≤ π + x.
We will not be able to calculate this integral because we encounter

integrals of the form
∫ ∫

sinα sin β arcsin

(

cosα cos β − cos (x− α− β)

sinα sin β

)

dα dβ

Resorting to the density f(x) = dF (x)
dx

, we shall integrate ρ over
the two-dimensional intersection of the bounding tetrahedron with the
plane α + β + γ = π + x. Inserting γ = π + x− α − β in ρ in (14) we
have

(23) ρ(α, β, π + x− α− β)

to be integrated over the projection of the intersection on the αβ-
plane. Also this integral for f(x) defies our efforts to integrate ana-
lytically, so we must resort to numerical integration. Knowing that ρ
tends to infinity on the boundary, we make the following substitution
to move a boundary point to the origin,

α = v +
x

2
, β = w +

x

2
.

The integrand changes from (23) to the following

(24) ρvw(v +
x

2
, w +

x

2
, π − v − w).

We shall take advantage of the invariance of the integrand under
permutation of the variables. Using also that sine is odd and cosine is
even around both 0 and π gives a sixfold invariance so that we only
have to integrate over one sixth of the domain. The details are given
in the following equations and in Figure 4, where small circles mark six
points having the same ρvw-value.
We have three lines of symmetry for three different actions:

v = w for swapping v andw ,

2 v + w = π − x

2
for vwhile keepingw fixed,

v + 2w = π − x

2
forwwhile keeping v fixed.

(25)
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Figure 4. The triangle to integrate over. The thin
black lines are the symmetry lines. The integrand takes
the same value in the six marked points.

We shall integrate numerically over the gray triangle marked in Fig-
ure 4 and multiply the result by 6:

(26) f(x) = 6

∫ π
3
−

x
6

0

∫ π
2
−

x
4
−

w
2

w

ρvw dv dw.

The integrand tends to infinity when w tends to zero, calling for ap-
proximating it with an integrable function for small w. We get an ap-
proximation for small w by first series expanding ρvw in the v-direction
around the midpoint π

4
− x

8
and just use the first constant term. Then,

this term is integrated in the v-direction from v = w to v = π
2
− x

4
− w

2
.

Series expanding the result in the w direction around w = 0 gives a
first term proportional to 1/

√
w. We integrate this term from w = 0

to w = d , where d is a small number, typically d = .001. The integral
over this narrow strip along the v-axis has the value:

(27)
3 (2 π − x)

√
d

8 π
√
2

√

sin (
x

2
)
(

cos
x

2
+ sin

x

4

)

.
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Figure 5. The probability density function f(x), (0 <
x < 2π), for the area of a random spherical triangle in
Case 1. The density tends to infinity like x−1/2 at x = 0.

Alternatively, one can series expand the numerator and denominator
of ρvw separately around w = 0, and integrate v numerically, leading
to evaluating

(28)
3
√
d

4 π

∫ π
2
−

x
4
−

d
2

d

√

sin (2v) + sin (x)− sin (2v + x) dv.

The two methods give essentiallly the same result. The integral in
(27) over the triangle for w > d is done numerically. Together, the
two parts give the density for the area of a random triangle shown in
Figure 5. The contribution from (27) or (28) is small. Its maximal
contribution amounts to 3 percent occurring around x = π

2
.

6. The three-dimensional distribution of a, b, and c in

Case 1.

A spherical triangle is defined by its three angles α, β, and γ, or by
its three sides a, b, and c or any three of these six entities. For the
area, we used the angles because the area formula X = α+β+γ−π is
so simple. For the same reason, here we want to use the sides because



RANDOM SPHERICAL TRIANGLE 11

Figure 6. The tetrahedron in which a, b, and c take
their values.

it makes the formula for the perimeter Y so simple

Y = a+ b+ c.

The relations between angles and sides is given in (2) and in (4) with
its cyclic permutations.
We shall express the volume density ρ(α, β, γ) valid in Case 1 in the

variables a, b, and c . This is done by first solving cos (α) from (4) and
do the same thing for cos (β) and cos (γ) from the cyclic permutations
of (4) and then inserting them in (14). Including also the Jacobian for
the change of coordinates, we arrive after simplification at the density
for a, b, and c:

(29)

µ(a, b, c) =
1− cos (a)2 − cos (b)2 − cos (c)2 + 2 cos (a) cos (b) cos (c)

4 π sin (a)2 sin (b)2 sin (c)2
.

Notice that this is not ρ−2 because the sign of the last term in numer-
ator has changed. The domain of definition is the tetrahedron given in
(1) and (3) and shown in Figure 6. The present tetrahedron has one
vertex at the origin while the one in Figure 2 has a vertex in (π, π, π).
The density µ can be integrated analytically in the c-direction. Like

in (α, β)-space, the (a,b)-square is divided by its diagonals into four
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Figure 7. The two-dimensional marginal density func-
tion h(a, b) given over the quarter of its domain 0 < a <
π
2
, 0 < b < π

2
. The density is symmetric around a = π

2
and b = π

2
.

triangles with different c-boundaries, compare Figure 6. The two-
dimensional marginal density h(a, b) is by symmetry the same in all
four triangles and is given here for the triangle nearest to the a-axis:

(30) h(a, b) =

∫ a+b

a−b

µ dc =
1

2 π

b− sin (b) cos (b)

sin (a)2 sin (b)2
, b < a < π − b.

By symmetry, we have h(a, b) = h(b, a) for a < b and h(a, b) =
h(π − b, π − a) for a > π − b. This results in the unexpected density
shown in Figures 7 and 8.
We calculate the one-dimensional marginal distribution k(b) by in-

tegrating 2h(a, b) over a, 0 < a < π
2
, for a fixed b as in Figure 8 ,

getting:

(31) k(b) = 2

(

∫ b

0

h(b, a) da+

∫ π
2

b

h(a, b) da

)

=
1

π
, 0 < b < π.

Somewhat unexpectedly, we find that k(b) is constant.
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Figure 8. A cut though the density h(a, b) for b = π
4
.

The peaks of the density occur at a = b and a = π − b
and amount to h(b, b) ≈ 1

3π
b−1 + 7

45π
b.

7. First and second moments of the perimeter in Case 1

First, since k(b) is constant over its domain(0, π), we have E(b) = π
2

giving

E(Y ) = E(a) + E(b) + E(c) = 3E(b) =
3

2
π.

For the second moment, we have

(32) E(Y 2) = E((a+ b+ c)2) = 3E(a2) + 6E(a b).

Again from (31), we have

E(a2) = E(b2) =

∫ π

0

b2
1

π
db =

π2

3
.

We need

E(ab) =

∫ π

0

∫ π

0

b a h(a, b) da db,

where the two-dimensional marginal distribution h(a, b) looks like in
Figure 8. Using the dilog formula

Li2(e
ix) + Li2(e

−ix) =
x2

2
− π |x|+ π2

3
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which is valid for real x, |x| < 2π and a lengthy simplification ofMaple’s

result, we find the inner integral to be

∫ π

0

a h(a, b) da =
1

2
.

Then, the outer integral becomes

E(ab) =

∫ π

0

1

2
b db =

π2

4
,

giving

E(Y 2) = π2 + 6E(ab) =
5

2
π2

and

σ(Y ) =

√

E(Y 2)− E(Y )2 =
π

2
.

8. The probability density of the perimeter in Case 1.

We obtain the probability density g(y) of the perimeter in the same
way as we did for the area, i.e. by integrating µ over the two-dimensional
intersection of the bounding tetrahedron in Figure 6 with the plane
a+ b+ c = y. Inserting c = y − a− b in µ in (30), we have

µ(a, b, y − a− b)

to be integrated over the projection of the intersection on the ab-plane.
By symmetry, we can take two times the integral over half the domain.
The integration domain is marked in Figure 9.

(33) g(y) = 2

∫
y

2

y

4

∫ a

y

2
−a

µ(a, b, y − a− b) db da .

The first integration of µ(a, b, y−a−b) with respect to b can be done
analytically. To give an impression of what this integral looks like, we
give the expression for the indefinite integral.
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Figure 9. The area to integrate over in (33) is marked gray.

φ(y, a, b) =

∫

µ(a, b, y − a− b) db =

=
cos (y − a− b)

sin (a)2 sin (y − a− b)
+

2 cos (a) sin (b)

sin (a)2 sin (b)2 sin (y − a− b)

+
(sin (2y − 2a− b) + 3 sin (b))(1 + cos (a)2)

2 sin (y − a)2 sin (y − a− b) sin (a)2 tan (b) cos (y − a)

− cos (b)

sin (a)2 sin (b)
− cos (a) (4 cos (y − a) tan (b) + 2 sin (y − a))

sin (a)2 sin (y − a)2 tan (b)2

+
ln (sin (y − a− b))− ln (sin (b))

sin (a)2 sin (y − a)3
·

· (2 cos (y − a) (1 + cos (a)2)− cos (a) cos (2y − 2a)− 3 cos (a))

(34)

Inserting the boundaries, we have

ψ(y, a) = 2
(

φ(y, a, a)− φ(y, a,
y

2
− a)

)

to integrate over a. Some but not all of the obtained 12 terms can be
integrated analytically, so we must use numerical integration. We show
ψ(y, a) for y = 6 in Figure 10.
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Figure 10. The function ψ(y, a) for y = 6, to be inte-
grated from y

4
to y

2
.

When y approaches 2 π, the peak of ψ moves towards y
2
and increases

towards infinity. In the numerical integration, we use the estimate
pp = .66 y − .32 π of the peak position valid for y close to 2π by using
the following statement in the code

if y < 5 then pp =
y

2
− .01 else pp = .66y − .32 π end if

and divide the integration into two parts

g(y) = g1(y) + g2(y) , where

g1(y) =

∫ pp

y

4

ψ(y, a)da and g2(y) =

∫
y

2
−.001

pp

ψ(y, a) da.
(35)

Without this split of g, the numerical integration stalls when y is
close to 2π and the integrator decreases the steplength at the peak.
The obtained probability density for the perimeter in Case 1 is shown

in Figure 11.

9. Case 2.

This case is the alternative way of using the random points on the
sphere to construct a triangle. Here, we let the generated points be the
vertices of the triangle and connect them by great circles that form the
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Figure 11. The probability density function g(y) , (0 <
y < 2 π), for the perimeter in Case 1.

triangle sides. The random vectors n1, n2, and n3 point out the points
A, B, and C in Figure 1. The angle between n1 and n2 is the angle-
measured side c of the triangle and similarly for the sides a and b. The
so obtained spherical triangle is said to be polar to the one studied in
the earlier sections. The angle φ between n1 and n2 that gave γ = π−φ
in Case 1 now gives side c. Denoting case with subindices, we have the
following relation between the two cases

a2 + α1 =π b2 + β1 = π c2 + γ1 = π

α2 + a1 =π β2 + b1 = π γ2 + c1 = π.
(36)

The area X2 in Case 2 becomes

X2 = α2 + β2 + γ2 − π = 2 π − a1 − b1 − c1 = 2 π − Y1,

meaning that the density f2(x) of the area in Case 2 equals the reversed
density of the perimeter in Case 1 and the perimeter Y2 in Case 2
becomes

Y2 = a2 + b2 + c2 = 3 π − α1 − β1 − γ1 = 2 π −X1.

We get

f2(x) = g1(2 π − x) and g2(y) = f1(2 π − y) .
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Figure 12. The probability density for the area in Case
2, (0 < x < 2π).

This implies that

E(X2) = 2π − E(Y1) =
π

2
,E(X2

2 ) = 4π2 − 4π E(Y1) + E(Y1
2) =

π2

2

and

σ(X2) =

√

E(X2
2)− E(X2)

2 =
π

2
.

We also have that

E(Y2) = 2π−E(X1) =
3π

2
,E(Y 2

2 ) = 4π2−4π E(X1)+E(X1
2) = 3 π2−6

and

σ(Y2) =

√

E(Y2
2)− E(Y2)

2 =
1

2

√
3 π2 − 24.

We give the two probability densities in Figures 12 and 13.
R. E. Miles [11] mentions that Mr. J. N. Boots (Mt. Stromlo Ob-

servatory) has determined

f2(x) =

− (x2 − 4πx+ 3π2 − 6) cos(x)− 6(x− 2π) sin(x)− 2(x2 − 4πx+ 3π2 + 3)

16 π cos(x/2)4
.

(37)
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Figure 13. The probability density for the perimeter
in Case 2, (0 < y < 2π).

We cannot see how integration of ψ(y, a) can become this expression
for f2(x), but the values coincide with the numerical calculation given
in Figure 12. However, Finch and Jones [5] have deduced (37) starting
from the following formula for the area x:

tan(
x

4
) =

√

tan (
s

2
) tan (

s− a

2
) tan (

s− b

2
) tan (

s− c

2
),

where s = 1
2
(a+ b+ c).

10. Monte Carlo tests.

All distributions and values that we have presented have been checked
by Monte Carlo tests. We generate a random point n = (n1, n2, n3) on
the unit sphere by the following program using the function RAN which
produces a random number between 0 and 1.

DO
x=2*RAN-1 ; y=2*RAN-1 ; z=2*RAN-1;
r2 = x2 + y2 + z2 ;
LOOP WHILE r2 > 1 ;
r=sqrt(r2) ;
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Figure 14. A cut through the ‘blown up’ tetrahedron in
Figure 3 showing that the density is great at the bound-
ary. The figure also shows that the cut is an ellips.

Figure 15. The probability density in Figure 5.

n1=x/r ; n2=y/r ; n3=z/r ;

We give some of the printouts in Figures 14 - 16.
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