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An outline for today

Repetition of (Pp),(P1) + notations (MPy()), (MP1()) .

Preliminaries.

Construction of matrices in (MPy())

Objects with sparse representation and modified sparse
measurements.

The Null-space property ( NS()) and (MP1())

m The Low Entropy Isometry Property (LEIP()) and (MP1())
m The Restricted Isometry Property (RIP()) and LEIP().
B-RIP(): Bilinear version of RIP
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We were looking for sparse solutions x = Xsparse Of the equation

y = Ax

where the m x N-matrix A € C™ x CV and the column vector
y € C™ is given, with m << N.

Two algorithms:

Minimize the number of non-zero elements:

argmin # non-zero element in x,

X = P
sparse Ax — y. ( 0)
and minimize the /; - norm:
argmin - x;
Xsparse -— & X ZI| I‘ ('Dl)

Ax =y
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Preliminaries

Definition Let x = (x;) € RV, we define the ||x||,-norm,
1<p<ooby

1
x|, = (> IxilP)e, when 1 < p < o0
’ max |x;|, when p = oo

Even if it is not a norm we define the ||x||o-" norm” by

[x[lo = #{i : x; # 0}.

We will only use the || - |jo -, || - |l - || - ll2 - and || - ||oo - NOrms.



We have the following simple relation between those norms

1
< [Ix|I2 lIx]l2
||x||1{ <13 e

< [Ix[lox/|oc>
and )
< [Ix/1§ [1%[[ oo

[1x]]2 1 1
< [x][3 [[x[[ 505



Definition The - entropy of a non-zero vector x is defined by

Il
Enta () = I

Note that is x is a s - sparse non-zero vector
then Enty(x) < /s
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Definitions

m The Inner product of two vectors x and y is
N
<X,y >= inyi'
i=1
m A set of vectors {x,}N_, in CN is an Orthonormal basis if
< Xk, Xk >=1 for every k and < xy,x; >= 0 when k # j.

m The pair of two orthonormal bases {xx}&_; and {yx}¥_; in
CN is incoherent if all inner products < Xk, yj > are small.
More precizly if

< xk,yj >< K/VNforall 1 <j k<N,

for some constant K > 0. we say the bases are K-incoherent
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Matrices for the optimzation problems

Observe that MP1(s; m, N) is a subset of MPy(s; m, N)

MPy(s; m, N) easy to characterize:

Easy Claim: A € MPy(s; m, N) if and only if 2s-subset of
columns of A is lineary dependent.

Proof: An easy exersize in linear analysis

Corollary: MPy(s; m, N) is empty if 2s > m.
Po(s; m, N) impossible to solve for large matrices.
MP;1(s; m, N) difficult to construct

Pi(s; m, N) possible to solve even for large matrices.
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Construction of matrices in MPq(s)

m MPy(s; m, N) is not empty if 2s < m. This is a consequence
of the following;:

m Lemma: Let 2s < m and N > 0 very large. Then there exists
matrices A with column vectors A,,1 < n < N, such that
every subset of 2s is a set a lineary independent vectors in C™.
Proof is done by construction:

The algorithm for construction of the columns vectors
An,0< n<Nis as follows:

Chose m independent columns Ay,... A, in C™.

Set n=: m.

Any 2s — 1 - tiple of chosen column vectors span a subspace of

codimension 1.

Chose a new column vector A1 that is not contained in finite

union of all such subspaces of codimenen 1.

if Any 2s — 1 - tiple of previously chosen column vectors

together with A, will span the whole space.

If n < N: set n=: n+ 1 and return to step nr 3.

The construction is finished!
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Construction of matrices in MPy(s) with more controll

25 tlple of unltvectors AN

The construction of preceeding frame gives a matrix A € MPy()s
with very little controll how close the vectors A, are to each other.
If m is much larger than 2s one can controll the distance from
each new colonmvector A, to all preceeding columnvectors
A, k < n, (which might be useful):
m If m > 2s Any 2s — 1 - tiple of chosen column vectors span a
subspace of codimension m — 2s + 1.
m Build an m-dimensional plate by intersecting each such 2s — 1
- dimensional subspace with the unit ball and take direct sum
with the perpendicular ball of radius r and dimension
m—2s+1.

m The volume of such a plate can be estimated from above..

m Choose the new column A, in the unite sphere, but outside
each such plate.
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Example of controls of the columnvector in A

m The repeating may stop will go on as long or n < N or it will
stop when the plates cover the m-dimensional unit ball . in
this case

(total number plates)x (plate volume)> (volume of the m- dimensio
This gives a relation between r, s, m, and maximal value of N
before the algorithm stops.

Some examples of control

m A lower estimate of the 2s-dim volumes spanned any 2s -tiple
of unitvectors Ay will then be r2s—1,

m If 0 <1-—r < c/s for some small constant ¢ > 0 and
m > Cs?log N for some constant C > 0 large enough the this
construction will give a matrix in MPy(s,; m, N)

We will come back to this later on in the course.
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measurements

Assume C class of signals x of length N with s-sparse
representation in:
There is an invertible (n x n)-matrix D such that

n:=D-x,

where 1 is s -sparse
Assume the forward operator the signal x will will is able to
provide the a complete set measured data y of length N such
that

y = Ax,
where N x N matrix A is invertible.
Assume forward operator can be modified by a m x N -matrix
E, to give a measurement vector z by

z=Ey,

where z is a vector of dimension m.
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Sparse measurements

m If m > 2s the forward operator can be modified to give sparse
measurement z of dimention m, such that each member in
the class C is unigely identified by the measurements x.

N is.
Let A’ be a 25 x N - matrix in MPg(s) and set
E=A'A"'D ! and z=Ez. Then the equation Ax =y is
transformed into

Az=n

m Note that it is sufficient with m = 2s independent of how
large N is.
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Let S be any index subset of {1,..., N} with |S| =s.
Any vector x can be written as a sum xs + Xcs , where the
non-zero elements of xs are in S and the non-zero elements of xcg
are in its compliment €S
m Definition: Matrix A satisfies Null Space condition NS(s) if
for any non-zero vector x with Ax = 0 and any index subset
S,|S] = s we have

Ixsl[1 < [jxes]l1,

where X = Xg + Xcg .
m Definition: Matrix A satisfies Null Entropy condition NE(e) if
for any non-zero vector x with Ax = 0 we have

Enti(x) > e
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Easy claim
m If e > 2./s then

(A € NE(e)) implies (A € NS5(s))
Proof: (A € NE(e)) and ||xs||1 > ||xes]|1, implies

[xslla + [[xes]la

e < Enti(xs + xcs) <
Ixsll2

< 2Enty(xs) < 24/s



Easy claim
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Equivalent condtions

For a matrix A we have
A € MP(s)
if and only if

A € NS(s)
Proof: if Ax = 0 then x = x5 + Xcg for some index set S with
S| <'s and Axs = A(—xcs)).
A € MP(s) implies x. is the unige solution of a /; minimization
problem thus ||xs|[1 < ||Xes||1



Equivalent condtions

For a matrix A we have
A € MP(s)
if and only if

A € NS(s)

Proof: Let x be s sparse with support in S, |S| = s an z any vector
such that Az = Ax, Write z = zg + zc5. Then

1Zlly = llzslls + llzeslls = lIx[lx = [lzs = x[l1 + [[zes]]x

Since x — zs is s-sparse, A(x — zs) = Azcs and A € NS(s) we
have ||zes|l1 — [|zs — x|}z > 0. Thus ||z||1 > ||x|1



Equivalent condtions

For a matrix A we have
A € MP(s)
if and only if

A € NS(s)

This is how far we got on lecture 2!
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m Definition: Matrix A satisfies Low Entropy Isometry Property
(LEIP) with constant 0. if

[11AXZ — [Ix]I3] < oeIx[I3

for all x with Enty(x) < e.
m Definition Matrix A satisfies Restricted Isometry Property
(RIP) with constant 0 if

[1AX3 = fIx[13] < &s]Ix[13

for all s- sparse vectors x
Easy claims

m |If the matrix A satisfies LEIP with constant e and Vs <e,
then A satisfies RIP with a constant §s < {e.

m If 5. < 1 then A € NE(e)
Proof: For any x # 0 with Ent;(x) < e and Ax = 0 then LEIP
with 6. < 1 would imply [|x]I2 < |Ix]|2.



Referencer
m A



Thats it for today!
- Thank you for your attension!
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