

KTH Engineering Sciences

Mathematical Foundation for Compressed Sensing

Jan-Olov Strömberg

Royal Institute of Technolog, Stockholm, Sweden

Lecture 2, February 13, 2012

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Repetition of $(P_0), (P_1)$ + notations $(MP_0()), (MP_1())$.

(ロ)、(型)、(E)、(E)、 E) の(の)

• Repetition of $(P_0), (P_1)$ + notations $(MP_0()), (MP_1())$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Preliminaries.

• Repetition of $(P_0), (P_1)$ + notations $(MP_0()), (MP_1())$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Preliminaries.
- Construction of matrices in (*MP*₀())

An outline for today

- Repetition of $(P_0), (P_1)$ + notations $(MP_0()), (MP_1())$.
- Preliminaries.
- Construction of matrices in (MP₀())
- Objects with sparse representation and modified sparse measurements.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

An outline for today

- Repetition of $(P_0), (P_1)$ + notations $(MP_0()), (MP_1())$.
- Preliminaries.
- Construction of matrices in (MP₀())
- Objects with sparse representation and modified sparse measurements.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

■ The Null-space property (NS()) and (MP₁())

- Repetition of $(P_0), (P_1)$ + notations $(MP_0()), (MP_1())$.
- Preliminaries.
- Construction of matrices in (MP₀())
- Objects with sparse representation and modified sparse measurements.
- The Null-space property (NS()) and (MP₁())
- The Low Entropy Isometry Property (LEIP()) and (MP₁())

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Repetition of $(P_0), (P_1)$ + notations $(MP_0()), (MP_1())$.
- Preliminaries.
- Construction of matrices in (MP₀())
- Objects with sparse representation and modified sparse measurements.
- The Null-space property (NS()) and (MP₁())
- The Low Entropy Isometry Property (LEIP()) and (MP₁())

■ The Restricted Isometry Property (RIP()) and LEIP().

- Repetition of $(P_0), (P_1)$ + notations $(MP_0()), (MP_1())$.
- Preliminaries.
- Construction of matrices in (MP₀())
- Objects with sparse representation and modified sparse measurements.
- The Null-space property (NS()) and (MP₁())
- The Low Entropy Isometry Property (LEIP()) and (MP₁())

- The Restricted Isometry Property (RIP()) and LEIP().
- B-RIP(): Bilinear version of RIP

We were looking for *sparse* solutions $\mathbf{x} = \mathbf{x}_{sparse}$ of the equation

$$\mathbf{y} = \mathbf{A}\mathbf{x}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where the $m \times N$ -matrix $\mathbf{A} \in \mathbb{C}^m \times \mathbb{C}^N$ and the column vector $\mathbf{y} \in \mathbb{C}^m$ is given, with $m \ll N$.

We were looking for *sparse* solutions $\mathbf{x} = \mathbf{x}_{sparse}$ of the equation

$$\mathbf{y} = \mathbf{A}\mathbf{x}$$

where the $m \times N$ -matrix $\mathbf{A} \in \mathbb{C}^m \times \mathbb{C}^N$ and the column vector $\mathbf{y} \in \mathbb{C}^m$ is given, with $m \ll N$. Two algorithms:

Minimize the number of non-zero elements:

$$\mathbf{x}_{\text{sparse}} := \begin{cases} \operatorname{argmin} \# \text{ non-zero element in } \mathbf{x}, \\ \mathbf{A}\mathbf{x} = \mathbf{y}. \end{cases}$$
(P₀)

and minimize the l_1 - norm:

$$\mathbf{x}_{\text{sparse}} := \begin{cases} \operatorname{argmin}_{\mathbf{x}} \sum_{i} |x_{i}| \\ \mathbf{A}\mathbf{x} = \mathbf{y} \end{cases}$$
(P1)

 (P_0) and (P_1) have equivalent solutions if columns in **A** are sufficiently "independent" (Candés–Romberg–Tao, 2004)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 (P_0) and (P_1) have equivalent solutions if columns in **A** are sufficiently "independent" (Candés–Romberg–Tao, 2004)

We define sets of matrices.

MP₀(s) = MP₀(s; m, N): The set of Matrices A s.t. every s-sparse vector x is: the unique solution of (P₀) for some y.

 (P_0) and (P_1) have equivalent solutions if columns in **A** are sufficiently "independent" (Candés–Romberg–Tao, 2004)

We define sets of matrices.

- MP₀(s) = MP₀(s; m, N): The set of Matrices A s.t. every s-sparse vector x is: the unique solution of (P₀) for some y.
- MP₁(s) = MP₁(s; m, N): The set of Matrices A s.t. every s-sparse vector x is: the unique solution of (P₁) for some y.

 (P_0) and (P_1) have equivalent solutions if columns in **A** are sufficiently "independent" (Candés–Romberg–Tao, 2004)

We define sets of matrices.

- MP₀(s) = MP₀(s; m, N): The set of Matrices A s.t. every s-sparse vector x is: the unique solution of (P₀) for some y.
- MP₁(s) = MP₁(s; m, N): The set of Matrices A s.t. every s-sparse vector x is: the unique solution of (P₁) for some y.

Preliminaries

Definition Let $\mathbf{x} = (x_i) \in \mathbb{R}^N$, we define the $\|\mathbf{x}\|_p$ -norm, $1 \le p \le \infty$ by

$$\|\mathbf{x}\|_{p} = \begin{cases} \left(\sum_{i} |x_{i}|^{p}\right)^{\frac{1}{p}}, \text{ when } 1 \leq p < \infty \\ \max |x_{i}|, \text{ when } p = \infty \end{cases}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Preliminaries

Definition Let $\mathbf{x} = (x_i) \in \mathbb{R}^N$, we define the $\|\mathbf{x}\|_p$ -norm, $1 \le p \le \infty$ by

$$\|\mathbf{x}\|_{p} = \begin{cases} \left(\sum_{i} |x_{i}|^{p}\right)^{\frac{1}{p}}, \text{ when } 1 \leq p < \infty \\ \max |x_{i}|, \text{ when } p = \infty \end{cases}.$$

Even if it is not a norm we define the $\|\mathbf{x}\|_0$ -"norm" by

$$\|\mathbf{x}\|_0 = \#\{i : x_i \neq 0\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Preliminaries

Definition Let $\mathbf{x} = (x_i) \in \mathbb{R}^N$, we define the $\|\mathbf{x}\|_p$ -norm, $1 \le p \le \infty$ by

$$\|\mathbf{x}\|_{p} = \begin{cases} \left(\sum_{i} |x_{i}|^{p}\right)^{\frac{1}{p}}, \text{ when } 1 \leq p < \infty \\ \max |x_{i}|, \text{ when } p = \infty \end{cases}.$$

Even if it is not a norm we define the $\|\mathbf{x}\|_{0}$ -"norm" by

$$\|\mathbf{x}\|_0 = \#\{i : x_i \neq 0\}.$$

We will only use the $\|\cdot\|_0$ -, $\|\cdot\|_1$ -, $\|\cdot\|_2$ - and $\|\cdot\|_\infty$ - norms.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We have the following simple relation between those norms

$$\|\boldsymbol{x}\|_1 \begin{cases} \leq \|\boldsymbol{x}\|_0^{\frac{1}{2}} \|\boldsymbol{x}\|_2, \\ \leq \|\boldsymbol{x}\|_0 \|\boldsymbol{x}\|_{\infty}, \end{cases}$$

and

$$\|\mathbf{x}\|_{2} \begin{cases} \leq \|\mathbf{x}\|_{0}^{\frac{1}{2}} \|\mathbf{x}\|_{\infty}, \\ \leq \|\mathbf{x}\|_{1}^{\frac{1}{2}} \|\mathbf{x}\|_{\infty}^{\frac{1}{2}}, \end{cases}$$

◆□ ▶ <圖 ▶ < E ▶ < E ▶ E • 9 < 0</p>

Definition The l_1 - entropy of a non-zero vector **x** is defined by

$$\mathsf{Ent}_1(\mathsf{x}) = rac{\|\mathsf{x}\|_1}{\|\mathsf{x}\|_2}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Note that is x is a s - sparse non-zero vector then $\operatorname{Ent}_1(x) \leq \sqrt{s}$

Definitions

The Inner product of two vectors **x** and **y** is

$$<\mathbf{x},\mathbf{y}>=\sum_{i=1}^{N}x_{i}\overline{y}_{i}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definitions

The Inner product of two vectors **x** and **y** is

$$<\mathbf{x},\mathbf{y}>=\sum_{i=1}^{N}x_{i}\overline{y}_{i}$$

• A set of vectors $\{\mathbf{x}_k\}_{k=1}^N$ in \mathbb{C}^N is an Orthonormal basis if

 $< \mathbf{x}_k, \mathbf{x}_k >= 1$ for every k and $< \mathbf{x}_k, \mathbf{x}_j >= 0$ when $k \neq j$.

Definitions

The Inner product of two vectors x and y is

$$<\mathbf{x},\mathbf{y}>=\sum_{i=1}^{N}x_{i}\overline{y}_{i}$$

• A set of vectors $\{\mathbf{x}_k\}_{k=1}^N$ in \mathbb{C}^N is an Orthonormal basis if

 $< \mathbf{x}_k, \mathbf{x}_k >= 1$ for every k and $< \mathbf{x}_k, \mathbf{x}_j >= 0$ when $k \neq j$.

The pair of two orthonormal bases {x_k}^N_{k=1} and {y_k}^N_{k=1} in C^N is incoherent if all inner products < x_k, y_j > are small. More precizly if

$$<\mathbf{x}_k,\mathbf{y}_j>\leq K/\sqrt{N}$$
 for all $1\leq j,k\leq N,$

for some constant K > 0. we say the bases are K-incoherent

Observe that $MP_1(s; m, N)$ is a subset of $MP_0(s; m, N)$ • $MP_0(s; m, N)$ easy to characterize:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Observe that $MP_1(s; m, N)$ is a subset of $MP_0(s; m, N)$ • $MP_0(s; m, N)$ easy to characterize:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 MP₀(s; m, N) easy to characterize: Easy Claim: A ∈ MP₀(s; m, N) if and only if 2s-subset of columns of A is lineary dependent. Proof: An easy exersize in linear analysis

• Corollary: $MP_0(s; m, N)$ is empty if 2s > m.

MP₀(s; m, N) easy to characterize:
 Easy Claim: A ∈ MP₀(s; m, N) if and only if 2s-subset of columns of A is lineary dependent.
 Proof: An easy exersize in linear analysis

- Corollary: $MP_0(s; m, N)$ is empty if 2s > m.
- $P_0(s; m, N)$ impossible to solve for large matrices.

*MP*₀(s; m, N) easy to characterize:
 Easy Claim: A ∈ MP₀(s; m, N) if and only if 2s-subset of columns of A is lineary dependent.
 Proof: An easy exersize in linear analysis

- Corollary: $MP_0(s; m, N)$ is empty if 2s > m.
- $P_0(s; m, N)$ impossible to solve for large matrices.
- *MP*₁(*s*; *m*, *N*) difficult to construct

- *MP*₀(s; m, N) easy to characterize:
 Easy Claim: A ∈ MP₀(s; m, N) if and only if 2s-subset of columns of A is lineary dependent.
 Proof: An easy exersize in linear analysis
- Corollary: $MP_0(s; m, N)$ is empty if 2s > m.
- $P_0(s; m, N)$ impossible to solve for large matrices.
- $MP_1(s; m, N)$ difficult to construct
- $P_1(s; m, N)$ possible to solve even for large matrices.

■ *MP*₀(*s*; *m*, *N*) is not empty if 2*s* ≤ *m*. This is a consequence of the following:

- MP₀(s; m, N) is not empty if 2s ≤ m. This is a consequence of the following:
- Lemma: Let $2s \le m$ and N > 0 very large. Then there exists matrices **A** with column vectors $A_n, 1 \le n \le N$, such that every subset of 2s is a set a lineary independent vectors in \mathbb{C}^m . Proof is done by construction:

The algorithm for construction of the columns vectors $A_n, 0 \le n \le N$ is as follows:

- MP₀(s; m, N) is not empty if 2s ≤ m. This is a consequence of the following:
- Lemma: Let $2s \le m$ and N > 0 very large. Then there exists matrices **A** with column vectors $A_n, 1 \le n \le N$, such that every subset of 2s is a set a lineary independent vectors in \mathbb{C}^m . Proof is done by construction:

- The algorithm for construction of the columns vectors $A_n, 0 \le n \le N$ is as follows:
 - **1** Chose *m* independent columns $A_1, \ldots A_m$ in \mathbb{C}^m .

- MP₀(s; m, N) is not empty if 2s ≤ m. This is a consequence of the following:
- Lemma: Let $2s \le m$ and N > 0 very large. Then there exists matrices **A** with column vectors $A_n, 1 \le n \le N$, such that every subset of 2s is a set a lineary independent vectors in \mathbb{C}^m . Proof is done by construction:

- The algorithm for construction of the columns vectors $A_n, 0 \le n \le N$ is as follows:
 - **1** Chose *m* independent columns $A_1, \ldots A_m$ in \mathbb{C}^m .

- MP₀(s; m, N) is not empty if 2s ≤ m. This is a consequence of the following:
- Lemma: Let $2s \le m$ and N > 0 very large. Then there exists matrices **A** with column vectors $A_n, 1 \le n \le N$, such that every subset of 2s is a set a lineary independent vectors in \mathbb{C}^m . Proof is done by construction:
 - The algorithm for construction of the columns vectors $A_n, 0 \le n \le N$ is as follows:
 - **1** Chose *m* independent columns $A_1, \ldots A_m$ in \mathbb{C}^m .
 - **2** Set *n* =: *m*.
 - 3 Any 2s 1 tiple of chosen column vectors span a subspace of codimension 1.

- MP₀(s; m, N) is not empty if 2s ≤ m. This is a consequence of the following:
- Lemma: Let $2s \le m$ and N > 0 very large. Then there exists matrices **A** with column vectors $A_n, 1 \le n \le N$, such that every subset of 2s is a set a lineary independent vectors in \mathbb{C}^m . Proof is done by construction:
 - The algorithm for construction of the columns vectors $A_n, 0 \le n \le N$ is as follows:
 - **1** Chose *m* independent columns $A_1, \ldots A_m$ in \mathbb{C}^m .
 - **2** Set *n* =: *m*.
 - 3 Any 2s 1 tiple of chosen column vectors span a subspace of codimension 1.
 - 4 Chose a new column vector A_{n+1} that is not contained in finite union of all such subspaces of codimenen 1.

- MP₀(s; m, N) is not empty if 2s ≤ m. This is a consequence of the following:
- Lemma: Let $2s \le m$ and N > 0 very large. Then there exists matrices **A** with column vectors $A_n, 1 \le n \le N$, such that every subset of 2s is a set a lineary independent vectors in \mathbb{C}^m . Proof is done by construction:
 - The algorithm for construction of the columns vectors $A_n, 0 \le n \le N$ is as follows:
 - **1** Chose *m* independent columns $A_1, \ldots A_m$ in \mathbb{C}^m .
 - **2** Set *n* =: *m*.
 - 3 Any 2s 1 tiple of chosen column vectors span a subspace of codimension 1.
 - 4 Chose a new column vector A_{n+1} that is not contained in finite union of all such subspaces of codimenen 1.
 - 5 if Any 2s 1 tiple of previously chosen column vectors together with A_n will span the whole space.
Construction of matrices in $MP_0(s)$

- MP₀(s; m, N) is not empty if 2s ≤ m. This is a consequence of the following:
- Lemma: Let $2s \le m$ and N > 0 very large. Then there exists matrices **A** with column vectors $A_n, 1 \le n \le N$, such that every subset of 2s is a set a lineary independent vectors in \mathbb{C}^m . Proof is done by construction:
 - The algorithm for construction of the columns vectors $A_n, 0 \le n \le N$ is as follows:
 - **1** Chose *m* independent columns $A_1, \ldots A_m$ in \mathbb{C}^m .
 - **2** Set *n* =: *m*.
 - 3 Any 2s 1 tiple of chosen column vectors span a subspace of codimension 1.
 - 4 Chose a new column vector A_{n+1} that is not contained in finite union of all such subspaces of codimenen 1.

- 5 if Any 2s 1 tiple of previously chosen column vectors together with A_n will span the whole space.
- 6 If n < N: set n =: n + 1 and return to step nr 3.

Construction of matrices in $MP_0(s)$

- MP₀(s; m, N) is not empty if 2s ≤ m. This is a consequence of the following:
- Lemma: Let $2s \le m$ and N > 0 very large. Then there exists matrices **A** with column vectors $A_n, 1 \le n \le N$, such that every subset of 2s is a set a lineary independent vectors in \mathbb{C}^m . Proof is done by construction:

The algorithm for construction of the columns vectors $A_n, 0 \le n \le N$ is as follows:

- **1** Chose *m* independent columns $A_1, \ldots A_m$ in \mathbb{C}^m .
- 2 Set *n* =: *m*.
- 3 Any 2s 1 tiple of chosen column vectors span a subspace of codimension 1.
- 4 Chose a new column vector A_{n+1} that is not contained in finite union of all such subspaces of codimenen 1.

- 5 if Any 2s 1 tiple of previously chosen column vectors together with A_n will span the whole space.
- 6 If n < N: set n =: n + 1 and return to step nr 3.
- **7** The construction is finished!

Construction of matrices in $MP_0(s)$ with more controll 2s -tiple of unitvectors A_N This page indicates what we may do later on

The construction of preceeding frame gives a matrix $\mathbf{A} \in MP_0()s$ with very little controll how close the vectors \mathbf{A}_n are to each other. If *m* is much larger than 2*s* one can controll the distance from each new colonmvector \mathbf{A}_n to all preceeding columnvectors $\mathbf{A}_k, k \leq n$, (which might be useful):

If m > 2s Any 2s - 1 - tiple of chosen column vectors span a subspace of codimension m - 2s + 1.

・ロト・日本・モート モー うへぐ

Construction of matrices in $MP_0(s)$ with more controll 2s -tiple of unitvectors A_N This page indicates what we may do later on

The construction of preceeding frame gives a matrix $\mathbf{A} \in MP_0()s$ with very little controll how close the vectors \mathbf{A}_n are to each other. If *m* is much larger than 2*s* one can controll the distance from each new colonmvector \mathbf{A}_n to all preceeding columnvectors $\mathbf{A}_k, k \leq n$, (which might be useful):

- If m > 2s Any 2s 1 tiple of chosen column vectors span a subspace of codimension m 2s + 1.
- Build an *m*-dimensional plate by intersecting each such 2s 1
 dimensional subspace with the unit ball and take direct sum with the perpendicular ball of radius *r* and dimension m 2s + 1.

Construction of matrices in $MP_0(s)$ with more controll 2s -tiple of unitvectors A_N This page indicates what we may do later on

The construction of preceeding frame gives a matrix $\mathbf{A} \in MP_0()s$ with very little controll how close the vectors \mathbf{A}_n are to each other. If *m* is much larger than 2*s* one can controll the distance from each new colonmvector \mathbf{A}_n to all preceeding columnvectors $\mathbf{A}_k, k \leq n$, (which might be useful):

- If m > 2s Any 2s 1 tiple of chosen column vectors span a subspace of codimension m 2s + 1.
- Build an *m*-dimensional plate by intersecting each such 2s 1
 dimensional subspace with the unit ball and take direct sum with the perpendicular ball of radius *r* and dimension m 2s + 1.

The volume of such a plate can be estimated from above..

Construction of matrices in $MP_0(s)$ with more controll 2s -tiple of unitvectors A_N This page indicates what we may do later on

The construction of preceeding frame gives a matrix $\mathbf{A} \in MP_0()s$ with very little controll how close the vectors \mathbf{A}_n are to each other. If *m* is much larger than 2*s* one can controll the distance from each new colonmvector \mathbf{A}_n to all preceeding columnvectors $\mathbf{A}_k, k \leq n$, (which might be useful):

- If m > 2s Any 2s 1 tiple of chosen column vectors span a subspace of codimension m 2s + 1.
- Build an *m*-dimensional plate by intersecting each such 2s 1
 dimensional subspace with the unit ball and take direct sum with the perpendicular ball of radius *r* and dimension m 2s + 1.
- The volume of such a plate can be estimated from above..
- Choose the new column A_n in the unite sphere, but outside each such plate.

The repeating may stop will go on as long or n < N or it will stop when the plates cover the m-dimensional unit ball. in this case

(total number plates)×(plate volume) \geq (volume of the *m*- dimensio

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

This gives a relation between r, s, m, and maximal value of N before the algorithm stops.

The repeating may stop will go on as long or n < N or it will stop when the plates cover the m-dimensional unit ball. in this case

(total number plates)×(plate volume) \geq (volume of the *m*- dimensio

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

This gives a relation between r, s, m, and maximal value of N before the algorithm stops.

The repeating may stop will go on as long or n < N or it will stop when the plates cover the m-dimensional unit ball. in this case

(total number plates)×(plate volume) \geq (volume of the *m*- dimensio

This gives a relation between r, s, m, and maximal value of N before the algorithm stops.

Some examples of control

• A lower estimate of the 2s-dim volumes spanned any 2s -tiple of unitvectors A_N will then be r^{2s-1} .

We will come back to this later on in the course.

The repeating may stop will go on as long or n < N or it will stop when the plates cover the m-dimensional unit ball. in this case

(total number plates)×(plate volume) \geq (volume of the *m*- dimensio

This gives a relation between r, s, m, and maximal value of N before the algorithm stops.

Some examples of control

- A lower estimate of the 2*s*-dim volumes spanned any 2*s*-tiple of unitvectors A_N will then be r^{2s-1} .
- If 0 < 1 r < c/s for some small constant c > 0 and m > Cs² log N for some constant C > 0 large enough the this construction will give a matrix in MP₁(s,; m, N)

We will come back to this later on in the course.

Assume C class of signals x of length N with s-sparse representation in:

There is an invertible $(n \times n)$ -matrix **D** such that

$$\boldsymbol{\eta} := \mathbf{D} \cdot \mathbf{x},$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

where η is *s* -sparse

Assume C class of signals x of length N with s-sparse representation in:

There is an invertible $(n \times n)$ -matrix **D** such that

$$\boldsymbol{\eta} := \mathbf{D} \cdot \mathbf{x},$$

where η is *s*-sparse

 Assume the forward operator the signal x will will is able to provide the a complete set measured data y of length N such that

$$\mathbf{y} = \mathbf{A}\mathbf{x},$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where $N \times N$ matrix **A** is invertible.

Assume C class of signals x of length N with s-sparse representation in:

There is an invertible $(n \times n)$ -matrix **D** such that

$$\boldsymbol{\eta} := \mathbf{D} \cdot \mathbf{x},$$

where η is *s*-sparse

 Assume the forward operator the signal x will will is able to provide the a complete set measured data y of length N such that

$$\mathbf{y} = \mathbf{A}\mathbf{x},$$

where $N \times N$ matrix **A** is invertible.

Assume forward operator can be modified by a m × N -matrix
 E, to give a measurement vector z by

$$\mathbf{z} = \mathbf{E}\mathbf{y},$$

where \mathbf{z} is a vector of dimension m.

If m ≥ 2s the forward operator can be modified to give sparse measurement z of dimention m, such that each member in the class C is uniquely identified by the measurements x.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

N is.

 If m ≥ 2s the forward operator can be modified to give sparse measurement z of dimention m, such that each member in the class C is uniquely identified by the measurements x.

N is.

Let \mathbf{A}' be a $2s \times N$ - matrix in $MP_0(s)$ and set $\mathbf{E} = \mathbf{A}'\mathbf{A}^{-1}\mathbf{D}^{-1}$ and $\mathbf{z} = \mathbf{E}\mathbf{z}$. Then the equation $\mathbf{A}\mathbf{x} = \mathbf{y}$ is transformed into

$$\mathbf{A}' z = \boldsymbol{\eta}$$

Note that it is sufficient with m = 2s independent of how large N is.

Let S be any index subset of $\{1, \ldots, N\}$ with |S| = s.

◆□ ▶ <圖 ▶ < E ▶ < E ▶ E • 9 < 0</p>

Let S be any index subset of $\{1, ..., N\}$ with |S| = s. Any vector **x** can be written as a sum $\mathbf{x}_S + \mathbf{x}_{cS}$, where the non-zero elements of \mathbf{x}_S are in S and the non-zero elements of \mathbf{x}_{cS} are in its compliment ${}^{c}S$

 Definition: Matrix A satisfies Null Space condition NS(s) if for any non-zero vector x with Ax = 0 and any index subset S, |S| = s we have

 $\|\mathbf{x}_{S}\|_{1} < \|\mathbf{x}_{cS}\|_{1},$

where $\mathbf{x} = \mathbf{x}_S + \mathbf{x}_{cS}$.

Let S be any index subset of $\{1, ..., N\}$ with |S| = s. Any vector **x** can be written as a sum $\mathbf{x}_S + \mathbf{x}_{cS}$, where the non-zero elements of \mathbf{x}_S are in S and the non-zero elements of \mathbf{x}_{cS} are in its compliment ${}^{c}S$

 Definition: Matrix A satisfies Null Space condition NS(s) if for any non-zero vector x with Ax = 0 and any index subset S, |S| = s we have

 $\|\mathbf{x}_{S}\|_{1} < \|\mathbf{x}_{cS}\|_{1},$

where $\mathbf{x} = \mathbf{x}_S + \mathbf{x}_{cS}$.

Let S be any index subset of $\{1, ..., N\}$ with |S| = s. Any vector **x** can be written as a sum $\mathbf{x}_S + \mathbf{x}_{cS}$, where the non-zero elements of \mathbf{x}_S are in S and the non-zero elements of \mathbf{x}_{cS} are in its compliment ${}^{c}S$

 Definition: Matrix A satisfies Null Space condition NS(s) if for any non-zero vector x with Ax = 0 and any index subset S, |S| = s we have

$$\|\mathbf{x}_{S}\|_{1} < \|\mathbf{x}_{CS}\|_{1},$$

where $\mathbf{x} = \mathbf{x}_S + \mathbf{x}_{cS}$.

Definition: Matrix A satisfies Null Entropy condition NE(e) if for any non-zero vector x with Ax = 0 we have

$$\operatorname{Ent}_1(x) \ge e$$

Easy claim

▲日 > < 目 > < 目 > < 目 > < 目 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Easy claim

• If $e \geq 2\sqrt{s}$ then

 $(\mathbf{A} \in NE(e))$ implies $(\mathbf{A} \in NS(s))$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Easy claim • If $e \ge 2\sqrt{s}$ then ($\mathbf{A} \in NE(e)$) implies ($\mathbf{A} \in NS(s)$) Proof: ($\mathbf{A} \in NE(e)$) and $\|\mathbf{x}_{S}\|_{1} \ge \|\mathbf{x}_{eS}\|_{1}$, implies $e \le \operatorname{Ent}_{1}(\mathbf{x}_{S} + \mathbf{x}_{eS}) < \frac{\|\mathbf{x}_{S}\|_{1} + \|\mathbf{x}_{eS}\|_{1}}{\|\mathbf{x}_{S}\|_{2}} \le 2\operatorname{Ent}_{1}(\mathbf{x}_{S}) \le 2\sqrt{s}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Easy claim

• If $e \geq 2\sqrt{s}$ then

 $(\mathbf{A} \in NE(e))$ implies $(\mathbf{A} \in NS(s))$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

For a matrix **A** we have

 $\mathbf{A} \in \mathsf{MP}_1(s)$

For a matrix $\boldsymbol{\mathsf{A}}$ we have

$$\mathbf{A} \in \mathsf{MP}_1(s)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

if and only if

For a matrix $\boldsymbol{\mathsf{A}}$ we have

$$\mathbf{A} \in \mathsf{MP}_1(s)$$

if and only if

 $\mathbf{A} \in NS(s)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

For a matrix **A** we have

$$\mathbf{A} \in \mathsf{MP}_1(s)$$

if and only if

 $\mathbf{A} \in NS(s)$

Proof: if $\mathbf{A}\mathbf{x} = 0$ then $\mathbf{x} = \mathbf{x}_S + \mathbf{x}_{cS}$ for some index set S with $|S| \le s$ and $A\mathbf{x}_S = A(-\mathbf{x}_{cS})$. $\mathbf{A} \in MP_1(s)$ implies x_c is the unique solution of a l_1 minimization problem thus $\|\mathbf{x}_S\|_1 < \|\mathbf{x}_{cS}\|_1$

For a matrix **A** we have

$$\mathbf{A} \in \mathsf{MP}_1(s)$$

if and only if

 $\mathbf{A} \in NS(s)$

Proof: Let **x** be *s* sparse with support in *S*, |S| = s an **z** any vector such that Az = Ax, Write $z = z_S + z_{cS}$. Then

 $\|\mathbf{z}\|_{1} = \|\mathbf{z}_{S}\|_{1} + \|\mathbf{z}_{cS}\|_{1} \ge \|\mathbf{x}\|_{1} - \|\mathbf{z}_{S} - \mathbf{x}\|_{1} + \|\mathbf{z}_{cS}\|_{1}$ Since $\mathbf{x} - \mathbf{z}_{S}$ is s-sparse, $\mathbf{A}(\mathbf{x} - \mathbf{z}_{S}) = \mathbf{A}\mathbf{z}_{cS}$ and $\mathbf{A} \in NS(s)$ we have $\|\mathbf{z}_{cS}\|_{1} - \|\mathbf{z}_{S} - \mathbf{x}\|_{1} > 0$. Thus $\|\mathbf{z}\|_{1} > \|\mathbf{x}\|_{1}$

For a matrix $\boldsymbol{\mathsf{A}}$ we have

$$\mathbf{A} \in \mathsf{MP}_1(s)$$

if and only if

 $\mathbf{A} \in NS(s)$

This is how far we got on lecture 2!

$$\|\mathbf{A}\mathbf{x}\|_{2}^{2} - \|\mathbf{x}\|_{2}^{2} \le \tilde{\delta}_{e} \|\mathbf{x}\|_{2}^{2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for all **x** with $Ent_1(\mathbf{x}) \leq e$.

$$|\|\mathbf{A}\mathbf{x}\|_2^2 - \|\mathbf{x}\|_2^2| \le \widetilde{\delta}_e \|\mathbf{x}\|_2^2$$

for all **x** with $Ent_1(\mathbf{x}) \leq e$.

Definition Matrix A satisfies Restricted Isometry Property (RIP) with constant δ_s if

$$|\|\mathbf{A}\mathbf{x}\|_{2}^{2} - \|\mathbf{x}\|_{2}^{2}| \le \delta_{s} \|\mathbf{x}\|_{2}^{2}$$

for all s- sparse vectors x

$$|\|\mathbf{A}\mathbf{x}\|_2^2 - \|\mathbf{x}\|_2^2| \le \widetilde{\delta}_e \|\mathbf{x}\|_2^2$$

for all **x** with $Ent_1(\mathbf{x}) \leq e$.

• Definition Matrix A satisfies Restricted Isometry Property (RIP) with constant δ_s if

$$|\|\mathbf{A}\mathbf{x}\|_{2}^{2} - \|\mathbf{x}\|_{2}^{2}| \le \delta_{s} \|\mathbf{x}\|_{2}^{2}$$

▲日 ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ●

for all s- sparse vectors x

Easy claims

$$|\|\mathbf{A}\mathbf{x}\|_2^2 - \|\mathbf{x}\|_2^2| \le \widetilde{\delta}_e \|\mathbf{x}\|_2^2$$

for all **x** with $Ent_1(\mathbf{x}) \leq e$.

• Definition Matrix A satisfies Restricted Isometry Property (RIP) with constant δ_s if

$$|\|\mathbf{A}\mathbf{x}\|_{2}^{2} - \|\mathbf{x}\|_{2}^{2}| \le \delta_{s} \|\mathbf{x}\|_{2}^{2}$$

for all s- sparse vectors x

Easy claims

If the matrix **A** satisfies LEIP with constant $\tilde{\delta}_e$ and $\sqrt{s} \leq e$, then **A** satisfies RIP with a constant $\delta_s \leq \tilde{\delta}_e$.

$$|\|\mathbf{A}\mathbf{x}\|_2^2 - \|\mathbf{x}\|_2^2| \le \widetilde{\delta}_e \|\mathbf{x}\|_2^2$$

for all **x** with $Ent_1(\mathbf{x}) \leq e$.

Definition Matrix A satisfies Restricted Isometry Property (RIP) with constant δ_s if

$$|\|\mathbf{A}\mathbf{x}\|_{2}^{2} - \|\mathbf{x}\|_{2}^{2}| \le \delta_{s} \|\mathbf{x}\|_{2}^{2}$$

for all s- sparse vectors x

Easy claims

If the matrix **A** satisfies LEIP with constant $\tilde{\delta}_e$ and $\sqrt{s} \leq e$, then **A** satisfies RIP with a constant $\delta_s \leq \tilde{\delta}_e$. Proof: if **x** is *s*-sparse then $\text{Ent}_1(\mathbf{x}) \leq \sqrt{s}$

$$|\|\mathbf{A}\mathbf{x}\|_2^2 - \|\mathbf{x}\|_2^2| \le \widetilde{\delta}_e \|\mathbf{x}\|_2^2$$

for all **x** with $Ent_1(\mathbf{x}) \leq e$.

Definition Matrix A satisfies Restricted Isometry Property (RIP) with constant δ_s if

$$|\|\mathbf{A}\mathbf{x}\|_{2}^{2} - \|\mathbf{x}\|_{2}^{2}| \le \delta_{s} \|\mathbf{x}\|_{2}^{2}$$

for all s- sparse vectors x

Easy claims

If the matrix **A** satisfies LEIP with constant $\tilde{\delta}_e$ and $\sqrt{s} \leq e$, then **A** satisfies RIP with a constant $\delta_s \leq \tilde{\delta}_e$.

If
$$\widetilde{\delta}_e < 1$$
 then $\mathbf{A} \in \mathit{NE}(e)$

$$|\|\mathbf{A}\mathbf{x}\|_{2}^{2} - \|\mathbf{x}\|_{2}^{2}| \leq \tilde{\delta}_{e}\|\mathbf{x}\|_{2}^{2}$$

for all **x** with $Ent_1(\mathbf{x}) \leq e$.

• Definition Matrix A satisfies Restricted Isometry Property (RIP) with constant δ_s if

$$|\|\mathbf{A}\mathbf{x}\|_{2}^{2} - \|\mathbf{x}\|_{2}^{2}| \le \delta_{s} \|\mathbf{x}\|_{2}^{2}$$

for all s- sparse vectors x

Easy claims

If the matrix **A** satisfies LEIP with constant $\tilde{\delta}_e$ and $\sqrt{s} \leq e$, then **A** satisfies RIP with a constant $\delta_s \leq \tilde{\delta}_e$.

■ If $\tilde{\delta}_e < 1$ then $\mathbf{A} \in NE(e)$ Proof: For any $\mathbf{x} \neq 0$ with $\text{Ent}_1(\mathbf{x}) \leq e$ and $\mathbf{A}\mathbf{x} = 0$ then LEIP with $\tilde{\delta}_e < 1$ would imply $\|\mathbf{x}\|_2^2 < \|\mathbf{x}\|_2^2$.
Referencer

- A

Thats it for today! - Thank you for your attension!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで