Mathematical Foundation for Compressed Sensing

Jan-Olov Strömberg

Royal Institute of Technolog, Stockholm, Sweden

Lecture 2, February 13, 2012

An outline for today

■ Repetition of $\left(P_{0}\right),\left(P_{1}\right)+$ notations $\left(M P_{0}()\right),\left(M P_{1}()\right)$.

An outline for today

\square Repetition of $\left(P_{0}\right),\left(P_{1}\right)+$ notations $\left(M P_{0}()\right),\left(M P_{1}()\right)$.

- Preliminaries.

An outline for today

■ Repetition of $\left(P_{0}\right),\left(P_{1}\right)+$ notations $\left(M P_{0}()\right),\left(M P_{1}()\right)$.

- Preliminaries.
- Construction of matrices in $\left(M P_{0}()\right)$

An outline for today

■ Repetition of $\left(P_{0}\right),\left(P_{1}\right)+$ notations $\left(M P_{0}()\right),\left(M P_{1}()\right)$.
■ Preliminaries.

- Construction of matrices in $\left(M P_{0}()\right)$
- Objects with sparse representation and modified sparse measurements.

An outline for today

■ Repetition of $\left(P_{0}\right),\left(P_{1}\right)+$ notations $\left(M P_{0}()\right),\left(M P_{1}()\right)$.
■ Preliminaries.

- Construction of matrices in $\left(M P_{0}()\right)$
- Objects with sparse representation and modified sparse measurements.
- The Null-space property (NS()$)$ and $\left(M P_{1}()\right)$

An outline for today

■ Repetition of $\left(P_{0}\right),\left(P_{1}\right)+$ notations $\left(M P_{0}()\right),\left(M P_{1}()\right)$.
■ Preliminaries.

- Construction of matrices in $\left(M P_{0}()\right)$
- Objects with sparse representation and modified sparse measurements.
- The Null-space property (NS()$)$ and $\left(M P_{1}()\right)$
- The Low Entropy Isometry Property (LEIP()) and ($\left.M P_{1}()\right)$

An outline for today

■ Repetition of $\left(P_{0}\right),\left(P_{1}\right)+$ notations $\left(M P_{0}()\right),\left(M P_{1}()\right)$.

- Preliminaries.
- Construction of matrices in $\left(M P_{0}()\right)$
- Objects with sparse representation and modified sparse measurements.
- The Null-space property (NS()$)$ and $\left(M P_{1}()\right)$
- The Low Entropy Isometry Property (LEIP()) and (MP1))
- The Restricted Isometry Property (RIP()) and LEIP().

An outline for today

■ Repetition of $\left(P_{0}\right),\left(P_{1}\right)+$ notations $\left(M P_{0}()\right),\left(M P_{1}()\right)$.

- Preliminaries.
- Construction of matrices in ($\left.M P_{0}()\right)$
- Objects with sparse representation and modified sparse measurements.
- The Null-space property (NS()$)$ and $\left(M P_{1}()\right)$
- The Low Entropy Isometry Property (LEIP()) and (MP1))
- The Restricted Isometry Property (RIP()) and LEIP().
- B-RIP(): Bilinear version of RIP

We were looking for sparse solutions $\mathbf{x}=\mathbf{x}_{\text {sparse }}$ of the equation

$$
\mathbf{y}=\mathbf{A x}
$$

where the $m \times N$-matrix $\mathbf{A} \in \mathbb{C}^{m} \times \mathbb{C}^{N}$ and the column vector $\mathbf{y} \in \mathbb{C}^{m}$ is given, with $m \ll N$.

We were looking for sparse solutions $\mathbf{x}=\mathbf{x}_{\text {sparse }}$ of the equation

$$
\mathbf{y}=\mathbf{A x}
$$

where the $m \times N$-matrix $\mathbf{A} \in \mathbb{C}^{m} \times \mathbb{C}^{N}$ and the column vector $\mathbf{y} \in \mathbb{C}^{m}$ is given, with $m \ll N$.
Two algorithms:
Minimize the number of non-zero elements:

$$
\mathbf{x}_{\text {sparse }}:=\left\{\begin{array}{l}
\operatorname{argmin} \# \text { non-zero element in } \mathbf{x} \tag{0}\\
\mathbf{A} \mathbf{x}=\mathbf{y}
\end{array}\right.
$$

and minimize the I_{1} - norm:

$$
\mathbf{x}_{\text {sparse }}:=\left\{\begin{array}{l}
\operatorname{argmin}_{\mathbf{x}} \sum_{i}\left|x_{i}\right| \tag{1}\\
\mathbf{A} \mathbf{x}=\mathbf{y}
\end{array}\right.
$$

Central result in the course:
(P_{0}) and (P_{1}) have equivalent solutions if columns in \mathbf{A} are sufficiently "independent" (Candés-Romberg-Tao, 2004)

Central result in the course:
(P_{0}) and $\left(P_{1}\right)$ have equivalent solutions if columns in \mathbf{A} are sufficiently "independent" (Candés-Romberg-Tao, 2004)

We define sets of matrices.

■ $M P_{0}(s)=M P_{0}(s ; m, N)$: The set of Matrices A s.t. every s-sparse vector \mathbf{x} is: the unique solution of $\left(P_{0}\right)$ for some \mathbf{y}.

Central result in the course:
(P_{0}) and (P_{1}) have equivalent solutions if columns in \mathbf{A} are sufficiently "independent" (Candés-Romberg-Tao, 2004)

We define sets of matrices.

■ $M P_{0}(s)=M P_{0}(s ; m, N)$: The set of Matrices A s.t. every s-sparse vector \mathbf{x} is: the unique solution of $\left(P_{0}\right)$ for some \mathbf{y}.
■ $M P_{1}(s)=M P_{1}(s ; m, N)$: The set of Matrices A s.t. every s-sparse vector \mathbf{x} is: the unique solution of $\left(P_{1}\right)$ for some \mathbf{y}.

Central result in the course:
(P_{0}) and (P_{1}) have equivalent solutions if columns in \mathbf{A} are sufficiently "independent" (Candés-Romberg-Tao, 2004)

We define sets of matrices.

■ $M P_{0}(s)=M P_{0}(s ; m, N)$: The set of Matrices A s.t. every s-sparse vector \mathbf{x} is: the unique solution of $\left(P_{0}\right)$ for some \mathbf{y}.
■ $M P_{1}(s)=M P_{1}(s ; m, N)$: The set of Matrices A s.t. every s-sparse vector \mathbf{x} is: the unique solution of $\left(P_{1}\right)$ for some \mathbf{y}.

Preliminaries

Definition Let $\mathbf{x}=\left(x_{i}\right) \in \mathbb{R}^{N}$, we define the $\|\mathbf{x}\|_{p}$-norm, $1 \leq p \leq \infty$ by

$$
\|\mathbf{x}\|_{p}=\left\{\begin{array}{l}
\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}, \text { when } 1 \leq p<\infty \\
\max \left|x_{i}\right|, \text { when } p=\infty
\end{array}\right.
$$

Preliminaries

Definition Let $\mathbf{x}=\left(x_{i}\right) \in \mathbb{R}^{N}$, we define the $\|\mathbf{x}\|_{p}$-norm, $1 \leq p \leq \infty$ by

$$
\|\mathbf{x}\|_{p}=\left\{\begin{array}{l}
\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}, \text { when } 1 \leq p<\infty \\
\max \left|x_{i}\right|, \text { when } p=\infty
\end{array}\right.
$$

Even if it is not a norm we define the $\|\mathbf{x}\|_{0-}$ " norm" by

$$
\|\mathbf{x}\|_{0}=\#\left\{i: x_{i} \neq 0\right\}
$$

Preliminaries

Definition Let $\mathbf{x}=\left(x_{i}\right) \in \mathbb{R}^{N}$, we define the $\|\mathbf{x}\|_{p}$-norm, $1 \leq p \leq \infty$ by

$$
\|\mathbf{x}\|_{p}=\left\{\begin{array}{l}
\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}, \text { when } 1 \leq p<\infty \\
\max \left|x_{i}\right|, \text { when } p=\infty
\end{array}\right.
$$

Even if it is not a norm we define the $\|\mathbf{x}\|_{0-"}$ norm" by

$$
\|\mathbf{x}\|_{0}=\#\left\{i: x_{i} \neq 0\right\}
$$

We will only use the $\|\cdot\|_{0-,}\|\cdot\|_{1}-,\|\cdot\|_{2}$ - and $\|\cdot\|_{\infty}$ - norms.

We have the following simple relation between those norms

$$
\|\mathbf{x}\|_{1}\left\{\begin{array}{l}
\leq\|\mathbf{x}\|_{0}^{\frac{1}{2}}\|\mathbf{x}\|_{2} \\
\leq\|\mathbf{x}\|_{0}\|\mathbf{x}\|_{\infty}
\end{array}\right.
$$

and

$$
\|\mathbf{x}\|_{2}\left\{\begin{array}{l}
\leq\|\mathbf{x}\|_{0}^{\frac{1}{2}}\|\mathbf{x}\|_{\infty}, \\
\leq\|\mathbf{x}\|_{1}^{\frac{1}{2}}\|\mathbf{x}\|_{\infty}^{\frac{1}{2}}
\end{array}\right.
$$

Definition The I_{1} - entropy of a non-zero vector \mathbf{x} is defined by

$$
\operatorname{Ent}_{1}(\mathbf{x})=\frac{\|\mathbf{x}\|_{1}}{\|\mathbf{x}\|_{2}}
$$

Note that is x is a s - sparse non-zero vector then $\operatorname{Ent}_{1}(x) \leq \sqrt{s}$

Definitions

- The Inner product of two vectors \mathbf{x} and \mathbf{y} is

$$
<\mathbf{x}, \mathbf{y}>=\sum_{i=1}^{N} x_{i} \bar{y}_{i}
$$

Definitions

- The Inner product of two vectors \mathbf{x} and \mathbf{y} is

$$
<\mathbf{x}, \mathbf{y}>=\sum_{i=1}^{N} x_{i} \bar{y}_{i}
$$

- A set of vectors $\left\{\mathbf{x}_{k}\right\}_{k=1}^{N}$ in \mathbb{C}^{N} is an Orthonormal basis if $\left.<\mathbf{x}_{k}, \mathbf{x}_{k}\right\rangle=1$ for every k and $\left.<\mathbf{x}_{k}, \mathbf{x}_{j}\right\rangle=0$ when $k \neq j$.

Definitions

- The Inner product of two vectors \mathbf{x} and \mathbf{y} is

$$
<\mathbf{x}, \mathbf{y}>=\sum_{i=1}^{N} x_{i} \bar{y}_{i}
$$

- A set of vectors $\left\{\mathbf{x}_{k}\right\}_{k=1}^{N}$ in \mathbb{C}^{N} is an Orthonormal basis if

$$
<\mathbf{x}_{k}, \mathbf{x}_{k}>=1 \text { for every } k \text { and }<\mathbf{x}_{k}, \mathbf{x}_{j}>=0 \text { when } k \neq j
$$

- The pair of two orthonormal bases $\left\{\mathbf{x}_{k}\right\}_{k=1}^{N}$ and $\left\{\mathbf{y}_{k}\right\}_{k=1}^{N}$ in \mathbb{C}^{N} is incoherent if all inner products $\left\langle\mathbf{x}_{k}, \mathbf{y}_{j}\right\rangle$ are small. More precizly if

$$
<\mathbf{x}_{k}, \mathbf{y}_{j}>\leq K / \sqrt{N} \text { for all } 1 \leq j, k \leq N
$$

for some constant $K>0$. we say the bases are K-incoherent

Matrices for the optimzation problems

Observe that $M P_{1}(s ; m, N)$ is a subset of $M P_{0}(s ; m, N)$

- $M P_{0}(s ; m, N)$ easy to characterize:

Matrices for the optimzation problems

Observe that $M P_{1}(s ; m, N)$ is a subset of $M P_{0}(s ; m, N)$

- $M P_{0}(s ; m, N)$ easy to characterize:

Matrices for the optimzation problems

Observe that $M P_{1}(s ; m, N)$ is a subset of $M P_{0}(s ; m, N)$

- $M P_{0}(s ; m, N)$ easy to characterize:

Easy Claim: $\mathbf{A} \in M P_{0}(s ; m, N)$ if and only if $2 s$-subset of columns of \mathbf{A} is lineary dependent.
Proof: An easy exersize in linear analysis
■ Corollary: $M P_{0}(s ; m, N)$ is empty if $2 s>m$.

Matrices for the optimzation problems

Observe that $M P_{1}(s ; m, N)$ is a subset of $M P_{0}(s ; m, N)$

- $M P_{0}(s ; m, N)$ easy to characterize:

Easy Claim: $\mathbf{A} \in M P_{0}(s ; m, N)$ if and only if $2 s$-subset of columns of \mathbf{A} is lineary dependent.
Proof: An easy exersize in linear analysis

- Corollary: $M P_{0}(s ; m, N)$ is empty if $2 s>m$.
- $P_{0}(s ; m, N)$ impossible to solve for large matrices.

Matrices for the optimzation problems

Observe that $M P_{1}(s ; m, N)$ is a subset of $M P_{0}(s ; m, N)$

- $M P_{0}(s ; m, N)$ easy to characterize:

Easy Claim: $\mathbf{A} \in M P_{0}(s ; m, N)$ if and only if $2 s$-subset of columns of \mathbf{A} is lineary dependent.
Proof: An easy exersize in linear analysis

- Corollary: $M P_{0}(s ; m, N)$ is empty if $2 s>m$.
- $P_{0}(s ; m, N)$ impossible to solve for large matrices.
- $M P_{1}(s ; m, N)$ difficult to construct

Matrices for the optimzation problems

Observe that $M P_{1}(s ; m, N)$ is a subset of $M P_{0}(s ; m, N)$

- $M P_{0}(s ; m, N)$ easy to characterize:

Easy Claim: $\mathbf{A} \in M P_{0}(s ; m, N)$ if and only if $2 s$-subset of columns of \mathbf{A} is lineary dependent.
Proof: An easy exersize in linear analysis

- Corollary: $M P_{0}(s ; m, N)$ is empty if $2 s>m$.
- $P_{0}(s ; m, N)$ impossible to solve for large matrices.
- $M P_{1}(s ; m, N)$ difficult to construct
- $P_{1}(s ; m, N)$ possible to solve even for large matrices.

Construction of matrices in $M P_{0}(s)$

- $M P_{0}(s ; m, N)$ is not empty if $2 s \leq m$. This is a consequence of the following:

Construction of matrices in $M P_{0}(s)$

- $M P_{0}(s ; m, N)$ is not empty if $2 s \leq m$. This is a consequence of the following:
- Lemma: Let $2 s \leq m$ and $N>0$ very large. Then there exists matrices \mathbf{A} with column vectors $A_{n}, 1 \leq n \leq N$, such that every subset of $2 s$ is a set a lineary independent vectors in \mathbb{C}^{m}. Proof is done by construction:
The algorithm for construction of the columns vectors $A_{n}, 0 \leq n \leq N$ is as follows:

Construction of matrices in $M P_{0}(s)$

■ $M P_{0}(s ; m, N)$ is not empty if $2 s \leq m$. This is a consequence of the following:

- Lemma: Let $2 s \leq m$ and $N>0$ very large. Then there exists matrices \mathbf{A} with column vectors $A_{n}, 1 \leq n \leq N$, such that every subset of $2 s$ is a set a lineary independent vectors in \mathbb{C}^{m}. Proof is done by construction:
The algorithm for construction of the columns vectors $A_{n}, 0 \leq n \leq N$ is as follows:

1 Chose m independent columns $A_{1}, \ldots A_{m}$ in \mathbb{C}^{m}.

Construction of matrices in $M P_{0}(s)$

■ $M P_{0}(s ; m, N)$ is not empty if $2 s \leq m$. This is a consequence of the following:

- Lemma: Let $2 s \leq m$ and $N>0$ very large. Then there exists matrices \mathbf{A} with column vectors $A_{n}, 1 \leq n \leq N$, such that every subset of $2 s$ is a set a lineary independent vectors in \mathbb{C}^{m}. Proof is done by construction:
The algorithm for construction of the columns vectors $A_{n}, 0 \leq n \leq N$ is as follows:
1 Chose m independent columns $A_{1}, \ldots A_{m}$ in \mathbb{C}^{m}.
2 Set $n=: m$.

Construction of matrices in $M P_{0}(s)$

■ $M P_{0}(s ; m, N)$ is not empty if $2 s \leq m$. This is a consequence of the following:

- Lemma: Let $2 s \leq m$ and $N>0$ very large. Then there exists matrices \mathbf{A} with column vectors $A_{n}, 1 \leq n \leq N$, such that every subset of $2 s$ is a set a lineary independent vectors in \mathbb{C}^{m}. Proof is done by construction:
The algorithm for construction of the columns vectors $A_{n}, 0 \leq n \leq N$ is as follows:
1 Chose m independent columns $A_{1}, \ldots A_{m}$ in \mathbb{C}^{m}.
2 Set $n=: m$.
3 Any 2s-1 - tiple of chosen column vectors span a subspace of codimension 1.

Construction of matrices in $M P_{0}(s)$

■ $M P_{0}(s ; m, N)$ is not empty if $2 s \leq m$. This is a consequence of the following:

- Lemma: Let $2 s \leq m$ and $N>0$ very large. Then there exists matrices \mathbf{A} with column vectors $A_{n}, 1 \leq n \leq N$, such that every subset of $2 s$ is a set a lineary independent vectors in \mathbb{C}^{m}. Proof is done by construction:
The algorithm for construction of the columns vectors $A_{n}, 0 \leq n \leq N$ is as follows:
1 Chose m independent columns $A_{1}, \ldots A_{m}$ in \mathbb{C}^{m}.
2 Set $n=: m$.
3 Any 2s-1 - tiple of chosen column vectors span a subspace of codimension 1.
4 Chose a new column vector A_{n+1} that is not contained in finite union of all such subspaces of codimenen 1 .

Construction of matrices in $M P_{0}(s)$

■ $M P_{0}(s ; m, N)$ is not empty if $2 s \leq m$. This is a consequence of the following:

- Lemma: Let $2 s \leq m$ and $N>0$ very large. Then there exists matrices \mathbf{A} with column vectors $A_{n}, 1 \leq n \leq N$, such that every subset of $2 s$ is a set a lineary independent vectors in \mathbb{C}^{m}. Proof is done by construction:
The algorithm for construction of the columns vectors $A_{n}, 0 \leq n \leq N$ is as follows:
1 Chose m independent columns $A_{1}, \ldots A_{m}$ in \mathbb{C}^{m}.
2 Set $n=: m$.
3 Any 2s-1 - tiple of chosen column vectors span a subspace of codimension 1.
4 Chose a new column vector A_{n+1} that is not contained in finite union of all such subspaces of codimenen 1 .
5 if Any $2 s-1$ - tiple of previously chosen column vectors together with A_{n} will span the whole space.

Construction of matrices in $M P_{0}(s)$

- $M P_{0}(s ; m, N)$ is not empty if $2 s \leq m$. This is a consequence of the following:
- Lemma: Let $2 s \leq m$ and $N>0$ very large. Then there exists matrices \mathbf{A} with column vectors $A_{n}, 1 \leq n \leq N$, such that every subset of $2 s$ is a set a lineary independent vectors in \mathbb{C}^{m}. Proof is done by construction:
The algorithm for construction of the columns vectors $A_{n}, 0 \leq n \leq N$ is as follows:
1 Chose m independent columns $A_{1}, \ldots A_{m}$ in \mathbb{C}^{m}.
2 Set $n=: m$.
3 Any 2s-1 - tiple of chosen column vectors span a subspace of codimension 1.
4 Chose a new column vector A_{n+1} that is not contained in finite union of all such subspaces of codimenen 1 .
5 if Any $2 s-1$ - tiple of previously chosen column vectors together with A_{n} will span the whole space.
б If $n<N$: set $n=: n+1$ and return to step nr 3 .

Construction of matrices in $M P_{0}(s)$

- $M P_{0}(s ; m, N)$ is not empty if $2 s \leq m$. This is a consequence of the following:
- Lemma: Let $2 s \leq m$ and $N>0$ very large. Then there exists matrices \mathbf{A} with column vectors $A_{n}, 1 \leq n \leq N$, such that every subset of $2 s$ is a set a lineary independent vectors in \mathbb{C}^{m}. Proof is done by construction:
The algorithm for construction of the columns vectors $A_{n}, 0 \leq n \leq N$ is as follows:
1 Chose m independent columns $A_{1}, \ldots A_{m}$ in \mathbb{C}^{m}.
2 Set $n=: m$.
3 Any 2s-1 - tiple of chosen column vectors span a subspace of codimension 1.
4 Chose a new column vector A_{n+1} that is not contained in finite union of all such subspaces of codimenen 1 .
5 if Any $2 s-1$ - tiple of previously chosen column vectors together with A_{n} will span the whole space.
6 If $n<N$: set $n=: n+1$ and return to step nr 3 .
7 The construction is finished!

The construction of preceeding frame gives a matrix $\mathbf{A} \in \mathrm{MP}_{0}() s$ with very little controll how close the vectors \mathbf{A}_{n} are to each other. If m is much larger than $2 s$ one can controll the distance from each new colonmvector \mathbf{A}_{n} to all preceeding columnvectors $\mathbf{A}_{k}, k \leq n$, (which might be useful):

■ If $m>2 s$ Any $2 s-1$ - tiple of chosen column vectors span a subspace of codimension $m-2 s+1$.

The construction of preceeding frame gives a matrix $\mathbf{A} \in \mathrm{MP}_{0}() s$ with very little controll how close the vectors \mathbf{A}_{n} are to each other. If m is much larger than $2 s$ one can controll the distance from each new colonmvector \mathbf{A}_{n} to all preceeding columnvectors $\mathbf{A}_{k}, k \leq n$, (which might be useful):

■ If $m>2 s$ Any $2 s-1$ - tiple of chosen column vectors span a subspace of codimension $m-2 s+1$.

- Build an m-dimensional plate by intersecting each such $2 s-1$ - dimensional subspace with the unit ball and take direct sum with the perpendicular ball of radius r and dimension $m-2 s+1$.

The construction of preceeding frame gives a matrix $\mathbf{A} \in \mathrm{MP}_{0}() s$ with very little controll how close the vectors \mathbf{A}_{n} are to each other. If m is much larger than $2 s$ one can controll the distance from each new colonmvector \mathbf{A}_{n} to all preceeding columnvectors $\mathbf{A}_{k}, k \leq n$, (which might be useful):

■ If $m>2 s$ Any $2 s-1$ - tiple of chosen column vectors span a subspace of codimension $m-2 s+1$.

- Build an m-dimensional plate by intersecting each such $2 s-1$ - dimensional subspace with the unit ball and take direct sum with the perpendicular ball of radius r and dimension $m-2 s+1$.
- The volume of such a plate can be estimated from above..

The construction of preceeding frame gives a matrix $\mathbf{A} \in \mathrm{MP}_{0}() s$ with very little controll how close the vectors \mathbf{A}_{n} are to each other. If m is much larger than $2 s$ one can controll the distance from each new colonmvector \mathbf{A}_{n} to all preceeding columnvectors $\mathbf{A}_{k}, k \leq n$, (which might be useful):

■ If $m>2 s$ Any $2 s-1$ - tiple of chosen column vectors span a subspace of codimension $m-2 s+1$.

- Build an m-dimensional plate by intersecting each such $2 s-1$ - dimensional subspace with the unit ball and take direct sum with the perpendicular ball of radius r and dimension $m-2 s+1$.
- The volume of such a plate can be estimated from above..

■ Choose the new column A_{n} in the unite sphere, but outside each such plate.

Example of controls of the columnvector in \mathbf{A}

- The repeating may stop will go on as long or $n<N$ or it will stop when the plates cover the m-dimensional unit ball . in this case
(total number plates) \times (plate volume) \geq (volume of the m - dimensio
This gives a relation between r, s, m, and maximal value of N before the algorithm stops.

Example of controls of the columnvector in \mathbf{A}

- The repeating may stop will go on as long or $n<N$ or it will stop when the plates cover the m-dimensional unit ball . in this case
(total number plates) \times (plate volume) \geq (volume of the m - dimensio
This gives a relation between r, s, m, and maximal value of N before the algorithm stops.

Example of controls of the columnvector in \mathbf{A}

- The repeating may stop will go on as long or $n<N$ or it will stop when the plates cover the m-dimensional unit ball . in this case
(total number plates) \times (plate volume) \geq (volume of the m - dimensio
This gives a relation between r, s, m, and maximal value of N before the algorithm stops.

Some examples of control

- A lower estimate of the $2 s$-dim volumes spanned any $2 s$-tiple of unitvectors A_{N} will then be $r^{2 s-1}$.

We will come back to this later on in the course.

Example of controls of the columnvector in \mathbf{A}

- The repeating may stop will go on as long or $n<N$ or it will stop when the plates cover the m-dimensional unit ball . in this case
(total number plates) $\times($ plate volume $) \geq$ (volume of the m - dimensio
This gives a relation between r, s, m, and maximal value of N before the algorithm stops.

Some examples of control

- A lower estimate of the $2 s$-dim volumes spanned any $2 s$-tiple of unitvectors A_{N} will then be $r^{2 s-1}$.
- If $0<1-r<c / s$ for some small constant $c>0$ and $m>C s^{2} \log N$ for some constant $C>0$ large enough the this construction will give a matrix in $M P_{1}(s, ; m, N)$

We will come back to this later on in the course.

Sparse measurements

- Assume \mathcal{C} class of signals \mathbf{x} of length N with s-sparse representation in:
There is an invertible ($n \times n$)-matrix \mathbf{D} such that

$$
\boldsymbol{\eta}:=\mathbf{D} \cdot \mathbf{x},
$$

where $\boldsymbol{\eta}$ is s-sparse

Sparse measurements

- Assume \mathcal{C} class of signals \mathbf{x} of length N with s-sparse representation in:
There is an invertible $(n \times n)$-matrix \mathbf{D} such that

$$
\boldsymbol{\eta}:=\mathbf{D} \cdot \mathbf{x},
$$

where $\boldsymbol{\eta}$ is s-sparse

- Assume the forward operator the signal x will will is able to provide the a complete set measured data \mathbf{y} of length N such that

$$
\mathbf{y}=\mathbf{A} \mathbf{x}
$$

where $N \times N$ matrix \mathbf{A} is invertible.

Sparse measurements

- Assume \mathcal{C} class of signals \mathbf{x} of length N with s-sparse representation in:
There is an invertible $(n \times n)$-matrix \mathbf{D} such that

$$
\boldsymbol{\eta}:=\mathbf{D} \cdot \mathbf{x},
$$

where $\boldsymbol{\eta}$ is s-sparse

- Assume the forward operator the signal x will will is able to provide the a complete set measured data \mathbf{y} of length N such that

$$
\mathbf{y}=\mathbf{A} \mathbf{x}
$$

where $N \times N$ matrix \mathbf{A} is invertible.

- Assume forward operator can be modified by a $m \times N$-matrix \mathbf{E}, to give a measurement vector \mathbf{z} by

$$
\mathbf{z}=\mathbf{E y},
$$

where \mathbf{z} is a vector of dimension m.

Sparse measurements

- If $m \geq 2 s$ the forward operator can be modified to give sparse measurement \mathbf{z} of dimention m, such that each member in the class \mathcal{C} is uniqely identified by the measurements \mathbf{x}.
N is.

Sparse measurements

- If $m \geq 2 s$ the forward operator can be modified to give sparse measurement \mathbf{z} of dimention m, such that each member in the class \mathcal{C} is uniqely identified by the measurements \mathbf{x}.
N is.
Let \mathbf{A}^{\prime} be a $2 s \times N$ - matrix in $\mathrm{MP}_{0}(s)$ and set
$\mathbf{E}=\mathbf{A}^{\prime} \mathbf{A}^{-1} \mathbf{D}^{-1}$ and $\mathbf{z}=\mathbf{E z}$. Then the equation $\mathbf{A x}=\mathbf{y}$ is
transformed into

$$
\mathbf{A}^{\prime} z=\eta
$$

■ Note that it is sufficient with $m=2 s$ independent of how large N is.

Let S be any index subset of $\{1, \ldots, N\}$ with $|S|=s$.

Let S be any index subset of $\{1, \ldots, N\}$ with $|S|=s$.
Any vector \mathbf{x} can be written as a sum $\mathbf{x}_{S}+\mathbf{x}_{c_{S}}$, where the non-zero elements of \mathbf{x}_{S} are in S and the non-zero elements of $\mathbf{x}_{c_{S}}$ are in its compliment ${ }^{c} S$

- Definition: Matrix A satisfies Null Space condition NS(s) if for any non-zero vector \mathbf{x} with $\mathbf{A x}=0$ and any index subset $S,|S|=s$ we have

$$
\left\|\mathbf{x}_{S}\right\|_{1}<\left\|\mathbf{x}_{c_{S}}\right\|_{1}
$$

where $\mathbf{x}=\mathbf{x}_{S}+\mathbf{x}_{c S}$.

Let S be any index subset of $\{1, \ldots, N\}$ with $|S|=s$.
Any vector \mathbf{x} can be written as a sum $\mathbf{x}_{S}+\mathbf{x}_{c_{S}}$, where the non-zero elements of \mathbf{x}_{S} are in S and the non-zero elements of $\mathbf{x}_{c_{S}}$ are in its compliment ${ }^{c} S$

- Definition: Matrix A satisfies Null Space condition NS(s) if for any non-zero vector \mathbf{x} with $\mathbf{A x}=0$ and any index subset $S,|S|=s$ we have

$$
\left\|\mathbf{x}_{S}\right\|_{1}<\left\|\mathbf{x}_{c_{S}}\right\|_{1}
$$

where $\mathbf{x}=\mathbf{x}_{S}+\mathbf{x}_{c S}$.

Let S be any index subset of $\{1, \ldots, N\}$ with $|S|=s$.
Any vector \mathbf{x} can be written as a sum $\mathbf{x}_{S}+\mathbf{x}_{c_{S}}$, where the non-zero elements of \mathbf{x}_{S} are in S and the non-zero elements of $\mathbf{x}_{c S}$ are in its compliment ${ }^{c} S$

- Definition: Matrix A satisfies Null Space condition NS(s) if for any non-zero vector \mathbf{x} with $\mathbf{A} \mathbf{x}=0$ and any index subset $S,|S|=s$ we have

$$
\left\|\mathbf{x}_{S}\right\|_{1}<\left\|\mathbf{x}_{c_{S}}\right\|_{1}
$$

where $\mathbf{x}=\mathbf{x}_{S}+\mathbf{x}_{c S}$.

- Definition: Matrix A satisfies Null Entropy condition NE (e) if for any non-zero vector \mathbf{x} with $\mathbf{A x}=0$ we have
$\operatorname{Ent}_{1}(x) \geq e$

Easy claim

Easy claim

- If $e \geq 2 \sqrt{s}$ then
$(\mathbf{A} \in N E(e))$ implies $(\mathbf{A} \in N S(s))$

Easy claim

- If $e \geq 2 \sqrt{s}$ then
$(\mathbf{A} \in N E(e))$ implies $(\mathbf{A} \in N S(s))$
Proof: $(\mathbf{A} \in N E(e))$ and $\left\|\mathbf{x}_{S}\right\|_{1} \geq\left\|\mathbf{x}_{c_{S}}\right\|_{1}$, implies

$$
e \leq \operatorname{Ent}_{1}\left(\mathbf{x}_{S}+\mathbf{x}_{c_{S}}\right)<\frac{\left\|\mathbf{x}_{S}\right\|_{1}+\left\|\mathbf{x}_{c_{S}}\right\|_{1}}{\left\|\mathbf{x}_{S}\right\|_{2}} \leq 2 \operatorname{Ent}_{1}\left(\mathbf{x}_{S}\right) \leq 2 \sqrt{s}
$$

Easy claim

- If $e \geq 2 \sqrt{s}$ then
$(\mathbf{A} \in N E(e))$ implies $(\mathbf{A} \in N S(s))$

Equivalent condtions

For a matrix \mathbf{A} we have

$$
\mathbf{A} \in \mathrm{MP}_{1}(s)
$$

Equivalent condtions

For a matrix \mathbf{A} we have

$$
\mathbf{A} \in \mathrm{MP}_{1}(s)
$$

if and only if

Equivalent condtions

For a matrix \mathbf{A} we have

$$
\mathbf{A} \in \mathrm{MP}_{1}(s)
$$

if and only if

$$
\mathbf{A} \in N S(s)
$$

Equivalent condtions

For a matrix \mathbf{A} we have

$$
\mathbf{A} \in \mathrm{MP}_{1}(s)
$$

if and only if

$$
\mathbf{A} \in N S(s)
$$

Proof: if $\mathbf{A} \mathbf{x}=0$ then $\mathbf{x}=\mathbf{x}_{S}+\mathbf{x}_{{ }^{S} S}$ for some index set S with $|S| \leq s$ and $A \mathbf{x}_{S}=A\left(-\mathbf{x}_{\left.c_{S}\right)}\right)$.
$\mathbf{A} \in \mathrm{MP}_{1}(s)$ implies x_{c} is the uniqe solution of a I_{1} minimization problem thus $\left\|\mathbf{x}_{S}\right\|_{1}<\left\|\mathbf{x}_{c_{S}}\right\|_{1}$

Equivalent condtions

For a matrix \mathbf{A} we have

$$
\mathbf{A} \in \mathrm{MP}_{1}(s)
$$

if and only if

$$
\mathbf{A} \in N S(s)
$$

Proof: Let \mathbf{x} be s sparse with support in $S,|S|=s$ an \mathbf{z} any vector such that $\mathbf{A z}=\mathbf{A} \mathbf{x}$, Write $\mathbf{z}=\mathbf{z}_{S}+\mathbf{z}_{\mathrm{c}}$. Then

$$
\|\mathbf{z}\|_{1}=\left\|\mathbf{z}_{S}\right\|_{1}+\left\|\mathbf{z}_{c_{S}}\right\|_{1} \geq\|\mathbf{x}\|_{1}-\left\|\mathbf{z}_{S}-\mathbf{x}\right\|_{1}+\left\|\mathbf{z}_{c_{S}}\right\|_{1}
$$

Since $\mathbf{x}-\mathbf{z}_{S}$ is s-sparse, $\mathbf{A}\left(\mathbf{x}-\mathbf{z}_{S}\right)=\mathbf{A} \mathbf{z}_{c}$ and $\mathbf{A} \in N S(s)$ we have $\left\|\mathbf{z}_{c_{S}}\right\|_{1}-\left\|\mathbf{z}_{S}-\mathbf{x}\right\|_{1}>0$. Thus $\|\mathbf{z}\|_{1}>\|\mathbf{x}\|_{1}$

Equivalent condtions

For a matrix \mathbf{A} we have

$$
\mathbf{A} \in \mathrm{MP}_{1}(s)
$$

if and only if

$$
\mathbf{A} \in N S(s)
$$

This is how far we got on lecture 2 !

■ Definition: Matrix A satisfies Low Entropy Isometry Property (LEIP) with constant $\tilde{\delta}_{e}$ if

$$
\left|\|\mathbf{A} \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \leq \tilde{\delta}_{e}\|\mathbf{x}\|_{2}^{2}
$$

for all \mathbf{x} with $\operatorname{Ent}_{1}(\mathbf{x}) \leq e$.

- Definition: Matrix A satisfies Low Entropy Isometry Property (LEIP) with constant $\tilde{\delta}_{e}$ if

$$
\left|\|\mathbf{A} \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \leq \tilde{\delta}_{e}\|\mathbf{x}\|_{2}^{2}
$$

for all \mathbf{x} with $\operatorname{Ent}_{1}(\mathbf{x}) \leq e$.
■ Definition Matrix A satisfies Restricted Isometry Property (RIP) with constant δ_{s} if

$$
\left|\|\mathbf{A} \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \leq \delta_{s}\|\mathbf{x}\|_{2}^{2}
$$

for all s - sparse vectors \mathbf{x}

- Definition: Matrix A satisfies Low Entropy Isometry Property (LEIP) with constant $\tilde{\delta}_{e}$ if

$$
\left|\|\mathbf{A} \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \leq \tilde{\delta}_{e}\|\mathbf{x}\|_{2}^{2}
$$

for all \mathbf{x} with $\operatorname{Ent}_{1}(\mathbf{x}) \leq e$.
■ Definition Matrix A satisfies Restricted Isometry Property (RIP) with constant δ_{s} if

$$
\left|\|\mathbf{A} \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \leq \delta_{s}\|\mathbf{x}\|_{2}^{2}
$$

for all s - sparse vectors \mathbf{x}
Easy claims

- Definition: Matrix A satisfies Low Entropy Isometry Property (LEIP) with constant $\tilde{\delta}_{e}$ if

$$
\left|\|\mathbf{A} \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \leq \tilde{\delta}_{e}\|\mathbf{x}\|_{2}^{2}
$$

for all \mathbf{x} with $\operatorname{Ent}_{1}(\mathbf{x}) \leq e$.
■ Definition Matrix A satisfies Restricted Isometry Property (RIP) with constant δ_{s} if

$$
\left|\|\mathbf{A} \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \leq \delta_{s}\|\mathbf{x}\|_{2}^{2}
$$

for all s - sparse vectors \mathbf{x}
Easy claims

- If the matrix \mathbf{A} satisfies LEIP with constant $\tilde{\delta}_{e}$ and $\sqrt{s} \leq e$, then \mathbf{A} satisfies RIP with a constant $\delta_{s} \leq \tilde{\delta}_{e}$.
- Definition: Matrix A satisfies Low Entropy Isometry Property (LEIP) with constant $\tilde{\delta}_{e}$ if

$$
\left|\|\mathbf{A} \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \leq \tilde{\delta}_{e}\|\mathbf{x}\|_{2}^{2}
$$

for all \mathbf{x} with $\operatorname{Ent}_{1}(\mathbf{x}) \leq e$.
■ Definition Matrix A satisfies Restricted Isometry Property (RIP) with constant δ_{s} if

$$
\left|\|\mathbf{A} \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \leq \delta_{s}\|\mathbf{x}\|_{2}^{2}
$$

for all s - sparse vectors \mathbf{x}
Easy claims

- If the matrix \mathbf{A} satisfies LEIP with constant $\tilde{\delta}_{e}$ and $\sqrt{s} \leq e$, then \mathbf{A} satisfies RIP with a constant $\delta_{s} \leq \tilde{\delta}_{e}$.
Proof: if \mathbf{x} is s-sparse then $\operatorname{Ent}_{1}(\mathbf{x}) \leq \sqrt{s}$
- Definition: Matrix A satisfies Low Entropy Isometry Property (LEIP) with constant $\tilde{\delta}_{e}$ if

$$
\left|\|\mathbf{A} \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \leq \tilde{\delta}_{e}\|\mathbf{x}\|_{2}^{2}
$$

for all \mathbf{x} with $\operatorname{Ent}_{1}(\mathbf{x}) \leq e$.
■ Definition Matrix A satisfies Restricted Isometry Property (RIP) with constant δ_{s} if

$$
\left|\|\mathbf{A} \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \leq \delta_{s}\|\mathbf{x}\|_{2}^{2}
$$

for all s - sparse vectors \mathbf{x}
Easy claims

- If the matrix \mathbf{A} satisfies LEIP with constant $\tilde{\delta}_{e}$ and $\sqrt{s} \leq e$, then \mathbf{A} satisfies RIP with a constant $\delta_{s} \leq \tilde{\delta}_{e}$.
- If $\tilde{\delta}_{e}<1$ then $\mathbf{A} \in \operatorname{NE}(e)$
- Definition: Matrix A satisfies Low Entropy Isometry Property (LEIP) with constant $\tilde{\delta}_{e}$ if

$$
\left|\|\mathbf{A} \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \leq \tilde{\delta}_{e}\|\mathbf{x}\|_{2}^{2}
$$

for all \mathbf{x} with $\operatorname{Ent}_{1}(\mathbf{x}) \leq e$.
■ Definition Matrix A satisfies Restricted Isometry Property (RIP) with constant δ_{s} if

$$
\left|\|\mathbf{A} \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \leq \delta_{s}\|\mathbf{x}\|_{2}^{2}
$$

for all s - sparse vectors \mathbf{x}
Easy claims

- If the matrix \mathbf{A} satisfies LEIP with constant $\tilde{\delta}_{e}$ and $\sqrt{s} \leq e$, then \mathbf{A} satisfies RIP with a constant $\delta_{s} \leq \tilde{\delta}_{e}$.
- If $\tilde{\delta}_{e}<1$ then $\mathbf{A} \in N E(e)$

Proof: For any $\mathbf{x} \neq 0$ with $\operatorname{Ent}_{1}(\mathbf{x}) \leq e$ and $\mathbf{A x}=0$ then LEIP with $\tilde{\delta}_{e}<1$ would imply $\|\mathbf{x}\|_{2}^{2}<\|\mathbf{x}\|_{2}^{2}$.

Referencer

- A
-

Thats it for today!

- Thank you for your attension!

