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Repetition of (P0),(P1) + notations (MP0()), (MP1()) .

Preliminaries.

Construction of matrices in (MP0())

Objects with sparse representation and modified sparse
measurements.

The Null-space property ( NS()) and (MP1())

The Low Entropy Isometry Property (LEIP()) and (MP1())

The Restricted Isometry Property (RIP()) and LEIP().

B-RIP(): Bilinear version of RIP
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We were looking for sparse solutions x = xsparse of the equation

y = Ax

where the m × N-matrix A ∈ C
m × C

N and the column vector
y ∈ C

m is given, with m << N.
Two algorithms:
Minimize the number of non-zero elements:

xsparse :=

{

argmin# non-zero element in x,

Ax = y.
(P0)

and minimize the l1 - norm:

xsparse :=

{

argminx
∑

i |xi |
Ax = y

(P1)
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Preliminaries

Definition Let x = (xi ) ∈ R
N , we define the ‖x‖p-norm,

1 ≤ p ≤ ∞ by

‖x‖p =

{

(
∑

i |xi |p)
1
p , when 1 ≤ p < ∞

max |xi |, when p = ∞
.

Even if it is not a norm we define the ‖x‖0-”norm” by

‖x‖0 = #{i : xi 6= 0}.

We will only use the ‖ · ‖0 -, ‖ · ‖1 -, ‖ · ‖2 - and ‖ · ‖∞ - norms.



We have the following simple relation between those norms

‖x‖1
{

≤ ‖x‖
1
2
0 ‖x‖2,

≤ ‖x‖0‖x‖∞,

and

‖x‖2







≤ ‖x‖
1
2
0 ‖x‖∞,

≤ ‖x‖
1
2
1 ‖x‖

1
2
∞,



Definition The l1 - entropy of a non-zero vector x is defined by

Ent1(x) =
‖x‖1
‖x‖2

Note that is x is a s - sparse non-zero vector
then Ent1(x) ≤

√
s
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Definitions

The Inner product of two vectors x and y is

< x, y >=
N
∑

i=1

xiy i .

A set of vectors {xk}Nk=1 in C
N is an Orthonormal basis if

< xk , xk >= 1 for every k and < xk , xj >= 0 when k 6= j .

The pair of two orthonormal bases {xk}Nk=1 and {yk}Nk=1 in
C
N is incoherent if all inner products < xk , yj > are small.

More precizly if

< xk , yj >≤ K/
√
N for all 1 ≤ j , k ≤ N,

for some constant K > 0. we say the bases are K -incoherent
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Matrices for the optimzation problems

Observe that MP1(s;m,N) is a subset of MP0(s;m,N)

MP0(s;m,N) easy to characterize:
Easy Claim: A ∈ MP0(s;m,N) if and only if 2s-subset of
columns of A is lineary dependent.
Proof: An easy exersize in linear analysis

Corollary: MP0(s;m,N) is empty if 2s > m.

P0(s;m,N) impossible to solve for large matrices.

MP1(s;m,N) difficult to construct

P1(s;m,N) possible to solve even for large matrices.
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Construction of matrices in MP0(s)

MP0(s;m,N) is not empty if 2s ≤ m. This is a consequence
of the following:
Lemma: Let 2s ≤ m and N > 0 very large. Then there exists
matrices A with column vectors An, 1 ≤ n ≤ N, such that
every subset of 2s is a set a lineary independent vectors in C

m.
Proof is done by construction:
The algorithm for construction of the columns vectors
An, 0 ≤ n ≤ N is as follows:

1 Chose m independent columns A1, . . .Am in C
m.

2 Set n =: m.
3 Any 2s − 1 - tiple of chosen column vectors span a subspace of

codimension 1.
4 Chose a new column vector An+1 that is not contained in finite

union of all such subspaces of codimenen 1.
5 if Any 2s − 1 - tiple of previously chosen column vectors

together with An will span the whole space.
6 If n < N: set n =: n + 1 and return to step nr 3.
7 The construction is finished!
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Construction of matrices in MP0(s) with more controll
2s -tiple of unitvectors AN
This page indicates what we may do later on

The construction of preceeding frame gives a matrix A ∈ MP0()s
with very little controll how close the vectors An are to each other.
If m is much larger than 2s one can controll the distance from
each new colonmvector An to all preceeding columnvectors
Ak , k ≤ n, (which might be useful):

If m > 2s Any 2s − 1 - tiple of chosen column vectors span a
subspace of codimension m − 2s + 1.

Build an m-dimensional plate by intersecting each such 2s − 1
- dimensional subspace with the unit ball and take direct sum
with the perpendicular ball of radius r and dimension
m − 2s + 1.

The volume of such a plate can be estimated from above..

Choose the new column An in the unite sphere, but outside
each such plate.
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Example of controls of the columnvector in A

The repeating may stop will go on as long or n < N or it will
stop when the plates cover the m-dimensional unit ball . in
this case

(total number plates)×(plate volume)≥ (volume of the m- dimensional

This gives a relation between r , s,m, and maximal value of N
before the algorithm stops.

Some examples of control

A lower estimate of the 2s-dim volumes spanned any 2s -tiple
of unitvectors AN will then be r2s−1.

If 0 < 1− r < c/s for some small constant c > 0 and
m > Cs2 logN for some constant C > 0 large enough the this
construction will give a matrix in MP1(s, ;m,N)

We will come back to this later on in the course.
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Sparse measurements

Assume C class of signals x of length N with s-sparse
representation in:
There is an invertible (n × n)-matrix D such that

η := D · x,
where η is s -sparse

Assume the forward operator the signal x will will is able to
provide the a complete set measured data y of length N such
that

y = Ax,

where N × N matrix A is invertible.

Assume forward operator can be modified by a m × N -matrix
E, to give a measurement vector z by

z = Ey,

where z is a vector of dimension m.
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Sparse measurements

If m ≥ 2s the forward operator can be modified to give sparse
measurement z of dimention m, such that each member in
the class C is uniqely identified by the measurements x.

N is.
Let A′ be a 2s × N - matrix in MP0(s) and set
E = A′A−1D−1 and z = Ez . Then the equation Ax = y is
transformed into

A′z = η

Note that it is sufficient with m = 2s independent of how
large N is.
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Let S be any index subset of {1, . . . ,N} with |S | = s.
Any vector x can be written as a sum xS + xcS , where the
non-zero elements of xS are in S and the non-zero elements of xcS

are in its compliment cS

Definition: Matrix A satisfies Null Space condition NS(s) if
for any non-zero vector x with Ax = 0 and any index subset
S , |S | = s we have

‖xS‖1 < ‖xcS‖1,

where x = xS + xcS .

Definition: Matrix A satisfies Null Entropy condition NE (e) if
for any non-zero vector x with Ax = 0 we have

Ent1(x) ≥ e



Easy claim



Easy claim

If e ≥ 2
√
s then

(A ∈ NE (e)) implies (A ∈ NS(s))



Easy claim

If e ≥ 2
√
s then

(A ∈ NE (e)) implies (A ∈ NS(s))

Proof: (A ∈ NE (e)) and ‖xS‖1 ≥ ‖xcS‖1, implies

e ≤ Ent1(xS + xcS) <
‖xS‖1 + ‖xcS‖1

‖xS‖2
≤ 2Ent1(xS) ≤ 2

√
s



Easy claim

If e ≥ 2
√
s then

(A ∈ NE (e)) implies (A ∈ NS(s))

.
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Equivalent condtions

For a matrix A we have

A ∈ MP1(s)

if and only if

A ∈ NS(s)

Proof: if Ax = 0 then x = xS + xcS for some index set S with
|S | ≤ s and AxS = A(−xcS)).
A ∈ MP1(s) implies xc is the uniqe solution of a l1 minimization
problem thus ‖xS‖1 < ‖xcS‖1



Equivalent condtions

For a matrix A we have

A ∈ MP1(s)

if and only if

A ∈ NS(s)

Proof: Let x be s sparse with support in S , |S | = s an z any vector
such that Az = Ax, Write z = zS + zcS . Then

‖z‖1 = ‖zS‖1 + ‖zcS‖1 ≥ ‖x‖1 − ‖zS − x‖1 + ‖zcS‖1
Since x− zS is s-sparse, A(x− zS) = AzcS and A ∈ NS(s) we
have ‖zcS‖1 − ‖zS − x‖1 > 0. Thus ‖z‖1 > ‖x‖1



Equivalent condtions

For a matrix A we have

A ∈ MP1(s)

if and only if

A ∈ NS(s)

This is how far we got on lecture 2!
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Easy claims

If the matrix A satisfies LEIP with constant δ̃e and
√
s ≤ e,

then A satisfies RIP with a constant δs ≤ δ̃e .
Proof: if x is s-sparse then Ent1(x) ≤

√
s
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Definition Matrix A satisfies Restricted Isometry Property
(RIP) with constant δs if

|‖Ax‖22 − ‖x‖22| ≤ δs‖x‖22
for all s- sparse vectors x

Easy claims

If the matrix A satisfies LEIP with constant δ̃e and
√
s ≤ e,

then A satisfies RIP with a constant δs ≤ δ̃e .

If δ̃e < 1 then A ∈ NE (e)
Proof: For any x 6= 0 with Ent1(x) ≤ e and Ax = 0 then LEIP
with δ̃e < 1 would imply ‖x‖22 < ‖x‖22.
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Thats it for today!
- Thank you for your attension!
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