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An outline for today

A short recall from last lecture.

The LEIP and RIP properties of a matrix A.

The easy Theorem 3.1: LEIP implies MP1.

The Theorem 3.3: RIP implies MP1.

If we get time over .. .. on BOARD:
Bi-linear RIP and Polarisation



We were looking for s-sparse solutions x = xsparse of the equation

y = Ax,

where the m × N-matrix A ∈ C
m × C

N and the column vector
y ∈ C

m is given, with m << N.



We were looking for s-sparse solutions x = xsparse of the equation

y = Ax,

where the m × N-matrix A ∈ C
m × C

N and the column vector
y ∈ C

m is given, with m << N.

Solution by minimising the l1 - norm:

xsparse :=

{

argminx
∑

i
|xi |,

Ax = y.
(P1)
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Definition: Matrix A satisfies Low Entropy Isometry Property
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for all x with Ent1(x) ≤ e.



The LEIP and RIP properties of matrices

We were looking at some properties for m × N - matrices
(m << N):

Definition: Matrix A satisfies Low Entropy Isometry Property
(LEIP) with constant δ̃e if

|‖Ax‖22 − ‖x‖22| ≤ δ̃e‖x‖22,

for all x with Ent1(x) ≤ e.

Definition: Matrix A satisfies Restricted Isometry Property
(RIP) with constant δs if

|‖Ax‖22 − ‖x‖22| ≤ δs‖x‖22,

for all s- sparse vectors x.
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Easy claim:
If the matrix A satisfies LEIP with constant δ̃e and

√
s ≤ e,

then A satisfies RIP with a constant δs ≤ δ̃e .

In the other direction:
Unproved statement -proof later on:

(A has the RIP-property with constant δs)

implies

(A has the LEIP-property with constant δ̃e)

with δ̃e ≤ 4δs provided s ≥ 2e2
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Easy Claim: If δ̃e < 1 then A ∈ NE (e), i.e each non-zero x with
Ax = 0 has entropy Ent1(x) > e.
Proof: For any x 6= 0 with Ent1(x) ≤ e and Ax = 0 then LEIP:

|‖Ax‖22 − ‖x‖22| ≤ δ̃e‖x‖22

with δ̃e < 1 would imply ‖x‖22 < ‖x‖22.
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implies
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implies
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equivalent to

(A ∈ MP1(s))



Using the steps with triangle inequality and definition of entropy in
the proof above (without assuming Ax = Az) we would get

Lemma 3.2: Assume A ∈LEIP with constant δ̃e If x is s-sparse and
2
√
s ≤ e, then for any vector z with ‖z‖1 ≤ ‖x‖1 holds

|‖A(x− z)‖22 − ‖x− z‖22| ≤ δ̃e‖x− z‖22.
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Using the steps with triangle inequality and definition of entropy in
the proof above (without assuming Ax = Az) we would get

Lemma 3.2: Assume A ∈LEIP with constant δ̃e If x is s-sparse and
2
√
s ≤ e, then for any vector z with ‖z‖1 ≤ ‖x‖1 holds

|‖A(x− z)‖22 − ‖x− z‖22| ≤ δ̃e‖x− z‖22.

Observe: Theorem 3.1 follows easily from Lemma 3.2:
If we assume that A(x− z) = 0 and δ̃e < 1 in Lemma 3.2 we get
x− z = 0, i.e we conclude that x is the unique solution of the
minimal problem (P1).

Corollary If x is s-sparse , y = Ax and Az = y + n then
‖z‖1 ≤ ‖x‖1 and δ̃e < 1 would imply ‖z− x‖2 ≤ (1− δ̃e)

−1‖n‖2.
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In the literature the RIP property is used to ensure that A ∈ MP1.
We will show:
Theorem 3.3: If A fulfils the RIP property with constant
δ2s <

√
2− 1 ≈ 0.412. . . . , then A ∈ MP1(s).

Best known: enough with δ2s < 4/(6 +
√
7) ≈ 0.462 . . . .

S. Foucart, 2007, S.F + H.Rauhut in preparation.
Preparing the proof:
It is enough to show that f A fulfils the RIP property with constant
δ2s ≤

√
2− 1 then A ∈ NS(s). The proof is based on two technical

lemmas:
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Split {1, . . . ,N} into disjoint sets Sk , k = 1, . . . ,K
∪Sk = {1, . . . ,N} with |Sk | = s for k = 1, . . . ,K − 1. Denote
S = S1 and cS its complement.



Proof of Theorem 3.3. (cont.)

Let x be a vector that is ordered decreasing in magnitude, i.e
|x1| ≥ |x2| ≥ |x3| ≥ . . . .

Split {1, . . . ,N} into disjoint sets Sk , k = 1, . . . ,K
∪Sk = {1, . . . ,N} with |Sk | = s for k = 1, . . . ,K − 1. Denote
S = S1 and cS its complement.

Write x =
∑

k
xSk



Proof of Theorem 3.3. (cont.)
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k
xSk and above S = S1
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Proof of Theorem 3.3. (cont.)

Lemma 3.4: Assume is x is a vector with its components
decreasing in magnitude and x =

∑

k
xSk and above S = S1

as above. Then
∑

k=2

‖xSk‖2 ≤
α

2
√
s
‖xS‖1 +

1

2
√
s
(α+

1

α
)‖xcS‖1,

for α > 0, to be optimised later on.
Proof of Lemma 3.4: For k > 1:

‖xSk‖22 ≤ ‖xSk‖1‖xSk‖∞ ≤ ‖xSk‖1‖xSk−1
‖1/s

using ab ≤ 1
2αa

2 + α

2 b
2 for any a, b ≥ 0 and α > 0 we get

‖xSk‖2 ≤
α

2
√
s
‖xSk−‖1 +

1

2α
√
s
‖xSk‖1.

Summation over k ≥ 2 gives the desired result.



Proof of Theorem 3.3. (cont.)

Lemma 3.4: Assume is x is a vector with its components
decreasing in magnitude and x =

∑

k
xSk and above S = S1

as above. Then

∑

k=2

‖xSk‖2 ≤
α

2
√
s
‖xS‖1 +

1

2
√
s
(α+

1

α
)‖xcS‖1,

for α > 0, to be optimised later on.

Lemma 3.5: If A satisfies RIP properties and Ax = 0, then

‖xS1‖2 ≤
δ2s

1− δs

∑

k=2

‖xSk‖2.

Proof of Lemma 3.5 uses two lemmas:
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Proof of Theorem 3.3. (cont.)

Lemma 3.6: If δs < 1 then

‖xS‖22 ≤
1

1− δs
‖AxS‖22.

Proof of Lemma 3.6: RIP gives

‖xS‖22 − ‖AxS‖22 ≤ δs‖xS‖22,

which gives the result.



Proof of Theorem 3.3. (cont.)

Lemma 3.6: If δs < 1 then

‖xS‖22 ≤
1

1− δs
‖AxS‖22.

Lemma 3.7: Let the index subset S and S ′ be disjoint
|S | = |S ′| = s. Then

|〈AxS ,AxS ′〉| ≤ δ2s‖xS‖2‖xS ′‖2.

Next: proof of Lemma 3.7.
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Lemma 3.7: Let the index subset S and S ′ be disjoint
|S | = |S ′| = s. Then

|〈AxS ,AxS ′〉| ≤ δ2s‖xS‖2‖xS ′‖2.
Proof of Lemma 3.7: We may assume ‖xS‖2 = ‖xS ′‖2 = 1
and we will use RIP with so called polarisation. Note that
xS ± xS ′ are 2s-sparse. The absolute values of

‖A(xS ± xS ′)‖22 − ‖xS ± xS ′‖22
is bounded by

δs‖xS ± xS ′‖22
Taking the difference of plus and minus versions we get

4|〈AxS ,AxS ′〉 − 〈xS , xS ′〉| ≤ δ2s2(‖xS‖22 + ‖xS ′‖22) = 4δ2s

Since 〈xS , xS ′〉 = 0 we get the desired result.
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Lemma 3.7: Let the index subset S and S ′ be disjoint
|S | = |S ′| = s. Then

|〈AxS ,AxS ′〉| ≤ δ2s‖xS‖2‖xS ′‖2.
Proof of Lemma 3.7: We may assume ‖xS‖2 = ‖xS ′‖2 = 1
and we will use RIP with so called polarisation. Note that
xS ± xS ′ are 2s-sparse. The absolute values of

‖A(xS ± xS ′)‖22 − ‖xS ± xS ′‖22
is bounded by

δs‖xS ± xS ′‖22
Taking the difference of plus and minus versions we get

4|〈AxS ,AxS ′〉 − 〈xS , xS ′〉| ≤ δ2s2(‖xS‖22 + ‖xS ′‖22) = 4δ2s

Since 〈xS , xS ′〉 = 0 we get the desired result.
Proof completed!
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Proof of Theorem 3.3. (cont.)

Back to proof of:
Lemma 3.5: If A satisfies RIP properties and Ax = 0 then

‖xS1‖2 ≤
δ2s

1− δs

∑

k=2

‖xSk‖2.

Proof of Lemma 3.5: We will use Axs = −AxcS . By Lemma 3.6

‖x‖22 ≤ 1
1−δs

〈AxS ,AxS〉
= − 1

1−δs
〈AxS ,AxcS〉 = − 1

1−δs

∑

k≥2〈AxS ,AxSk 〉.

By Lemma 3.7 we get

‖xS‖22 ≤
δ2s

1− δs
‖xS‖2

∑

k≥2

‖xSk‖2,

which gives the desired estimate.



Proof of Theorem 3.3. (cont.)

Back to proof of:
Lemma 3.5: If A satisfies RIP properties and Ax = 0 then

‖xS1‖2 ≤
δ2s

1− δs

∑

k=2

‖xSk‖2.

Proof of Lemma 3.5: We will use Axs = −AxcS . By Lemma 3.6

‖x‖22 ≤ 1
1−δs

〈AxS ,AxS〉
= − 1

1−δs
〈AxS ,AxcS〉 = − 1

1−δs

∑

k≥2〈AxS ,AxSk 〉.

By Lemma 3.7 we get

‖xS‖22 ≤
δ2s

1− δs
‖xS‖2

∑

k≥2

‖xSk‖2,

which gives the desired estimate. Proof of Lemma 3.5 completed!
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Back to proof of:
Theorem 3.3: If A fulfils the RIP property with constant
δ2s ≤

√
2− 1 then A ∈ MP1(s)

Proof of Theorem 3.3: Since A ∈ MP1(s) is equivalent to ANS(s)
it is enough to show that if S is an index subset with |S | = s, and
x = xS + xcS is a non-zero vector with Ax = 0 then
‖xS‖1 < ‖xcS‖1.



Proof of Theorem 3.3. (cont.)

Back to proof of:
Theorem 3.3: If A fulfils the RIP property with constant
δ2s ≤

√
2− 1 then A ∈ MP1(s)

Proof of Theorem 3.3: Since A ∈ MP1(s) is equivalent to ANS(s)
it is enough to show that if S is an index subset with |S | = s, and
x = xS + xcS is a non-zero vector with Ax = 0 then
‖xS‖1 < ‖xcS‖1.
For your convenience: the equations in Lemma 3.4 and Lemma 3.5

∑

k=2

‖xSk‖2 ≤
α

2
√
s
‖xS‖1 +

1

2
√
s
(α+

1

α
)‖xcS‖1,

‖xS1‖2 ≤
δ2s

1− δs

∑

k=2

‖xSk‖2.

By Lemma 3.5 and Lemma 3.4 we have

‖xS1‖2 ≤ δ2s
(1−δs)

∑

k=2 ‖xSk‖2
≤ δ2s

(

α√ ‖x ‖ + 1√ (α+ 1 )‖x ‖
)



Proof of Theorem 3.3. (cont.)

Back to proof of:
Theorem 3.3: If A fulfils the RIP property with constant
δ2s ≤

√
2− 1 then A ∈ MP1(s)

Proof of Theorem 3.3: Since A ∈ MP1(s) is equivalent to ANS(s)
it is enough to show that if S is an index subset with |S | = s, and
x = xS + xcS is a non-zero vector with Ax = 0 then
‖xS‖1 < ‖xcS‖1.
By Lemma 3.5 and Lemma 3.4 we have

‖xS1‖2 ≤ δ2s
(1−δs)

∑

k=2 ‖xSk‖2
≤ δ2s

(1−δs)

(

α

2
√
s
‖xS‖1 + 1

2
√
s
(α+ 1

α
)‖xcS‖1

)

We may replace ‖xs‖2 by 1√
s
‖xs‖1 on the left hand side of this

inequality and move all ‖xs‖1 terms to the left hand side and let
the ‖xcS‖1 term stay on the right hand side.



Proof of Theorem 3.3. (cont.)

Thus we get

(
1√
s
− δ2s

(1− δs)

α

2
√
s
)‖xs‖1 ≤

δ2s
(1− δs)

1

2
√
s
(α+

1

α
)‖xcS‖1.
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Thus we get
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α

2
√
s
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1

2
√
s
(α+

1

α
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We will conclude that ‖xS‖1 < ‖xcS‖1 provided
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Thus we get

(
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− δ2s

(1− δs)

α

2
√
s
)‖xs‖1 ≤

δ2s
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1

2
√
s
(α+

1

α
)‖xcS‖1.
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α

2
√
s
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2
√
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1

α
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Thus we get

(
1√
s
− δ2s

(1− δs)

α

2
√
s
)‖xs‖1 ≤

δ2s
(1− δs)

1

2
√
s
(α+

1

α
)‖xcS‖1.

We will conclude that ‖xS‖1 < ‖xcS‖1 provided

(
1√
s
− δ2s

(1− δs)

α

2
√
s
) >

δ2s
(1− δs)

1

2
√
s
(α+

1

α
),

which is same as

1 >
δ2s

(1− δs)

1

2
(2α+

1

α
).



Proof of Theorem 3.3. (cont.)
Remains to analyse:

1 >
δ2s

(1− δs)

1

2
(2α+

1

α
).

We minimise (2α+ 1
α
), α > 0:

(2α+
1

α
)′ = 2− α−2 = 0

has root for α = 1√
2
and minimum value 2

√
2.



Proof of Theorem 3.3. (cont.)
Remains to analyse:

1 >
δ2s

(1− δs)

1

2
(2α+

1

α
).

We minimise (2α+ 1
α
), α > 0:

(2α+
1

α
)′ = 2− α−2 = 0

has root for α = 1√
2
and minimum value 2

√
2.

Thus with α = 1√
2
above we need

1 >
δ2s

(1− δs)

1

2
· 2
√
2.

We conclude that ‖xS‖1 < ‖xcS‖1 provided

δ2s
1− δs

<
1√
2
.
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