Mathematical Foundation for Compressed Sensing

Jan-Olov Strömberg

Royal Institute of Technology, Stockholm, Sweden
Lecture 3, February 20, 2012

An outline for today

- A short recall from last lecture.

An outline for today

- A short recall from last lecture.
- The LEIP and RIP properties of a matrix \mathbf{A}.

An outline for today

- A short recall from last lecture.
- The LEIP and RIP properties of a matrix \mathbf{A}.

■ The easy Theorem 3.1: LEIP implies MP_{1}.

An outline for today

- A short recall from last lecture.
- The LEIP and RIP properties of a matrix \mathbf{A}.
- The easy Theorem 3.1: LEIP implies MP_{1}.
- The Theorem 3.3: RIP implies MP $_{1}$.

An outline for today

- A short recall from last lecture.
- The LEIP and RIP properties of a matrix \mathbf{A}.
- The easy Theorem 3.1: LEIP implies MP_{1}.
- The Theorem 3.3: RIP implies MP ${ }_{1}$.

■ If we get time over on BOARD:

An outline for today

- A short recall from last lecture.
- The LEIP and RIP properties of a matrix \mathbf{A}.
- The easy Theorem 3.1: LEIP implies MP_{1}.
- The Theorem 3.3: RIP implies MP ${ }_{1}$.

■ If we get time over on BOARD:

An outline for today

- A short recall from last lecture.
- The LEIP and RIP properties of a matrix \mathbf{A}.
- The easy Theorem 3.1: LEIP implies MP_{1}.
- The Theorem 3.3: RIP implies MP ${ }_{1}$.

■ If we get time over on BOARD:
Bi-linear RIP and Polarisation

We were looking for s-sparse solutions $\mathbf{x}=\mathbf{x}_{\text {sparse }}$ of the equation

$$
\mathbf{y}=\mathbf{A} \mathbf{x}
$$

where the $m \times N$-matrix $\mathbf{A} \in \mathbb{C}^{m} \times \mathbb{C}^{N}$ and the column vector $\mathbf{y} \in \mathbb{C}^{m}$ is given, with $m \ll N$.

We were looking for s-sparse solutions $\mathbf{x}=\mathbf{x}_{\text {sparse }}$ of the equation

$$
\mathbf{y}=\mathbf{A} \mathbf{x}
$$

where the $m \times N$-matrix $\mathbf{A} \in \mathbb{C}^{m} \times \mathbb{C}^{N}$ and the column vector $\mathbf{y} \in \mathbb{C}^{m}$ is given, with $m \ll N$.

Solution by minimising the I_{1} - norm:

$$
\mathbf{x}_{\text {sparse }}:=\left\{\begin{array}{l}
\operatorname{argmin}_{\mathbf{x}} \sum_{i}\left|x_{i}\right|, \tag{1}\\
\mathbf{A} \mathbf{x}=\mathbf{y}
\end{array}\right.
$$

For which matrices \mathbf{A} can we use this algorithm?

For which matrices \mathbf{A} can we use this algorithm?
Definition:
$M P_{1}(s)=M P_{1}(s ; m, N)$: The set of Matrices A s.t. every s-sparse vector \mathbf{x} is: the unique solution of $\left(P_{1}\right)$ for some \mathbf{y}.

For which matrices \mathbf{A} can we use this algorithm?
Definition:
$M P_{1}(s)=M P_{1}(s ; m, N)$: The set of Matrices A s.t. every s-sparse vector \mathbf{x} is: the unique solution of $\left(P_{1}\right)$ for some \mathbf{y}.

For which matrices \mathbf{A} can we use this algorithm?
Definition:
$M P_{1}(s)=M P_{1}(s ; m, N)$: The set of Matrices A s.t. every s-sparse vector \mathbf{x} is: the unique solution of $\left(P_{1}\right)$ for some \mathbf{y}.

The LEIP and RIP properties of matrices

We were looking at some properties for $m \times N$ - matrices $(m \ll N)$:

- Definition: Matrix A satisfies Low Entropy Isometry Property (LEIP) with constant $\tilde{\delta}_{e}$ if

$$
\left|\|\mathbf{A} \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \leq \tilde{\delta}_{e}\|\mathbf{x}\|_{2}^{2}
$$

for all \mathbf{x} with $\operatorname{Ent}_{1}(\mathbf{x}) \leq e$.

The LEIP and RIP properties of matrices

We were looking at some properties for $m \times N$ - matrices $(m \ll N)$:

■ Definition: Matrix A satisfies Low Entropy Isometry Property (LEIP) with constant $\tilde{\delta}_{e}$ if

$$
\left|\|\mathbf{A} \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \leq \tilde{\delta}_{e}\|\mathbf{x}\|_{2}^{2}
$$

for all \mathbf{x} with $\operatorname{Ent}_{1}(\mathbf{x}) \leq e$.

■ Definition: Matrix A satisfies Restricted Isometry Property (RIP) with constant δ_{s} if

$$
\left|\|\mathbf{A} \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \leq \delta_{s}\|\mathbf{x}\|_{2}^{2},
$$

for all s - sparse vectors \mathbf{x}.

- Easy claim:

If the matrix \mathbf{A} satisfies LEIP with constant $\tilde{\delta}_{e}$ and $\sqrt{s} \leq e$, then \mathbf{A} satisfies RIP with a constant $\delta_{s} \leq \tilde{\delta}_{e}$.

- Easy claim:

If the matrix \mathbf{A} satisfies LEIP with constant $\tilde{\delta}_{e}$ and $\sqrt{s} \leq e$, then \mathbf{A} satisfies RIP with a constant $\delta_{s} \leq \tilde{\delta}_{e}$. Proof: if \mathbf{x} is s-sparse then $\operatorname{Ent}_{1}(\mathbf{x}) \leq \sqrt{s}$

- Easy claim:

If the matrix \mathbf{A} satisfies LEIP with constant $\tilde{\delta}_{e}$ and $\sqrt{s} \leq e$, then \mathbf{A} satisfies RIP with a constant $\delta_{s} \leq \tilde{\delta}_{e}$.

- Easy claim:

If the matrix \mathbf{A} satisfies LEIP with constant $\tilde{\delta}_{e}$ and $\sqrt{s} \leq e$, then A satisfies RIP with a constant $\delta_{s} \leq \tilde{\delta}_{e}$.

- In the other direction:

Unproved statement -proof later on:
(A has the RIP-property with constant δ_{s})
implies
(A has the LEIP-property with constant $\tilde{\delta}_{e}$) with $\tilde{\delta}_{e} \leq 4 \delta_{s}$ provided $s \geq 2 \mathrm{e}^{2}$

Easy Claim: If $\tilde{\delta}_{e}<1$ then $\mathbf{A} \in N E(e)$, i.e each non-zero x with $\mathbf{A x}=0$ has entropy $\operatorname{Ent}_{1}(x)>e$.

Easy Claim: If $\tilde{\delta}_{e}<1$ then $\mathbf{A} \in N E(e)$, i.e each non-zero x with $\mathbf{A x}=0$ has entropy $\operatorname{Ent}_{1}(x)>e$. Proof: For any $\mathbf{x} \neq 0$ with $\operatorname{Ent}_{1}(\mathbf{x}) \leq e$ and $\mathbf{A x}=0$ then LEIP:

$$
\left|\|\mathbf{A} \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \leq \tilde{\delta}_{e}\|\mathbf{x}\|_{2}^{2}
$$

with $\tilde{\delta}_{e}<1$ would imply $\|\mathbf{x}\|_{2}^{2}<\|\mathbf{x}\|_{2}^{2}$.

Theorem 3.1: If $e \leq 2 \sqrt{s}$ and the matrix \mathbf{A} has the LEIP-property with constant $\tilde{\delta}_{e}<1$ then $\mathbf{A} \in \mathrm{MP}_{1}(s)$

Theorem 3.1: $\underset{\tilde{\delta}}{\text { If }} e \leq 2 \sqrt{s}$ and the matrix \mathbf{A} has the LEIP-property with constant $\tilde{\delta}_{e}<1$ then $\mathbf{A} \in \mathrm{MP}_{1}(s)$
Easy Proof of Theorem 3.1:

Theorem 3.1: If $e \leq 2 \sqrt{s}$ and the matrix \mathbf{A} has the LEIP-property with constant $\tilde{\delta}_{e}<1$ then $\mathbf{A} \in \mathrm{MP}_{1}(s)$
Easy Proof of Theorem 3.1:

- ($\mathbf{A} \in$ LEIP with constant $\tilde{\delta}_{e}<1$) implies

Theorem 3.1: If $e \leq 2 \sqrt{s}$ and the matrix \mathbf{A} has the LEIP-property with constant $\tilde{\delta}_{e}<1$ then $\mathbf{A} \in \mathrm{MP}_{1}(s)$
Easy Proof of Theorem 3.1:

- ($\mathbf{A} \in$ LEIP with constant $\left.\tilde{\delta}_{e}<1\right)$ implies
- ($\mathbf{A} \in N E(e)$ i.e each non-zero \mathbf{x} with $\mathbf{A} \mathbf{x}=0$ has $\left.\operatorname{Ent}_{1}(x)>e\right)$ implies

Theorem 3.1: If $e \leq 2 \sqrt{s}$ and the matrix \mathbf{A} has the LEIP-property with constant $\tilde{\delta}_{e}<1$ then $\mathbf{A} \in \mathrm{MP}_{1}(s)$
Easy Proof of Theorem 3.1:

- ($\mathbf{A} \in$ LEIP with constant $\tilde{\delta}_{e}<1$) implies
- ($\mathbf{A} \in N E(e)$ i.e each non-zero \mathbf{x} with $\mathbf{A} \mathbf{x}=0$ has $\left.\operatorname{Ent}_{1}(x)>e\right)$ implies
■ ($\mathbf{A} \in \mathrm{NS}(s)$ i.e each s-sparse vector \mathbf{x} supported in S with $|S|=s$ and each vector $\mathbf{z}=\mathbf{z}_{S}+\mathbf{z}_{c}$ with $\mathbf{A z}=\mathbf{A} \mathbf{x}$ we have $\left.\left\|\mathbf{z}_{c S}\right\|_{1}>\left\|\mathbf{x}-\mathbf{z}_{S}\right\|_{1}\right)$ equivalent to

Theorem 3.1: If $e \leq 2 \sqrt{s}$ and the matrix \mathbf{A} has the LEIP-property with constant $\tilde{\delta}_{e}<1$ then $\mathbf{A} \in \mathrm{MP}_{1}(s)$
Easy Proof of Theorem 3.1:

- ($\mathbf{A} \in$ LEIP with constant $\left.\tilde{\delta}_{e}<1\right)$ implies
- ($\mathbf{A} \in N E(e)$ i.e each non-zero \mathbf{x} with $\mathbf{A} \mathbf{x}=0$ has $\left.\operatorname{Ent}_{1}(x)>e\right)$ implies
■ ($\mathbf{A} \in \mathrm{NS}(s)$ i.e each s-sparse vector \mathbf{x} supported in S with $|S|=s$ and each vector $\mathbf{z}=\mathbf{z}_{S}+\mathbf{z}_{c}$ with $\mathbf{A} \mathbf{z}=\mathbf{A} \mathbf{x}$ we have $\left.\left\|\mathbf{z}_{c}\right\|_{1}>\left\|\mathbf{x}-\mathbf{z}_{S}\right\|_{1}\right)$ equivalent to
- $\left(\mathbf{A} \in \mathrm{MP}_{1}(s)\right)$

Using the steps with triangle inequality and definition of entropy in the proof above (without assuming $\mathbf{A x}=\mathbf{A z}$) we would get
Lemma 3.2: Assume $\mathbf{A} \in$ LEIP with constant $\tilde{\delta}_{e}$ If \mathbf{x} is s-sparse and $2 \sqrt{s} \leq e$, then for any vector \mathbf{z} with $\|\mathbf{z}\|_{1} \leq\|\mathbf{x}\|_{1}$ holds

$$
\left|\|\mathbf{A}(\mathbf{x}-\mathbf{z})\|_{2}^{2}-\|\mathbf{x}-\mathbf{z}\|_{2}^{2}\right| \leq \tilde{\delta}_{e}\|\mathbf{x}-\mathbf{z}\|_{2}^{2}
$$

Using the steps with triangle inequality and definition of entropy in the proof above (without assuming $\mathbf{A x}=\mathbf{A z}$) we would get
Lemma 3.2: Assume $\mathbf{A} \in$ LEIP with constant $\tilde{\delta}_{e}$ If \mathbf{x} is s-sparse and $2 \sqrt{s} \leq e$, then for any vector \mathbf{z} with $\|\mathbf{z}\|_{1} \leq\|\mathbf{x}\|_{1}$ holds

$$
\left|\|\mathbf{A}(\mathbf{x}-\mathbf{z})\|_{2}^{2}-\|\mathbf{x}-\mathbf{z}\|_{2}^{2}\right| \leq \tilde{\delta}_{e}\|\mathbf{x}-\mathbf{z}\|_{2}^{2}
$$

Observe: Theorem 3.1 follows easily from Lemma 3.2: If we assume that $\mathbf{A}(\mathbf{x}-\mathbf{z})=0$ and $\tilde{\delta}_{e}<1$ in Lemma 3.2 we get $\mathbf{x}-\mathbf{z}=0$, i.e we conclude that \mathbf{x} is the unique solution of the minimal problem (P_{1}).

Using the steps with triangle inequality and definition of entropy in the proof above (without assuming $\mathbf{A x}=\mathbf{A z}$) we would get
Lemma 3.2: Assume $\mathbf{A} \in$ LEIP with constant $\tilde{\delta}_{e}$ If \mathbf{x} is s-sparse and $2 \sqrt{s} \leq e$, then for any vector \mathbf{z} with $\|\mathbf{z}\|_{1} \leq\|\mathbf{x}\|_{1}$ holds

$$
\left|\|\mathbf{A}(\mathbf{x}-\mathbf{z})\|_{2}^{2}-\|\mathbf{x}-\mathbf{z}\|_{2}^{2}\right| \leq \tilde{\delta}_{e}\|\mathbf{x}-\mathbf{z}\|_{2}^{2}
$$

Observe: Theorem 3.1 follows easily from Lemma 3.2: If we assume that $\mathbf{A}(\mathbf{x}-\mathbf{z})=0$ and $\tilde{\delta}_{e}<1$ in Lemma 3.2 we get $\mathbf{x}-\mathbf{z}=0$, i.e we conclude that \mathbf{x} is the unique solution of the minimal problem (P_{1}).

Corollary If \mathbf{x} is s-sparse, $\mathbf{y}=\mathbf{A x}$ and $\mathbf{A z}=\mathbf{y}+\mathbf{n}$ then $\|\mathbf{z}\|_{1} \leq\|\mathbf{x}\|_{1}$ and $\tilde{\delta}_{e}<1$ would imply $\|\mathbf{z}-\mathbf{x}\|_{2} \leq\left(1-\tilde{\delta}_{e}\right)^{-1}\|\mathbf{n}\|_{2}$.

In the literature the RIP property is used to ensure that $\mathbf{A} \in \mathrm{MP}_{1}$. We will show:

In the literature the RIP property is used to ensure that $\mathbf{A} \in \mathrm{MP}_{1}$. We will show:
Theorem 3.3: If \mathbf{A} fulfils the RIP property with constant $\delta_{2 s}<\sqrt{2}-1 \approx 0.412 \ldots$, then $\mathbf{A} \in \mathrm{MP}_{1}(s)$.

In the literature the RIP property is used to ensure that $\mathbf{A} \in \mathrm{MP}_{1}$. We will show:
Theorem 3.3: If \mathbf{A} fulfils the RIP property with constant $\delta_{2 s}<\sqrt{2}-1 \approx 0.412 \ldots$, then $\mathbf{A} \in \mathrm{MP}_{1}(s)$.
Best known: enough with $\delta_{2 s}<4 /(6+\sqrt{7}) \approx 0.462 \ldots$ S. Foucart, 2007, S.F + H.Rauhut in preparation.

In the literature the RIP property is used to ensure that $\mathbf{A} \in \mathrm{MP}_{1}$.
We will show:
Theorem 3.3: If \mathbf{A} fulfils the RIP property with constant $\delta_{2 s}<\sqrt{2}-1 \approx 0.412 \ldots$, then $\mathbf{A} \in \mathrm{MP}_{1}(s)$.
Best known: enough with $\delta_{2 s}<4 /(6+\sqrt{7}) \approx 0.462 \ldots$
S. Foucart, 2007, S.F + H.Rauhut in preparation.

Preparing the proof:
It is enough to show that $\mathrm{f} \mathbf{A}$ fulfils the RIP property with constant $\delta_{2 s} \leq \sqrt{2}-1$ then $\mathbf{A} \in \mathrm{NS}(s)$. The proof is based on two technical lemmas:

Proof of Theorem 3.3. (cont.)

■ Let \mathbf{x} be a vector that is ordered decreasing in magnitude, i.e $\left|x_{1}\right| \geq\left|x_{2}\right| \geq\left|x_{3}\right| \geq \ldots$.

Proof of Theorem 3.3. (cont.)

- Let \mathbf{x} be a vector that is ordered decreasing in magnitude, i.e $\left|x_{1}\right| \geq\left|x_{2}\right| \geq\left|x_{3}\right| \geq \ldots$.
■ Split $\{1, \ldots, N\}$ into disjoint sets $S_{k}, k=1, \ldots, K$ $\cup S_{k}=\{1, \ldots, N\}$ with $\left|S_{k}\right|=s$ for $k=1, \ldots, K-1$. Denote $S=S_{1}$ and ${ }^{c} S$ its complement.

Proof of Theorem 3.3. (cont.)

- Let \mathbf{x} be a vector that is ordered decreasing in magnitude, i.e $\left|x_{1}\right| \geq\left|x_{2}\right| \geq\left|x_{3}\right| \geq \ldots$.
- Split $\{1, \ldots, N\}$ into disjoint sets $S_{k}, k=1, \ldots, K$ $\cup S_{k}=\{1, \ldots, N\}$ with $\left|S_{k}\right|=s$ for $k=1, \ldots, K-1$. Denote $S=S_{1}$ and ${ }^{c} S$ its complement.
- Write $\mathbf{x}=\sum_{k} \mathbf{x}_{S_{k}}$

Proof of Theorem 3.3. (cont.)

■ Lemma 3.4: Assume is \mathbf{x} is a vector with its components decreasing in magnitude and $\mathbf{x}=\sum_{k} \mathbf{x}_{S_{k}}$ and above $S=S_{1}$ as above. Then

$$
\sum_{k=2}\left\|\mathbf{x}_{S_{k}}\right\|_{2} \leq \frac{\alpha}{2 \sqrt{s}}\left\|\mathbf{x}_{S}\right\|_{1}+\frac{1}{2 \sqrt{s}}\left(\alpha+\frac{1}{\alpha}\right)\left\|\mathbf{x}_{c_{S}}\right\|_{1}
$$

for $\alpha>0$, to be optimised later on.

Proof of Theorem 3.3. (cont.)

■ Lemma 3.4: Assume is \mathbf{x} is a vector with its components decreasing in magnitude and $\mathbf{x}=\sum_{k} \mathbf{x}_{S_{k}}$ and above $S=S_{1}$ as above. Then

$$
\sum_{k=2}\left\|\mathbf{x}_{S_{k}}\right\|_{2} \leq \frac{\alpha}{2 \sqrt{s}}\left\|\mathbf{x}_{S}\right\|_{1}+\frac{1}{2 \sqrt{s}}\left(\alpha+\frac{1}{\alpha}\right)\left\|\mathbf{x}_{c_{S}}\right\|_{1}
$$

for $\alpha>0$, to be optimised later on.
■ Lemma 3.5: If \mathbf{A} satisfies RIP properties and $\mathbf{A} \mathbf{x}=0$, then

$$
\left\|\mathbf{x}_{S_{1}}\right\|_{2} \leq \frac{\delta_{2 s}}{1-\delta_{s}} \sum_{k=2}\left\|\mathbf{x}_{S_{k}}\right\|_{2}
$$

Proof of Theorem 3.3. (cont.)

- Lemma 3.4: Assume is \mathbf{x} is a vector with its components decreasing in magnitude and $\mathbf{x}=\sum_{k} \mathbf{x}_{S_{k}}$ and above $S=S_{1}$ as above. Then

$$
\sum_{k=2}\left\|\mathbf{x}_{S_{k}}\right\|_{2} \leq \frac{\alpha}{2 \sqrt{s}}\left\|\mathbf{x}_{S}\right\|_{1}+\frac{1}{2 \sqrt{s}}\left(\alpha+\frac{1}{\alpha}\right)\left\|\mathbf{x}_{c_{S}}\right\|_{1}
$$

for $\alpha>0$, to be optimised later on.
Proof of Lemma 3.4: For $k>1$:

$$
\left\|\mathbf{x}_{S_{k}}\right\|_{2}^{2} \leq\left\|\mathbf{x}_{S_{k}}\right\|_{1}\left\|\mathbf{x}_{S_{k}}\right\|_{\infty} \leq\left\|\mathbf{x}_{S_{k}}\right\|_{1}\left\|\mathbf{x}_{S_{k-1}}\right\|_{1} / s
$$

using $a b \leq \frac{1}{2 \alpha} a^{2}+\frac{\alpha}{2} b^{2}$ for any $a, b \geq 0$ and $\alpha>0$ we get

$$
\left\|\mathbf{x}_{S_{k}}\right\|_{2} \leq \frac{\alpha}{2 \sqrt{s}}\left\|\mathbf{x}_{S_{k}-}\right\|_{1}+\frac{1}{2 \alpha \sqrt{s}}\left\|\mathbf{x}_{S_{k}}\right\|_{1} .
$$

Summation over $k \geq 2$ gives the desired result.

Proof of Theorem 3.3. (cont.)

■ Lemma 3.4: Assume is \mathbf{x} is a vector with its components decreasing in magnitude and $\mathbf{x}=\sum_{k} \mathbf{x}_{S_{k}}$ and above $S=S_{1}$ as above. Then

$$
\sum_{k=2}\left\|\mathbf{x}_{S_{k}}\right\|_{2} \leq \frac{\alpha}{2 \sqrt{s}}\left\|\mathbf{x}_{S}\right\|_{1}+\frac{1}{2 \sqrt{s}}\left(\alpha+\frac{1}{\alpha}\right)\left\|\mathbf{x}_{c_{S}}\right\|_{1}
$$

for $\alpha>0$, to be optimised later on.
■ Lemma 3.5: If \mathbf{A} satisfies RIP properties and $\mathbf{A} \mathbf{x}=0$, then

$$
\left\|\mathbf{x}_{S_{1}}\right\|_{2} \leq \frac{\delta_{2 s}}{1-\delta_{s}} \sum_{k=2}\left\|\mathbf{x}_{S_{k}}\right\|_{2}
$$

Proof of Lemma 3.5 uses two lemmas:

Proof of Theorem 3.3. (cont.)

■ Lemma 3.6: If $\delta_{s}<1$ then

$$
\left\|\mathbf{x}_{S}\right\|_{2}^{2} \leq \frac{1}{1-\delta_{s}}\left\|\mathbf{A} \mathbf{x}_{S}\right\|_{2}^{2}
$$

Proof of Theorem 3.3. (cont.)

■ Lemma 3.6: If $\delta_{s}<1$ then

$$
\left\|\mathbf{x}_{S}\right\|_{2}^{2} \leq \frac{1}{1-\delta_{s}}\left\|\mathbf{A} \mathbf{x}_{S}\right\|_{2}^{2}
$$

Proof of Theorem 3.3. (cont.)

■ Lemma 3.6: If $\delta_{s}<1$ then

$$
\left\|\mathbf{x}_{S}\right\|_{2}^{2} \leq \frac{1}{1-\delta_{s}}\left\|\mathbf{A} \mathbf{x}_{S}\right\|_{2}^{2}
$$

Proof of Lemma 3.6: RIP gives

$$
\left\|\mathbf{x}_{S}\right\|_{2}^{2}-\left\|\mathbf{A} \mathbf{x}_{S}\right\|_{2}^{2} \leq \delta_{s}\left\|\mathbf{x}_{S}\right\|_{2}^{2},
$$

which gives the result.

Proof of Theorem 3.3. (cont.)

- Lemma 3.6: If $\delta_{s}<1$ then

$$
\left\|\mathbf{x}_{S}\right\|_{2}^{2} \leq \frac{1}{1-\delta_{s}}\left\|\mathbf{A} \mathbf{x}_{S}\right\|_{2}^{2}
$$

■ Lemma 3.7: Let the index subset S and S^{\prime} be disjoint $|S|=\left|S^{\prime}\right|=s$. Then

$$
\left|\left\langle\boldsymbol{A} \mathbf{x}_{S}, \mathbf{A} \mathbf{x}_{S^{\prime}}\right\rangle\right| \leq \delta_{2 s}\left\|\mathbf{x}_{S}\right\|_{2}\left\|\mathbf{x}_{S^{\prime}}\right\|_{2}
$$

Next: proof of Lemma 3.7.

Proof of Theorem 3.3. (cont.)

■ Lemma 3.7: Let the index subset S and S^{\prime} be disjoint $|S|=\left|S^{\prime}\right|=s$. Then

$$
\left|\left\langle\mathbf{A} \mathbf{x}_{S}, \mathbf{A} \mathbf{x}_{S^{\prime}}\right\rangle\right| \leq \delta_{2 s}\left\|\mathbf{x}_{S}\right\|_{2}\left\|\mathbf{x}_{S^{\prime}}\right\|_{2}
$$

Proof of Lemma 3.7:

Proof of Theorem 3.3. (cont.)

- Lemma 3.7: Let the index subset S and S^{\prime} be disjoint $|S|=\left|S^{\prime}\right|=s$. Then

$$
\left|\left\langle\boldsymbol{A} \mathbf{x}_{S}, \mathbf{A} \mathbf{x}_{S^{\prime}}\right\rangle\right| \leq \delta_{2 s}\left\|\mathbf{x}_{S}\right\|_{2}\left\|\mathbf{x}_{S^{\prime}}\right\|_{2}
$$

Proof of Lemma 3.7: We may assume $\left\|\mathbf{x}_{S}\right\|_{2}=\left\|\mathbf{x}_{S^{\prime}}\right\|_{2}=1$ and we will use RIP with so called polarisation. Note that $\mathbf{x}_{S} \pm \mathbf{x}_{S^{\prime}}$ are $2 s$-sparse. The absolute values of

$$
\left\|\mathbf{A}\left(\mathbf{x}_{S} \pm \mathbf{x}_{S^{\prime}}\right)\right\|_{2}^{2}-\left\|\mathbf{x}_{S} \pm \mathbf{x}_{S^{\prime}}\right\|_{2}^{2}
$$

is bounded by

$$
\delta_{s}\left\|\mathbf{x}_{S} \pm \mathbf{x}_{S^{\prime}}\right\|_{2}^{2}
$$

Taking the difference of plus and minus versions we get

$$
4\left|\left\langle\mathbf{A} \mathbf{x}_{S}, \mathbf{A} \mathbf{x}_{S^{\prime}}\right\rangle-\left\langle\mathbf{x}_{S}, \mathbf{x}_{S^{\prime}}\right\rangle\right| \leq \delta_{2 s} 2\left(\left\|\mathbf{x}_{S}\right\|_{2}^{2}+\left\|\mathbf{x}_{S^{\prime}}\right\|_{2}^{2}\right)=4 \delta_{2 s}
$$

Since $\left\langle\mathbf{x}_{S}, \mathbf{x}_{S^{\prime}}\right\rangle=0$ we get the desired result.

Proof of Theorem 3.3. (cont.)

- Lemma 3.7: Let the index subset S and S^{\prime} be disjoint $|S|=\left|S^{\prime}\right|=s$. Then

$$
\left|\left\langle\boldsymbol{A} \mathbf{x}_{S}, \mathbf{A} \mathbf{x}_{S^{\prime}}\right\rangle\right| \leq \delta_{2 s}\left\|\mathbf{x}_{S}\right\|_{2}\left\|\mathbf{x}_{S^{\prime}}\right\|_{2}
$$

Proof of Lemma 3.7: We may assume $\left\|\mathbf{x}_{S}\right\|_{2}=\left\|\mathbf{x}_{S^{\prime}}\right\|_{2}=1$ and we will use RIP with so called polarisation. Note that $\mathbf{x}_{S} \pm \mathbf{x}_{S^{\prime}}$ are $2 s$-sparse. The absolute values of

$$
\left\|\mathbf{A}\left(\mathbf{x}_{S} \pm \mathbf{x}_{S^{\prime}}\right)\right\|_{2}^{2}-\left\|\mathbf{x}_{S} \pm \mathbf{x}_{S^{\prime}}\right\|_{2}^{2}
$$

is bounded by

$$
\delta_{s}\left\|\mathbf{x}_{S} \pm \mathbf{x}_{S^{\prime}}\right\|_{2}^{2}
$$

Taking the difference of plus and minus versions we get

$$
4\left|\left\langle\mathbf{A} \mathbf{x}_{S}, \mathbf{A} \mathbf{x}_{S^{\prime}}\right\rangle-\left\langle\mathbf{x}_{S}, \mathbf{x}_{S^{\prime}}\right\rangle\right| \leq \delta_{2 s} 2\left(\left\|\mathbf{x}_{S}\right\|_{2}^{2}+\left\|\mathbf{x}_{S^{\prime}}\right\|_{2}^{2}\right)=4 \delta_{2 s}
$$

Since $\left\langle\mathbf{x}_{S}, \mathbf{x}_{S^{\prime}}\right\rangle=0$ we get the desired result.
Proof completed!

Proof of Theorem 3.3. (cont.)

Back to proof of:
Lemma 3.5: If \mathbf{A} satisfies RIP properties and $\mathbf{A x}=0$ then

$$
\left\|\mathbf{x}_{S_{1}}\right\|_{2} \leq \frac{\delta_{2 s}}{1-\delta_{s}} \sum_{k=2}\left\|\mathbf{x}_{S_{k}}\right\|_{2}
$$

Proof of Theorem 3.3. (cont.)

Back to proof of:
Lemma 3.5: If \mathbf{A} satisfies RIP properties and $\mathbf{A} \boldsymbol{x}=0$ then

$$
\left\|\mathbf{x}_{S_{1}}\right\|_{2} \leq \frac{\delta_{2 s}}{1-\delta_{s}} \sum_{k=2}\left\|\mathbf{x}_{S_{k}}\right\|_{2}
$$

Proof of Lemma 3.5: We will use $\mathbf{A} \mathbf{x}_{s}=-\mathbf{A} \mathbf{x}_{\text {cs }}$. By Lemma 3.6

$$
\begin{aligned}
\|\mathbf{x}\|_{2}^{2} & \leq \frac{1}{1-\delta_{\S}}\left\langle\mathbf{A} \mathbf{x}_{S}, \mathbf{A} \mathbf{x}_{S}\right\rangle \\
& =-\frac{1}{1-\delta_{s}}\left\langle\mathbf{A} \mathbf{x}_{S}, \mathbf{A} \mathbf{x}_{c_{S}}\right\rangle=-\frac{1}{1-\delta_{s}} \sum_{k \geq 2}\left\langle\mathbf{A} \mathbf{x}_{S}, \mathbf{A} \mathbf{x}_{S_{k}}\right\rangle .
\end{aligned}
$$

By Lemma 3.7 we get

$$
\left\|\mathbf{x}_{S}\right\|_{2}^{2} \leq \frac{\delta_{2 s}}{1-\delta_{s}}\left\|\mathbf{x}_{S}\right\|_{2} \sum_{k \geq 2}\left\|\mathbf{x}_{S_{k}}\right\|_{2}
$$

which gives the desired estimate.

Proof of Theorem 3.3. (cont.)

Back to proof of:
Lemma 3.5: If \mathbf{A} satisfies RIP properties and $\mathbf{A} \boldsymbol{x}=0$ then

$$
\left\|\mathbf{x}_{S_{1}}\right\|_{2} \leq \frac{\delta_{2 s}}{1-\delta_{s}} \sum_{k=2}\left\|\mathbf{x}_{S_{k}}\right\|_{2}
$$

Proof of Lemma 3.5: We will use $\mathbf{A} \mathbf{x}_{s}=-\mathbf{A} \mathbf{x}_{\boldsymbol{c}}$. By Lemma 3.6

$$
\begin{aligned}
\|\mathbf{x}\|_{2}^{2} & \leq \frac{1}{1-\delta_{\S}}\left\langle\mathbf{A} \mathbf{x}_{S}, \mathbf{A} \mathbf{x}_{S}\right\rangle \\
& =-\frac{1}{1-\delta_{s}}\left\langle\mathbf{A} \mathbf{x}_{S}, \mathbf{A} \mathbf{x}_{c_{S}}\right\rangle=-\frac{1}{1-\delta_{s}} \sum_{k \geq 2}\left\langle\mathbf{A} \mathbf{x}_{S}, \mathbf{A} \mathbf{x}_{S_{k}}\right\rangle .
\end{aligned}
$$

By Lemma 3.7 we get

$$
\left\|\mathbf{x}_{S}\right\|_{2}^{2} \leq \frac{\delta_{2 s}}{1-\delta_{s}}\left\|\mathbf{x}_{S}\right\|_{2} \sum_{k \geq 2}\left\|\mathbf{x}_{S_{k}}\right\|_{2}
$$

which gives the desired estimate. Proof of Lemma 3.5 completed

Proof of Theorem 3.3. (cont.)

Back to proof of:
Theorem 3.3: If \mathbf{A} fulfils the RIP property with constant $\delta_{2 s} \leq \sqrt{2}-1$ then $\mathbf{A} \in \mathrm{MP}_{1}(s)$

Proof of Theorem 3.3. (cont.)

Back to proof of:
Theorem 3.3: If \mathbf{A} fulfils the RIP property with constant $\delta_{2 s} \leq \sqrt{2}-1$ then $\mathbf{A} \in \mathrm{MP}_{1}(s)$
Proof of Theorem 3.3: Since $\mathbf{A} \in \mathrm{MP}_{1}(s)$ is equivalent to $\mathbf{A N S}(s)$ it is enough to show that if S is an index subset with $|S|=s$, and $\mathbf{x}=\mathbf{x}_{S}+\mathbf{x}_{c_{S}}$ is a non-zero vector with $\mathbf{A} \mathbf{x}=0$ then $\left\|\mathbf{x}_{S}\right\|_{1}<\left\|\mathbf{x}_{c_{S}}\right\|_{1}$.

Proof of Theorem 3.3. (cont.)

Back to proof of:
Theorem 3.3: If \mathbf{A} fulfils the RIP property with constant $\delta_{2 s} \leq \sqrt{2}-1$ then $\mathbf{A} \in \mathrm{MP}_{1}(s)$
Proof of Theorem 3.3: Since $\mathbf{A} \in \mathrm{MP}_{1}(s)$ is equivalent to $\mathbf{A N S}(s)$ it is enough to show that if S is an index subset with $|S|=s$, and $\mathbf{x}=\mathbf{x}_{S}+\mathbf{x}_{c_{S}}$ is a non-zero vector with $\mathbf{A} \mathbf{x}=0$ then $\left\|\mathbf{x}_{S}\right\|_{1}<\left\|\mathbf{x}_{c_{S}}\right\|_{1}$.
For your convenience: the equations in Lemma 3.4 and Lemma 3.5

$$
\begin{gathered}
\sum_{k=2}\left\|\mathbf{x}_{S_{k}}\right\|_{2} \leq \frac{\alpha}{2 \sqrt{s}}\left\|\mathbf{x}_{S}\right\|_{1}+\frac{1}{2 \sqrt{s}}\left(\alpha+\frac{1}{\alpha}\right)\left\|\mathbf{x}_{c s}\right\|_{1} \\
\left\|\mathbf{x}_{S_{1}}\right\|_{2} \leq \frac{\delta_{2 s}}{1-\delta_{s}} \sum_{k=2}\left\|\mathbf{x}_{S_{k}}\right\|_{2}
\end{gathered}
$$

By Lemma 3.5 and Lemma 3.4 we have

$$
\left\|\mathbf{x}_{S_{1}}\right\|_{2} \leq \frac{\delta_{2 s}}{\left(1-\delta_{s}\right)} \sum_{k=2}\left\|\mathbf{x}_{S_{k}}\right\|_{2}
$$

Proof of Theorem 3.3. (cont.)

Back to proof of:
Theorem 3.3: If \mathbf{A} fulfils the RIP property with constant $\delta_{2 s} \leq \sqrt{2}-1$ then $\mathbf{A} \in \mathrm{MP}_{1}(s)$
Proof of Theorem 3.3: Since $\mathbf{A} \in \mathrm{MP}_{1}(s)$ is equivalent to $\mathbf{A N S}(s)$ it is enough to show that if S is an index subset with $|S|=s$, and $\mathbf{x}=\mathbf{x}_{S}+\mathbf{x}_{c_{S}}$ is a non-zero vector with $\mathbf{A} \mathbf{x}=0$ then $\left\|\mathbf{x}_{S}\right\|_{1}<\left\|\mathbf{x}_{c_{S}}\right\|_{1}$.
By Lemma 3.5 and Lemma 3.4 we have

$$
\begin{aligned}
\left\|\mathbf{x}_{S_{1}}\right\|_{2} & \leq \frac{\delta_{2 s}}{\left(1-\delta_{s}\right)} \sum_{k=2}\left\|\mathbf{x}_{S_{k}}\right\|_{2} \\
& \leq \frac{\delta_{2 s}}{\left(1-\delta_{s}\right)}\left(\frac{\alpha}{2 \sqrt{s}}\left\|\mathbf{x}_{S}\right\|_{1}+\frac{1}{2 \sqrt{s}}\left(\alpha+\frac{1}{\alpha}\right)\left\|\mathbf{x}_{c s}\right\|_{1}\right)
\end{aligned}
$$

We may replace $\left\|\mathbf{x}_{s}\right\|_{2}$ by $\frac{1}{\sqrt{s}}\left\|\mathbf{x}_{s}\right\|_{1}$ on the left hand side of this inequality and move all $\left\|\mathbf{x}_{s}\right\|_{1}$ terms to the left hand side and let the $\left\|\mathbf{x}_{c S}\right\|_{1}$ term stay on the right hand side.

Proof of Theorem 3.3. (cont.)

Thus we get

$$
\left(\frac{1}{\sqrt{s}}-\frac{\delta_{2 s}}{\left(1-\delta_{s}\right)} \frac{\alpha}{2 \sqrt{s}}\right)\left\|\mathbf{x}_{s}\right\|_{1} \leq \frac{\delta_{2 s}}{\left(1-\delta_{s}\right)} \frac{1}{2 \sqrt{s}}\left(\alpha+\frac{1}{\alpha}\right)\left\|\mathbf{x}_{c s}\right\|_{1} .
$$

Proof of Theorem 3.3. (cont.)

Thus we get

$$
\left(\frac{1}{\sqrt{s}}-\frac{\delta_{2 s}}{\left(1-\delta_{s}\right)} \frac{\alpha}{2 \sqrt{s}}\right)\left\|\mathbf{x}_{s}\right\|_{1} \leq \frac{\delta_{2 s}}{\left(1-\delta_{s}\right)} \frac{1}{2 \sqrt{s}}\left(\alpha+\frac{1}{\alpha}\right)\left\|\mathbf{x}_{c_{s}}\right\|_{1} .
$$

We will conclude that $\left\|\mathbf{x}_{S}\right\|_{1}<\left\|\mathbf{x}_{c_{S}}\right\|_{1}$ provided

Proof of Theorem 3.3. (cont.)

Thus we get

$$
\left(\frac{1}{\sqrt{s}}-\frac{\delta_{2 s}}{\left(1-\delta_{s}\right)} \frac{\alpha}{2 \sqrt{s}}\right)\left\|\mathbf{x}_{s}\right\|_{1} \leq \frac{\delta_{2 s}}{\left(1-\delta_{s}\right)} \frac{1}{2 \sqrt{s}}\left(\alpha+\frac{1}{\alpha}\right)\left\|\mathbf{x}_{c s}\right\|_{1} .
$$

We will conclude that $\left\|\mathbf{x}_{S}\right\|_{1}<\left\|\mathbf{x}_{c_{S}}\right\|_{1}$ provided

$$
\left(\frac{1}{\sqrt{s}}-\frac{\delta_{2 s}}{\left(1-\delta_{s}\right)} \frac{\alpha}{2 \sqrt{s}}\right)>\frac{\delta_{2 s}}{\left(1-\delta_{s}\right)} \frac{1}{2 \sqrt{s}}\left(\alpha+\frac{1}{\alpha}\right)
$$

Proof of Theorem 3.3. (cont.)

Thus we get

$$
\left(\frac{1}{\sqrt{s}}-\frac{\delta_{2 s}}{\left(1-\delta_{s}\right)} \frac{\alpha}{2 \sqrt{s}}\right)\left\|\mathbf{x}_{s}\right\|_{1} \leq \frac{\delta_{2 s}}{\left(1-\delta_{s}\right)} \frac{1}{2 \sqrt{s}}\left(\alpha+\frac{1}{\alpha}\right)\left\|\mathbf{x}_{c s}\right\|_{1} .
$$

We will conclude that $\left\|\mathbf{x}_{S}\right\|_{1}<\left\|\mathbf{x}_{c_{S}}\right\|_{1}$ provided

$$
\left(\frac{1}{\sqrt{s}}-\frac{\delta_{2 s}}{\left(1-\delta_{s}\right)} \frac{\alpha}{2 \sqrt{s}}\right)>\frac{\delta_{2 s}}{\left(1-\delta_{s}\right)} \frac{1}{2 \sqrt{s}}\left(\alpha+\frac{1}{\alpha}\right)
$$

which is same as

$$
1>\frac{\delta_{2 s}}{\left(1-\delta_{s}\right)} \frac{1}{2}\left(2 \alpha+\frac{1}{\alpha}\right) .
$$

Proof of Theorem 3.3. (cont.)

Remains to analyse:

$$
1>\frac{\delta_{2 s}}{\left(1-\delta_{s}\right)} \frac{1}{2}\left(2 \alpha+\frac{1}{\alpha}\right) .
$$

We minimise $\left(2 \alpha+\frac{1}{\alpha}\right), \alpha>0$:

$$
\left(2 \alpha+\frac{1}{\alpha}\right)^{\prime}=2-\alpha^{-2}=0
$$

has root for $\alpha=\frac{1}{\sqrt{2}}$ and minimum value $2 \sqrt{2}$.

Proof of Theorem 3.3. (cont.)

Remains to analyse:

$$
1>\frac{\delta_{2 s}}{\left(1-\delta_{s}\right)} \frac{1}{2}\left(2 \alpha+\frac{1}{\alpha}\right) .
$$

We minimise $\left(2 \alpha+\frac{1}{\alpha}\right), \alpha>0$:

$$
\left(2 \alpha+\frac{1}{\alpha}\right)^{\prime}=2-\alpha^{-2}=0
$$

has root for $\alpha=\frac{1}{\sqrt{2}}$ and minimum value $2 \sqrt{2}$.
Thus with $\alpha=\frac{1}{\sqrt{2}}$ above we need

$$
1>\frac{\delta_{2 s}}{\left(1-\delta_{s}\right)} \frac{1}{2} \cdot 2 \sqrt{2}
$$

We conclude that $\left\|\mathbf{x}_{S}\right\|_{1}<\left\|\mathbf{x}_{c_{S}}\right\|_{1}$ provided

$$
\frac{\delta_{2 s}}{1-\delta_{s}}<\frac{1}{\sqrt{2}}
$$

By using $\delta_{s} \leq \delta_{2 s}$ in

$$
\frac{\delta_{2 s}}{1-\delta_{s}}<\frac{1}{\sqrt{2}}
$$

we get

By using $\delta_{s} \leq \delta_{2 s}$ in

$$
\frac{\delta_{2 s}}{1-\delta_{s}}<\frac{1}{\sqrt{2}}
$$

we get

$$
\delta_{2 s}<\sqrt{2}-1
$$

By using $\delta_{s} \leq \delta_{2 s}$ in

$$
\frac{\delta_{2 s}}{1-\delta_{s}}<\frac{1}{\sqrt{2}}
$$

we get

$$
\delta_{2 s}<\sqrt{2}-1
$$

Thus we have completed the proof of Theorem 3.3: If \mathbf{A} fulfils the RIP property with constant $\delta_{2 s} \leq \sqrt{2}-1$ then $\mathbf{A} \in \mathrm{MP}_{1}(s)$

By using $\delta_{s} \leq \delta_{2 s}$ in

$$
\frac{\delta_{2 s}}{1-\delta_{s}}<\frac{1}{\sqrt{2}}
$$

we get

$$
\delta_{2 s}<\sqrt{2}-1
$$

Thus we have completed the proof of Theorem 3.3: If \mathbf{A} fulfils the RIP property with constant $\delta_{2 s} \leq \sqrt{2}-1$ then $\mathbf{A} \in \mathrm{MP}_{1}(s)$

