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An outline for today

A short recall from last lecture.

The LEIP and RIP properties of a matrix A.
The easy Theorem 3.1: LEIP implies MP;.
The Theorem 3.3: RIP implies MP;.

If we get time over .. .. on BOARD:
Bi-linear RIP and Polarisation



We were looking for s-sparse solutions x = Xsparse Of the equation

y = Ax,

where the m x N-matrix A € C™ x CV and the column vector
y € C™ is given, with m << N.



We were looking for s-sparse solutions x = Xsparse Of the equation

y = Ax,

where the m x N-matrix A € C™ x CV and the column vector
y € C™ is given, with m << N.

Solution by minimising the /; - norm:

. argmin, > - |xil,
Xsparse - — Ax =y



For which matrices A can we use this algorithm?



For which matrices A can we use this algorithm?

Definition:
MP;1(s) = MPi(s; m, N): The set of Matrices A s.t. every s-sparse
vector x is: the unique solution of (P;) for some y.



For which matrices A can we use this algorithm?

Definition:
MP;1(s) = MPi(s; m, N): The set of Matrices A s.t. every s-sparse
vector x is: the unique solution of (P;) for some y.



For which matrices A can we use this algorithm?

Definition:
MP;1(s) = MPi(s; m, N): The set of Matrices A s.t. every s-sparse
vector x is: the unique solution of (P;) for some y.



The LEIP and RIP properties of matrices

We were looking at some properties for m x N - matrices
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m Definition: Matrix A satisfies Low Entropy Isometry Property
(LEIP) with constant ¢, if

[I1AX3 = Ix[13] < oe]|x|[3.
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The LEIP and RIP properties of matrices

We were looking at some properties for m x N - matrices
(m << N):

m Definition: Matrix A satisfies Low Entropy Isometry Property
(LEIP) with constant ¢, if

[11AX12 — [Ix3] < 0elIx||3.
for all x with Ent;(x) < e.

m Definition: Matrix A satisfies Restricted Isometry Property
(RIP) with constant 0 if

2 2 2
[[Ax[l2 = Ixll2] < ds]Ix]l2;

for all s- sparse vectors x.
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m Easy claim: y
If the matrix A satisfies LEIP with constant de and /s < e,
then A satisfies RIP with a constant §s < {e.

m In the other direction:
Unproved statement -proof later on:

(A has the RIP-property with constant ds)
implies
(A has the LEIP-property with constant d,)

with 8 < 46 provided s > 2¢?
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Easy Claim: If 5, < 1 then A € NE(e), i.e each non-zero x with

Ax = 0 has entropy Enty(x) > e.
Proof: For any x # 0 with Ent;(x) < e and Ax = 0 then LEIP:

[11AX]Z — [Ix][3] < dex|I3

with 0. < 1 would imply [[x[|3 < [|x||3.
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Theorem 3.1: If e < 24/s and the matrix A has the LEIP-property
with constant 0, < 1 then A € MP;(s)
Easy Proof of Theorem 3.1:

= (A cLEIP with constant d, < 1)
implies

m (A € NE(e) i.e each non-zero x with Ax = 0 has
Ent1(x) > e)
implies

m (A € NS(s) i.e each s-sparse vector x supported in S with
|S| = s and each vector z = zg5 + zcs with Az = Ax we have
1zes[ls > [Ix — zs]1)
equivalent to

(A € MPy(s))



Using the steps with triangle inequality and definition of entropy in
the proof above (without assuming Ax = Az) we would get

Lemma 3.2: Assume A €LEIP with constant §. If x is s-sparse and
2y/s < e, then for any vector z with ||z|; < ||x]|1 holds

I1A(x = 2)[13 — [|Ix — 23] < dellx — z]3.



Using the steps with triangle inequality and definition of entropy in
the proof above (without assuming Ax = Az) we would get

Lemma 3.2: Assume A €LEIP with constant §. If x is s-sparse and
2y/s < e, then for any vector z with ||z|; < ||x]|1 holds

I1A(x = 2)[13 — [|Ix — 23] < dellx — z]3.

Observe: Theorem 3.1 follows easily from Lemma 3.2:

If we assume that A(x —z) = 0 and §. < 1 in Lemma 3.2 we get
x —z =0, i.e we conclude that x is the unique solution of the
minimal problem (P;).



Using the steps with triangle inequality and definition of entropy in
the proof above (without assuming Ax = Az) we would get

Lemma 3.2: Assume A €LEIP with constant §. If x is s-sparse and
2y/s < e, then for any vector z with ||z|; < ||x]|1 holds

I1A(x = 2)[13 — [|Ix — 23] < dellx — z]3.

Observe: Theorem 3.1 follows easily from Lemma 3.2:

If we assume that A(x —z) = 0 and §. < 1 in Lemma 3.2 we get
x —z =0, i.e we conclude that x is the unique solution of the
minimal problem (P;).

Corollary If x is s-sparse , y = Ax and Az=y+n therl
lzll1 < [|x||l1 and de < 1 would imply ||z — x|]2 < (1 — d¢) 72 |n||2.
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In the literature the RIP property is used to ensure that A € MP;.
We will show:

Theorem 3.3: If A fulfils the RIP property with constant
62s < V2 —1=0.412...., then A € MPy(s).

Best known: enough with dps < 4/(6 +1/7) ~ 0.462.. ..

S. Foucart, 2007, S.F + H.Rauhut in preparation.

Preparing the proof:

It is enough to show that f A fulfils the RIP property with constant
62s < V2 —1 then A € NS(s). The proof is based on two technical
lemmas:
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Proof of Theorem 3.3. (cont.)

m Let x be a vector that is ordered decreasing in magnitude, i.e
Ix1| > |x2| > |x3| > ....

m Split {1,..., N} into disjoint sets Sy, k =1,..., K
USk ={1,..., N} with |Sx| =s for k =1,...,K — 1. Denote
S = 5; and €S its complement.

m Write x =), Xs,
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m Lemma 3.4: Assume is x is a vector with its components
decreasing in magnitude and x = ), x5, and above S$ = 5;
as above. Then

S ksl < =2 lxs 4+ 5o —)lfxes]lns
RN 25"

for a > 0, to be optimised later on.
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for a > 0, to be optimised later on.

m Lemma 3.5: If A satisfies RIP properties and Ax = 0, then

)
Ixs,fl2 < 7 _55 > sl
* k=2




Proof of Theorem 3.3. (cont.)

m Lemma 3.4: Assume is x is a vector with its components
decreasing in magnitude and x = ), x5, and above S = 5;
as above. Then

S xsille < =2 xslls + (a4 S)llxes]l,
pa K= 2y /s 2./s a

for a > 0, to be optimised later on.
Proof of Lemma 3.4: For k > 1:

x5, 113 < l|xs, [[2]lxs,lloo < lIxs,[l1 /x5, [I1/5

using ab < %32 + gbz for any a,b > 0 and a > 0 we get

1
R N gasxsl

Summation over k > 2 gives the desired result.

X [l2 +



Proof of Theorem 3.3. (cont.)

m Lemma 3.4: Assume is x is a vector with its components
decreasing in magnitude and x = ), x5, and above S$ = 5;
as above. Then

S ksl < =2 lxs 4+ 5o —)lfxes]lns
RN 25"

for a > 0, to be optimised later on.

m Lemma 3.5: If A satisfies RIP properties and Ax = 0, then

92
Ixs,fl2 < 7 _55 > sl
® k=2

Proof of Lemma 3.5 uses two lemmas:
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m Lemma 3.6: If és < 1 then

1
2 2
X < —||Axs]|5.
[xsll2 1 _5S|| 12



Proof of Theorem 3.3. (cont.)

m Lemma 3.6: If §s < 1 then

1

Axs||3.
1—65” xsl|3

Ixs]13 <

Proof of Lemma 3.6: RIP gives
Ixs]13 — | Axs]|3 < dllxs |3,

which gives the result.



Proof of Theorem 3.3. (cont.)

m Lemma 3.6: If és < 1 then

Ixsl13 < |Axs||3.

L
1— 0
m Lemma 3.7: Let the index subset S and S’ be disjoint
|S| =S| =s. Then
[(Axs, Axgr)| < das||xs|l2/[xs|[2-

Next: proof of Lemma 3.7.



Proof of Theorem 3.3. (cont.)

m Lemma 3.7: Let the index subset S and S’ be disjoint
|S| =S| =s. Then

|(Axs, Axsr)| < 02s||xs][2][xs]|2-

Proof of Lemma 3.7:



Proof of Theorem 3.3. (cont.)

m Lemma 3.7: Let the index subset S and S’ be disjoint
|S| =|S’| =s. Then
[(Axs, Axs)| < bas||xs 2[5 |2-

Proof of Lemma 3.7: We may assume ||xs||2 = ||xs/2 =1
and we will use RIP with so called polarisation. Note that
Xs £ xg/ are 2s-sparse. The absolute values of

IA(xs £ xs)[13 — [|xs + xs/]3

is bounded by
0sl|xs =+ xs/13

Taking the difference of plus and minus versions we get
4)(Axs, Axs:) — (x5, xs)| < 0252(xs|B + [xs[3) = 4625

Since (xs,xs/) = 0 we get the desired result.



Proof of Theorem 3.3. (cont.)

m Lemma 3.7: Let the index subset S and S’ be disjoint
|S| =|S’| =s. Then
[(Axs, Axs)| < bas||xs 2[5 |2-

Proof of Lemma 3.7: We may assume ||xs||2 = ||xs/2 =1
and we will use RIP with so called polarisation. Note that
Xs £ xg/ are 2s-sparse. The absolute values of

IA(xs £ xs)[13 — [|xs + xs/]3

is bounded by
0sl|xs =+ xs/13

Taking the difference of plus and minus versions we get
4)(Axs, Axs:) — (x5, xs)| < 0252(xs|B + [xs[3) = 4625

Since (xs,xs/) = 0 we get the desired result.
Proof completed!
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Back to proof of:
Lemma 3.5: If A satisfies RIP properties and Ax = 0 then

02
Ixsill2 < T2 3" fxs, -
S k=2

Proof of Lemma 3.5: We will use Axg = —Axcs. By Lemma 3.6

x5 < = (AXS,AX5>
- Ti- 5 (Axs, Axes) = %@ZkgﬂAxS,AXSO-

By Lemma 3.7 we get

Ixs]13 < _5 Ixsll2 ) lIxs, ]2,

k>2

which gives the desired estimate.



Proof of Theorem 3.3. (cont.)

Back to proof of:
Lemma 3.5: If A satisfies RIP properties and Ax = 0 then

02
Ixsill2 < T2 3" fxs, -
S k=2

Proof of Lemma 3.5: We will use Axg = —Axcs. By Lemma 3.6

x5 < = (AXS,AX5>
- Ti- 5 (Axs, Axes) = %@ZkgﬂAxS,AXSO-

By Lemma 3.7 we get

Ixs]13 < _5 Ixsll2 ) lIxs, ]2,

k>2

which gives the desired estimate. Proof of Lemma 3.5 completed!
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Back to proof of:
Theorem 3.3: If A fulfils the RIP property with constant
d2s < /2 —1 then A € MP4(s)

Proof of Theorem 3.3: Since A € MP(s) is equivalent to ANS(s)
it is enough to show that if S is an index subset with |S| = s, and
X = X5 + Xcg is a non-zero vector with Ax = 0 then

[Ixsl[1 < [[xes]]1-



Proof of Theorem 3.3. (cont.)

Back to proof of:
Theorem 3.3: If A fulfils the RIP property with constant
525 < V2 — 1 then A € MP4(s)

Proof of Theorem 3.3: Since A € MP(s) is equivalent to ANS(s)
it is enough to show that if S is an index subset with |S| =s, and
X = X5 + Xcg is a non-zero vector with Ax = 0 then

[Ixsll1 < l[xes]l1-

For your convenience: the equations in Lemma 3.4 and Lemma 3.5

S Ixs,lle < =2 fxsll + 5o+ =) s o,
2Pl =55 254 T a :

)
Ixsill2 < 775 > lIxs -
® k=2

By Lemma 3.5 and Lemma 3.4 we have

o
Ixsillz < @25 k=2 Ixsill2

o S ~ 11 1" - 1 o/ 1T N 1 \



Proof of Theorem 3.3. (cont.)

Back to proof of:
Theorem 3.3: If A fulfils the RIP property with constant
d2s < /2 —1 then A € MP4(s)

Proof of Theorem 3.3: Since A € MP(s) is equivalent to ANS(s)
it is enough to show that if S is an index subset with |S| = s, and
X = X5 + Xcg is a non-zero vector with Ax = 0 then

[Ixsllz < [[xes]l1.
By Lemma 3.5 and Lemma 3.4 we have

dos
Ixsilo < 255 Ss Ixsila
dos
< @35 (Zlixslh + 7z(a + 2)lxes])

We may replace ||xs||2 by ﬁHstl on the left hand side of this

inequality and move all ||xs||; terms to the left hand side and let
the ||xcs||1 term stay on the right hand side.



Proof of Theorem 3.3. (cont.)

Thus we get

1 o s « d s 1 1
(- ﬁz—ﬁ)nxs!h < ﬁfﬁ(a + =)lxes|-



Proof of Theorem 3.3. (cont.)

Thus we get
1 (5 1 1

We will conclude that ||xs||1 < ||xcs||1 provided



Proof of Theorem 3.3. (cont.)

Thus we get
1 (5 1 1

We will conclude that ||xs||1 < ||xcs||1 provided

025 1 1
i-0)2s@" )

1 (525 « )>

(G T-6)2vs



Proof of Theorem 3.3. (cont.)

Thus we get
1 d2s 1 1
—= 1 < 5= (a+ =)llxes]|1-
( Tomae b S et
We will conclude that ||xs||1 < ||xcs||1 provided
1 (525 « (525 1 1
—_ > —),
SV (RS V- R (R S PV
which is same as
] 1 1

(1-195)2



Proof of Theorem 3.3. (cont.)

Remains to analyse:

dos 1 1
—(2 —).
i-s)22+3)
We minimise (2o + 1), a > 0:

1
Ra+=)=2-a2=0
a

1>

1

has root for @ = and minimum value 2v/2.

S



Proof of Theorem 3.3. (cont.)

Remains to analyse:

dos 1 1

-0y 5(2a + E)

We minimise (2o + 1), a > 0:

1>

1
Ra+=)=2-a2=0
a

has root for @ = and minimum value 2v/2.

Sl

Thus with o = % above we need

52 1
1 — - 2v2.
> T sya 2V?

We conclude that ||xs||1 < ||Xcs||1 provided

525
1— 9

<

Nlis
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we get
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