

Mathematical Foundation for Compressed Sensing

Jan-Olov Strömberg

Royal Institute of Technology, Stockholm, Sweden

Lecture 4, February 27, 2012

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• A short summary from last lecture:

• A short summary from last lecture:

• Sparse solutions and l_1 opitmisation.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A short summary from last lecture:

- Sparse solutions and l_1 opitmisation.
- The LEIP and RIP properties which imply MP₁

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- A short summary from last lecture:
 - Sparse solutions and l_1 opitmisation.
 - The LEIP and RIP properties which imply MP₁

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Bi-linear RIP and Polarisation.

- A short summary from last lecture:
 - Sparse solutions and l_1 opitmisation.
 - The LEIP and RIP properties which imply MP₁

- Bi-linear RIP and Polarisation.
- A lower estimate for RIP.

- A short summary from last lecture:
 - Sparse solutions and l_1 opitmisation.
 - The LEIP and RIP properties which imply MP₁

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Bi-linear RIP and Polarisation.
- A lower estimate for RIP.
- RIP of Random matrices.

We were looking for *s*-sparse solutions $\mathbf{x} = \mathbf{x}_{sparse}$ of the equation

$$\mathbf{y} = \mathbf{A}\mathbf{x},$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where the $m \times N$ -matrix $\mathbf{A} \in \mathbb{C}^m \times \mathbb{C}^N$ and the column vector $\mathbf{y} \in \mathbb{C}^m$ is given, with $m \ll N$.

We were looking for *s*-sparse solutions $\mathbf{x} = \mathbf{x}_{sparse}$ of the equation

$$\mathbf{y} = \mathbf{A}\mathbf{x},$$

where the $m \times N$ -matrix $\mathbf{A} \in \mathbb{C}^m \times \mathbb{C}^N$ and the column vector $\mathbf{y} \in \mathbb{C}^m$ is given, with $m \ll N$.

Solution by minimising the l_1 - norm:

$$\mathbf{x}_{\text{sparse}} := \begin{cases} \operatorname{argmin}_{\mathbf{x}} \sum_{i} |x_{i}|, \\ \mathbf{A}\mathbf{x} = \mathbf{y}. \end{cases}$$
(P₁)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $MP_1(s) = MP_1(s; m, N)$: The set of Matrices A s.t. every s-sparse vector **x** is: the unique solution of (P_1) for some **y**.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A short summary from last lecture:

 $MP_1(s) = MP_1(s; m, N)$: The set of Matrices A s.t. every s-sparse vector **x** is: the unique solution of (P_1) for some **y**. We were looking at some properties for $m \times N$ - matrices $(m \ll N)$:

Definition: Matrix **A** satisfies Low Entropy Isometry Property (LEIP) with constant $\tilde{\delta}_e$ if

$$|\|\mathbf{A}\mathbf{x}\|_{2}^{2} - \|\mathbf{x}\|_{2}^{2}| \leq \tilde{\delta}_{e} \|\mathbf{x}\|_{2}^{2},$$

for all **x** with $Ent_1(\mathbf{x}) \leq e$..

 $MP_1(s) = MP_1(s; m, N)$: The set of Matrices A s.t. every s-sparse vector **x** is: the unique solution of (P_1) for some **y**. We were looking at some properties for $m \times N$ - matrices $(m \ll N)$:

Definition: Matrix **A** satisfies Low Entropy Isometry Property (LEIP) with constant $\tilde{\delta}_e$ if

$$|\|\mathbf{A}\mathbf{x}\|_{2}^{2} - \|\mathbf{x}\|_{2}^{2}| \leq \tilde{\delta}_{e} \|\mathbf{x}\|_{2}^{2},$$

for all **x** with $Ent_1(\mathbf{x}) \leq e$..

• Definition: Matrix **A** satisfies Restricted Isometry Property (RIP) with constant δ_s if

$$\|\|\mathbf{A}\mathbf{x}\|_{2}^{2} - \|\mathbf{x}\|_{2}^{2} \le \delta_{s} \|\mathbf{x}\|_{2}^{2},$$

for all s- sparse vectors x.

 $MP_1(s) = MP_1(s; m, N)$: The set of Matrices A s.t. every s-sparse vector **x** is: the unique solution of (P_1) for some **y**. We were looking at some properties for $m \times N$ - matrices $(m \ll N)$:

Definition: Matrix **A** satisfies Low Entropy Isometry Property (LEIP) with constant $\tilde{\delta}_e$ if

$$|\|\mathbf{A}\mathbf{x}\|_{2}^{2} - \|\mathbf{x}\|_{2}^{2}| \leq \tilde{\delta}_{e} \|\mathbf{x}\|_{2}^{2},$$

for all **x** with $Ent_1(\mathbf{x}) \leq e$..

• Definition: Matrix **A** satisfies Restricted Isometry Property (RIP) with constant δ_s if

$$\|\|\mathbf{A}\mathbf{x}\|_{2}^{2} - \|\mathbf{x}\|_{2}^{2} \le \delta_{s} \|\mathbf{x}\|_{2}^{2},$$

for all s- sparse vectors x.

We got the easy : Theorem 3.1: If $e \leq 2\sqrt{s}$ and the matrix **A** has the LEIP-property with constant $\tilde{\delta}_e < 1$ then $\mathbf{A} \in MP_1(s)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We got the easy : Theorem 3.1: If $e \leq 2\sqrt{s}$ and the matrix **A** has the LEIP-property with constant $\tilde{\delta}_e < 1$ then $\mathbf{A} \in \mathsf{MP}_1(s)$.

With little more effort we got: Theorem 3.3: If **A** fulfils the RIP property with constant $\delta_{2s} < \sqrt{2} - 1 \approx 0.412...$, then $\mathbf{A} \in MP_1(s)$. We got the easy : Theorem 3.1: If $e \leq 2\sqrt{s}$ and the matrix **A** has the LEIP-property with constant $\tilde{\delta}_e < 1$ then $\mathbf{A} \in \mathsf{MP}_1(s)$.

With little more effort we got: Theorem 3.3: If **A** fulfils the RIP property with constant $\delta_{2s} < \sqrt{2} - 1 \approx 0.412...$, then $\mathbf{A} \in MP_1(s)$.

New for today:

We got the easy : Theorem 3.1: If $e \leq 2\sqrt{s}$ and the matrix **A** has the LEIP-property with constant $\tilde{\delta}_e < 1$ then $\mathbf{A} \in MP_1(s)$.

With little more effort we got: Theorem 3.3: If **A** fulfils the RIP property with constant $\delta_{2s} < \sqrt{2} - 1 \approx 0.412...$, then $\mathbf{A} \in MP_1(s)$.

New for today: Best known: enough with $\frac{\delta_{2s}}{\sqrt{1-\delta_{2s}^2}} < \frac{1}{\sqrt{2}}$. Thus it is enough with $\delta_{2s} < \frac{1}{\sqrt{3}} \approx 0.577 \dots$

One essential estimate for the proof of Theorem 3.3 is :

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

One essential estimate for the proof of Theorem 3.3 is : Lemma 3.5: If **A** satisfies RIP properties and Ax = 0, then

$$\|\mathbf{x}_{\mathcal{S}_1}\|_2 \leq \frac{\delta_{2s}}{1-\delta_s} \sum_{k=2} \|\mathbf{x}_{\mathcal{S}_k}\|_2.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

One essential estimate for the proof of Theorem 3.3 is : Lemma 3.5: If A satisfies RIP properties and Ax = 0, then

$$\|\mathbf{x}_{\mathcal{S}_1}\|_2 \leq \frac{\delta_{2s}}{1-\delta_s} \sum_{k=2} \|\mathbf{x}_{\mathcal{S}_k}\|_2.$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

New for today:

One essential estimate for the proof of Theorem 3.3 is : Lemma 3.5: If A satisfies RIP properties and Ax = 0, then

$$\|\mathbf{x}_{\mathcal{S}_1}\|_2 \leq \frac{\delta_{2s}}{1-\delta_s} \sum_{k=2} \|\mathbf{x}_{\mathcal{S}_k}\|_2.$$

New for today:

Remark: With some effort the constant $\frac{\delta_{2s}}{1-\delta_s}$ in Lemma 3.5 can be replaced by to $\frac{\delta_{2s}}{\sqrt{1-\delta_{2s}^2}}$.

For *s*-sparse vetors \mathbf{x} and \mathbf{z} we have the bi-linear version of the RIP:

$$|\langle \mathsf{A}\mathsf{x}, \mathsf{A}\mathsf{z} \rangle - \langle \mathsf{x}, \mathsf{z} \rangle| \leq \delta_{2s} \|\mathsf{x}\|_2 \|\mathsf{z}\|_2,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

by polarization of the RIP estimate with the vectors $\mathbf{x} \pm \mathbf{z}$.

A $m \times N$ matrix cannot satisfy a RIP with $\delta_s < 1$ unless m is large enough, depending on s an N.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A $m \times N$ matrix cannot satisfy a RIP with $\delta_s < 1$ unless m is large enough, depending on s an N.

Theorem 4.1 If $\delta_s < 1$ there is a constant C > 0 such that if any $m \times N$ matrix **A** har RIP with constant δ_s , then

 $m > Cs \log(Ne/s)$

Then the set of *s*- sparse vectors is

$$X(s) = \cup_{|S|=s} X_S,$$

where the union is taken over all subsets S of $[1, \ldots, N]$ with length s.

Then the set of *s*- sparse vectors is

$$X(s) = \cup_{|S|=s} X_S,$$

where the union is taken over all subsets S of [1, ..., N] with length s. The number of such subsets is $\begin{pmatrix} N \\ s \end{pmatrix}$.

Then the set of *s*- sparse vectors is

$$X(s) = \cup_{|S|=s} X_S,$$

where the union is taken over all subsets *S* of [1, ..., N] with length *s*. The number of such subsets is $\binom{N}{s}$. By Stirlings formula $(n! \approx (\frac{n}{e})^n \sqrt{2\pi n})$:

$$\left(egin{array}{c} {\sf N} \\ {\sf s} \end{array}
ight) \sim rac{{\sf N}^{{\sf N}+rac{1}{2}}}{\sqrt{2\pi}({\sf N}-{\sf s})^{{\sf N}-{\sf s}+rac{1}{2}}\,{\sf s}^{{\sf s}+rac{1}{2}}}\,,$$

If $s \ll N$ this is approximately equal to

$$(Ne/s)^s/\sqrt{2\pi s}.$$

(ロ)、(型)、(E)、(E)、(E)、(O)()

Definitions

Definitions

Let 0 < r < 1, and let $N_m(r)$ be the maximal number of points $\{\mathbf{x}_i\}$ in a set in the unit ball $B_m = \{\mathbf{x} \in \mathbb{R}^m : \|\mathbf{x}\|_2 \le 1 \text{ in } \mathbb{R}^m \text{ such that} \}$

$$\|\mathbf{x}_i - \mathbf{x}_j\|_2 > r$$
 for all $i \neq j$.

Definitions

Let 0 < r < 1, and let $N_m(r)$ be the maximal number of points $\{\mathbf{x}_i\}$ in a set in the unit ball $B_m = \{\mathbf{x} \in \mathbb{R}^m : \|\mathbf{x}\|_2 \le 1 \text{ in } \mathbb{R}^m \text{ such that} \}$

$$\|\mathbf{x}_i - \mathbf{x}_j\|_2 > r$$
 for all $i \neq j$.

Let 0 < r < 1, and $N_{X(s)}(r)$ be the maximal number of points $\{x_i\}$ in a set in $X(s) \cap B_N$ such that

$$\|\mathbf{x}_i - \mathbf{x}_j\|_2 > r$$
 for all $i \neq j$.

A lower estimate for RIP.

Recall:

 $A \in \mathsf{RIP}$ with constant δ_s means:

$$\sqrt{1-\delta_s}\|\mathbf{x}\|_2 \leq \|\mathbf{A}\mathbf{x}\|_2 \leq \sqrt{1+\delta_s}\|\mathbf{x}\|_2 ext{ for } \mathbf{x} \in X(s).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Recall:

 $A \in \mathsf{RIP}$ with constant δ_s means:

$$\sqrt{1-\delta_s} \|\mathbf{x}\|_2 \leq \|\mathbf{A}\mathbf{x}\|_2 \leq \sqrt{1+\delta_s} \|\mathbf{x}\|_2 ext{ for } \mathbf{x} \in X(s).$$

This make it possible to estimate $N_{X(s/2)}(r_1)$ by $N_m(r_2)$.

Lemma 4.2: Suppose there exist a real $m \times N$ matrix **A** has the RIP property for *s*- sparse with constant δ_s .

Recall:

 $A \in \mathsf{RIP}$ with constant δ_s means:

$$\sqrt{1-\delta_s} \|\mathbf{x}\|_2 \le \|\mathbf{A}\mathbf{x}\|_2 \le \sqrt{1+\delta_s} \|\mathbf{x}\|_2 ext{ for } \mathbf{x} \in X(s).$$

This make it possible to estimate $N_{X(s/2)}(r_1)$ by $N_m(r_2)$.

Lemma 4.2: Suppose there exist a real $m \times N$ matrix **A** has the RIP property for *s*- sparse with constant δ_s . Let $0 < r_1, r_2 < 1$, with

$$r_2 \leq r_1 rac{\sqrt{1-\delta_s}}{\sqrt{1+\delta_s}},$$

Recall:

 $A \in \mathsf{RIP}$ with constant δ_s means:

$$\sqrt{1-\delta_s}\|\mathbf{x}\|_2 \leq \|\mathbf{A}\mathbf{x}\|_2 \leq \sqrt{1+\delta_s}\|\mathbf{x}\|_2 ext{ for } \mathbf{x} \in X(s).$$

This make it possible to estimate $N_{X(s/2)}(r_1)$ by $N_m(r_2)$.

Lemma 4.2: Suppose there exist a real $m \times N$ matrix **A** has the RIP property for *s*- sparse with constant δ_s . Let $0 < r_1, r_2 < 1$, with

$$r_2 \leq r_1 \frac{\sqrt{1-\delta_s}}{\sqrt{1+\delta_s}},$$

then

$$N_{X(s/2)}(r_1) \leq N_m(r_2).$$

Proof: Let $N = N_{X(s/2)}(r_1)$ and let $\{\mathbf{x}_i\}_1^N$ in $X(s/2) \cap B_N$ such that $\|\mathbf{x}_i - \mathbf{x}_j\|_2 > r_1$ for all $i \neq j$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ
Proof: Let $N = N_{X(s/2)}(r_1)$ and let $\{\mathbf{x}_i\}_1^N$ in $X(s/2) \cap B_N$ such that $\|\mathbf{x}_i - \mathbf{x}_j\|_2 > r_1$ for all $i \neq j$. It follows from RIP that $\mathbf{A}\mathbf{x}_i$ is contained in the ball in \mathbb{R}^m with radius $r_3 = (1 + \delta_s)$.

Proof: Let $N = N_{X(s/2)}(r_1)$ and let $\{\mathbf{x}_i\}_1^N$ in $X(s/2) \cap B_N$ such that $\|\mathbf{x}_i - \mathbf{x}_j\|_2 > r_1$ for all $i \neq j$. It follows from RIP that $\mathbf{A}\mathbf{x}_i$ is contained in the ball in \mathbb{R}^m with radius $r_3 = (1 + \delta_s)$. Let $Y = \{\mathbf{y}_i\}_1^N$ with $\mathbf{y}_j = \mathbf{A}\mathbf{x}_j/r_3$ is a set in B_m and

$$\|\mathbf{y}_i - \mathbf{y}_j\|_2 \ge (1 - \delta_s) \|\mathbf{x}_i - \mathbf{x}_j\|/r_3 > (1 - \delta_s)r_1/r_3 \ge r_2.$$

Proof: Let $N = N_{X(s/2)}(r_1)$ and let $\{\mathbf{x}_i\}_1^N$ in $X(s/2) \cap B_N$ such that $\|\mathbf{x}_i - \mathbf{x}_j\|_2 > r_1$ for all $i \neq j$. It follows from RIP that $\mathbf{A}\mathbf{x}_i$ is contained in the ball in \mathbb{R}^m with radius $r_3 = (1 + \delta_s)$. Let $Y = \{\mathbf{y}_i\}_1^N$ with $\mathbf{y}_j = \mathbf{A}\mathbf{x}_j/r_3$ is a set in B_m and $\|\mathbf{y}_i - \mathbf{y}_i\|_2 \ge (1 - \delta_s)\|\mathbf{x}_i - \mathbf{x}_i\|/r_3 \ge (1 - \delta_s)r_1/r_3 \ge r_2$.

It follows than $N_m(r_2) \geq N = N_{X(s/2)}(r_1)$.

The proof of Lemma 4.2 is complete.

- ◆ □ ▶ → 個 ▶ → 注 ▶ → 注 → のへで

$$(\frac{1}{r})^m \leq N_m(r) \leq (1+\frac{2}{r})^m,$$

$$(\frac{1}{r})^m \leq N_m(r) \leq (1+\frac{2}{r})^m,$$

$$N_{X(s)} \leq \left(egin{array}{c} N \ s \end{array}
ight) (1 + rac{2}{r})^s \sim (Ne(1 + rac{2}{r})/s)^s / \sqrt{2\pi s}$$

Proof:

$$(\frac{1}{r})^m \leq N_m(r) \leq (1+\frac{2}{r})^m,$$

$$N_{X(s)} \leq \left(egin{array}{c} N \ s \end{array}
ight) (1+rac{2}{r})^s \sim (Ne(1+rac{2}{r})/s)^s/\sqrt{2\pi s}$$

Proof:

If the N_m(r) balls of radius r and centered at the points x_i would not cover B_m we can find one more such points, i.e N_m(r) is not the maximal value.

$$(\frac{1}{r})^m \leq N_m(r) \leq (1+\frac{2}{r})^m,$$

$$N_{X(s)} \leq \left(egin{array}{c} N \ s \end{array}
ight) (1+rac{2}{r})^s \sim (Ne(1+rac{2}{r})/s)^s/\sqrt{2\pi s}$$

Proof:

- If the N_m(r) balls of radius r and centered at the points x_i would not cover B_m we can find one more such points, i.e N_m(r) is not the maximal value.
- The disjoint balls centered at the points x_i and with radius $\frac{1}{2}$ are contained in the ball centered at the 0 with radius $1 + \frac{r}{2}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$N_{X(s)}(\frac{1}{2}) \geq \frac{1}{2}(Ne/(s/2))^{s/2}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$N_{X(s)}(\frac{1}{2}) \geq \frac{1}{2}(Ne/(s/2))^{s/2}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof:

$$N_{X(s)}(\frac{1}{2}) \geq \frac{1}{2}(Ne/(s/2))^{s/2}.$$

Proof:

• Define W a set of points in X(s) as:

$$W = \{ \mathbf{x} \in X(s) : x_j = \{-1, 0, 1\} \}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$N_{X(s)}(\frac{1}{2}) \geq \frac{1}{2}(Ne/(s/2))^{s/2}.$$

Proof:

• Define W a set of points in X(s) as:

$$W = \{ \mathbf{x} \in X(s) : x_j = \{-1, 0, 1\} \}$$

we see that W contains more than

$$2^{s} \left(\begin{array}{c} N \\ s \end{array} \right) \approx (2Ne/s)^{s} \sqrt{2\pi s}$$

vectors, all with norm $\|\mathbf{x}\|_2 \leq \sqrt{s}$.

we are seleceting a subset X = {x_i} of W, satisfying ||x_i - x_j||₂ > √s/2 by
 Start with letting j = 1 and the remaing set of points W' = W

we are seleceting a subset X = {x_i} of W, satisfying ||x_i - x_j||₂ > √s/2 by
1 Start with letting j = 1 and the remaing set of points W' = W
2 Pick one vector x_j in in W' and put it in the set X.

we are seleceting a subset X = {x_i} of W, satisfying ||x_i - x_j||₂ > √s/2 by
Start with letting j = 1 and the remaing set of points W' = W
Pick one vector x_j in in W' and put it in the set X.
Remove from W' all vector z such that ||z - x_j||₂ ≤ √s/2.

we are seleceting a subset X = {x_i} of W, satisfying ||x_i - x_j||₂ > √s/2 by
Start with letting j = 1 and the remaing set of points W' = W
Pick one vector x_j in in W' and put it in the set X.
Remove from W' all vector z such that ||z - x_j||₂ ≤ √s/2.
If W' is not empty set j =: j + 1 and go back to step 2

we are seleceting a subset X = {x_i} of W, satisfying ||x_i - x_j||₂ > √s/2 by
1 Start with letting j = 1 and the remaing set of points W' = W
2 Pick one vector x_j in in W' and put it in the set X.
3 Remove from W' all vector z such that ||z - x_j||₂ ≤ √s/2.
4 If W' is not empty set j =: j + 1 and go back to step 2
5 When W' is empty we are finished.

Note that for any fixed j and $||\mathbf{z} - \mathbf{x}_j||_2 \le \sqrt{s}/2$ then entries of $\mathbf{z} - \mathbf{x}_j$ are in $\{-2, -1, 0, 1, 2\}$ and that $\mathbf{z} - \mathbf{x}_j$ is in X(s/2).

Note that for any fixed j and ||z - x_j||₂ ≤ √s/2 then entries of z - x_j are in {-2,-1,0,1,2}} and that z - x_j is in X(s/2).
For any fixed x_j ∈ X the number of points z such that ||z - x_j||₂ ≤ √s/2 is estimated by

$$\sum_{k=0}^{s/2} \begin{pmatrix} N\\s \end{pmatrix} 4^k \approx \sum_{k=0}^{s/2} \frac{(4Ne/k)^k}{\sqrt{2\pi k}} \approx \frac{(8Ne/s)^{s/2}}{\sqrt{4\pi s}}$$

- Note that for any fixed j and $\|\mathbf{z} \mathbf{x}_j\|_2 \le \sqrt{s}/2$ then entries of $\mathbf{z} \mathbf{x}_j$ are in {-2,-1,0,1,2}} and that $\mathbf{z} \mathbf{x}_j$ is in X(s/2).
- For any fixed $\mathbf{x}_j \in X$ the number of points \mathbf{z} such that $\|\mathbf{z} \mathbf{x}_j\|_2 \le \sqrt{s}/2$ is estimated by

$$\sum_{k=0}^{s/2} \left(\begin{array}{c} \mathsf{N}\\ \mathsf{s} \end{array}\right) \mathsf{4}^k \approx \sum_{k=0}^{s/2} \frac{(\mathsf{4Ne}/k)^k}{\sqrt{2\pi k}} \approx \frac{(\mathsf{8Ne}/\mathsf{s})^{s/2}}{\sqrt{4\pi \mathsf{s}}}$$

We conclude that the process does not end before

$$|X| \ge \approx \frac{(2Ne/s)^s/\sqrt{2\pi s}}{(8Ne/s)^{s/2}/\sqrt{4\pi s}} = \frac{(Ne/(s/2))^{s/2}}{\sqrt{2}}.$$

- Note that for any fixed j and $\|\mathbf{z} \mathbf{x}_j\|_2 \le \sqrt{s}/2$ then entries of $\mathbf{z} \mathbf{x}_j$ are in {-2,-1,0,1,2}} and that $\mathbf{z} \mathbf{x}_j$ is in X(s/2).
- For any fixed $\mathbf{x}_j \in X$ the number of points \mathbf{z} such that $\|\mathbf{z} \mathbf{x}_j\|_2 \le \sqrt{s}/2$ is estimated by

$$\sum_{k=0}^{s/2} \left(\begin{array}{c} \mathsf{N}\\ s \end{array}\right) 4^k \approx \sum_{k=0}^{s/2} \frac{(4\mathsf{Ne}/k)^k}{\sqrt{2\pi k}} \approx \frac{(8\mathsf{Ne}/s)^{s/2}}{\sqrt{4\pi s}}$$

We conclude that the process does not end before

$$|X| \ge \approx \frac{(2Ne/s)^s/\sqrt{2\pi s}}{(8Ne/s)^{s/2}/\sqrt{4\pi s}} = \frac{(Ne/(s/2))^{s/2}}{\sqrt{2}}.$$

- Note that for any fixed j and $\|\mathbf{z} \mathbf{x}_j\|_2 \le \sqrt{s}/2$ then entries of $\mathbf{z} \mathbf{x}_j$ are in {-2,-1,0,1,2}} and that $\mathbf{z} \mathbf{x}_j$ is in X(s/2).
- For any fixed $\mathbf{x}_j \in X$ the number of points \mathbf{z} such that $\|\mathbf{z} \mathbf{x}_j\|_2 \le \sqrt{s}/2$ is estimated by

$$\sum_{k=0}^{s/2} \left(\begin{array}{c} N\\ s\end{array}\right) 4^k \approx \sum_{k=0}^{s/2} \frac{(4Ne/k)^k}{\sqrt{2\pi k}} \approx \frac{(8Ne/s)^{s/2}}{\sqrt{4\pi s}}$$

We conclude that the process does not end before

$$|X| \ge \approx \frac{(2Ne/s)^s/\sqrt{2\pi s}}{(8Ne/s)^{s/2}/\sqrt{4\pi s}} = \frac{(Ne/(s/2))^{s/2}}{\sqrt{2}}.$$

Thus $N_{X(s)}(s) \geq \frac{1}{2}(Ne/(s/2))^{s/2}$.

According to Lemma 4.2 following condition must hold:

 $N_{X(s/2)}(r_1) \leq N_m(r_2).$

when $r_2 \leq r_1 \frac{\sqrt{1-\delta_s}}{\sqrt{1+\delta_s}}$.

According to Lemma 4.2 following condition must hold:

$$N_{X(s/2)}(r_1) \leq N_m(r_2).$$

when $r_2 \leq r_1 \frac{\sqrt{1-\delta_s}}{\sqrt{1+\delta_s}}$. We choose $r_1 = \frac{1}{2}$ and $r_2 = \frac{\sqrt{1-\delta_s}}{2\sqrt{1+\delta_s}}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

According to Lemma 4.2 following condition must hold:

 $N_{X(s/2)}(r_1) \leq N_m(r_2).$

when $r_2 \leq r_1 \frac{\sqrt{1-\delta_s}}{\sqrt{1+\delta_s}}$. We choose $r_1 = \frac{1}{2}$ and $r_2 = \frac{\sqrt{1-\delta_s}}{2\sqrt{1+\delta_s}}$ By Lemma 4.3 and Lemma 4.4

$$\frac{(Ne/(s/2))^{s/2}}{2} \le N_{X(s/2)}(r_1) \le N_m(r_2) \le (1+\frac{2}{r_2})^m = \left(1 + \frac{4\sqrt{1+\delta_s}}{\sqrt{1-\delta_s}}\right)^n$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

According to Lemma 4.2 following condition must hold:

$$N_{X(s/2)}(r_1) \leq N_m(r_2).$$

when $r_2 \leq r_1 \frac{\sqrt{1-\delta_s}}{\sqrt{1+\delta_s}}$. We choose $r_1 = \frac{1}{2}$ and $r_2 = \frac{\sqrt{1-\delta_s}}{2\sqrt{1+\delta_s}}$ By Lemma 4.3 and Lemma 4.4

$$\frac{(Ne/(s/2))^{s/2}}{2} \le N_{X(s/2)}(r_1) \le N_m(r_2) \le (1+\frac{2}{r_2})^m = \left(1 + \frac{4\sqrt{1+\delta_s}}{\sqrt{1-\delta_s}}\right)^n$$

Taking the logarithm we get

$$m \geq \frac{s \log(2Ne/s) - \log 4}{2(\log(\sqrt{1-\delta_s} + 4\sqrt{1+\delta_s}) - \log(1-\delta_s))}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

RIP for Gaussian Matrices

Let random matrix $\mathbf{A} = (A_{ij})_{1 \le i \le m, 1 \le j \le N}$ where each A_{ij} is an independent Gaussian random variable, i.e each $A_{ij} \in N(0,1)$ with ditribution function $\phi(t)$ where

$$\phi(t) = \frac{1}{\sqrt{\pi}} \mathrm{e}^{-t^2/2}$$

Let random matrix $\mathbf{A} = (A_{ij})_{1 \le i \le m, 1 \le j \le N}$ where each A_{ij} is an independent Gaussian random variable, i.e each $A_{ij} \in N(0, 1)$ with ditribution function $\phi(t)$ where

$$\phi(t) = \frac{1}{\sqrt{\pi}} \mathrm{e}^{-t^2/2}$$

If *m* is large enough, depending on *s*, δ and *N* is will with large probability have the RIP property with constant $\delta_s = \delta$. Theorem 4.5

There is a constant C > 0 such for any $\epsilon > 0, \delta > 0$ if we let

$$m > C rac{s}{\delta^2} \log(N \mathrm{e}/(s \epsilon)).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Then the Gaussian $m \times N$ matrix **A** (as above) satisfy RIP constant $\delta_s = \delta$ with a probability not less than $1 - \epsilon$

Let **x** be a vector in \mathbb{R}^N with length $\|\mathbf{x}\|_2 = 1$ and define the random variable $T = \|\mathbf{A}\mathbf{x}\|_2^2/m$.

・ロト・日本・モート モー うへぐ

Let **x** be a vector in \mathbb{R}^N with length $\|\mathbf{x}\|_2 = 1$ and define the random variable $T = \|\mathbf{A}\mathbf{x}\|_2^2/m$. The distribution function $\psi(\tau)$ can be determined exactly:

• Write a vector-distribution function of $(Z_1, \ldots, \mathbf{z}_m)$

$$\phi((t_1,\ldots,t_m)=\pi^{-m/2}e^{-\sum_i t_i^2/2}.$$

• Set $\tau = \sum_{i} t_{i}^{2}/m$. It follows that T has distribution function $\Psi(\tau) = c_{m} \tau^{\frac{m}{2}-1} e^{-m\tau/2}$,

for some normalization constant c_m .

Let **x** be a vector in \mathbb{R}^N with length $\|\mathbf{x}\|_2 = 1$ and define the random variable $T = \|\mathbf{A}\mathbf{x}\|_2^2/m$. The distribution function $\psi(\tau)$ can be determined exactly:

• Let $Z = \mathbf{A}\mathbf{x}$ be the random columnvector with elements $Z_j, 1 \le j \le m$.

• Write a vector-distribution function of $(Z_1, \ldots, \mathbf{z}_m)$

$$\phi((t_1,\ldots,t_m)=\pi^{-m/2}e^{-\sum_i t_i^2/2}.$$

• Set $\tau = \sum_{i} t_{i}^{2}/m$. It follows that T has distribution function $\Psi(\tau) = c_{m} \tau^{\frac{m}{2}-1} e^{-m\tau/2}$,

for some normalization constant c_m .

Let **x** be a vector in \mathbb{R}^N with length $\|\mathbf{x}\|_2 = 1$ and define the random variable $T = \|\mathbf{A}\mathbf{x}\|_2^2/m$. The distribution function $\psi(\tau)$ can be determined exactly:

- Let $Z = \mathbf{A}\mathbf{x}$ be the random columnvector with elements $Z_j, 1 \le j \le m$.
- Observe that Z_j are independent randomvariables with distribution function

$$\phi(t) = \frac{1}{\sqrt{\pi}} \mathrm{e}^{-t^2/2}.$$

• Write a vector-distribution function of $(Z_1, \ldots, \mathbf{z}_m)$

$$\phi((t_1,\ldots,t_m)=\pi^{-m/2}\mathrm{e}^{-\sum_i t_i^2/2}.$$

• Set $\tau = \sum_{i} t_{i}^{2}/m$. It follows that T has distribution function $\Psi(\tau) = c_{m} \tau^{\frac{m}{2}-1} e^{-m\tau/2}$,

for some normalization constant c_m .

We take the logarithm of $\Psi(\tau)$ analyse for maximimum and estimate the second derivative.

$$\log \Psi(\tau) = \log c_m + (\frac{m}{2} - 1) \log \tau - \frac{m}{2}\tau$$

$$(\frac{m}{2} - 1)\frac{1}{\tau} - \frac{m}{2}$$
second derivative of $\Psi(\tau)$

$$-(rac{m}{2}-1)rac{1}{ au^2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We want to estimate

$$\int_{|\tau-1|>\delta} \, \Psi(\tau) d\tau$$

We want to estimate

$$\int_{| au-1|>\delta}\Psi(au)d au$$

It is less then

$$c_1 e^{-c_2 m \delta^2}$$
We want to estimate

$$\int_{| au-1|>\delta} \Psi(au) d au$$

It is less then

 $c_1 e^{-c_2 m \delta^2}$

Thus for one fixed point probability for the RIP estimate does not hold is less than $c_1 e^{-c_2 m \delta^2}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ