Mathematical Foundation for Compressed Sensing

Jan-Olov Strömberg

Royal Institute of Technology, Stockholm, Sweden
Lecture 4, February 27, 2012

An outline for today

- A short summary from last lecture:

An outline for today

- A short summary from last lecture:
- Sparse solutions and I_{1} opitmisation.

An outline for today

- A short summary from last lecture:
- Sparse solutions and I_{1} opitmisation.
- The LEIP and RIP properties which imply MP ${ }_{1}$

An outline for today

- A short summary from last lecture:
- Sparse solutions and I_{1} opitmisation.
- The LEIP and RIP properties which imply MP ${ }_{1}$
- Bi-linear RIP and Polarisation.

An outline for today

- A short summary from last lecture:
- Sparse solutions and I_{1} opitmisation.
- The LEIP and RIP properties which imply MP ${ }_{1}$
- Bi-linear RIP and Polarisation.
- A lower estimate for RIP.

An outline for today

- A short summary from last lecture:
- Sparse solutions and I_{1} opitmisation.
- The LEIP and RIP properties which imply MP ${ }_{1}$
- Bi-linear RIP and Polarisation.
- A lower estimate for RIP.

■ RIP of Random matrices.

A short summary from last lecture:

We were looking for s-sparse solutions $\mathbf{x}=\mathbf{x}_{\text {sparse }}$ of the equation

$$
\mathbf{y}=\mathbf{A} \mathbf{x}
$$

where the $m \times N$-matrix $\mathbf{A} \in \mathbb{C}^{m} \times \mathbb{C}^{N}$ and the column vector $\mathbf{y} \in \mathbb{C}^{m}$ is given, with $m \ll N$.

A short summary from last lecture:

We were looking for s-sparse solutions $\mathbf{x}=\mathbf{x}_{\text {sparse }}$ of the equation

$$
\mathbf{y}=\mathbf{A} \mathbf{x}
$$

where the $m \times N$-matrix $\mathbf{A} \in \mathbb{C}^{m} \times \mathbb{C}^{N}$ and the column vector $\mathbf{y} \in \mathbb{C}^{m}$ is given, with $m \ll N$.

Solution by minimising the I_{1} - norm:

$$
\mathbf{x}_{\text {sparse }}:=\left\{\begin{array}{l}
\operatorname{argmin}_{\mathbf{x}} \sum_{i}\left|x_{i}\right|, \\
\mathbf{A} \mathbf{x}=\mathbf{y}
\end{array}\right.
$$

A short summary from last lecture:

$M P_{1}(s)=M P_{1}(s ; m, N)$: The set of Matrices A s.t. every s-sparse vector \mathbf{x} is: the unique solution of $\left(P_{1}\right)$ for some \mathbf{y}.

A short summary from last lecture:

$M P_{1}(s)=M P_{1}(s ; m, N)$: The set of Matrices A s.t. every s-sparse vector \mathbf{x} is: the unique solution of $\left(P_{1}\right)$ for some \mathbf{y}.
We were looking at some properties for $m \times N$ - matrices $(m \ll N)$:

■ Definition: Matrix A satisfies Low Entropy Isometry Property (LEIP) with constant $\tilde{\delta}_{e}$ if

$$
\left|\|\mathbf{A} \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \leq \tilde{\delta}_{e}\|\mathbf{x}\|_{2}^{2}
$$

for all \mathbf{x} with $\operatorname{Ent}_{1}(\mathbf{x}) \leq e .$.

A short summary from last lecture:

$M P_{1}(s)=M P_{1}(s ; m, N)$: The set of Matrices A s.t. every s-sparse vector \mathbf{x} is: the unique solution of $\left(P_{1}\right)$ for some \mathbf{y}.
We were looking at some properties for $m \times N$ - matrices $(m \ll N)$:

■ Definition: Matrix A satisfies Low Entropy Isometry Property (LEIP) with constant $\tilde{\delta}_{e}$ if

$$
\left|\|\mathbf{A} \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \leq \tilde{\delta}_{e}\|\mathbf{x}\|_{2}^{2}
$$

for all \mathbf{x} with $\operatorname{Ent}_{1}(\mathbf{x}) \leq e .$.
■ Definition: Matrix A satisfies Restricted Isometry Property (RIP) with constant δ_{s} if

$$
\left|\|\mathbf{A} \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \leq \delta_{s}\|\mathbf{x}\|_{2}^{2}
$$

for all s - sparse vectors \mathbf{x}.

A short summary from last lecture:

$M P_{1}(s)=M P_{1}(s ; m, N)$: The set of Matrices A s.t. every s-sparse vector \mathbf{x} is: the unique solution of $\left(P_{1}\right)$ for some \mathbf{y}.
We were looking at some properties for $m \times N$ - matrices
$(m \ll N)$:
■ Definition: Matrix A satisfies Low Entropy Isometry Property (LEIP) with constant $\tilde{\delta}_{e}$ if

$$
\left|\|\mathbf{A} \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \leq \tilde{\delta}_{e}\|\mathbf{x}\|_{2}^{2}
$$

for all \mathbf{x} with $\operatorname{Ent}_{1}(\mathbf{x}) \leq e .$.
■ Definition: Matrix A satisfies Restricted Isometry Property (RIP) with constant δ_{s} if

$$
\left|\|\mathbf{A} \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \leq \delta_{s}\|\mathbf{x}\|_{2}^{2}
$$

for all s - sparse vectors \mathbf{x}.

A short summary from last lecture:

We got the easy :
Theorem 3.1: If $e \leq 2 \sqrt{s}$ and the matrix \mathbf{A} has the LEIP-property with constant $\tilde{\delta}_{e}<1$ then $\mathbf{A} \in \mathrm{MP}_{1}(s)$.

A short summary from last lecture:

We got the easy :
Theorem 3.1: If $e \leq 2 \sqrt{s}$ and the matrix \mathbf{A} has the LEIP-property with constant $\tilde{\delta}_{e}<1$ then $\mathbf{A} \in \mathrm{MP}_{1}(s)$.

With little more effort we got:
Theorem 3.3: If \mathbf{A} fulfils the RIP property with constant $\delta_{2 s}<\sqrt{2}-1 \approx 0.412 \ldots$, then $\mathbf{A} \in \mathrm{MP}_{1}(s)$.

A short summary from last lecture:

We got the easy :
Theorem 3.1: If $e \leq 2 \sqrt{s}$ and the matrix \mathbf{A} has the LEIP-property with constant $\tilde{\delta}_{e}<1$ then $\mathbf{A} \in \mathrm{MP}_{1}(s)$.

With little more effort we got:
Theorem 3.3: If \mathbf{A} fulfils the RIP property with constant $\delta_{2 s}<\sqrt{2}-1 \approx 0.412 \ldots$, then $\mathbf{A} \in \mathrm{MP}_{1}(s)$.

New for today:

A short summary from last lecture:

We got the easy :
Theorem 3.1: If $e \leq 2 \sqrt{s}$ and the matrix \mathbf{A} has the LEIP-property with constant $\tilde{\delta}_{e}<1$ then $\mathbf{A} \in \mathrm{MP}_{1}(s)$.

With little more effort we got:
Theorem 3.3: If \mathbf{A} fulfils the RIP property with constant $\delta_{2 s}<\sqrt{2}-1 \approx 0.412 \ldots$, then $\mathbf{A} \in \mathrm{MP}_{1}(s)$.

New for today:
Best known: enough with $\frac{\delta_{2 s}}{\sqrt{1-\delta_{2 s}^{2}}}<\frac{1}{\sqrt{2}}$. Thus it is enough with $\delta_{2 s}<\frac{1}{\sqrt{3}} \approx 0.577 \ldots$

A short summary from last lecture:

One essential estimate for the proof of Theorem 3.3 is :

A short summary from last lecture:

One essential estimate for the proof of Theorem 3.3 is : Lemma 3.5: If \mathbf{A} satisfies RIP properties and $\mathbf{A} \mathbf{x}=0$, then

$$
\left\|\mathbf{x}_{S_{1}}\right\|_{2} \leq \frac{\delta_{2 s}}{1-\delta_{s}} \sum_{k=2}\left\|\mathbf{x}_{S_{k}}\right\|_{2}
$$

A short summary from last lecture:

One essential estimate for the proof of Theorem 3.3 is : Lemma 3.5: If \mathbf{A} satisfies RIP properties and $\mathbf{A} \mathbf{x}=0$, then

$$
\left\|\mathbf{x}_{S_{1}}\right\|_{2} \leq \frac{\delta_{2 s}}{1-\delta_{s}} \sum_{k=2}\left\|\mathbf{x}_{S_{k}}\right\|_{2}
$$

New for today:

A short summary from last lecture:

One essential estimate for the proof of Theorem 3.3 is :
Lemma 3.5: If \mathbf{A} satisfies RIP properties and $\mathbf{A} \mathbf{x}=0$, then

$$
\left\|\mathbf{x}_{S_{1}}\right\|_{2} \leq \frac{\delta_{2 s}}{1-\delta_{s}} \sum_{k=2}\left\|\mathbf{x}_{S_{k}}\right\|_{2}
$$

New for today:
Remark: With some effort the constant $\frac{\delta_{2 s}}{1-\delta_{s}}$ in Lemma 3.5 can be replaced by to $\frac{\delta_{2 s}}{\sqrt{1-\delta_{2 s}^{2}}}$.

A short summary from last lecture:

For s-sparse vetors \mathbf{x} and \mathbf{z} we have the bi-linear version of the RIP:

$$
|\langle\mathbf{A} \mathbf{x}, \mathbf{A} \mathbf{z}\rangle-\langle\mathbf{x}, \mathbf{z}\rangle| \leq \delta_{2 s}\|\mathbf{x}\|_{2}\|\mathbf{z}\|_{2}
$$

by polarization of the RIP estimate with the vectors $\mathbf{x} \pm \mathbf{z}$.

A lower estimate for RIP.

A $m \times N$ matrix cannot satisfy a RIP with $\delta_{s}<1$ unless m is large enough, depending on s an N.

A lower estimate for RIP.

A $m \times N$ matrix cannot satisfy a RIP with $\delta_{s}<1$ unless m is large enough, depending on s an N.

Theorem 4.1 If $\delta_{s}<1$ there is a constant $C>0$ such that if any $m \times N$ matrix \mathbf{A} har RIP with constant δ_{s}, then

$$
m>C s \log (\mathrm{Ne} / s)
$$

A lower estimate for RIP.

Some notatations and Preliminaries: Let S be an index subset and let X_{S} be the set of vectors \mathbf{x} in \mathbb{C}^{N} with non-zero element contained in S.

A lower estimate for RIP.

Some notatations and Preliminaries: Let S be an index subset and let X_{S} be the set of vectors \mathbf{x} in \mathbb{C}^{N} with non-zero element contained in S.
Then the set of s - sparse vectors is

$$
X(s)=\cup_{|S|=s} X_{S},
$$

where the union is taken over all subsets S of $[1, \ldots, N]$ with length s.

A lower estimate for RIP.

Some notatations and Preliminaries: Let S be an index subset and let X_{S} be the set of vectors \mathbf{x} in \mathbb{C}^{N} with non-zero element contained in S.
Then the set of s - sparse vectors is

$$
X(s)=\cup_{|S|=s} X_{S},
$$

where the union is taken over all subsets S of $[1, \ldots, N]$ with length s. The number of such subsets is $\binom{N}{s}$.

A lower estimate for RIP.

Some notatations and Preliminaries: Let S be an index subset and let X_{S} be the set of vectors \mathbf{x} in \mathbb{C}^{N} with non-zero element contained in S.
Then the set of s - sparse vectors is

$$
X(s)=\cup_{|S|=s} X_{S},
$$

where the union is taken over all subsets S of $[1, \ldots, N]$ with length s. The number of such subsets is $\binom{N}{s}$. By Stirlings formula $\left(n!\approx\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n}\right)$:

$$
\binom{N}{s} \sim \frac{N^{N+\frac{1}{2}}}{\sqrt{2 \pi}(N-s)^{N-s+\frac{1}{2}} s^{s+\frac{1}{2}}}
$$

If $s \ll N$ this is approximately equal to

$$
(\mathrm{Ne} / \mathrm{s})^{s} / \sqrt{2 \pi s}
$$

A lower estimate for RIP.

Definitions

A lower estimate for RIP.

Definitions

Let $0<r<1$, and let $N_{m}(r)$ be the maximal number of points $\left\{\mathbf{x}_{i}\right\}$ in a set in the unit ball $B_{m}=\left\{\mathbf{x} \in \mathbb{R}^{m}:\|\mathbf{x}\|_{2} \leq 1\right.$ in \mathbb{R}^{m} such that

$$
\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}>r \text { for all } i \neq j
$$

A lower estimate for RIP.

Definitions

Let $0<r<1$, and let $N_{m}(r)$ be the maximal number of points $\left\{\mathbf{x}_{i}\right\}$ in a set in the unit ball $B_{m}=\left\{\mathbf{x} \in \mathbb{R}^{m}:\|\mathbf{x}\|_{2} \leq 1\right.$ in \mathbb{R}^{m} such that

$$
\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}>r \text { for all } i \neq j
$$

Let $0<r<1$, and $N_{X(s)}(r)$ be the maximal number of points $\left\{x_{i}\right\}$ in a set in $X(s) \cap B_{N}$ such that

$$
\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}>r \text { for all } i \neq j
$$

A lower estimate for RIP.

Recall:
$A \in \mathrm{RIP}$ with constant δ_{s} means:

$$
\sqrt{1-\delta_{s}}\|\mathbf{x}\|_{2} \leq\|\mathbf{A} \mathbf{x}\|_{2} \leq \sqrt{1+\delta_{s}}\|\mathbf{x}\|_{2} \text { for } \mathbf{x} \in X(s)
$$

A lower estimate for RIP.

Recall:

$A \in \mathrm{RIP}$ with constant δ_{s} means:

$$
\sqrt{1-\delta_{s}}\|\mathbf{x}\|_{2} \leq\|\mathbf{A} \mathbf{x}\|_{2} \leq \sqrt{1+\delta_{s}}\|\mathbf{x}\|_{2} \text { for } \mathbf{x} \in X(s)
$$

This make it possible to estimate $N_{X(s / 2)}\left(r_{1}\right)$ by $N_{m}\left(r_{2}\right)$.
Lemma 4.2: Suppose there exist a real $m \times N$ matrix \mathbf{A} has the RIP property for s - sparse with constant δ_{s}.

A lower estimate for RIP.

Recall:

$A \in \mathrm{RIP}$ with constant δ_{s} means:

$$
\sqrt{1-\delta_{s}}\|\mathbf{x}\|_{2} \leq\|\mathbf{A} \mathbf{x}\|_{2} \leq \sqrt{1+\delta_{s}}\|\mathbf{x}\|_{2} \text { for } \mathbf{x} \in X(s)
$$

This make it possible to estimate $N_{X(s / 2)}\left(r_{1}\right)$ by $N_{m}\left(r_{2}\right)$.
Lemma 4.2: Suppose there exist a real $m \times N$ matrix \mathbf{A} has the RIP property for s - sparse with constant δ_{s}. Let $0<r_{1}, r_{2}<1$, with

$$
r_{2} \leq r_{1} \frac{\sqrt{1-\delta_{s}}}{\sqrt{1+\delta_{s}}}
$$

A lower estimate for RIP.

Recall:

$A \in \mathrm{RIP}$ with constant δ_{s} means:

$$
\sqrt{1-\delta_{s}}\|\mathbf{x}\|_{2} \leq\|\mathbf{A} \mathbf{x}\|_{2} \leq \sqrt{1+\delta_{s}}\|\mathbf{x}\|_{2} \text { for } \mathbf{x} \in X(s)
$$

This make it possible to estimate $N_{X(s / 2)}\left(r_{1}\right)$ by $N_{m}\left(r_{2}\right)$.
Lemma 4.2: Suppose there exist a real $m \times N$ matrix \mathbf{A} has the RIP property for s - sparse with constant δ_{s}. Let $0<r_{1}, r_{2}<1$, with

$$
r_{2} \leq r_{1} \frac{\sqrt{1-\delta_{s}}}{\sqrt{1+\delta_{s}}}
$$

then

$$
N_{X(s / 2)}\left(r_{1}\right) \leq N_{m}\left(r_{2}\right)
$$

A lower estimate for RIP.

Proof: Let $N=N_{X(s / 2)}\left(r_{1}\right)$ and let $\left\{\mathbf{x}_{i}\right\}_{1}^{N}$ in $X(s / 2) \cap B_{N}$ such that $\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}>r_{1}$ for all $i \neq j$.

A lower estimate for RIP.

Proof: Let $N=N_{X(s / 2)}\left(r_{1}\right)$ and let $\left\{\mathbf{x}_{i}\right\}_{1}^{N}$ in $X(s / 2) \cap B_{N}$ such that $\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}>r_{1}$ for all $i \neq j$.
It follows from RIP that $\mathbf{A} \mathbf{x}_{i}$ is contained in the ball in \mathbb{R}^{m} with radius $r_{3}=\left(1+\delta_{s}\right)$.

A lower estimate for RIP.

Proof: Let $N=N_{X(s / 2)}\left(r_{1}\right)$ and let $\left\{\mathbf{x}_{i}\right\}_{1}^{N}$ in $X(s / 2) \cap B_{N}$ such that $\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}>r_{1}$ for all $i \neq j$.
It follows from RIP that $\mathbf{A} \mathbf{x}_{i}$ is contained in the ball in \mathbb{R}^{m} with radius $r_{3}=\left(1+\delta_{s}\right)$.
Let $Y=\left\{\mathbf{y}_{i}\right\}_{1}^{N}$ with $\mathbf{y}_{j}=\mathbf{A} \mathbf{x}_{j} / r_{3}$ is a set in B_{m} and

$$
\left\|\mathbf{y}_{i}-\mathbf{y}_{j}\right\|_{2} \geq\left(1-\delta_{s}\right)\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\| / r_{3}>\left(1-\delta_{s}\right) r_{1} / r_{3} \geq r_{2}
$$

A lower estimate for RIP.

Proof: Let $N=N_{X(s / 2)}\left(r_{1}\right)$ and let $\left\{\mathbf{x}_{i}\right\}_{1}^{N}$ in $X(s / 2) \cap B_{N}$ such that $\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}>r_{1}$ for all $i \neq j$.
It follows from RIP that $\mathbf{A} \mathbf{x}_{i}$ is contained in the ball in \mathbb{R}^{m} with radius $r_{3}=\left(1+\delta_{s}\right)$.
Let $Y=\left\{\mathbf{y}_{i}\right\}_{1}^{N}$ with $\mathbf{y}_{j}=\mathbf{A} \mathbf{x}_{j} / r_{3}$ is a set in B_{m} and

$$
\left\|\mathbf{y}_{i}-\mathbf{y}_{j}\right\|_{2} \geq\left(1-\delta_{s}\right)\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\| / r_{3}>\left(1-\delta_{s}\right) r_{1} / r_{3} \geq r_{2} .
$$

It follows than $N_{m}\left(r_{2}\right) \geq N=N_{X(s / 2)}\left(r_{1}\right)$.
The proof of Lemma 4.2 is complete.

A lower estimate for RIP.

Lemma 4.3 Let $0<r<1$, then

A lower estimate for RIP.

Lemma 4.3 Let $0<r<1$, then

$$
\left(\frac{1}{r}\right)^{m} \leq N_{m}(r) \leq\left(1+\frac{2}{r}\right)^{m}
$$

A lower estimate for RIP.

Lemma 4.3 Let $0<r<1$, then

$$
\begin{gathered}
\left(\frac{1}{r}\right)^{m} \leq N_{m}(r) \leq\left(1+\frac{2}{r}\right)^{m}, \\
N_{X(s)} \leq\binom{ N}{s}\left(1+\frac{2}{r}\right)^{s} \sim\left(N \mathrm{e}\left(1+\frac{2}{r}\right) / s\right)^{s} / \sqrt{2 \pi s}
\end{gathered}
$$

Proof:

A lower estimate for RIP.

Lemma 4.3 Let $0<r<1$, then

$$
\begin{gathered}
\left(\frac{1}{r}\right)^{m} \leq N_{m}(r) \leq\left(1+\frac{2}{r}\right)^{m}, \\
N_{X(s)} \leq\binom{ N}{s}\left(1+\frac{2}{r}\right)^{s} \sim\left(N \mathrm{e}\left(1+\frac{2}{r}\right) / s\right)^{s} / \sqrt{2 \pi s}
\end{gathered}
$$

Proof:

- If the $N_{m}(r)$ balls of radius r and centered at the points \mathbf{x}_{i} would not cover B_{m} we can find one more such points, i.e $N_{m}(r)$ is not the maximal value.

A lower estimate for RIP.

Lemma 4.3 Let $0<r<1$, then

$$
\begin{gathered}
\left(\frac{1}{r}\right)^{m} \leq N_{m}(r) \leq\left(1+\frac{2}{r}\right)^{m}, \\
N_{X(s)} \leq\binom{ N}{s}\left(1+\frac{2}{r}\right)^{s} \sim\left(N \mathrm{e}\left(1+\frac{2}{r}\right) / s\right)^{s} / \sqrt{2 \pi s}
\end{gathered}
$$

Proof:

- If the $N_{m}(r)$ balls of radius r and centered at the points \mathbf{x}_{i} would not cover B_{m} we can find one more such points, i.e $N_{m}(r)$ is not the maximal value.
- The disjoint balls centered at the points \mathbf{x}_{i} and with radius $\frac{1}{2}$ are contained in the ball centered at the 0 with radius $1+\frac{r}{2}$

A lower estimate for RIP.

To prove Theorem 4.2 (a lower estimate for m for RIP) we also to estimate $N_{X(s)}$ from below.

A lower estimate for RIP.

To prove Theorem 4.2 (a lower estimate for m for RIP) we also to estimate $N_{X(s)}$ from below.
Lemma 4.4

$$
N_{X(s)}\left(\frac{1}{2}\right) \geq \frac{1}{2}(\mathrm{Ne} /(s / 2))^{s / 2}
$$

A lower estimate for RIP.

To prove Theorem 4.2 (a lower estimate for m for RIP) we also to estimate $N_{X(s)}$ from below.
Lemma 4.4

$$
N_{X(s)}\left(\frac{1}{2}\right) \geq \frac{1}{2}(\mathrm{Ne} /(s / 2))^{s / 2}
$$

Proof:

A lower estimate for RIP.

To prove Theorem 4.2 (a lower estimate for m for RIP) we also to estimate $N_{X(s)}$ from below.
Lemma 4.4

$$
N_{X(s)}\left(\frac{1}{2}\right) \geq \frac{1}{2}(\mathrm{Ne} /(\mathrm{s} / 2))^{s / 2}
$$

Proof:

- Define W a set of points in $X(s)$ as:

$$
W=\left\{\mathbf{x} \in X(s): x_{j}=\{-1,0,1\}\right\}
$$

A lower estimate for RIP.

To prove Theorem 4.2 (a lower estimate for m for RIP) we also to estimate $N_{X(s)}$ from below.
Lemma 4.4

$$
N_{X(s)}\left(\frac{1}{2}\right) \geq \frac{1}{2}(\mathrm{Ne} /(\mathrm{s} / 2))^{s / 2}
$$

Proof:

- Define W a set of points in $X(s)$ as:

$$
W=\left\{\mathbf{x} \in X(s): x_{j}=\{-1,0,1\}\right\}
$$

- we see that W contains more than

$$
2^{s}\binom{N}{s} \approx(2 \mathrm{Ne} / s)^{s} \sqrt{2 \pi s}
$$

vectors, all with norm $\|\mathbf{x}\|_{2} \leq \sqrt{s}$.

A lower estimate for RIP.

■ we are seleceting a subset $X=\left\{\mathbf{x}_{i}\right\}$ of W, satisfying $\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}>\sqrt{s} / 2$ by
1 Start with letting $j=1$ and the remaing set of points $W^{\prime}=W$

A lower estimate for RIP.

■ we are seleceting a subset $X=\left\{\mathbf{x}_{i}\right\}$ of W, satisfying $\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}>\sqrt{s} / 2$ by
1 Start with letting $j=1$ and the remaing set of points $W^{\prime}=W$
2 Pick one vector \mathbf{x}_{j} in in W^{\prime} and put it in the set X.

A lower estimate for RIP.

■ we are seleceting a subset $X=\left\{\mathbf{x}_{i}\right\}$ of W, satisfying $\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}>\sqrt{s} / 2$ by
1 Start with letting $j=1$ and the remaing set of points $W^{\prime}=W$
2 Pick one vector \mathbf{x}_{j} in in W^{\prime} and put it in the set X.
3 Remove from W^{\prime} all vector \mathbf{z} such that $\left\|\mathbf{z}-\mathbf{x}_{j}\right\|_{2} \leq \sqrt{s} / 2$.

A lower estimate for RIP.

■ we are seleceting a subset $X=\left\{\mathbf{x}_{i}\right\}$ of W, satisfying $\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}>\sqrt{s} / 2$ by
1 Start with letting $j=1$ and the remaing set of points $W^{\prime}=W$
2 Pick one vector \mathbf{x}_{j} in in W^{\prime} and put it in the set X.
3 Remove from W^{\prime} all vector \mathbf{z} such that $\left\|\mathbf{z}-\mathbf{x}_{j}\right\|_{2} \leq \sqrt{s} / 2$.
4 If W^{\prime} is not empty set $j=: j+1$ and go back to step 2

A lower estimate for RIP.

■ we are seleceting a subset $X=\left\{\mathbf{x}_{i}\right\}$ of W, satisfying $\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}>\sqrt{s} / 2$ by
1 Start with letting $j=1$ and the remaing set of points $W^{\prime}=W$
2 Pick one vector \mathbf{x}_{j} in in W^{\prime} and put it in the set X.
3 Remove from W^{\prime} all vector \mathbf{z} such that $\left\|\mathbf{z}-\mathbf{x}_{j}\right\|_{2} \leq \sqrt{s} / 2$.
4 If W^{\prime} is not empty set $j=: j+1$ and go back to step 2
5 When W^{\prime} is empty we are finished.

A lower estimate for RIP.

■ Note that for any fixed j and $\left\|\mathbf{z}-\mathbf{x}_{j}\right\|_{2} \leq \sqrt{s} / 2$ then entries of $\mathbf{z}-\mathbf{x}_{j}$ are in $\left.\{-2,-1,0,1,2\}\right\}$ and that $\mathbf{z}-\mathbf{x}_{j}$ is in $X(s / 2)$.

A lower estimate for RIP.

■ Note that for any fixed j and $\left\|\mathbf{z}-\mathbf{x}_{j}\right\|_{2} \leq \sqrt{s} / 2$ then entries of $\mathbf{z}-\mathbf{x}_{j}$ are in $\left.\{-2,-1,0,1,2\}\right\}$ and that $\mathbf{z}-\mathbf{x}_{j}$ is in $X(s / 2)$.

- For any fixed $\mathbf{x}_{j} \in X$ the number of points \mathbf{z} such that $\left\|\mathbf{z}-\mathbf{x}_{j}\right\|_{2} \leq \sqrt{s} / 2$ is estimated by

$$
\sum_{k=0}^{s / 2}\binom{N}{s} 4^{k} \approx \sum_{k=0}^{s / 2} \frac{(4 \mathrm{Ne} / k)^{k}}{\sqrt{2 \pi k}} \approx \frac{(8 \mathrm{Ne} / \mathrm{s})^{s / 2}}{\sqrt{4 \pi s}}
$$

A lower estimate for RIP.

■ Note that for any fixed j and $\left\|\mathbf{z}-\mathbf{x}_{j}\right\|_{2} \leq \sqrt{s} / 2$ then entries of $\mathbf{z}-\mathbf{x}_{j}$ are in $\left.\{-2,-1,0,1,2\}\right\}$ and that $\mathbf{z}-\mathbf{x}_{j}$ is in $X(s / 2)$.

- For any fixed $\mathbf{x}_{j} \in X$ the number of points \mathbf{z} such that $\left\|\mathbf{z}-\mathbf{x}_{j}\right\|_{2} \leq \sqrt{s} / 2$ is estimated by

$$
\sum_{k=0}^{s / 2}\binom{N}{s} 4^{k} \approx \sum_{k=0}^{s / 2} \frac{(4 \mathrm{Ne} / k)^{k}}{\sqrt{2 \pi k}} \approx \frac{(8 \mathrm{Ne} / \mathrm{s})^{s / 2}}{\sqrt{4 \pi s}}
$$

- We conclude that the process does not end before

$$
|X| \geq \approx \frac{(2 \mathrm{Ne} / \mathrm{s})^{s} / \sqrt{2 \pi s}}{(8 \mathrm{Ne} / s)^{s / 2} / \sqrt{4 \pi s}}=\frac{(\mathrm{Ne} /(\mathrm{s} / 2))^{s / 2}}{\sqrt{2}}
$$

A lower estimate for RIP.

■ Note that for any fixed j and $\left\|\mathbf{z}-\mathbf{x}_{j}\right\|_{2} \leq \sqrt{s} / 2$ then entries of $\mathbf{z}-\mathbf{x}_{j}$ are in $\left.\{-2,-1,0,1,2\}\right\}$ and that $\mathbf{z}-\mathbf{x}_{j}$ is in $X(s / 2)$.

- For any fixed $\mathbf{x}_{j} \in X$ the number of points \mathbf{z} such that $\left\|\mathbf{z}-\mathbf{x}_{j}\right\|_{2} \leq \sqrt{s} / 2$ is estimated by

$$
\sum_{k=0}^{s / 2}\binom{N}{s} 4^{k} \approx \sum_{k=0}^{s / 2} \frac{(4 \mathrm{Ne} / k)^{k}}{\sqrt{2 \pi k}} \approx \frac{(8 \mathrm{Ne} / \mathrm{s})^{s / 2}}{\sqrt{4 \pi s}}
$$

- We conclude that the process does not end before

$$
|X| \geq \approx \frac{(2 \mathrm{Ne} / \mathrm{s})^{s} / \sqrt{2 \pi s}}{(8 \mathrm{Ne} / s)^{s / 2} / \sqrt{4 \pi s}}=\frac{(\mathrm{Ne} /(\mathrm{s} / 2))^{s / 2}}{\sqrt{2}}
$$

A lower estimate for RIP.

■ Note that for any fixed j and $\left\|\mathbf{z}-\mathbf{x}_{j}\right\|_{2} \leq \sqrt{s} / 2$ then entries of $\mathbf{z}-\mathbf{x}_{j}$ are in $\left.\{-2,-1,0,1,2\}\right\}$ and that $\mathbf{z}-\mathbf{x}_{j}$ is in $X(s / 2)$.

- For any fixed $\mathbf{x}_{j} \in X$ the number of points \mathbf{z} such that $\left\|\mathbf{z}-\mathbf{x}_{j}\right\|_{2} \leq \sqrt{s} / 2$ is estimated by

$$
\sum_{k=0}^{s / 2}\binom{N}{s} 4^{k} \approx \sum_{k=0}^{s / 2} \frac{(4 \mathrm{Ne} / k)^{k}}{\sqrt{2 \pi k}} \approx \frac{(8 \mathrm{Ne} / \mathrm{s})^{s / 2}}{\sqrt{4 \pi s}}
$$

- We conclude that the process does not end before

$$
|X| \geq \approx \frac{(2 \mathrm{Ne} / \mathrm{s})^{s} / \sqrt{2 \pi s}}{(8 \mathrm{Ne} / s)^{s / 2} / \sqrt{4 \pi s}}=\frac{(\mathrm{Ne} /(\mathrm{s} / 2))^{s / 2}}{\sqrt{2}}
$$

Thus $N_{X(s)}(s) \geq \frac{1}{2}(N e /(s / 2))^{s / 2}$.

Proof of Theorem 4.1

According to Lemma 4.2 following condition must hold:

$$
N_{X(s / 2)}\left(r_{1}\right) \leq N_{m}\left(r_{2}\right)
$$

when $r_{2} \leq r_{1} \frac{\sqrt{1-\delta_{s}}}{\sqrt{1+\delta_{s}}}$.

Proof of Theorem 4.1

According to Lemma 4.2 following condition must hold:

$$
N_{X(s / 2)}\left(r_{1}\right) \leq N_{m}\left(r_{2}\right)
$$

when $r_{2} \leq r_{1} \frac{\sqrt{1-\delta_{s}}}{\sqrt{1+\delta_{s}}}$. We choose $r_{1}=\frac{1}{2}$ and $r_{2}=\frac{\sqrt{1-\delta_{s}}}{2 \sqrt{1+\delta_{s}}}$

Proof of Theorem 4.1

According to Lemma 4.2 following condition must hold:

$$
N_{X(s / 2)}\left(r_{1}\right) \leq N_{m}\left(r_{2}\right)
$$

when $r_{2} \leq r_{1} \frac{\sqrt{1-\delta_{s}}}{\sqrt{1+\delta_{s}}}$. We choose $r_{1}=\frac{1}{2}$ and $r_{2}=\frac{\sqrt{1-\delta_{s}}}{2 \sqrt{1+\delta_{s}}}$ By
Lemma 4.3 and Lemma 4.4
$\frac{(\mathrm{Ne} /(s / 2))^{s / 2}}{2} \leq N_{X(s / 2)}\left(r_{1}\right) \leq N_{m}\left(r_{2}\right) \leq\left(1+\frac{2}{r_{2}}\right)^{m}=\left(1+\frac{4 \sqrt{1+\delta_{s}}}{\sqrt{1-\delta_{s}}}\right)$

Proof of Theorem 4.1

According to Lemma 4.2 following condition must hold:

$$
N_{X(s / 2)}\left(r_{1}\right) \leq N_{m}\left(r_{2}\right)
$$

when $r_{2} \leq r_{1} \frac{\sqrt{1-\delta_{s}}}{\sqrt{1+\delta_{s}}}$. We choose $r_{1}=\frac{1}{2}$ and $r_{2}=\frac{\sqrt{1-\delta_{s}}}{2 \sqrt{1+\delta_{s}}}$ By
Lemma 4.3 and Lemma 4.4
$\frac{(N \mathrm{ee} /(s / 2))^{s / 2}}{2} \leq N_{X(s / 2)}\left(r_{1}\right) \leq N_{m}\left(r_{2}\right) \leq\left(1+\frac{2}{r_{2}}\right)^{m}=\left(1+\frac{4 \sqrt{1+\delta_{s}}}{\sqrt{1-\delta_{s}}}\right)$
Taking the logarithm we get

$$
m \geq \frac{s \log (2 \mathrm{Ne} / s)-\log 4}{2\left(\log \left(\sqrt{1-\delta_{s}}+4 \sqrt{1+\delta_{s}}\right)-\log \left(1-\delta_{s}\right)\right)}
$$

RIP for Gaussian Matrices

Let random matrix $\mathbf{A}=\left(A_{i j}\right)_{1 \leq i \leq m, 1 \leq j \leq N}$ where each $A_{i j}$ is an independent Gaussian random variable, i.e each $A_{i j} \in N(0,1)$ with ditribution function $\phi(t)$ where

$$
\phi(t)=\frac{1}{\sqrt{\pi}} \mathrm{e}^{-t^{2} / 2}
$$

RIP for Gaussian Matrices

Let random matrix $\mathbf{A}=\left(A_{i j}\right)_{1 \leq i \leq m, 1 \leq j \leq N}$ where each $A_{i j}$ is an independent Gaussian random variable, i.e each $A_{i j} \in N(0,1)$ with ditribution function $\phi(t)$ where

$$
\phi(t)=\frac{1}{\sqrt{\pi}} \mathrm{e}^{-t^{2} / 2} .
$$

If m is large enough, depending on s, δ and N is will with large probability have the RIP property with constant $\delta_{s}=\delta$. Theorem 4.5

There is a constant $C>0$ such for any $\epsilon>0, \delta>0$ if we let

$$
m>C \frac{s}{\delta^{2}} \log (N e /(s \epsilon)
$$

Then the Gaussian $m \times N$ matrix \mathbf{A} (as above) satisfy RIP constant $\delta_{s}=\delta$ with a probability not less than $1-\epsilon$

RIP for Gaussian Matrices

Proof of Theorem 4.5:
Let \mathbf{x} be a vector in R^{N} with length $\|\mathbf{x}\|_{2}=1$ and define the random variable $T=\|\mathbf{A} \mathbf{x}\|_{2}^{2} / m$.

RIP for Gaussian Matrices

Proof of Theorem 4.5:
Let \mathbf{x} be a vector in R^{N} with length $\|\mathbf{x}\|_{2}=1$ and define the random variable $T=\|\mathbf{A} \mathbf{x}\|_{2}^{2} / m$. The distribution function $\psi(\tau)$ can be determined exactly:

■ Write a vector-distriubtion function of $\left(Z_{1}, \ldots, \mathbf{z}_{m}\right)$

$$
\phi\left(\left(t_{1} \ldots, t_{m}\right)=\pi^{-m / 2} \mathrm{e}^{-\sum_{i} t_{i}^{2} / 2}\right.
$$

- Set $\tau=\sum_{i} t_{i}^{2} / m$. It follows that T has distribution function

$$
\Psi(\tau)=c_{m} \tau^{\frac{m}{2}-1} \mathrm{e}^{-m \tau / 2}
$$

for some normalization constant c_{m}

RIP for Gaussian Matrices

Proof of Theorem 4.5:

Let \mathbf{x} be a vector in R^{N} with length $\|\mathbf{x}\|_{2}=1$ and define the random variable $T=\|\mathbf{A} \mathbf{x}\|_{2}^{2} / m$. The distribution function $\psi(\tau)$ can be determined exactly:

- Let $Z=\mathbf{A x}$ be the random columnvector with elements

$$
Z_{j}, 1 \leq j \leq m
$$

■ Write a vector-distriubtion function of $\left(Z_{1}, \ldots, \mathbf{z}_{m}\right)$

$$
\phi\left(\left(t_{1} \ldots, t_{m}\right)=\pi^{-m / 2} \mathrm{e}^{-\sum_{i} t_{i}^{2} / 2}\right.
$$

- Set $\tau=\sum_{i} t_{i}^{2} / m$. It follows that T has distribution function

$$
\Psi(\tau)=c_{m} \tau^{\frac{m}{2}-1} \mathrm{e}^{-m \tau / 2}
$$

for some normalization constant c_{m}

RIP for Gaussian Matrices

Proof of Theorem 4.5:

Let \mathbf{x} be a vector in R^{N} with length $\|\mathbf{x}\|_{2}=1$ and define the random variable $T=\|\mathbf{A} \mathbf{x}\|_{2}^{2} / m$. The distribution function $\psi(\tau)$ can be determined exactly:

- Let $Z=\mathbf{A x}$ be the random columnvector with elements $Z_{j}, 1 \leq j \leq m$.
■ Observe that Z_{j} are independent randomvariables with distribution function

$$
\phi(t)=\frac{1}{\sqrt{\pi}} \mathrm{e}^{-t^{2} / 2}
$$

■ Write a vector-distriubtion function of $\left(Z_{1}, \ldots, \mathbf{z}_{m}\right)$

$$
\phi\left(\left(t_{1} \ldots, t_{m}\right)=\pi^{-m / 2} \mathrm{e}^{-\sum_{i} t_{i}^{2} / 2} .\right.
$$

■ Set $\tau=\sum_{i} t_{i}^{2} / m$. It follows that T has distribution function

$$
\Psi(\tau)=c_{m} \tau^{\frac{m}{2}-1} \mathrm{e}^{-m \tau / 2}
$$

for some normalization constant c_{m}.

RIP for Gaussian Matrices

We take the logarithm of $\Psi(\tau)$ analyse for maximimum and estimate the second derivative.

$$
\log \Psi(\tau)=\log c_{m}+\left(\frac{m}{2}-1\right) \log \tau-\frac{m}{2} \tau
$$

- derivative $\Psi(\tau)$

$$
\left(\frac{m}{2}-1\right) \frac{1}{\tau}-\frac{m}{2}
$$

- second derivative of $\Psi(\tau)$

$$
-\left(\frac{m}{2}-1\right) \frac{1}{\tau^{2}}
$$

We want to estimate

$$
\int_{|\tau-1|>\delta} \Psi(\tau) d \tau
$$

We want to estimate

$$
\int_{|\tau-1|>\delta} \Psi(\tau) d \tau
$$

It is less then

$$
c_{1} \mathrm{e}^{-c_{2} m \delta^{2}}
$$

We want to estimate

$$
\int_{|\tau-1|>\delta} \Psi(\tau) d \tau
$$

It is less then

$$
c_{1} \mathrm{e}^{-c_{2} m \delta^{2}}
$$

Thus for one fixed point probability for the RIP estimate does not hold is less than $c_{1} \mathrm{e}^{-c_{2} m \delta^{2}}$.

