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An outline for today

A short summary from last lecture:

Sparse solutions and l1 opitmisation.
The LEIP and RIP properties which imply MP1

Bi-linear RIP and Polarisation.

A lower estimate for RIP.

RIP of Random matrices.
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A short summary from last lecture:

We were looking for s-sparse solutions x = xsparse of the equation

y = Ax,

where the m × N-matrix A ∈ Cm × CN and the column vector
y ∈ Cm is given, with m << N.

Solution by minimising the l1 - norm:

xsparse :=

{
argminx

∑
i |xi |,

Ax = y.
(P1)
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A short summary from last lecture:

MP1(s) = MP1(s;m,N): The set of Matrices A s.t. every s-sparse
vector x is: the unique solution of (P1) for some y.

We were looking at some properties for m × N - matrices
(m << N):

Definition: Matrix A satisfies Low Entropy Isometry Property
(LEIP) with constant δ̃e if

|‖Ax‖22 − ‖x‖22| ≤ δ̃e‖x‖22,

for all x with Ent1(x) ≤ e..

Definition: Matrix A satisfies Restricted Isometry Property
(RIP) with constant δs if

|‖Ax‖22 − ‖x‖22| ≤ δs‖x‖22,

for all s- sparse vectors x.
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A short summary from last lecture:

We got the easy :
Theorem 3.1: If e ≤ 2

√
s and the matrix A has the LEIP-property

with constant δ̃e < 1 then A ∈ MP1(s).

With little more effort we got:
Theorem 3.3: If A fulfils the RIP property with constant
δ2s <

√
2− 1 ≈ 0.412. . . . , then A ∈ MP1(s).

New for today:
Best known: enough with δ2s√

1−δ22s
< 1√

2
. Thus it is enough with

δ2s <
1√
3
≈ 0.577 . . . .
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A short summary from last lecture:

One essential estimate for the proof of Theorem 3.3 is :

Lemma 3.5: If A satisfies RIP properties and Ax = 0, then

‖xS1‖2 ≤
δ2s

1− δs

∑
k=2

‖xSk‖2.

New for today:
Remark: With some effort the constant δ2s

1−δs in Lemma 3.5 can be

replaced by to δ2s√
1−δ22s

.
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A short summary from last lecture:

For s-sparse vetors x and z we have the bi-linear version of the RIP:

|〈Ax,Az〉 − 〈x, z〉| ≤ δ2s‖x‖2‖z‖2,

by polarization of the RIP estimate with the vectors x± z.



A lower estimate for RIP.

A m × N matrix cannot satisfy a RIP with δs < 1 unless m is large
enough, depending on s an N.

Theorem 4.1 If δs < 1 there is a constant C > 0 such that if any
m × N matrix A har RIP with constant δs , then

m > Cs log(Ne/s)
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A lower estimate for RIP.

Some notatations and Preliminaries: Let S be an index subset and
let XS be the set of vectors x in CN with non-zero element
contained in S .

Then the set of s- sparse vectors is

X (s) = ∪|S |=s XS ,

where the union is taken over all subsets S of [1, . . . ,N] with

length s. The number of such subsets is

(
N
s

)
. By Stirlings

formula (n! ≈ (ne )n
√

2πn):(
N
s

)
∼ NN+ 1

2

√
2π(N − s)N−s+

1
2 ss+

1
2

,

If s << N this is approximately equal to

(Ne/s)s/
√

2πs.
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A lower estimate for RIP.

Definitions

Let 0 < r < 1, and let Nm(r) be the maximal number of points
{xi} in a set in the unit ball Bm = {x ∈ Rm : ‖x‖2 ≤ 1 in Rm such
that

‖xi − xj‖2 > r for all i 6= j .

Let 0 < r < 1, and NX (s)(r) be the maximal number of points {xi}
in a set in X (s) ∩ BN such that

‖xi − xj‖2 > r for all i 6= j .
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A lower estimate for RIP.

Recall:
A ∈RIP with constant δs means:√

1− δs‖x‖2 ≤ ‖Ax‖2 ≤
√

1 + δs‖x‖2 for x ∈ X (s).

This make it possible to estimate NX (s/2)(r1) by Nm(r2).

Lemma 4.2: Suppose there exist a real m×N matrix A has the RIP
property for s- sparse with constant δs . Let 0 < r1, r2 < 1, with

r2 ≤ r1

√
1− δs√
1 + δs

,

then
NX (s/2)(r1) ≤ Nm(r2).
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A lower estimate for RIP.

Proof: Let N = NX (s/2)(r1) and let {xi}N1 in X (s/2) ∩ BN such
that ‖xi − xj‖2 > r1 for all i 6= j .

It follows from RIP that Axi is contained in the ball in Rm with
radius r3 = (1 + δs).
Let Y = {yi}N1 with yj = Axj/r3 is a set in Bm and

‖yi − yj‖2 ≥ (1− δs)‖xi − xj‖/r3 > (1− δs)r1/r3 ≥ r2.

It follows than Nm(r2) ≥ N = NX (s/2)(r1).
The proof of Lemma 4.2 is complete.
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A lower estimate for RIP.

Lemma 4.3 Let 0 < r < 1, then

(
1

r
)m ≤ Nm(r) ≤ (1 +

2

r
)m,

NX (s) ≤
(

N
s

)
(1 +

2

r
)s ∼ (Ne(1 +

2

r
)/s)s/

√
2πs

Proof:

If the Nm(r) balls of radius r and centered at the points xi
would not cover Bm we can find one more such points, i.e
Nm(r) is not the maximal value.

The disjoint balls centered at the points xi and with radius 1
2

are contained in the ball centered at the 0 with radius 1 + r
2
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A lower estimate for RIP.

To prove Theorem 4.2 (a lower estimate for m for RIP) we also to
estimate NX (s) from below.

Lemma 4.4

NX (s)(
1

2
) ≥ 1

2
(Ne/(s/2))s/2.

Proof:

Define W a set of points in X (s) as:

W = {x ∈ X (s) : xj = {−1, 0, 1}}

we see that W contains more than

2s
(

N
s

)
≈ (2Ne/s)s

√
2πs

vectors, all with norm ‖x‖2 ≤
√
s.
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A lower estimate for RIP.

we are seleceting a subset X = {xi} of W , satisfying
‖xi − xj‖2 >

√
s/2 by

1 Start with letting j = 1 and the remaing set of points W ′ = W

2 Pick one vector xj in in W ′ and put it in the set X .
3 Remove from W ′ all vector z such that ‖z− xj‖2 ≤

√
s/2.

4 If W ′ is not empty set j =: j + 1 and go back to step 2
5 When W ′ is empty we are finished.
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A lower estimate for RIP.

Note that for any fixed j and ‖z− xj‖2 ≤
√
s/2 then entries

of z− xj are in {-2,-1,0,1,2}} and that z− xj is in X (s/2).

For any fixed xj ∈ X the number of points z such that
‖z− xj‖2 ≤

√
s/2 is estimated by

s/2∑
k=0

(
N
s

)
4k ≈

s/2∑
k=0

(4Ne/k)k√
2πk

≈ (8Ne/s)s/2√
4πs

We conclude that the process does not end before

|X | ≥≈ (2Ne/s)s/
√

2πs

(8Ne/s)s/2/
√

4πs
=

(Ne/(s/2))s/2√
2

.

Thus NX (s)(s) ≥ 1
2(Ne/(s/2))s/2.



A lower estimate for RIP.

Note that for any fixed j and ‖z− xj‖2 ≤
√
s/2 then entries

of z− xj are in {-2,-1,0,1,2}} and that z− xj is in X (s/2).

For any fixed xj ∈ X the number of points z such that
‖z− xj‖2 ≤

√
s/2 is estimated by

s/2∑
k=0

(
N
s

)
4k ≈

s/2∑
k=0

(4Ne/k)k√
2πk

≈ (8Ne/s)s/2√
4πs

We conclude that the process does not end before

|X | ≥≈ (2Ne/s)s/
√

2πs

(8Ne/s)s/2/
√

4πs
=

(Ne/(s/2))s/2√
2

.

Thus NX (s)(s) ≥ 1
2(Ne/(s/2))s/2.



A lower estimate for RIP.

Note that for any fixed j and ‖z− xj‖2 ≤
√
s/2 then entries

of z− xj are in {-2,-1,0,1,2}} and that z− xj is in X (s/2).

For any fixed xj ∈ X the number of points z such that
‖z− xj‖2 ≤

√
s/2 is estimated by

s/2∑
k=0

(
N
s

)
4k ≈

s/2∑
k=0

(4Ne/k)k√
2πk

≈ (8Ne/s)s/2√
4πs

We conclude that the process does not end before

|X | ≥≈ (2Ne/s)s/
√

2πs

(8Ne/s)s/2/
√

4πs
=

(Ne/(s/2))s/2√
2

.

Thus NX (s)(s) ≥ 1
2(Ne/(s/2))s/2.



A lower estimate for RIP.

Note that for any fixed j and ‖z− xj‖2 ≤
√
s/2 then entries

of z− xj are in {-2,-1,0,1,2}} and that z− xj is in X (s/2).

For any fixed xj ∈ X the number of points z such that
‖z− xj‖2 ≤

√
s/2 is estimated by

s/2∑
k=0

(
N
s

)
4k ≈

s/2∑
k=0

(4Ne/k)k√
2πk

≈ (8Ne/s)s/2√
4πs

We conclude that the process does not end before

|X | ≥≈ (2Ne/s)s/
√

2πs

(8Ne/s)s/2/
√

4πs
=

(Ne/(s/2))s/2√
2

.

Thus NX (s)(s) ≥ 1
2(Ne/(s/2))s/2.



A lower estimate for RIP.

Note that for any fixed j and ‖z− xj‖2 ≤
√
s/2 then entries

of z− xj are in {-2,-1,0,1,2}} and that z− xj is in X (s/2).

For any fixed xj ∈ X the number of points z such that
‖z− xj‖2 ≤

√
s/2 is estimated by

s/2∑
k=0

(
N
s

)
4k ≈

s/2∑
k=0

(4Ne/k)k√
2πk

≈ (8Ne/s)s/2√
4πs

We conclude that the process does not end before

|X | ≥≈ (2Ne/s)s/
√

2πs

(8Ne/s)s/2/
√

4πs
=

(Ne/(s/2))s/2√
2

.

Thus NX (s)(s) ≥ 1
2(Ne/(s/2))s/2.



Proof of Theorem 4.1
According to Lemma 4.2 following condition must hold:

NX (s/2)(r1) ≤ Nm(r2).

when r2 ≤ r1
√
1−δs√
1+δs

.

We choose r1 = 1
2 and r2 =

√
1−δs

2
√
1+δs

By

Lemma 4.3 and Lemma 4.4

(Ne/(s/2))s/2

2
≤ NX (s/2)(r1) ≤ Nm(r2) ≤ (1+

2

r 2
)m =

(
1 +

4
√

1 + δs√
1− δs

)m

Taking the logarithm we get

m ≥ s log(2Ne/s)− log 4

2(log(
√

1− δs + 4
√

1 + δs)− log(1− δs))
.
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RIP for Gaussian Matrices

Let random matrix A = (Aij)1≤i≤m,1≤j≤N where each Aij is an
independent Gaussian random variable, i.e each Aij ∈ N(0, 1) with
ditribution function φ(t) where

φ(t) =
1√
π

e−t
2/2.

If m is large enough, depending on s, δ and N is will with large
probability have the RIP property with constant δs = δ. Theorem
4.5
There is a constant C > 0 such for any ε > 0, δ > 0 if we let

m > C
s

δ2
log(Ne/(sε).

Then the Gaussian m × N matrix A (as above) satisfy RIP
constant δs = δ with a probability not less than 1− ε
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RIP for Gaussian Matrices

Proof of Theorem 4.5:
Let x be a vector in RN with length ‖x‖2 = 1 and define the
random variable T = ‖Ax‖22/m.

The distribution function ψ(τ)
can be determined exactly:

Let Z = Ax be the random columnvector with elements
Zj , 1 ≤ j ≤ m.
Observe that Zj are independent randomvariables with
distribution function

φ(t) =
1√
π

e−t
2/2.

Write a vector-distriubtion function of (Z1, . . . , zm)

φ((t1. . . . , tm) = π−m/2e−
∑

i ti
2/2.

Set τ =
∑

i ti
2/m. It follows that T has distribution function

Ψ(τ) = cmτ
m
2
−1e−mτ/2,

for some normalization constant cm.
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RIP for Gaussian Matrices

We take the logarithm of Ψ(τ) analyse for maximimum and
estimate the second derivative.

log Ψ(τ) = log cm + (
m

2
− 1) log τ − m

2
τ

derivative Ψ(τ)

(
m

2
− 1)

1

τ
− m

2

second derivative of Ψ(τ)

−(
m

2
− 1)

1

τ2



We want to estimate ∫
|τ−1|>δ

Ψ(τ)dτ

It is less then
c1e−c2mδ

2

Thus for one fixed point probability for the RIP estimate does not
hold is less than c1e−c2mδ

2
.
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