
Mathematical Foundation for
Compressed Sensing

Jan-Olov Strömberg
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A short summary from last lecture:

Theorem 3.3: If A fulfils the RIP property with constant
δ2s <

√
2− 1 ≈ 0.412. . . . , then A ∈ MP1(s).

Best known: enough with δ2s√
1−δ2

2s

< 1√
2

. Thus it is enough with

δ2s <
1√
3
≈ 0.577 . . . .
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A short summary from last lecture:

One essential estimate for the proof of Theorem 3.3 is :

Lemma 3.5: If A satisfies RIP properties and Ax = 0, then

‖xS1‖2 ≤
δ2s

1− δs

∑
k=2

‖xSk‖2.

Remark: With some effort the constant δ2s
1−δs in Lemma 3.5 can be

replaced by to δ2s√
1−δ2

2s

.
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A lower estimate for RIP.

A m × N matrix cannot satisfy a RIP with δs < 1 unless m is large
enough, depending on s an N.

Theorem 4.1 If δs < 1 there is a constant C > 0 such that if any
m × N matrix A har RIP with constant δs , then

m > Cs log(Ne/s).

More precisely we get

m ≥ s log(2Ne/s)− log 4

2(log(
√

1− δs + 4
√

1 + δs)− log(1− δs))
.



A lower estimate for RIP.

A m × N matrix cannot satisfy a RIP with δs < 1 unless m is large
enough, depending on s an N.

Theorem 4.1 If δs < 1 there is a constant C > 0 such that if any
m × N matrix A har RIP with constant δs , then

m > Cs log(Ne/s).

More precisely we get

m ≥ s log(2Ne/s)− log 4

2(log(
√

1− δs + 4
√

1 + δs)− log(1− δs))
.



A lower estimate for RIP.

A m × N matrix cannot satisfy a RIP with δs < 1 unless m is large
enough, depending on s an N.

Theorem 4.1 If δs < 1 there is a constant C > 0 such that if any
m × N matrix A har RIP with constant δs , then

m > Cs log(Ne/s).

More precisely we get

m ≥ s log(2Ne/s)− log 4

2(log(
√

1− δs + 4
√

1 + δs)− log(1− δs))
.



RIP for Gaussian Matrices

Let random matrix A = (Aij)1≤i≤m,1≤j≤N where each Aij is an
independent Gaussian random variable, i.e each Aij ∈ N(0, 1) with
distribution function φ(t) where

φ(t) =
1√
2π

e−t
2/2.

If m is large enough, depending on s, δ and N is will with large
probability have the RIP property with constant δs = δ.

Theorem 4.5 There is a constant C > 0 such that
for any ε > 0, and 0 < δ ≤ 1, the following holds: If

m > C
s

δ2
log(N/(sε) + lower order terms,

More precisely

m >
2s log(N/s) + 4s log log(N/s)

δs − log(1 + δs)
+ lowerorderterms.

then the Gaussian m × N matrix A (as above) satisfy RIP
constant δs = δ with a probability not less than 1− ε.
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RIP for Gaussian Matrices

Beginning of the proof of Theorem 4.5:
Let x be a vector in RN with length ‖x‖2 = 1 and define the
random variable T = ‖Ax‖2

2/m.

The distribution function ψ(τ)
can be determined exactly:

Let Z = Ax be the random columnvector with elements
Zj , 1 ≤ j ≤ m.

Observe that Zj are independent randomvariables with
distribution function

φ(t) =
1√
π

e−t
2/2.

Write a vector-distribution function of (Z1, . . . , zm)

φ((t1. . . . , tm) = (2π)−m/2e−
∑

i t
2
i /2.
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Set τ =
∑

i t
2
i /m. It follows that T has distribution function

Ψ(τ) = cmτ
m
2
−1e−mτ/2,

for some normalization constant cm.



RIP for Gaussian Matrices

We take the logarithm of Ψ(τ) analyse for maximimum and
estimate the second derivative.

log Ψ(τ) = log cm + (
m

2
− 1) log τ − m

2
τ,

derivative Ψ(τ)

d

dx
log Ψ(τ) = (

m

2
− 1)

1

τ
− m

2
,

second derivative of Ψ(τ)

d2

dx2
log Ψ(τ) = −(

m

2
− 1)

1

τ2
.
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We conclude
Lemma 5.1 Ψ(τ) has maximum value

Ψmax = Ψmax ,m ∼
√
m/
√

2π at τm = 1− 2

m
.

Furthermore ∫
|τ−1|>δ

Ψ(τ)dτ ∼
√

2e−
m
2

(δ−log(1+δ))

√
mπδ
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The remaining part the integral over 0 < τ < 1− δ will be much
smaller:
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To see this set f (t) = t − log(1 + t), then

(f (t)− f (−t))′ = 2− 2

1− t2
< 0

Thus for δ > 0:

δ − log(1 + δ) < −δ − log(1− δ).

This implies the integral over 0 < τ < 1− δ neglectible for large m.
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Thus for one fixed point probability for the RIP estimate does not
hold, is of magnitude

√
2e−

m
2

(δ−log(1+δ))

√
mπδ

,

for large m.



We summarise in the
Lemma 5.1 Let x any fixed vector in RN an let A be a Gaussian
radom matrix then we have the RiP estimate

|‖Ax‖2
2 − ‖x‖2

2| ≤ δ‖x‖2
2

with probablility 1− ε where

ε =

√
2e−

m
2

(δ−log(1+δ))

√
mπδ

What has this to do with RIP for s-sparse vectors?

Firs let s = 1.
Then X (s) is the unioun of N one dimensional subspaces each
spanned by a singel point in {xi}N1 on the unit sphere.
The probability that the RIP holds for all of them with δ1 = δ
is larger than 1− Nε, where ε and δ is as above.
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spanned by a singel point in {xi}N1 on the unit sphere.
The probability that the RIP holds for all of them with δ1 = δ
is larger than 1− Nε, where ε and δ is as above.



Let s = 2.

Then X (s) is the union of N(N − 1)/2 two dimensional
subspaces.
If the have the RIP estimate for all points: xi , 1 ≤ i ≤ N,
xi + xj , i 6= j and xi − xj , i 6= j , all together N2 points . Then
we can use polarisation argument and get
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Lemma 5.3 Let A be a m × N Gaussian random matrix

Let

ε = N2

√
2e−

m
2

(δ−log(1+δ))

√
mπδ

.

Then with probability larger than 1− ε will the (realisation of) the
matrix A satisfy the estimate

|‖Ax‖2
2 − ‖x‖2

2| ≤ δ‖x‖2
1,

for all vectors in RN .

Corollary: This gives the RIP estimate with constant δs = sδ with
probability larger than 1− ε provided

m >
2

δ/s − log(1− δ/s)
(log(N2/ε) + c) ∼ 4s2

δ2
(log(N2/ε) + c).
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We have used that X (s) is containt in the ball B(
√
s) =

{x : ‖x‖1 ≤
√
s} which is the convex hull of the points

x±i = ±
√
sei .

How to get a better estimate for Gaussian random matrices?
hen taking the convex hull we lost a factor

√
s

void this by using more points.

Recall the Definitions
Let 0 < r < 1, and let Ns(r) be the maximal number of points {xi}
in a set in the unit ball Bs = {x ∈ Rm : ‖x‖2 ≤ 1 in Rs such that

‖xi − xj‖2 > r for all i 6= j .
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We will show

Lemma 5.4: Let {xi}M1 a set with maximal number M = Ns(r) of
points in the unit ball Bs .
Then the closed convex hull W of {xi} contains
(1− r)Bs = {x : ‖x‖ ≤ 1− r}.

Proof: Let z be a point in the unit ball Bs that is not in W .
Then there exist a hyperplan dimension s − 1 that separates z
from W ,
stated otherwise there: is a linear functional l(x) on RN such that
l(z) > 1 but l(x) ≤ 1 for all x ∈W .
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Proof of Lemma 5.4 continued

Let z0 be point on the hyperplan with minimal distance to the
origin and let xM+1 = z0/‖z‖2 .

Then for any xi , 1 ≤ i ≤ M

‖xi − xM+1‖2 ≥ ‖z0 − xM+1‖2 = 1− ‖z0‖2 ≥ 1− ‖z‖2.

Since M = Ns(r) was the maximal number of points with distanse
> r we have ‖xi − xM+1‖2 ≤ r . We conclude that 1− ‖z‖2 ≤ r
which is the same as ‖z‖2 ≥ 1− r .
This completes the proof of Lemma 5.4
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Finishing the proof of Theorem 4.5:
Recall Theorem 4.5: There is a constant C > 0 such for any
ε > 0, δ > 0 if we let

m > C
s

δ2
log(Ne/(sε).

Then the Gaussian m × N matrix A (as above) satisfy RIP
constant δs = δ with a probability not less than 1− ε

Finishing the proof:

Let 0 < r < 1, to be optimized later.
For each index subset S in {1, . . . ,N} of length s we find the
M = Ns(r) points {xS ,i}M1 supported on S , with norm ‖xS ,i‖2 = 1
and such that the convex hull of those points contains the ball of
radus 1− r around 0 of points supported in S ,
i.e points x supported on S an with norm ‖x‖2 = 1− r .
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We will use the RIP estimate for all the points: xS ,i , 1 ≤ i ≤ M,
xS ,i + xS ,j , i 6= j and xS ,i − xS,j , i 6= j according to Lemma 5.1.

Alltogether (Ns(r))2 points for each subset S .
Recall that number of such subsets is(

N
s

)
∼ (Ne/s)s/

√
2πs.

Totally we will use the RIP esitimate for the following number of
points

Mtot

(
N
s

)
(Ns(r))2

∼ (Ne/s)s√
2πs

(1 +
2

r
)2s ,

According to Lemma 5.3 we have we have the RIP estimate for all
these points with constant δ with a probability larger than 1− ε
where

ε = Mtot

√
2e−

m
2

(δ−log(1+δ))

√
mπδ

For all points x ∈ X (s) we have RIP estimate with x replaced
(1− r)x on the left hand side
- or moving the factor (1-r) the the right hand side:

|‖Ax‖2
2 − ‖x‖2

2| ≤ (1− r)−2δ‖x‖2
2,

for all x ∈ X (s) with probablitiy larger than 1− ε. Set
δ = (1− r)2δs and get

ε = Mtot

√
2e−

m
2

((1−r)2δs−log(1+(1−r)2δs))

√
mπ(1− r)2δs

We get the probability large than 1− ε if

m > 2
s log(N/s) + 2s log(1 + 2

r ) + s + 1
2 log(2π)

(1− r)2δs − log(1 + (1− r)2δs)

Choose for example r = 1/ log(N/S)

m >
2s log(N/s) + 4s log log(N/s)

δs − log(1 + δs)
+ lowerorderterms.
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m >
2s log(N/s) + 4s log log(N/s)

δs − log(1 + δs)
+ lowerorderterms.



This completes the proof of

Theorem 4.5 There is a constant C > 0 such that
for any ε > 0, and 0 < δ ≤ 1, the following holds: If

m >
2s log(N/(sε) + 4s log log(N/s)

δs − log(1 + δs)
+ lower order terms

then the Gaussian m×N matrix A (as above) satisfy RIP constant
δs = δ with a probability not less than 1− ε.

Corollary There exit m × N matrices RIP constand δs if

m >
2s log(N/s) + 4s log log(N/s)

δs − log(1 + δs)
+ lower order terms .



Construction of matrices satisfyin RIP

Construction of RIP matrices We want do a construction of an
m × N matrix A statistfying the RIP property
Theorem 5.5 There is a constant C > 0 such that if δs > 0 and

m > C
s2

δ2
s

logN.

then it is possible to construct an m × N matrix A statistfying the
RIP property with constant δs .



Theorem 5.5 is a consequence of the following:

Lemma 5.6 : Let s << m and N > 0 very large and 0 < r < 1
chosen later. Then there exists matrices A with column vectors
An, ‖Aj‖2 = 1, 1 ≤ n ≤ N, such that every subset S = Anj of s is a

set a lineary independent vectors in CN , such
that the l2 distance from Ank to the span{Anj , j < k} is larger than
r , for all 1 < k ≤ s. Provided m is large enough depending on s,N
and r .
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Proof is done by construction:
The algorithm for construction of the columns vectors
An, 0 ≤ n ≤ N is as follows:

1 Choose m independent columns A1, . . .Am in Cm.

2 Set n =: m.

3 Any s − 1 - tiple of chosen column vectors span a subspace of
codimension m − s + 1.

4 Build an m-dimensional plate by intersecting each such s − 1 -
dimensional subspace of the unit ball and take direct sum with
the perpendicular ball of radius r and dimension m − s + 1.

5 The volume of such a plate can be estimated from above..

6 Choose the new column An on the unite sphere, but outside
each such plate.
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Any s − 1 - tiple of previously chosen column vectors together
with An will span the whole space.

If n < N and the union of the all plates constructed so far
does not cover the unit ball in CN : set n =: n + 1 and return
to step nr 3.

The construction is finished! But –

r and m is not yet selected
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Proof of RIP property of constructed matrix A:

The number r has to be chosen close enougth to 1.
Also, m has to be choosen so large that the union of the
plates not can cover the unit ball for any n < N.
This is ensured as long as

(total number plates)×(plate volume) < (volume of the m- dimensional unit ball)

the parameter r has to be chosen close enough to 1 to ensure
that the RIP property to hold:
let W = span{Anj , j < k} then u = Ank is uniquely
decomposed

u = uW + uW⊥

.
set

nj1,...,jk =
uW⊥

‖uW⊥‖2
and vj1,...,jk = u− nj1,...,jk

on component in W and
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U = (nj1,...,jk )sk=1

will be an orthonormal matrix with orthonormal columns and

V = (vj1,...,jk )sk=1

will be a matrix whose columns has norms

‖vj1,...,k‖2 ≤
√

2(1− r).

if x is supported on {j1, . . . , s}
will we get Ax = Ux + Vx and

‖Ux‖2 − ‖Vx‖2 ≤ ‖Ax‖2 ≤ ‖Ux‖2 + ‖Vx‖2
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Since ‖Ux‖2 = ‖x‖2 will we get

|‖Ax‖2
2 − ‖x‖2

2| ≤ 2‖x‖2‖Vx‖2 + ‖Vx‖2
2.

By the triangle inequality we get

‖Vx‖2 ≤
√

2(1− r)‖x‖1 ≤
√

2s(1− r)‖x‖2.

Thus

|‖Ax‖2
2 − ‖x‖2

2| ≤ (2
√

2s(1− r + 2s(1− r))‖x‖2
2.

Finally we choose r such that 2
√

2s(1− r) + 2s(1− r) ≤ δs
Careful estimate of the covering and the conditions for m in
Lemma 5.6 will give us the estimate how large m needs to be in
Theorem 5.5
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