Mathematical Foundation for Compressed Sensing

Jan-Olov Strömberg

Royal Institute of Technology, Stockholm, Sweden

Lecture 5, March 5, 2012

An outline for today

- A short summary from last lecture:

An outline for today

- A short summary from last lecture:
- Best known for: RIP implying MP ${ }_{1}$

An outline for today

- A short summary from last lecture:
- Best known for: RIP implying MP_{1}
- A lower estimate for RIP.

An outline for today

- A short summary from last lecture:
- Best known for: RIP implying MP_{1}
- A lower estimate for RIP.
- RIP of Random matrices .

An outline for today

- A short summary from last lecture:
- Best known for: RIP implying MP_{1}
- A lower estimate for RIP.
- RIP of Random matrices.
- RIP of Random matrices (continued).

A short summary from last lecture:

Theorem 3.3: If \mathbf{A} fulfils the RIP property with constant $\delta_{2 s}<\sqrt{2}-1 \approx 0.412 \ldots$, then $\mathbf{A} \in \mathrm{MP}_{1}(s)$.

A short summary from last lecture:

Theorem 3.3: If A fulfils the RIP property with constant $\delta_{2 s}<\sqrt{2}-1 \approx 0.412 \ldots$, then $\mathbf{A} \in \mathrm{MP}_{1}(s)$.
Best known: enough with $\frac{\delta_{2 s}}{\sqrt{1-\delta_{2 s}^{2}}}<\frac{1}{\sqrt{2}}$. Thus it is enough with $\delta_{2 s}<\frac{1}{\sqrt{3}} \approx 0.577 \ldots$.

A short summary from last lecture:

One essential estimate for the proof of Theorem 3.3 is :

A short summary from last lecture:

One essential estimate for the proof of Theorem 3.3 is:
Lemma 3.5: If \mathbf{A} satisfies RIP properties and $\mathbf{A} \mathbf{x}=0$, then

$$
\left\|\mathbf{x}_{S_{1}}\right\|_{2} \leq \frac{\delta_{2 s}}{1-\delta_{s}} \sum_{k=2}\left\|\mathbf{x}_{S_{k}}\right\|_{2}
$$

A short summary from last lecture:

One essential estimate for the proof of Theorem 3.3 is:
Lemma 3.5: If \mathbf{A} satisfies RIP properties and $\mathbf{A} \mathbf{x}=0$, then

$$
\left\|\mathbf{x}_{S_{1}}\right\|_{2} \leq \frac{\delta_{2 s}}{1-\delta_{s}} \sum_{k=2}\left\|\mathbf{x}_{S_{k}}\right\|_{2}
$$

A short summary from last lecture:

One essential estimate for the proof of Theorem 3.3 is:
Lemma 3.5: If \mathbf{A} satisfies RIP properties and $\mathbf{A} \mathbf{x}=0$, then

$$
\left\|\mathbf{x}_{S_{1}}\right\|_{2} \leq \frac{\delta_{2 s}}{1-\delta_{s}} \sum_{k=2}\left\|\mathbf{x}_{S_{k}}\right\|_{2}
$$

Remark: With some effort the constant $\frac{\delta_{2 s}}{1-\delta_{s}}$ in Lemma 3.5 can be replaced by to $\frac{\delta_{2 s}}{\sqrt{1-\delta_{2 s}^{2}}}$.

A lower estimate for RIP.

A $m \times N$ matrix cannot satisfy a RIP with $\delta_{s}<1$ unless m is large enough, depending on s an N.

A lower estimate for RIP.

A $m \times N$ matrix cannot satisfy a RIP with $\delta_{s}<1$ unless m is large enough, depending on s an N.

Theorem 4.1 If $\delta_{s}<1$ there is a constant $C>0$ such that if any $m \times N$ matrix \mathbf{A} har RIP with constant δ_{s}, then

$$
m>C s \log (\mathrm{Ne} / \mathrm{s})
$$

A lower estimate for RIP.

A $m \times N$ matrix cannot satisfy a RIP with $\delta_{s}<1$ unless m is large enough, depending on s an N.

Theorem 4.1 If $\delta_{s}<1$ there is a constant $C>0$ such that if any $m \times N$ matrix \mathbf{A} har RIP with constant δ_{s}, then

$$
m>C s \log (\mathrm{Ne} / \mathrm{s})
$$

More precisely we get

$$
m \geq \frac{s \log (2 \mathrm{Ne} / s)-\log 4}{2\left(\log \left(\sqrt{1-\delta_{s}}+4 \sqrt{1+\delta_{s}}\right)-\log \left(1-\delta_{s}\right)\right)}
$$

RIP for Gaussian Matrices

Let random matrix $\mathbf{A}=\left(A_{i j}\right)_{1 \leq i \leq m, 1 \leq j \leq N}$ where each $A_{i j}$ is an independent Gaussian random variable, i.e each $A_{i j} \in N(0,1)$ with distribution function $\phi(t)$ where

$$
\phi(t)=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-t^{2} / 2}
$$

RIP for Gaussian Matrices

Let random matrix $\mathbf{A}=\left(A_{i j}\right)_{1 \leq i \leq m, 1 \leq j \leq N}$ where each $A_{i j}$ is an independent Gaussian random variable, i.e each $A_{i j} \in N(0,1)$ with distribution function $\phi(t)$ where

$$
\phi(t)=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-t^{2} / 2}
$$

If m is large enough, depending on s, δ and N is will with large probability have the RIP property with constant $\delta_{s}=\delta$.

Theorem 4.5 There is a constant $C>0$ such that for any $\epsilon>0$, and $0<\delta \leq 1$, the following holds: If

$$
m>C \frac{s}{\delta^{2}} \log (N /(s \epsilon)+\text { lower order terms }
$$

RIP for Gaussian Matrices

Let random matrix $\mathbf{A}=\left(A_{i j}\right)_{1 \leq i \leq m, 1 \leq j \leq N}$ where each $A_{i j}$ is an independent Gaussian random variable, i.e each $A_{i j} \in N(0,1)$ with distribution function $\phi(t)$ where

$$
\phi(t)=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-t^{2} / 2}
$$

If m is large enough, depending on s, δ and N is will with large probability have the RIP property with constant $\delta_{s}=\delta$.

Theorem 4.5 There is a constant $C>0$ such that for any $\epsilon>0$, and $0<\delta \leq 1$, the following holds: If

$$
m>C \frac{s}{\delta^{2}} \log (N /(s \epsilon)+\text { lower order terms }
$$

More precisely

$$
m>\frac{2 s \log (N / s)+4 s \log \log (N / s)}{\delta_{s}-\log \left(1+\delta_{s}\right)}+\text { lowerorderterms }
$$

then the Gaussian $m \times N$ matrix \mathbf{A} (as above) satisfy RIP

RIP for Gaussian Matrices

Beginning of the proof of Theorem 4.5:
Let \mathbf{x} be a vector in R^{N} with length $\|\mathbf{x}\|_{2}=1$ and define the random variable $T=\|\mathbf{A} \mathbf{x}\|_{2}^{2} / m$.

RIP for Gaussian Matrices

Beginning of the proof of Theorem 4.5:
Let \mathbf{x} be a vector in R^{N} with length $\|\mathbf{x}\|_{2}=1$ and define the random variable $T=\|\mathbf{A x}\|_{2}^{2} / m$. The distribution function $\psi(\tau)$ can be determined exactly:

RIP for Gaussian Matrices

Beginning of the proof of Theorem 4.5:
Let \mathbf{x} be a vector in R^{N} with length $\|\mathbf{x}\|_{2}=1$ and define the random variable $T=\|\mathbf{A x}\|_{2}^{2} / m$. The distribution function $\psi(\tau)$
can be determined exactly:

- Let $Z=\mathbf{A x}$ be the random columnvector with elements

$$
Z_{j}, 1 \leq j \leq m
$$

RIP for Gaussian Matrices

Beginning of the proof of Theorem 4.5:
Let \mathbf{x} be a vector in R^{N} with length $\|\mathbf{x}\|_{2}=1$ and define the random variable $T=\|\mathbf{A} \mathbf{x}\|_{2}^{2} / m$. The distribution function $\psi(\tau)$ can be determined exactly:

- Let $Z=\mathbf{A x}$ be the random columnvector with elements $Z_{j}, 1 \leq j \leq m$.
■ Observe that Z_{j} are independent randomvariables with distribution function

$$
\phi(t)=\frac{1}{\sqrt{\pi}} \mathrm{e}^{-t^{2} / 2}
$$

RIP for Gaussian Matrices

Beginning of the proof of Theorem 4.5:
Let \mathbf{x} be a vector in R^{N} with length $\|\mathbf{x}\|_{2}=1$ and define the random variable $T=\|\mathbf{A}\|_{2}^{2} / m$. The distribution function $\psi(\tau)$ can be determined exactly:

- Let $Z=\mathbf{A x}$ be the random columnvector with elements

$$
Z_{j}, 1 \leq j \leq m
$$

■ Observe that Z_{j} are independent randomvariables with distribution function

$$
\phi(t)=\frac{1}{\sqrt{\pi}} \mathrm{e}^{-t^{2} / 2}
$$

■ Write a vector-distribution function of $\left(Z_{1}, \ldots, \mathbf{z}_{m}\right)$

$$
\phi\left(\left(t_{1} \ldots, t_{m}\right)=(2 \pi)^{-m / 2} \mathrm{e}^{-\sum_{i} t_{i}^{2} / 2}\right.
$$

■ Set $\tau=\sum_{i} t_{i}^{2} / m$. It follows that T has distribution function

$$
\Psi(\tau)=c_{m} \tau^{\frac{m}{2}-1} \mathrm{e}^{-m \tau / 2}
$$

for some normalization constant c_{m}.

RIP for Gaussian Matrices

We take the logarithm of $\Psi(\tau)$ analyse for maximimum and estimate the second derivative.

RIP for Gaussian Matrices

We take the logarithm of $\Psi(\tau)$ analyse for maximimum and estimate the second derivative.

$$
\log \Psi(\tau)=\log c_{m}+\left(\frac{m}{2}-1\right) \log \tau-\frac{m}{2} \tau
$$

RIP for Gaussian Matrices

We take the logarithm of $\Psi(\tau)$ analyse for maximimum and estimate the second derivative.

$$
\log \Psi(\tau)=\log c_{m}+\left(\frac{m}{2}-1\right) \log \tau-\frac{m}{2} \tau
$$

- derivative $\Psi(\tau)$

$$
\frac{d}{d x} \log \Psi(\tau)=\left(\frac{m}{2}-1\right) \frac{1}{\tau}-\frac{m}{2}
$$

RIP for Gaussian Matrices

We take the logarithm of $\Psi(\tau)$ analyse for maximimum and estimate the second derivative.

$$
\log \Psi(\tau)=\log c_{m}+\left(\frac{m}{2}-1\right) \log \tau-\frac{m}{2} \tau
$$

- derivative $\Psi(\tau)$

$$
\frac{d}{d x} \log \Psi(\tau)=\left(\frac{m}{2}-1\right) \frac{1}{\tau}-\frac{m}{2}
$$

- second derivative of $\Psi(\tau)$

$$
\frac{d^{2}}{d x^{2}} \log \Psi(\tau)=-\left(\frac{m}{2}-1\right) \frac{1}{\tau^{2}}
$$

We conclude
Lemma 5.1 $\Psi(\tau)$ has maximum value

$$
\Psi_{\max }=\Psi_{\max , m} \sim \sqrt{m} / \sqrt{2 \pi} \text { at } \tau_{m}=1-\frac{2}{m} .
$$

Furthermore

$$
\int_{|\tau-1|>\delta} \Psi(\tau) d \tau \sim \frac{\sqrt{2} \mathrm{e}^{-\frac{m}{2}(\delta-\log (1+\delta))}}{\sqrt{m \pi} \delta}
$$

$$
\int_{\text {D2, } 4.6} v_{(i) d r}
$$

$$
\begin{array}{r}
\int_{\tau>1+\delta} \Psi(\tau) d \tau \\
\sim \Psi(1+\delta) \int_{\tau>1+\delta} \mathrm{e}^{-\left|\frac{d \log \Psi(1+\delta)}{d \tau}\right| \tau} d \tau
\end{array}
$$

$$
\begin{array}{r}
\sim \Psi(1+\delta) \int_{\tau>1+\delta} \Psi(\tau) d \tau \\
\\
=\frac{\Psi(1+\delta)}{\left|\frac{d \log \Psi(1+\delta)}{d \tau}\right|}
\end{array}
$$

$$
\begin{array}{r}
\int_{\tau>1+\delta} \Psi(\tau) d \tau \\
\sim \Psi(1+\delta) \int_{\tau>1+\delta} \mathrm{e}^{-\left|\frac{d \log \Psi(1+\delta)}{d \tau}\right| \tau} d \tau \\
=\frac{\Psi(1+\delta)}{\left|\frac{d \log \Psi(1+\delta)}{d \tau}\right|} \\
\sim \frac{\Psi(1)}{\Psi_{\max }} \Psi_{\max } \frac{\Psi(1+\delta)}{\Psi(1)} \frac{1}{\left|\frac{d \log \Psi(1+\delta)}{d \tau}\right|}
\end{array}
$$

$$
\begin{array}{r}
\sim \Psi(1+\delta) \int_{\tau>1+\delta} \mathrm{e}_{\tau>1+\delta} \Psi(\tau) d \tau \\
=\frac{\Psi(1+\delta)}{\left|\frac{d \log \Psi(1+\delta)}{d \tau}\right| \tau} d \tau \\
\sim \frac{\Psi(1)}{\Psi_{\max }} \Psi_{\max } \frac{\Psi(1+\delta)}{\Psi(1)} \frac{1}{\left|\frac{d \log \Psi(1+\delta)}{d \tau}\right|} \\
\sim 1 \times \frac{\sqrt{m}}{\sqrt{2 \pi}(1+\delta)} \frac{\left((1+\delta) \mathrm{e}^{-\delta}\right)^{\frac{m}{2}}}{\left(\frac{m}{2}\left(1-\frac{1}{1+\delta}\right)+\frac{1}{1+\delta}\right)}
\end{array}
$$

$$
\begin{array}{r}
\int_{\tau>1+\delta} \Psi(\tau) d \tau \\
\sim \Psi(1+\delta) \int_{\tau>1+\delta} \mathrm{e}^{-\left|\frac{d \log \psi(1+\delta)}{d \tau}\right| \tau} d \tau \\
=\frac{\Psi(1+\delta)}{\left|\frac{d \log \Psi(1+\delta)}{d \tau}\right|} \\
\sim \frac{\Psi(1)}{\Psi_{\max }} \Psi_{\max } \frac{\Psi(1+\delta)}{\Psi(1)} \frac{1}{\left|\frac{d \log \Psi(1+\delta)}{d \tau}\right|} \\
\sim 1 \times \frac{\sqrt{m}}{\sqrt{2 \pi}(1+\delta)} \frac{\left((1+\delta) \mathrm{e}^{-\delta}\right)^{\frac{m}{2}}}{\left(\frac{m}{2}\left(1-\frac{1}{1+\delta}\right)+\frac{1}{1+\delta}\right)} \\
\sim \frac{\sqrt{2} \mathrm{e}^{-\frac{m}{2}(\delta-\log (1+\delta))}}{\sqrt{m \pi} \delta+\frac{2}{\sqrt{m}}} .
\end{array}
$$

The remaining part the integral over $0<\tau<1-\delta$ will be much smaller:

The remaining part the integral over $0<\tau<1-\delta$ will be much smaller:

$$
\int_{0<\tau<1-\delta} \Psi(\tau) d \tau
$$

The remaining part the integral over $0<\tau<1-\delta$ will be much smaller:

$$
\begin{array}{r}
\int_{0<\tau<1-\delta} \Psi(\tau) d \tau \\
\sim 1 \times \frac{\sqrt{m}}{\sqrt{2 \pi}(1-\delta)} \frac{\left((1-\delta) e^{\delta}\right)^{\frac{m}{2}}}{\left(\frac{m}{2}\left(\frac{1}{1-\delta}-1\right)-\frac{1}{1-\delta}\right)}
\end{array}
$$

The remaining part the integral over $0<\tau<1-\delta$ will be much smaller:

$$
\begin{array}{r}
\int_{0<\tau<1-\delta} \Psi(\tau) d \tau \\
\sim 1 \times \frac{\sqrt{m}}{\sqrt{2 \pi}(1-\delta)} \frac{\left((1-\delta) e^{\delta}\right)^{\frac{m}{2}}}{\left(\frac{m}{2}\left(\frac{1}{1-\delta}-1\right)-\frac{1}{1-\delta}\right)} \\
\sim \frac{\sqrt{2} \mathrm{e}^{-\frac{m}{2}(-\delta-\log (1-\delta))}}{\sqrt{m \pi} \delta+\frac{2}{\sqrt{m}}} .
\end{array}
$$

The remaining part the integral over $0<\tau<1-\delta$ will be much smaller:

$$
\begin{array}{r}
\int_{0<\tau<1-\delta} \Psi(\tau) d \tau \\
\sim 1 \times \frac{\sqrt{m}}{\sqrt{2 \pi}(1-\delta)} \frac{\left((1-\delta) \mathrm{e}^{\delta}\right)^{\frac{m}{2}}}{\left(\frac{m}{2}\left(\frac{1}{1-\delta}-1\right)-\frac{1}{1-\delta}\right)} \\
\sim \frac{\sqrt{2} \mathrm{e}^{-\frac{m}{2}(-\delta-\log (1-\delta))}}{\sqrt{m \pi} \delta+\frac{2}{\sqrt{m}}} .
\end{array}
$$

And we have

$$
\delta-\log (1+\delta)<-\delta-\log (1-\delta)
$$

To see this set $f(t)=t-\log (1+t)$, then

$$
(f(t)-f(-t))^{\prime}=2-\frac{2}{1-t^{2}}<0
$$

To see this set $f(t)=t-\log (1+t)$, then

$$
(f(t)-f(-t))^{\prime}=2-\frac{2}{1-t^{2}}<0
$$

Thus for $\delta>0$:

$$
\delta-\log (1+\delta)<-\delta-\log (1-\delta)
$$

To see this set $f(t)=t-\log (1+t)$, then

$$
(f(t)-f(-t))^{\prime}=2-\frac{2}{1-t^{2}}<0
$$

Thus for $\delta>0$:

$$
\delta-\log (1+\delta)<-\delta-\log (1-\delta)
$$

This implies the integral over $0<\tau<1-\delta$ neglectible for large m.

Thus for one fixed point probability for the RIP estimate does not hold, is of magnitude

$$
\frac{\sqrt{2} \mathrm{e}^{-\frac{m}{2}(\delta-\log (1+\delta))}}{\sqrt{m \pi} \delta}
$$

for large m.

We summarise in the Lemma 5.1 Let \mathbf{x} any fixed vector in \mathbb{R}^{N} an let \mathbf{A} be a Gaussian radom matrix then we have the RiP estimate

$$
\left|\|\mathbf{A} \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \leq \delta\|\mathbf{x}\|_{2}^{2}
$$

with probablility $1-\epsilon$ where

$$
\epsilon=\frac{\sqrt{2} \mathrm{e}^{-\frac{m}{2}(\delta-\log (1+\delta))}}{\sqrt{m \pi} \delta}
$$

We summarise in the Lemma 5.1 Let \mathbf{x} any fixed vector in \mathbb{R}^{N} an let \mathbf{A} be a Gaussian radom matrix then we have the RiP estimate

$$
\left|\|\mathbf{A} \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \leq \delta\|\mathbf{x}\|_{2}^{2}
$$

with probablility $1-\epsilon$ where

$$
\epsilon=\frac{\sqrt{2} \mathrm{e}^{-\frac{m}{2}(\delta-\log (1+\delta))}}{\sqrt{m \pi} \delta}
$$

What has this to do with RIP for s-sparse vectors?

We summarise in the Lemma 5.1 Let \mathbf{x} any fixed vector in \mathbb{R}^{N} an let \mathbf{A} be a Gaussian radom matrix then we have the RiP estimate

$$
\left|\|\mathbf{A} \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \leq \delta\|\mathbf{x}\|_{2}^{2}
$$

with probablility $1-\epsilon$ where

$$
\epsilon=\frac{\sqrt{2} \mathrm{e}^{-\frac{m}{2}(\delta-\log (1+\delta))}}{\sqrt{m \pi} \delta}
$$

What has this to do with RIP for s-sparse vectors?

- Firs let $s=1$.

We summarise in the Lemma 5.1 Let \mathbf{x} any fixed vector in \mathbb{R}^{N} an let \mathbf{A} be a Gaussian radom matrix then we have the RiP estimate

$$
\left|\|\mathbf{A} \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \leq \delta\|\mathbf{x}\|_{2}^{2}
$$

with probablility $1-\epsilon$ where

$$
\epsilon=\frac{\sqrt{2} \mathrm{e}^{-\frac{m}{2}(\delta-\log (1+\delta))}}{\sqrt{m \pi} \delta}
$$

What has this to do with RIP for s-sparse vectors?

- Firs let $s=1$.

We summarise in the Lemma 5.1 Let \mathbf{x} any fixed vector in \mathbb{R}^{N} an let \mathbf{A} be a Gaussian radom matrix then we have the RiP estimate

$$
\left|\|\mathbf{A} \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \leq \delta\|\mathbf{x}\|_{2}^{2}
$$

with probablility $1-\epsilon$ where

$$
\epsilon=\frac{\sqrt{2} \mathrm{e}^{-\frac{m}{2}(\delta-\log (1+\delta))}}{\sqrt{m \pi} \delta}
$$

What has this to do with RIP for s-sparse vectors?

- Firs let $s=1$.

Then $X(s)$ is the unioun of N one dimensional subspaces each spanned by a singel point in $\left\{\mathbf{x}_{i}\right\}_{1}^{N}$ on the unit sphere.

We summarise in the Lemma 5.1 Let \mathbf{x} any fixed vector in \mathbb{R}^{N} an let \mathbf{A} be a Gaussian radom matrix then we have the RiP estimate

$$
\left|\|\mathbf{A} \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \leq \delta\|\mathbf{x}\|_{2}^{2}
$$

with probablility $1-\epsilon$ where

$$
\epsilon=\frac{\sqrt{2} \mathrm{e}^{-\frac{m}{2}(\delta-\log (1+\delta))}}{\sqrt{m \pi} \delta}
$$

What has this to do with RIP for s-sparse vectors?

- Firs let $s=1$.

Then $X(s)$ is the unioun of N one dimensional subspaces each spanned by a singel point in $\left\{\mathbf{x}_{i}\right\}_{1}^{N}$ on the unit sphere. The probability that the RIP holds for all of them with $\delta_{1}=\delta$ is larger than $1-N \epsilon$, where ϵ and δ is as above.

We summarise in the Lemma 5.1 Let \mathbf{x} any fixed vector in \mathbb{R}^{N} an let \mathbf{A} be a Gaussian radom matrix then we have the RiP estimate

$$
\left|\|\mathbf{A} \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \leq \delta\|\mathbf{x}\|_{2}^{2}
$$

with probablility $1-\epsilon$ where

$$
\epsilon=\frac{\sqrt{2} \mathrm{e}^{-\frac{m}{2}(\delta-\log (1+\delta))}}{\sqrt{m \pi} \delta}
$$

What has this to do with RIP for s-sparse vectors?

- Firs let $s=1$.

Then $X(s)$ is the unioun of N one dimensional subspaces each spanned by a singel point in $\left\{\mathbf{x}_{i}\right\}_{1}^{N}$ on the unit sphere. The probability that the RIP holds for all of them with $\delta_{1}=\delta$ is larger than $1-N \epsilon$, where ϵ and δ is as above.
－Let $s=2$ ．
－Let $s=2$ ．

- Let $s=2$.

Then $X(s)$ is the union of $N(N-1) / 2$ two dimensional subspaces.

- Let $s=2$.

Then $X(s)$ is the union of $N(N-1) / 2$ two dimensional subspaces.
If the have the RIP estimate for all points: $\mathbf{x}_{i}, 1 \leq i \leq N$, $\mathbf{x}_{i}+\mathbf{x}_{j}, i \neq j$ and $\mathbf{x}_{i}-\mathbf{x}_{j}, i \neq j$, all together N^{2} points.

- Let $s=2$.

Then $X(s)$ is the union of $N(N-1) / 2$ two dimensional subspaces.
If the have the RIP estimate for all points: $\mathbf{x}_{i}, 1 \leq i \leq N$, $\mathbf{x}_{i}+\mathbf{x}_{j}, i \neq j$ and $\mathbf{x}_{i}-\mathbf{x}_{j}, i \neq j$, all together N^{2} points. Then we can use polarisation argument and get

Lemma 5.3 Let A be a $m \times N$ Gaussian random matrix

Lemma 5.3 Let \mathbf{A} be a $m \times N$ Gaussian random matrix Let

$$
\epsilon=N^{2} \frac{\sqrt{2} \mathrm{e}^{-\frac{m}{2}(\delta-\log (1+\delta))}}{\sqrt{m \pi} \delta}
$$

Lemma 5.3 Let A be a $m \times N$ Gaussian random matrix Let

$$
\epsilon=N^{2} \frac{\sqrt{2} \mathrm{e}^{-\frac{m}{2}(\delta-\log (1+\delta))}}{\sqrt{m \pi} \delta}
$$

Then with probability larger than $1-\epsilon$ will the (realisation of) the matrix A satisfy the estimate

Lemma 5.3 Let \mathbf{A} be a $m \times N$ Gaussian random matrix Let

$$
\epsilon=N^{2} \frac{\sqrt{2} \mathrm{e}^{-\frac{m}{2}(\delta-\log (1+\delta))}}{\sqrt{m \pi} \delta}
$$

Then with probability larger than $1-\epsilon$ will the (realisation of) the matrix A satisfy the estimate

$$
\left|\|\mathbf{A} \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \leq \delta\|\mathbf{x}\|_{1}^{2}
$$

for all vectors in \mathbb{R}^{N}.

Lemma 5.3 Let \mathbf{A} be a $m \times N$ Gaussian random matrix Let

$$
\epsilon=N^{2} \frac{\sqrt{2} \mathrm{e}^{-\frac{m}{2}(\delta-\log (1+\delta))}}{\sqrt{m \pi} \delta}
$$

Then with probability larger than $1-\epsilon$ will the (realisation of) the matrix A satisfy the estimate

$$
\left|\|\mathbf{A} \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \leq \delta\|\mathbf{x}\|_{1}^{2}
$$

for all vectors in \mathbb{R}^{N}.
Corollary: This gives the RIP estimate with constant $\delta_{s}=s \delta$ with probability larger than $1-\epsilon$ provided

$$
m>\frac{2}{\delta / s-\log (1-\delta / s)}\left(\log \left(N^{2} / \epsilon\right)+c\right) \sim \frac{4 s^{2}}{\delta^{2}}\left(\log \left(N^{2} / \epsilon\right)+c\right)
$$

We have used that $X(s)$ is containt in the ball $B_{(\sqrt{ } s)}=$ $\left\{\mathbf{x}:\|\mathbf{x}\|_{1} \leq \sqrt{s}\right\}$ which is the convex hull of the points $\mathbf{x}_{ \pm i}= \pm \sqrt{s} \mathbf{e}_{i}$.

We have used that $X(s)$ is containt in the ball $B_{(\sqrt{ } s)}=$ $\left\{\mathbf{x}:\|\mathbf{x}\|_{1} \leq \sqrt{s}\right\}$ which is the convex hull of the points $\mathbf{x}_{ \pm i}= \pm \sqrt{s} \mathbf{e}_{i}$.
How to get a better estimate for Gaussian random matrices?

We have used that $X(s)$ is containt in the ball $B_{(\sqrt{ } s)}=$ $\left\{\mathbf{x}:\|\mathbf{x}\|_{1} \leq \sqrt{s}\right\}$ which is the convex hull of the points $\mathbf{x}_{ \pm i}= \pm \sqrt{s} \mathbf{e}_{i}$.
How to get a better estimate for Gaussian random matrices? When taking the convex hull we lost a factor \sqrt{s} void this by using more points.

Recall the Definitions

We have used that $X(s)$ is containt in the ball $B_{(\sqrt{ } s)}=$ $\left\{\mathbf{x}:\|\mathbf{x}\|_{1} \leq \sqrt{s}\right\}$ which is the convex hull of the points $\mathbf{x}_{ \pm i}= \pm \sqrt{s} \mathbf{e}_{i}$.
How to get a better estimate for Gaussian random matrices?
When taking the convex hull we lost a factor \sqrt{s}
Avoid this by using more points.

Recall the Definitions

Let $0<r<1$, and let $N_{s}(r)$ be the maximal number of points $\left\{\mathbf{x}_{i}\right\}$ in a set in the unit ball $B_{s}=\left\{\mathbf{x} \in \mathbb{R}^{m}:\|\mathbf{x}\|_{2} \leq 1\right.$ in \mathbb{R}^{s} such that

$$
\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}>r \text { for all } i \neq j
$$

We will show

We will show
Lemma 5.4: Let $\left\{\mathbf{x}_{i}\right\}_{1}^{M}$ a set with maximal number $M=N_{s}(r)$ of points in the unit ball B_{s}.
Then the closed convex hull W of $\left\{\mathbf{x}_{i}\right\}$ contains $(1-r) B_{s}=\{x:\|\mathbf{x}\| \leq 1-r\}$.
Proof: Let \mathbf{z} be a point in the unit ball B_{s} that is not in W.

We will show
Lemma 5.4: Let $\left\{\mathbf{x}_{i}\right\}_{1}^{M}$ a set with maximal number $M=N_{s}(r)$ of points in the unit ball B_{s}.
Then the closed convex hull W of $\left\{\mathbf{x}_{i}\right\}$ contains
$(1-r) B_{s}=\{x:\|\mathbf{x}\| \leq 1-r\}$.
Proof: Let \mathbf{z} be a point in the unit ball B_{s} that is not in W. Then there exist a hyperplan dimension $s-1$ that separates z from W,

We will show
Lemma 5.4: Let $\left\{\mathbf{x}_{i}\right\}_{1}^{M}$ a set with maximal number $M=N_{s}(r)$ of points in the unit ball B_{s}.
Then the closed convex hull W of $\left\{\mathbf{x}_{i}\right\}$ contains
$(1-r) B_{s}=\{x:\|\mathbf{x}\| \leq 1-r\}$.
Proof: Let \mathbf{z} be a point in the unit ball B_{s} that is not in W. Then there exist a hyperplan dimension $s-1$ that separates z from W, stated otherwise there: is a linear functional $I(x)$ on R^{N} such that $I(z)>1$ but $I(x) \leq 1$ for all $x \in W$.

Proof of Lemma 5.4 continued

Let \mathbf{z}_{0} be point on the hyperplan with minimal distance to the origin and let $\mathbf{x}_{M+1}=\mathbf{z}_{0} /\|\mathbf{z}\|_{2}$.

Proof of Lemma 5.4 continued

Let \mathbf{z}_{0} be point on the hyperplan with minimal distance to the origin and let $\mathbf{x}_{M+1}=\mathbf{z}_{0} /\|\mathbf{z}\|_{2}$.
Then for any $\mathbf{x}_{i}, 1 \leq i \leq M$

$$
\left\|\mathbf{x}_{i}-\mathbf{x}_{M+1}\right\|_{2} \geq\left\|\mathbf{z}_{0}-\mathbf{x}_{M+1}\right\|_{2}=1-\left\|\mathbf{z}_{0}\right\|_{2} \geq 1-\|\mathbf{z}\|_{2}
$$

Proof of Lemma 5.4 continued

Let \mathbf{z}_{0} be point on the hyperplan with minimal distance to the origin and let $\mathbf{x}_{M+1}=\mathbf{z}_{0} /\|\mathbf{z}\|_{2}$.
Then for any $\mathbf{x}_{i}, 1 \leq i \leq M$

$$
\left\|\mathbf{x}_{i}-\mathbf{x}_{M+1}\right\|_{2} \geq\left\|\mathbf{z}_{0}-\mathbf{x}_{M+1}\right\|_{2}=1-\left\|\mathbf{z}_{0}\right\|_{2} \geq 1-\|\mathbf{z}\|_{2}
$$

Since $M=N_{s}(r)$ was the maximal number of points with distanse $>r$ we have $\left\|\mathbf{x}_{i}-\mathbf{x}_{M+1}\right\|_{2} \leq r$.

Proof of Lemma 5.4 continued

Let \mathbf{z}_{0} be point on the hyperplan with minimal distance to the origin and let $\mathbf{x}_{M+1}=\mathbf{z}_{0} /\|\mathbf{z}\|_{2}$.
Then for any $\mathbf{x}_{i}, 1 \leq i \leq M$

$$
\left\|\mathbf{x}_{i}-\mathbf{x}_{M+1}\right\|_{2} \geq\left\|\mathbf{z}_{0}-\mathbf{x}_{M+1}\right\|_{2}=1-\left\|\mathbf{z}_{0}\right\|_{2} \geq 1-\|\mathbf{z}\|_{2}
$$

Since $M=N_{s}(r)$ was the maximal number of points with distanse $>r$ we have $\left\|\mathbf{x}_{i}-\mathbf{x}_{M+1}\right\|_{2} \leq r$. We conclude that $1-\|\mathbf{z}\|_{2} \leq r$ which is the same as $\|\mathbf{z}\|_{2} \geq 1-r$.

Proof of Lemma 5.4 continued

Let \mathbf{z}_{0} be point on the hyperplan with minimal distance to the origin and let $\mathbf{x}_{M+1}=\mathbf{z}_{0} /\|\mathbf{z}\|_{2}$.
Then for any $\mathbf{x}_{i}, 1 \leq i \leq M$

$$
\left\|\mathbf{x}_{i}-\mathbf{x}_{M+1}\right\|_{2} \geq\left\|\mathbf{z}_{0}-\mathbf{x}_{M+1}\right\|_{2}=1-\left\|\mathbf{z}_{0}\right\|_{2} \geq 1-\|\mathbf{z}\|_{2}
$$

Since $M=N_{s}(r)$ was the maximal number of points with distanse $>r$ we have $\left\|\mathbf{x}_{i}-\mathbf{x}_{M+1}\right\|_{2} \leq r$. We conclude that $1-\|\mathbf{z}\|_{2} \leq r$ which is the same as $\|\mathbf{z}\|_{2} \geq 1-r$.
This completes the proof of Lemma 5.4

Finishing the proof of Theorem 4.5:
Recall Theorem 4.5: There is a constant $C>0$ such for any $\epsilon>0, \delta>0$ if we let

$$
m>C \frac{s}{\delta^{2}} \log (N e /(s \epsilon)
$$

Then the Gaussian $m \times N$ matrix \mathbf{A} (as above) satisfy RIP constant $\delta_{s}=\delta$ with a probability not less than $1-\epsilon$

Finishing the proof:

Finishing the proof of Theorem 4.5:
Recall Theorem 4.5: There is a constant $C>0$ such for any $\epsilon>0, \delta>0$ if we let

$$
m>C \frac{s}{\delta^{2}} \log (N e /(s \epsilon)
$$

Then the Gaussian $m \times N$ matrix \mathbf{A} (as above) satisfy RIP constant $\delta_{s}=\delta$ with a probability not less than $1-\epsilon$

Finishing the proof:
Let $0<r<1$, to be optimized later.

Finishing the proof of Theorem 4.5:
Recall Theorem 4.5: There is a constant $C>0$ such for any
$\epsilon>0, \delta>0$ if we let

$$
m>C \frac{s}{\delta^{2}} \log (N e /(s \epsilon)
$$

Then the Gaussian $m \times N$ matrix \mathbf{A} (as above) satisfy RIP constant $\delta_{s}=\delta$ with a probability not less than $1-\epsilon$

Finishing the proof:
Let $0<r<1$, to be optimized later.
For each index subset S in $\{1, \ldots, N\}$ of length s we find the $M=N_{s}(r)$ points $\left\{\mathbf{x}_{S, i}\right\}_{1}^{M}$ supported on S, with norm $\left\|\mathbf{x}_{S, i}\right\|_{2}=1$ and such that

Finishing the proof of Theorem 4.5:
Recall Theorem 4.5: There is a constant $C>0$ such for any $\epsilon>0, \delta>0$ if we let

$$
m>C \frac{s}{\delta^{2}} \log (N e /(s \epsilon)
$$

Then the Gaussian $m \times N$ matrix \mathbf{A} (as above) satisfy RIP constant $\delta_{s}=\delta$ with a probability not less than $1-\epsilon$

Finishing the proof:
Let $0<r<1$, to be optimized later.
For each index subset S in $\{1, \ldots, N\}$ of length s we find the $M=N_{s}(r)$ points $\left\{\mathbf{x}_{S, i}\right\}_{1}^{M}$ supported on S, with norm $\left\|\mathbf{x}_{S, i}\right\|_{2}=1$ and such that the convex hull of those points contains the ball of radus $1-r$ around 0 of points supported in S, i.e points x supported on S an with norm $\|\mathbf{x}\|_{2}=1-r$.

We will use the RIP estimate for all the points: $\mathbf{x}_{S, i}, 1 \leq i \leq M$, $\mathbf{x}_{S, i}+\mathbf{x}_{S, j}, i \neq j$ and $\mathbf{x}_{S, i}-\mathbf{x}_{S, j}, i \neq j$ according to Lemma 5.1.

We will use the RIP estimate for all the points: $\mathbf{x}_{S, i}, 1 \leq i \leq M$, $\mathbf{x}_{S, i}+\mathbf{x}_{S, j}, i \neq j$ and $\mathbf{x}_{S, i}-\mathbf{x}_{S, j}, i \neq j$ according to Lemma 5.1. Alltogether $\left(N_{s}(r)\right)^{2}$ points for each subset S.

We will use the RIP estimate for all the points: $\mathbf{x}_{S, i}, 1 \leq i \leq M$, $\mathbf{x}_{S, i}+\mathbf{x}_{S, j}, i \neq j$ and $\mathbf{x}_{S, i}-\mathbf{x}_{S, j}, i \neq j$ according to Lemma 5.1. Alltogether $\left(N_{s}(r)\right)^{2}$ points for each subset S.
Recall that number of such subsets is

$$
\binom{N}{s} \sim(\mathrm{Ne} / s)^{s} / \sqrt{2 \pi s}
$$

Totally we will use the RIP esitimate for the following number of points

We will use the RIP estimate for all the points: $\mathbf{x}_{S, i}, 1 \leq i \leq M$, $\mathbf{x}_{S, i}+\mathbf{x}_{S, j}, i \neq j$ and $\mathbf{x}_{S, i}-\mathbf{x}_{S, j}, i \neq j$ according to Lemma 5.1. Alltogether $\left(N_{s}(r)\right)^{2}$ points for each subset S.
Recall that number of such subsets is

$$
\binom{N}{s} \sim(\mathrm{Ne} / s)^{s} / \sqrt{2 \pi s} .
$$

Totally we will use the RIP esitimate for the following number of points

$$
\begin{aligned}
& M_{\text {tot }}\binom{N}{s}\left(N_{s}(r)\right)^{2} \\
& \sim \frac{(N e / s)^{s}}{\sqrt{2 \pi s}}\left(1+\frac{2}{r}\right)^{2 s}
\end{aligned}
$$

According to Lemma 5.3 we have we have the RIP estimate for all these points with constant δ with a probability larger than $1-\epsilon$ where

We will use the RIP estimate for all the points: $\mathbf{x}_{S, i}, 1 \leq i \leq M$, $\mathbf{x}_{S, i}+\mathbf{x}_{S, j}, i \neq j$ and $\mathbf{x}_{S, i}-\mathbf{x}_{S, j}, i \neq j$ according to Lemma 5.1. Alltogether $\left(N_{s}(r)\right)^{2}$ points for each subset S.
Recall that number of such subsets is

$$
\binom{N}{s} \sim(\mathrm{Ne} / s)^{s} / \sqrt{2 \pi s} .
$$

Totally we will use the RIP esitimate for the following number of points

$$
\begin{aligned}
& M_{\text {tot }}\binom{N}{s}\left(N_{s}(r)\right)^{2} \\
& \sim \frac{(N e / s)^{s}}{\sqrt{2 \pi s}}\left(1+\frac{2}{r}\right)^{2 s}
\end{aligned}
$$

According to Lemma 5.3 we have we have the RIP estimate for all these points with constant δ with a probability larger than $1-\epsilon$ where

We will use the RIP estimate for all the points: $\mathbf{x}_{S, i}, 1 \leq i \leq M$, $\mathbf{x}_{S, i}+\mathbf{x}_{S, j}, i \neq j$ and $\mathbf{x}_{S, i}-\mathbf{x}_{S, j}, i \neq j$ according to Lemma 5.1. Alltogether $\left(N_{s}(r)\right)^{2}$ points for each subset S.
Recall that number of such subsets is

$$
\binom{N}{s} \sim(\mathrm{Ne} / s)^{s} / \sqrt{2 \pi s} .
$$

Totally we will use the RIP esitimate for the following number of points

$$
\begin{aligned}
& M_{\text {tot }}\binom{N}{s}\left(N_{s}(r)\right)^{2} \\
& \sim \frac{(N e / s)^{s}}{\sqrt{2 \pi s}}\left(1+\frac{2}{r}\right)^{2 s}
\end{aligned}
$$

According to Lemma 5.3 we have we have the RIP estimate for all these points with constant δ with a probability larger than $1-\epsilon$ where

This completes the proof of
Theorem 4.5 There is a constant $C>0$ such that for any $\epsilon>0$, and $0<\delta \leq 1$, the following holds: If

$$
m>\frac{2 s \log (N /(s \epsilon)+4 s \log \log (N / s)}{\delta_{s}-\log \left(1+\delta_{s}\right)}+\text { lower order terms }
$$

then the Gaussian $m \times N$ matrix \mathbf{A} (as above) satisfy RIP constant $\delta_{s}=\delta$ with a probability not less than $1-\epsilon$.

Corollary There exit $m \times N$ matrices RIP constand δ_{s} if

$$
m>\frac{2 s \log (N / s)+4 s \log \log (N / s)}{\delta_{s}-\log \left(1+\delta_{s}\right)}+\text { lower order terms }
$$

Construction of matrices satisfyin RIP

Construction of RIP matrices We want do a construction of an $m \times N$ matrix A statistfying the RIP property
Theorem 5.5 There is a constant $C>0$ such that if $\delta_{s}>0$ and

$$
m>C \frac{s^{2}}{\delta_{s}^{2}} \log N
$$

then it is possible to construct an $m \times N$ matrix \mathbf{A} statistfying the RIP property with constant δ_{s}.

Theorem 5.5 is a consequence of the following:

Theorem 5.5 is a consequence of the following: Lemma 5.6 : Let $s \ll m$ and $N>0$ very large and $0<r<1$ chosen later. Then there exists matrices \mathbf{A} with column vectors $A_{n},\left\|A_{j}\right\|_{2}=1,1 \leq n \leq N$, such that every subset $S=A_{n_{j}}$ of s is a set a lineary independent vectors in \mathbb{C}^{N}, such

Theorem 5.5 is a consequence of the following: Lemma 5.6 : Let $s \ll m$ and $N>0$ very large and $0<r<1$ chosen later. Then there exists matrices \mathbf{A} with column vectors $A_{n},\left\|A_{j}\right\|_{2}=1,1 \leq n \leq N$, such that every subset $S=A_{n_{j}}$ of s is a set a lineary independent vectors in \mathbb{C}^{N}, such that the I_{2} distance from $A_{n_{k}}$ to the $\operatorname{span}\left\{A_{n_{j}}, j<k\right\}$ is larger than r, for all $1<k \leq s$. Provided m is large enough depending on s, N and r.

Proof is done by construction:
The algorithm for construction of the columns vectors $A_{n}, 0 \leq n \leq N$ is as follows:
1 Choose m independent columns $A_{1}, \ldots A_{m}$ in \mathbb{C}^{m}.

Proof is done by construction:
The algorithm for construction of the columns vectors $A_{n}, 0 \leq n \leq N$ is as follows:
1 Choose m independent columns $A_{1}, \ldots A_{m}$ in \mathbb{C}^{m}.
2 Set $n=$: m.

Proof is done by construction:

The algorithm for construction of the columns vectors $A_{n}, 0 \leq n \leq N$ is as follows:

1 Choose m independent columns $A_{1}, \ldots A_{m}$ in \mathbb{C}^{m}.
2 Set $n=: m$.
3 Any s-1 - tiple of chosen column vectors span a subspace of codimension $m-s+1$.

Proof is done by construction:

The algorithm for construction of the columns vectors $A_{n}, 0 \leq n \leq N$ is as follows:

1 Choose m independent columns $A_{1}, \ldots A_{m}$ in \mathbb{C}^{m}.
2 Set $n=: m$.
3 Any s-1 - tiple of chosen column vectors span a subspace of codimension $m-s+1$.
4 Build an m-dimensional plate by intersecting each such s-1dimensional subspace of the unit ball and take direct sum with the perpendicular ball of radius r and dimension $m-s+1$.

Proof is done by construction:

The algorithm for construction of the columns vectors $A_{n}, 0 \leq n \leq N$ is as follows:

1 Choose m independent columns $A_{1}, \ldots A_{m}$ in \mathbb{C}^{m}.
2 Set $n=$: m.
3 Any s-1 - tiple of chosen column vectors span a subspace of codimension $m-s+1$.
4 Build an m-dimensional plate by intersecting each such s-1dimensional subspace of the unit ball and take direct sum with the perpendicular ball of radius r and dimension $m-s+1$.
5 The volume of such a plate can be estimated from above..

Proof is done by construction:

The algorithm for construction of the columns vectors $A_{n}, 0 \leq n \leq N$ is as follows:

1 Choose m independent columns $A_{1}, \ldots A_{m}$ in \mathbb{C}^{m}.
2 Set $n=: m$.
3 Any s-1 - tiple of chosen column vectors span a subspace of codimension $m-s+1$.
4 Build an m-dimensional plate by intersecting each such $s-1$ dimensional subspace of the unit ball and take direct sum with the perpendicular ball of radius r and dimension $m-s+1$.
5 The volume of such a plate can be estimated from above..
6 Choose the new column A_{n} on the unite sphere, but outside each such plate.

■ Any s-1 - tiple of previously chosen column vectors together with A_{n} will span the whole space.

- Any s-1-tiple of previously chosen column vectors together with A_{n} will span the whole space.
■ If $n<N$ and the union of the all plates constructed so far does not cover the unit ball in C^{N} : set $n=: n+1$ and return to step nr 3 .

■ Any s-1 - tiple of previously chosen column vectors together with A_{n} will span the whole space.
■ If $n<N$ and the union of the all plates constructed so far does not cover the unit ball in C^{N} : set $n=: n+1$ and return to step nr 3.
■ The construction is finished! But -

■ Any s-1 - tiple of previously chosen column vectors together with A_{n} will span the whole space.
■ If $n<N$ and the union of the all plates constructed so far does not cover the unit ball in C^{N} : set $n=: n+1$ and return to step nr 3.
■ The construction is finished! But -

■ Any s-1 - tiple of previously chosen column vectors together with A_{n} will span the whole space.
■ If $n<N$ and the union of the all plates constructed so far does not cover the unit ball in C^{N} : set $n=: n+1$ and return to step nr 3 .

- The construction is finished! But r and m is not yet selected

Proof of RIP property of constructed matrix \mathbf{A} :

- The number r has to be chosen close enougth to 1 . Also, m has to be choosen so large that the union of the plates not can cover the unit ball for any $n<N$.

Proof of RIP property of constructed matrix \mathbf{A} :

- The number r has to be chosen close enougth to 1 . Also, m has to be choosen so large that the union of the plates not can cover the unit ball for any $n<N$.
This is ensured as long as
(total number plates) \times (plate volume) $<$ (volume of the m - dimensi

Proof of RIP property of constructed matrix A:

- The number r has to be chosen close enougth to 1 . Also, m has to be choosen so large that the union of the plates not can cover the unit ball for any $n<N$.
This is ensured as long as
(total number plates) \times (plate volume) $<$ (volume of the m - dimensi
- the parameter r has to be chosen close enough to 1 to ensure that the RIP property to hold:

Proof of RIP property of constructed matrix A:

- The number r has to be chosen close enougth to 1 .

Also, m has to be choosen so large that the union of the plates not can cover the unit ball for any $n<N$.
This is ensured as long as
(total number plates) \times (plate volume) $<$ (volume of the m - dimensi

- the parameter r has to be chosen close enough to 1 to ensure that the RIP property to hold:
\square let $W=\operatorname{span}\left\{A_{n_{j}}, j<k\right\}$ then $\mathbf{u}=A_{n_{k}}$ is uniquely decomposed

$$
\mathbf{u}=\mathbf{u}_{W}+\mathbf{u}_{W \perp}
$$

Proof of RIP property of constructed matrix A:

- The number r has to be chosen close enougth to 1 .

Also, m has to be choosen so large that the union of the plates not can cover the unit ball for any $n<N$.
This is ensured as long as
(total number plates) \times (plate volume) $<$ (volume of the m - dimensi

- the parameter r has to be chosen close enough to 1 to ensure that the RIP property to hold:
■ let $W=\operatorname{span}\left\{A_{n_{j}}, j<k\right\}$ then $\mathbf{u}=A_{n_{k}}$ is uniquely decomposed

$$
\mathbf{u}=\mathbf{u}_{W}+\mathbf{u}_{W \perp}
$$

- set

$$
\mathbf{n}_{j_{1}, \ldots, j_{k}}=\frac{\mathbf{u}_{W \perp}}{\left\|\mathbf{u}_{W \perp \perp}\right\|_{2}} \text { and } \mathbf{v}_{j_{1}, \ldots, j_{k}}=\mathbf{u}-\mathbf{n}_{j_{1}, \ldots, j_{k}}
$$

$$
\mathbf{U}=\left(\mathbf{n}_{j_{1}, \ldots, j_{k}}\right)_{k=1}^{s}
$$

will be an orthonormal matrix with orthonormal columns and

$$
\mathbf{U}=\left(\mathbf{n}_{j_{1}, \ldots, j_{k}}\right)_{k=1}^{s}
$$

will be an orthonormal matrix with orthonormal columns and

$$
\mathbf{V}=\left(\mathbf{v}_{j_{1}, \ldots, j_{k}}\right)_{k=1}^{s}
$$

will be a matrix whose columns has norms

$$
\mathbf{U}=\left(\mathbf{n}_{j_{1}, \ldots, j_{k}}\right)_{k=1}^{s}
$$

will be an orthonormal matrix with orthonormal columns and

$$
\mathbf{V}=\left(\mathbf{v}_{j_{1}, \ldots, j_{k}}\right)_{k=1}^{s}
$$

will be a matrix whose columns has norms

$$
\left\|\mathbf{v}_{j_{1}, \ldots, j_{k}}\right\|_{2} \leq \sqrt{2(1-r)} .
$$

$$
\mathbf{U}=\left(\mathbf{n}_{j_{1}, \ldots, j_{k}}\right)_{k=1}^{s}
$$

will be an orthonormal matrix with orthonormal columns and

$$
\mathbf{V}=\left(\mathbf{v}_{j_{1}, \ldots, j_{k}}\right)_{k=1}^{s}
$$

will be a matrix whose columns has norms

$$
\left\|\mathbf{v}_{j_{1}, \ldots, j_{k}}\right\|_{2} \leq \sqrt{2(1-r)}
$$

- if \mathbf{x} is supported on $\left\{j_{1}, \ldots, J_{s}\right\}$ will we get $\mathbf{A x}=\mathbf{U} \mathbf{x}+\mathbf{V} \mathbf{x}$ and

$$
\|\mathbf{U} \mathbf{x}\|_{2}-\|\mathbf{V} \mathbf{x}\|_{2} \leq\|\mathbf{A} \mathbf{x}\|_{2} \leq\|\mathbf{U} \mathbf{x}\|_{2}+\|\mathbf{V} \mathbf{x}\|_{2}
$$

- Since $\|\mathbf{U x}\|_{2}=\|\mathbf{x}\|_{2}$ will we get

$$
\left|\|\mathbf{A} \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \leq 2\|\mathbf{x}\|_{2}\|\mathbf{V} \mathbf{x}\|_{2}+\|\mathbf{V} \mathbf{x}\|_{2}^{2} .
$$

■ Since $\|\mathbf{U x}\|_{2}=\|\mathbf{x}\|_{2}$ will we get

$$
\left|\|\mathbf{A} \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \leq 2\|\mathbf{x}\|_{2}\|\mathbf{V} \mathbf{x}\|_{2}+\|\mathbf{V} \mathbf{x}\|_{2}^{2} .
$$

By the triangle inequality we get

$$
\|\mathbf{V} \mathbf{x}\|_{2} \leq \sqrt{2(1-r)}\|\mathbf{x}\|_{1} \leq \sqrt{2 s(1-r)}\|\mathbf{x}\|_{2}
$$

■ Since $\|\mathbf{U x}\|_{2}=\|\mathbf{x}\|_{2}$ will we get

$$
\left|\|\mathbf{A} \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \leq 2\|\mathbf{x}\|_{2}\|\mathbf{V} \mathbf{x}\|_{2}+\|\mathbf{V} \mathbf{x}\|_{2}^{2}
$$

By the triangle inequality we get

$$
\|\mathbf{V} \mathbf{x}\|_{2} \leq \sqrt{2(1-r)}\|\mathbf{x}\|_{1} \leq \sqrt{2 s(1-r)}\|\mathbf{x}\|_{2}
$$

Thus

$$
\left|\|\mathbf{A} \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \leq(2 \sqrt{2 s(1-r}+2 s(1-r))\|\mathbf{x}\|_{2}^{2}
$$

- Finally we choose r such that $2 \sqrt{2 s(1-r)}+2 s(1-r) \leq \delta_{s}$

Careful estimate of the covering and the conditions for m in Lemma 5.6 will give us the estimate how large m needs to be in Theorem 5.5

