Mathematical Foundation for
Compressed Sensing

Jan-Olov Stromberg

Royal Institute of Technology, Stockholm, Sweden

Lecture 12, March 6, 2012



An outline for today

m A short summary from last lectures:



An outline for today

m A short summary from last lectures:
m A lower estimate for RIP.



An outline for today

m A short summary from last lectures:

m A lower estimate for RIP.
m RIP of Random matrices .



An outline for today

m A short summary from last lectures:
m A lower estimate for RIP.
m RIP of Random matrices .
m A construction of a RIP matrix .



An outline for today

m A short summary from last lectures:

m A lower estimate for RIP.
m RIP of Random matrices .
m A construction of a RIP matrix .

m Incoherent bases and Structured Random matrices.



An outline for today

m A short summary from last lectures:

m A lower estimate for RIP.
m RIP of Random matrices .
m A construction of a RIP matrix .

m Incoherent bases and Structured Random matrices.

m RIP estimates for Structured Random matrices (no proof
today).



An outline for today

m A short summary from last lectures:

m A lower estimate for RIP.
m RIP of Random matrices .
m A construction of a RIP matrix .

m Incoherent bases and Structured Random matrices.

m RIP estimates for Structured Random matrices (no proof
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m The proof of RIP estimate for Structured Random matrices.
m More about non-uniform recovery.

m The recoverey of almost s-sparse vector with noise.
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A short summary from last lecture: Recall the definition property
of a matrix:

The m x N matrix A satisfies Restricted Isometry Property (RIP)
with constant ds if

[[[Ax|[3 — [[x[I3] < &I,
for all s- sparse vectors x.

Theorem 4.1: If §s < 1 there is a constant C > 0 such that if any
m x N matrix A har RIP with constant Js, then

m > Cslog(Ne/s).
More precisely we get

slog(2Ne/s) — log 4
2(Iog(\/1 — 05 + 41+ 55) — log(1 — &5))
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constant ds = § with a probability not less than 1 — e.
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RIP for Gaussian Matrices

For Gaussian random matrices we have
Theorem 4.5: There is a constant C > 0 such that
for any € > 0, and 0 < 0 < 1, the following holds: If

m > C5i2 log(N/(se) + lower order terms,
More precisely
2slog(N/s) + 4sloglog(N/s)

+ lower order terms .
ds — log(1 + d5)

then the Gaussian m x N matrix A (as above) satisfy RIP
constant ds = § with a probability not less than 1 — e.
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Construction of matrices satisfyin RIP

Construction of RIP matrices:
We constructed an m x N matrix A statistfying the RIP property
with constant ds with

$2
m~ C— logN.

52 8
We constructed a matrix A such that for any index-subset S,
|S| = s, the corresponding matrix As of columns vectors of A is
almost orthonormal.
More precisely:

As=U+V,

where U is orthonormal and the column in V has length less than

35/ /5.
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Structured Random Matrices

Definition: Structured Random matrices:
m A structured m x N random matrix A is genererated by one
Random vector variable Z = (21, Za, ..., Zy).
m The random components Z;, 1 <j < N
- need not to be independent-
however: E(Z;Z;) =0 for i # j, and E(ZJ-Z) =1 for all j.
All Z; are uniformly bounded: there is a constant K > 1 such
that | Z;| < K for all j.
Each row A; is an independent copy of the random variable
Often the m x N matrix A is normalised:

A= (AL

m Note that A; is the columns of A then
E((Aj,A;)) =1fori# jand E((Aj,A;)) =1all j.
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Structured Random Matrices

Random Matrix from an Orthonormal N x N Matrix:
m Let B be an orthonormal N x N matrix
m We assume there is a constant K such that elements B;; of B
satisfies |Bjj| < KvV/N.
m Let Z be the any row of B multiplied by v/N, each row
chosen by equal probability %
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Random Matrix from an Orthonormal basis
m Let {¢;(t)}; be an orthononomal basis on an interval /.

m Assume that there is a constant K > 1 such that |p(t)] < K
for all t € [ and all j.

m Let T be a random variable with its values uniformly
distributed on the interval /.

mlet Z=(2Z,2,...,2y), where Z; = p(T).
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Example: A wavelet basis and ..
the noiselet basis.
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Structured matrix form an incoherent pair of bases

Let {e;} and {fi} be a pair of orthonormal bases on RV,

Definition:
A pair of orthonormal bases is incoherent if all inner products
< ej, fi > are small.

Z < ej,fk >2: Z < ej,fk >2: 1,
F K

an upper bound for these innerproducts has to be at least 1/\/N

Since

Definition:
The pair of orthonormal bases is incoherent with constant K if all
the inner products above are bounded by K/\/N
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Random matrix from incoherent bases

How to get the Structured random Matrix from the pair of
incoherent bases:

m Let E7! be the N x N-matrix with rows e.

m Let F be the matrix with columns fy.

m Then B = E~F with entries < e;, f, > is an orthonormal
N x N-matrix as above with constant K.

m the N x N matrix B we get stuctured random matrix by
selectiing each row by probaility %
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If U is the input signal we use the basis {e;} and random
measurement

i = <U7 ej):
and U is sparsely represented int the basis {fx} i.e

U= Zxkfk,
k

for x = (xk) sparse. This gives the equation

y = Ax.
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For structured random matrices A with uniform bound K the best
known result (ref. Holger Rauhut, 2011)

Rauhut gives the proof of
Theorem 6.1
There is a constant C > 0 and D < 0 such that
for any € > 0, and 0 < § < 1, the following holds:
If
K?s 7

m > D(S—2 In“(100s) In(4N) In(10m) In(;),
then the m x N structured random matrix A (as above) satisfy
RIP constant s = § with a probability not less than 1 — e.

The constant D is very large, it satisfies D < 163931.48.



Rauhut also state a better result:

Theorem 6.2
There is a constant C > 0 and D < 0 such that
for any € > 0, and 0 < § < 1, the following holds:



Rauhut also state a better result:

Theorem 6.2

There is a constant C > 0 and D < 0 such that

for any € > 0, and 0 < § < 1, the following holds: If
m K2s

in(10m) > C 52 In2(100s) In(N),




Rauhut also state a better result:

Theorem 6.2
There is a constant C > 0 and D < 0 such that
for any € > 0, and 0 < § < 1, the following holds: If

m K25 2
in(10m) > C 52 In“(100s) In(N),
m K?s 1
iniom) ~ P52 In(Q)-

then



Rauhut also state a better result:

Theorem 6.2
There is a constant C > 0 and D < 0 such that
for any € > 0, and 0 < § < 1, the following holds: If

m K25 2
in(10m) > C 52 In“(100s) In(N),
m K?s 1
iniom) ~ P52 In(Q)-

then the m x N structured random matrix A (as above) satisfy
RIP constant §s = § with



Rauhut also state a better result:

Theorem 6.2
There is a constant C > 0 and D < 0 such that
for any € > 0, and 0 < § < 1, the following holds: If

m K25 2
in(10m) > C 52 In“(100s) In(N),
m K?s 1
iniom) ~ P52 In(Q)-

then the m x N structured random matrix A (as above) satisfy
RIP constant s = § with a probability not less than 1 — e.



Rauhut also state a better result:

Theorem 6.2
There is a constant C > 0 and D < 0 such that
for any € > 0, and 0 < § < 1, the following holds: If

m K2s

2
in(10m) > C 52 In“(100s) In(N),
m K?s 1
iniom) ~ P52 In(Q)-

then the m x N structured random matrix A (as above) satisfy
RIP constant s = § with a probability not less than 1 — e.

The constants C and D are very large:



Rauhut also state a better result:

Theorem 6.2
There is a constant C > 0 and D < 0 such that
for any € > 0, and 0 < § < 1, the following holds: If

m K2s

2
in(10m) > C 52 In“(100s) In(N),
m K?s 1
iniom) ~ P52 In(Q)-

then the m x N structured random matrix A (as above) satisfy
RIP constant s = § with a probability not less than 1 — e.

The constants C and D are very large:
The constants satisfy C < 17190 and D < 456.
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Let A be m x N random matrix. Let sparsness level s and let € > 0
be given

m Uniform recovery: With large probability (1 — €) a realisation
of A have the property that all s sparse vectors x can unigely
be recorvered from the equation Ax =y by /; opitmization:

min ||X||1 subject to AXx =y.
xeRN

m Non-uniform recovery: For all s sparse vectors x there is a
large probability (1 — €) that at reaslisation of A has the
propery that x can be recovered from the equation Ax =y by
h, optimization:

min ||X||1 subject to Ax =y.
xERN



Uniform recovery for Structured R. Matrices

Collorary Theorem 6.2
There is a constant C; > 0 and Dy < 0 such that
for any € > 0, the following holds:



Uniform recovery for Structured R. Matrices

Collorary Theorem 6.2
There is a constant C; > 0 and Dy < 0 such that
for any € > 0, the following holds: If

m

K?s1n?(1 In(N
In(lOm)>C1 sIn“(100s) In(N),




Uniform recovery for Structured R. Matrices

Collorary Theorem 6.2
There is a constant C; > 0 and Dy < 0 such that
for any € > 0, the following holds: If

m
C1K?%51n%(100s) In(N
In(lOm)> 1KZsIn"(100s) In(N),
m 1
D1 K?sIn(=
in(10m) ~ D1KsInC0).

then



Uniform recovery for Structured R. Matrices

Collorary Theorem 6.2
There is a constant C; > 0 and Dy < 0 such that
for any € > 0, the following holds: If

m
K2s1n?(100s) In(N
in(10m) > C1K“sIn“(100s) In(N),
m 5 1
in(10m) > D1K sln(e),

then the m x N structured random matrix A (as above) will have
the uniform recovery property with



Uniform recovery for Structured R. Matrices

Collorary Theorem 6.2
There is a constant C; > 0 and Dy < 0 such that
for any € > 0, the following holds: If

m
K2s1n?(100s) In(N
in(10m) > C1K“sIn“(100s) In(N),
m 5 1
in(10m) > D1K sln(e),

then the m x N structured random matrix A (as above) will have
the uniform recovery property with a probability not less than 1 —e.



Non-uniform recovery for Structured R. Matrices

Refer to Cande’s and Yaniv Plan

Theorem 6.3

There is a constant Cy > 0 such that

for any 8 > 0, K > 1, the following holds:



Non-uniform recovery for Structured R. Matrices

Refer to Cande’'s and Yaniv Plan

Theorem 6.3
There is a constant Cy > 0 such that
for any 8 > 0, K > 1, the following holds: If

m > Co(1 + log(e))K?s In(N),

then



Non-uniform recovery for Structured R. Matrices

Refer to Cande’s and Yaniv Plan

Theorem 6.3
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Non-uniform recovery for Structured R. Matrices

Refer to Cande’s and Yaniv Plan

Theorem 6.3

There is a constant Cy > 0 such that

for any 8 > 0, K > 1, the following holds: If

m > Co(1 + log(e))K?s In(N),

then the structured m x N random matrix A
(as above - with non-coherence constant K)

will have the non-uniform recovery property with
a probability not less than 1 — % — €.
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Recovery with appoximative sparsness and noise

Refer to Cande’s et al.

Assume that the vector x to be recoverd is not s sparse but can be
well approximated by s-sparse functions for some s. Assume also
we have some noise o0z, i.e.

y = Ax + oz,

where z is Gaussian z N(0, 1).
(However assuming ||Az||o < Ay for some Ay > 0.)
We consider the /1 regularized least-square problem

min ||AX — + A||x||1, *
min A%~y + ARl ()

Theorem 6.4: Let x be an arbitary vector in R”. Then with
probability at least 1 — © — 6e the solution to (*) with
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Theorem 6.4: Let x be an arbitary vector in R”. Then with
probability at least 1 — © — 6¢ the solution to (*) with
A = 10+/log N obeys

X —x[2 <

1
< minj<s<s C\/(l + log(=)slog® N
== €
or with error in /; norm:

X —x[l1 <

1
< minj<s<s C\/(l + Iog(;)slog5 N

- log N
Ix=xsls ,  [slog

NG m

log N
X = xs|[1 + 504/ &
m

)



