Mathematical Foundation for Compressed Sensing

Jan-Olov Strömberg

Royal Institute of Technology, Stockholm, Sweden

Lecture 12, March 6, 2012

A short summary from last lectures: A lower estimate for RIP.

A short summary from last lectures:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- A lower estimate for RIP.
- RIP of Random matrices .

A short summary from last lectures:

- A lower estimate for RIP.
- RIP of Random matrices .
- A construction of a RIP matrix .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A short summary from last lectures:

- A lower estimate for RIP.
- RIP of Random matrices .
- A construction of a RIP matrix .
- Incoherent bases and Structured Random matrices.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- A short summary from last lectures:
 - A lower estimate for RIP.
 - RIP of Random matrices .
 - A construction of a RIP matrix .
- Incoherent bases and Structured Random matrices.
- RIP estimates for Structured Random matrices (no proof today).

- A short summary from last lectures:
 - A lower estimate for RIP.
 - RIP of Random matrices .
 - A construction of a RIP matrix .
- Incoherent bases and Structured Random matrices.
- RIP estimates for Structured Random matrices (no proof today).

Non-uniform versus uniform recovery of sparse vectors.

Things that remains to be done:

• The proof of RIP estimate for Structured Random matrices.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Things that remains to be done:

• The proof of RIP estimate for Structured Random matrices.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

More about non-uniform recovery.

Things that remains to be done:

• The proof of RIP estimate for Structured Random matrices.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- More about non-uniform recovery.
- The recoverey of almost *s*-sparse vector with noise.

A short summary from last lecture: Recall the definition property of a matrix:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A short summary from last lecture: Recall the definition property of a matrix:

The $m \times N$ matrix **A** satisfies Restricted Isometry Property (RIP) with constant δ_s if

A short summary from last lecture: Recall the definition property of a matrix:

The $m \times N$ matrix **A** satisfies Restricted Isometry Property (RIP) with constant δ_s if

$$|\|\mathbf{A}\mathbf{x}\|_{2}^{2} - \|\mathbf{x}\|_{2}^{2}| \le \delta_{s} \|\mathbf{x}\|_{2}^{2},$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

for all *s*- sparse vectors **x**.

A short summary from last lecture: Recall the definition property of a matrix:

The $m \times N$ matrix **A** satisfies Restricted Isometry Property (RIP) with constant δ_s if

$$|\|\mathbf{A}\mathbf{x}\|_{2}^{2} - \|\mathbf{x}\|_{2}^{2}| \le \delta_{s} \|\mathbf{x}\|_{2}^{2},$$

for all *s*- sparse vectors **x**.

Theorem 4.1: If $\delta_s < 1$ there is a constant C > 0 such that if any $m \times N$ matrix **A** har RIP with constant δ_s , then

 $m > Cs \log(Ne/s).$

A short summary from last lecture: Recall the definition property of a matrix:

The $m \times N$ matrix **A** satisfies Restricted Isometry Property (RIP) with constant δ_s if

$$|\|\mathbf{A}\mathbf{x}\|_{2}^{2} - \|\mathbf{x}\|_{2}^{2}| \le \delta_{s} \|\mathbf{x}\|_{2}^{2},$$

for all s- sparse vectors x.

Theorem 4.1: If $\delta_s < 1$ there is a constant C > 0 such that if any $m \times N$ matrix **A** har RIP with constant δ_s , then

$$m > Cs \log(Ne/s).$$

More precisely we get

$$m \geq \frac{s \log(2Ne/s) - \log 4}{2(\log(\sqrt{1-\delta_s} + 4\sqrt{1+\delta_s}) - \log(1-\delta_s))}.$$

For Gaussian random matrices we have Theorem 4.5: There is a constant C > 0 such that for any $\epsilon > 0$, and $0 < \delta \le 1$, the following holds: If

$$m > C rac{s}{\delta^2} \log(N/(s\epsilon) + \text{ lower order terms},$$

then the Gaussian $m \times N$ matrix **A** (as above) satisfy RIP constant $\delta_s = \delta$ with a probability not less than $1 - \epsilon$.

For Gaussian random matrices we have Theorem 4.5: There is a constant C > 0 such that for any $\epsilon > 0$, and $0 < \delta \le 1$, the following holds: If

$$m > C rac{s}{\delta^2} \log(N/(s\epsilon) + \text{ lower order terms},$$

then the Gaussian $m \times N$ matrix **A** (as above) satisfy RIP constant $\delta_s = \delta$ with a probability not less than $1 - \epsilon$.

For Gaussian random matrices we have Theorem 4.5: There is a constant C > 0 such that for any $\epsilon > 0$, and $0 < \delta \le 1$, the following holds: If

$$m > C rac{s}{\delta^2} \log(N/(s\epsilon) + \text{ lower order terms},$$

More precisely

$$m > rac{2s\log(N/s) + 4s\log\log(N/s)}{\delta_s - \log(1 + \delta_s)} + ext{ lower order terms }.$$

then the Gaussian $m \times N$ matrix **A** (as above) satisfy RIP constant $\delta_s = \delta$ with a probability not less than $1 - \epsilon$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Construction of RIP matrices:

We constructed an $m \times N$ matrix **A** statistfying the RIP property with constant δ_s with

$$m \sim C rac{s^2}{\delta_s^2} \log N.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Construction of RIP matrices:

We constructed an $m \times N$ matrix **A** statistfying the RIP property with constant δ_s with

$$m \sim C rac{s^2}{\delta_s^2} \log N.$$

We constructed a matrix **A** such that for any index-subset *S*, |S| = s, the corresponding matrix **A**_S of columns vectors of **A** is almost orthonormal.

Construction of RIP matrices:

We constructed an $m \times N$ matrix **A** statistfying the RIP property with constant δ_s with

$$m \sim C rac{s^2}{\delta_s^2} \log N.$$

We constructed a matrix **A** such that for any index-subset *S*, |S| = s, the corresponding matrix **A**_S of columns vectors of **A** is almost orthonormal.

More precisely:

$$\mathbf{A}_{\mathcal{S}}=\mathbf{U}+\mathbf{V},$$

where **U** is orthonormal and the column in **V** has length less than δ_s/\sqrt{s} .

Definition: Structured Random matrices:

Definition: Structured Random matrices:

• A structured $m \times N$ random matrix **A** is generated by one Random vector variable $Z = (Z_1, Z_2, \dots, Z_N)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition: Structured Random matrices:

• A structured $m \times N$ random matrix **A** is genererated by one Random vector variable $Z = (Z_1, Z_2, \dots, Z_N)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The random components Z_j , $1 \le j \le N$
 - need not to be independent-

Definition: Structured Random matrices:

- A structured $m \times N$ random matrix **A** is generated by one Random vector variable $Z = (Z_1, Z_2, \dots, Z_N)$.
- The random components Z_j , $1 \leq j \leq N$

- need not to be independent-

however: $E(Z_iZ_j) = 0$ for $i \neq j$, and $E(Z_j^2) = 1$ for all j.

Definition: Structured Random matrices:

- A structured $m \times N$ random matrix **A** is genererated by one Random vector variable $Z = (Z_1, Z_2, \dots, Z_N)$.
- The random components Z_j, 1 ≤ j ≤ N
 need not to be independenthowever: E(Z_iZ_j) = 0 for i ≠ j, and E(Z_j²) = 1 for all j.
- All Z_j are uniformly bounded: there is a constant K ≥ 1 such that |Z_j| ≤ K for all j.

Definition: Structured Random matrices:

- A structured $m \times N$ random matrix **A** is genererated by one Random vector variable $Z = (Z_1, Z_2, \dots, Z_N)$.
- The random components Z_j, 1 ≤ j ≤ N
 need not to be independenthowever: E(Z_iZ_j) = 0 for i ≠ j, and E(Z_i²) = 1 for all j.
- All Z_j are uniformly bounded: there is a constant K ≥ 1 such that |Z_j| ≤ K for all j.

Each row A_i is an independent copy of the random variable

Definition: Structured Random matrices:

- A structured $m \times N$ random matrix **A** is generated by one Random vector variable $Z = (Z_1, Z_2, \dots, Z_N)$.
- The random components Z_j, 1 ≤ j ≤ N
 need not to be independenthowever: E(Z_iZ_j) = 0 for i ≠ j, and E(Z_i²) = 1 for all j.
- All Z_j are uniformly bounded: there is a constant K ≥ 1 such that |Z_j| ≤ K for all j.
- Each row A_i is an independent copy of the random variable
- Often the $m \times N$ matrix **A** is normalised:

$$\mathbf{A} = rac{1}{\sqrt{m}} (\mathbf{A}_j)_{j=1}^N.$$

Definition: Structured Random matrices:

- A structured $m \times N$ random matrix **A** is genererated by one Random vector variable $Z = (Z_1, Z_2, \dots, Z_N)$.
- The random components Z_j, 1 ≤ j ≤ N
 need not to be independenthowever: E(Z_iZ_j) = 0 for i ≠ j, and E(Z_i²) = 1 for all j.
- All Z_j are uniformly bounded: there is a constant K ≥ 1 such that |Z_j| ≤ K for all j.
- Each row A_i is an independent copy of the random variable
- Often the $m \times N$ matrix **A** is normalised:

$$\mathbf{A} = rac{1}{\sqrt{m}} (\mathbf{A}_j)_{j=1}^N.$$

Note that A_i is the columns of A then

 $E(\langle \mathbf{A}_i, \mathbf{A}_j \rangle) = 1$ for $i \neq j$ and $E(\langle \mathbf{A}_i, \mathbf{A}_i \rangle) = 1$ all j.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Let **B** be an orthonormal $N \times N$ matrix

- Let **B** be an orthonormal $N \times N$ matrix
- We assume there is a constant K such that elements \mathbf{B}_{ij} of \mathbf{B} satisfies $|B_{ij}| \leq K\sqrt{N}$.

- Let **B** be an orthonormal $N \times N$ matrix
- We assume there is a constant K such that elements \mathbf{B}_{ij} of \mathbf{B} satisfies $|B_{ij}| \leq K\sqrt{N}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Let Z be the any row of **B** multiplied by \sqrt{N} , each row chosen by equal probability $\frac{1}{N}$.

Example: The discrete Fourier matrix

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Random Matrix from an Orthonormal basis

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>
• Let $\{\varphi_j(t)\}_j$ be an orthononomal basis on an interval *I*.

- Let $\{\varphi_j(t)\}_j$ be an orthononomal basis on an interval *I*.
- Assume that there is a constant $K \ge 1$ such that $|\varphi(t)| \le K$ for all $t \in I$ and all j.

- Let $\{\varphi_j(t)\}_j$ be an orthononomal basis on an interval *I*.
- Assume that there is a constant $K \ge 1$ such that $|\varphi(t)| \le K$ for all $t \in I$ and all j.

• Let *T* be a random variable with its values uniformly distributed on the interval *I*.

- Let $\{\varphi_j(t)\}_j$ be an orthononomal basis on an interval *I*.
- Assume that there is a constant K ≥ 1 such that |φ(t)| ≤ K for all t ∈ I and all j.

Let T be a random variable with its values uniformly distributed on the interval I.

• Let
$$Z = (Z_1, Z_2, ..., Z_N)$$
, where $Z_j = \varphi(T)$.

Example: A wavelet basis and ..

<□ > < @ > < E > < E > E のQ @

Example: A wavelet basis and .. the noiselet basis.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition:

A pair of orthonormal bases is incoherent if all inner products $< \mathbf{e}_j, \mathbf{f}_k >$ are small.

Definition:

A pair of orthonormal bases is incoherent if all inner products $< \mathbf{e}_j, \mathbf{f}_k >$ are small.

Since

$$\sum_j < \mathbf{e}_j, \mathbf{f}_k >^2 = \sum_k < \mathbf{e}_j, \mathbf{f}_k >^2 = 1,$$

an upper bound for these innerproducts has to be at least $1/\sqrt{N}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Definition:

A pair of orthonormal bases is incoherent if all inner products $< \mathbf{e}_j, \mathbf{f}_k >$ are small.

Since

$$\sum_{j} < \mathbf{e}_{j}, \mathbf{f}_{k} >^{2} = \sum_{k} < \mathbf{e}_{j}, \mathbf{f}_{k} >^{2} = 1,$$

an upper bound for these innerproducts has to be at least $1/\sqrt{N}$. Definition:

Definition:

A pair of orthonormal bases is incoherent if all inner products $< \mathbf{e}_j, \mathbf{f}_k >$ are small.

Since

$$\sum_j < \mathbf{e}_j, \mathbf{f}_k >^2 = \sum_k < \mathbf{e}_j, \mathbf{f}_k >^2 = 1,$$

an upper bound for these innerproducts has to be at least $1/\sqrt{N}$.

Definition:

The pair of orthonormal bases is incoherent with constant K if all the inner products above are bounded by K/\sqrt{N} .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Let \mathbf{E}^{-1} be the $N \times N$ -matrix with rows \mathbf{e}_j .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Let \mathbf{E}^{-1} be the $N \times N$ -matrix with rows \mathbf{e}_j .
- Let **F** be the matrix with columns \mathbf{f}_k .

- Let \mathbf{E}^{-1} be the $N \times N$ -matrix with rows \mathbf{e}_j .
- Let **F** be the matrix with columns \mathbf{f}_k .
- Then $\mathbf{B} = \mathbf{E}^{-1}\mathbf{F}$ with entries $\langle \mathbf{e}_j, \mathbf{f}_k \rangle$ is an orthonormal $N \times N$ -matrix as above with constant K.

- Let \mathbf{E}^{-1} be the $N \times N$ -matrix with rows \mathbf{e}_j .
- Let **F** be the matrix with columns \mathbf{f}_k .
- Then $\mathbf{B} = \mathbf{E}^{-1}\mathbf{F}$ with entries $\langle \mathbf{e}_j, \mathbf{f}_k \rangle$ is an orthonormal $N \times N$ -matrix as above with constant K.
- the $N \times N$ matrix **B** we get stuctured random matrix by selecting each row by probaility $\frac{1}{N}$.

If U is the input signal we use the basis $\{\mathbf{e}_j\}$ and random measurement

$$\mathbf{y}_j = \langle U, \mathbf{e}_j \rangle,$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

If U is the input signal we use the basis $\{\mathbf{e}_j\}$ and random measurement

$$\mathbf{y}_j = \langle U, \mathbf{e}_j \rangle,$$

and U is sparsely represented int the basis $\{\mathbf{f}_k\}$ i.e

$$U=\sum_k\mathbf{x}_k\mathbf{f}_k,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

for $\mathbf{x} = (\mathbf{x}_k)$ sparse.

If U is the input signal we use the basis $\{\mathbf{e}_j\}$ and random measurement

$$\mathbf{y}_j = \langle U, \mathbf{e}_j \rangle,$$

and U is sparsely represented int the basis $\{\mathbf{f}_k\}$ i.e

$$U=\sum_k \mathbf{x}_k \mathbf{f}_k,$$

for $\mathbf{x} = (\mathbf{x}_k)$ sparse. This gives the equation

$$\mathbf{y} = \mathbf{A}\mathbf{x}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Rauhut gives the proof of


```
Rauhut gives the proof of

Theorem 6.1

There is a constant C > 0 and D < 0 such that

for any \epsilon > 0, and 0 < \delta \le 1, the following holds:

If
```

Rauhut gives the proof of Theorem 6.1 There is a constant C > 0 and D < 0 such that for any $\epsilon > 0$, and $0 < \delta \le 1$, the following holds: If

$$m > D rac{K^2 s}{\delta^2} \ln^2(100s) \ln(4N) \ln(10m) \ln(rac{7}{\epsilon}),$$

then

Rauhut gives the proof of Theorem 6.1 There is a constant C > 0 and D < 0 such that for any $\epsilon > 0$, and $0 < \delta \le 1$, the following holds: If

$$m > D\frac{K^2s}{\delta^2}\ln^2(100s)\ln(4N)\ln(10m)\ln(\frac{7}{\epsilon}),$$

then the $m \times N$ structured random matrix **A** (as above) satisfy RIP constant $\delta_s = \delta$ with

Rauhut gives the proof of Theorem 6.1 There is a constant C > 0 and D < 0 such that for any $\epsilon > 0$, and $0 < \delta \le 1$, the following holds: If

$$m > D\frac{K^2s}{\delta^2}\ln^2(100s)\ln(4N)\ln(10m)\ln(\frac{7}{\epsilon}),$$

then the $m \times N$ structured random matrix **A** (as above) satisfy RIP constant $\delta_s = \delta$ with a probability not less than $1 - \epsilon$.

Rauhut gives the proof of Theorem 6.1 There is a constant C > 0 and D < 0 such that for any $\epsilon > 0$, and $0 < \delta \le 1$, the following holds: If

$$m > D \frac{K^2 s}{\delta^2} \ln^2(100s) \ln(4N) \ln(10m) \ln(\frac{7}{\epsilon}),$$

then the $m \times N$ structured random matrix **A** (as above) satisfy RIP constant $\delta_s = \delta$ with a probability not less than $1 - \epsilon$.

The constant D is very large, it satisfies D < 163931.48.

Theorem 6.2 There is a constant C > 0 and D < 0 such that for any $\epsilon > 0$, and $0 < \delta \le 1$, the following holds:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem 6.2

There is a constant C > 0 and D < 0 such that for any $\epsilon > 0$, and $0 < \delta \le 1$, the following holds: If

$$\frac{m}{\ln(10m)} > C \frac{\kappa^2 s}{\delta^2} \ln^2(100s) \ln(N),$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem 6.2

There is a constant C > 0 and D < 0 such that for any $\epsilon > 0$, and $0 < \delta \le 1$, the following holds: If

$$\frac{m}{\ln(10m)} > C \frac{K^2 s}{\delta^2} \ln^2(100s) \ln(N),$$
$$\frac{m}{\ln(10m)} > D \frac{K^2 s}{\delta^2} \ln(\frac{1}{\epsilon}).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

then

Theorem 6.2

There is a constant C > 0 and D < 0 such that for any $\epsilon > 0$, and $0 < \delta \le 1$, the following holds: If

$$\frac{m}{\ln(10m)} > C \frac{K^2 s}{\delta^2} \ln^2(100s) \ln(N),$$
$$\frac{m}{\ln(10m)} > D \frac{K^2 s}{\delta^2} \ln(\frac{1}{\epsilon}).$$

then the $m \times N$ structured random matrix **A** (as above) satisfy RIP constant $\delta_s = \delta$ with

Theorem 6.2

There is a constant C > 0 and D < 0 such that for any $\epsilon > 0$, and $0 < \delta \le 1$, the following holds: If

$$\frac{m}{\ln(10m)} > C \frac{K^2 s}{\delta^2} \ln^2(100s) \ln(N),$$
$$\frac{m}{\ln(10m)} > D \frac{K^2 s}{\delta^2} \ln(\frac{1}{\epsilon}).$$

then the $m \times N$ structured random matrix **A** (as above) satisfy RIP constant $\delta_s = \delta$ with a probability not less than $1 - \epsilon$.

Theorem 6.2

There is a constant C > 0 and D < 0 such that for any $\epsilon > 0$, and $0 < \delta \le 1$, the following holds: If

$$\frac{m}{\ln(10m)} > C \frac{K^2 s}{\delta^2} \ln^2(100s) \ln(N),$$
$$\frac{m}{\ln(10m)} > D \frac{K^2 s}{\delta^2} \ln(\frac{1}{\epsilon}).$$

then the $m \times N$ structured random matrix **A** (as above) satisfy RIP constant $\delta_s = \delta$ with a probability not less than $1 - \epsilon$.

The constants C and D are very large:

Theorem 6.2

There is a constant C > 0 and D < 0 such that for any $\epsilon > 0$, and $0 < \delta \le 1$, the following holds: If

$$\frac{m}{\ln(10m)} > C \frac{K^2 s}{\delta^2} \ln^2(100s) \ln(N),$$
$$\frac{m}{\ln(10m)} > D \frac{K^2 s}{\delta^2} \ln(\frac{1}{\epsilon}).$$

then the $m \times N$ structured random matrix **A** (as above) satisfy RIP constant $\delta_s = \delta$ with a probability not less than $1 - \epsilon$.

The constants C and D are very large: The constants satisfy C < 17190 and D < 456.

Uniform versus non-uniform recovery with random matrices

Let **A** be $m \times N$ random matrix. Let sparsness level *s* and let $\epsilon > 0$ be given

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Uniform versus non-uniform recovery with random matrices

Let **A** be $m \times N$ random matrix. Let sparsness level s and let $\epsilon > 0$ be given

■ Uniform recovery: With large probability (1 - ϵ) a realisation of A have the property that all s sparse vectors x can uniquely be recorvered from the equation Ax = y by l₁ opitmization:

Uniform versus non-uniform recovery with random matrices

Let **A** be $m \times N$ random matrix. Let sparsness level s and let $\epsilon > 0$ be given

■ Uniform recovery: With large probability (1 - ϵ) a realisation of A have the property that all s sparse vectors x can uniquely be recorvered from the equation Ax = y by l₁ opitmization:

 $\min_{\overline{\mathbf{x}}\in R^N}\|\overline{\mathbf{x}}\|_1 \text{ subject to } \mathbf{A}\overline{\mathbf{x}}=\mathbf{y}.$
Uniform versus non-uniform recovery with random matrices

Let **A** be $m \times N$ random matrix. Let sparsness level s and let $\epsilon > 0$ be given

■ Uniform recovery: With large probability (1 - ϵ) a realisation of A have the property that all s sparse vectors x can uniquely be recorvered from the equation Ax = y by l₁ opitmization:

$$\min_{\overline{\mathbf{x}}\in R^N} \|\overline{\mathbf{x}}\|_1 \text{ subject to } \mathbf{A}\overline{\mathbf{x}} = \mathbf{y}.$$

Non-uniform recovery: For all s sparse vectors x there is a large probability (1 – ε) that at reaslisation of A has the propery that x can be recovered from the equation Ax = y by l₁ optimization:

Let **A** be $m \times N$ random matrix. Let sparsness level s and let $\epsilon > 0$ be given

■ Uniform recovery: With large probability (1 - ϵ) a realisation of A have the property that all s sparse vectors x can uniquely be recorvered from the equation Ax = y by l₁ opitmization:

$$\min_{\overline{\mathbf{x}}\in R^N} \|\overline{\mathbf{x}}\|_1 \text{ subject to } \mathbf{A}\overline{\mathbf{x}} = \mathbf{y}.$$

Non-uniform recovery: For all s sparse vectors x there is a large probability (1 – ε) that at reaslisation of A has the propery that x can be recovered from the equation Ax = y by l₁ optimization:

$$\min_{\overline{\mathbf{x}}\in R^N} \|\overline{\mathbf{x}}\|_1 \text{ subject to } \mathbf{A}\overline{\mathbf{x}} = \mathbf{y}.$$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

$$\frac{m}{\ln(10m)} > C_1 K^2 s \ln^2(100s) \ln(N),$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$\frac{m}{\ln(10m)} > C_1 \mathcal{K}^2 s \ln^2(100s) \ln(N),$$
$$\frac{m}{\ln(10m)} > D_1 \mathcal{K}^2 s \ln(\frac{1}{\epsilon}),$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

then

$$\frac{m}{\ln(10m)} > C_1 \mathcal{K}^2 s \ln^2(100s) \ln(N),$$
$$\frac{m}{\ln(10m)} > D_1 \mathcal{K}^2 s \ln(\frac{1}{\epsilon}),$$

then the $m \times N$ structured random matrix **A** (as above) will have the uniform recovery property with

$$\frac{m}{\ln(10m)} > C_1 K^2 s \ln^2(100s) \ln(N),$$
$$\frac{m}{\ln(10m)} > D_1 K^2 s \ln(\frac{1}{\epsilon}),$$

then the $m \times N$ structured random matrix **A** (as above) will have the uniform recovery property with a probability not less than $1 - \epsilon$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Refer to Cande's and Yaniv Plan Theorem 6.3 There is a constant $C_0 > 0$ such that for any $\beta > 0$, $K \ge 1$, the following holds: Refer to Cande's and Yaniv Plan Theorem 6.3 There is a constant $C_0 > 0$ such that for any $\beta > 0$, $K \ge 1$, the following holds: If

 $m > C_0(1 + \log(\epsilon))K^2 s \ln(N),$

then

```
Refer to Cande's and Yaniv Plan

Theorem 6.3

There is a constant C_0 > 0 such that

for any \beta > 0, K \ge 1, the following holds: If
```

 $m > C_0(1 + \log(\epsilon))K^2 s \ln(N),$

then the structured $m \times N$ random matrix **A** (as above - with non-coherence constant K) will have the non-uniform recovery property with

```
Refer to Cande's and Yaniv Plan

Theorem 6.3

There is a constant C_0 > 0 such that

for any \beta > 0, K \ge 1, the following holds: If
```

 $m > C_0(1 + \log(\epsilon))K^2 s \ln(N),$

then the structured $m \times N$ random matrix **A** (as above - with non-coherence constant K) will have the non-uniform recovery property with a probability not less than $1 - \frac{5}{n} - \epsilon$.

Recovery with appoximative sparsness and noise

Refer to Cande's et al.

Assume that the vector \mathbf{x} to be recoverd is not s sparse but can be well approximated by s-sparse functions for some s.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Recovery with appoximative sparsness and noise

Refer to Cande's et al.

Assume that the vector **x** to be recoverd is not *s* sparse but can be well approximated by *s*-sparse functions for some *s*. Assume also we have some noise σz , i.e.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Refer to Cande's et al.

Assume that the vector **x** to be recoverd is not *s* sparse but can be well approximated by *s*-sparse functions for some *s*. Assume also we have some noise σz , i.e.

$$\mathbf{y} = \mathbf{A}\mathbf{x} + \sigma \mathbf{z},$$

where z is Gaussian z N(0, 1). (However assuming $\|\mathbf{A}\mathbf{z}\|_{\infty} \leq \lambda_N$ for some $\lambda_N \geq 0$.) Refer to Cande's et al.

Assume that the vector **x** to be recoverd is not *s* sparse but can be well approximated by *s*-sparse functions for some *s*. Assume also we have some noise σz , i.e.

$$\mathbf{y} = \mathbf{A}\mathbf{x} + \sigma \mathbf{z},$$

where z is Gaussian z N(0, 1). (However assuming $\|\mathbf{A}\mathbf{z}\|_{\infty} \leq \lambda_N$ for some $\lambda_N \geq 0$.) We consider the l_1 regularized least-square problem

$$\min_{\overline{\mathbf{x}}\in R^N} \|\mathbf{A}\overline{\mathbf{x}} - \mathbf{y}\|_2 + \lambda \|\overline{\mathbf{x}}\|_1, \qquad (*)$$

Theorem 6.4: Let **x** be an arbitrary vector in \mathbb{R}^n . Then with probability at least $1 - \frac{6}{n} - 6\epsilon$ the solution to (*) with $\lambda = 10\sqrt{\log N}$ obeys

Theorem 6.4: Let **x** be an arbitrary vector in \mathbb{R}^n . Then with probability at least $1 - \frac{6}{n} - 6\epsilon$ the solution to (*) with $\lambda = 10\sqrt{\log N}$ obeys

$$\begin{aligned} \|\overline{\mathbf{x}} - \mathbf{x}\|_{2} &\leq \\ &\leq \min_{1 \leq s \leq \overline{s}} \quad C \sqrt{(1 + \log(\frac{1}{\epsilon})s \log^{5} N} \left[\frac{\|\mathbf{x} - \mathbf{x}_{s}\|_{1}}{\sqrt{s}} + \sigma \sqrt{\frac{s \log N}{m}} \right]. \end{aligned}$$

Theorem 6.4: Let **x** be an arbitrary vector in \mathbb{R}^n . Then with probability at least $1 - \frac{6}{n} - 6\epsilon$ the solution to (*) with $\lambda = 10\sqrt{\log N}$ obeys

$$\begin{aligned} \|\overline{\mathbf{x}} - \mathbf{x}\|_{2} &\leq \\ &\leq \min_{1 \leq s \leq \overline{s}} \quad C \sqrt{(1 + \log(\frac{1}{\epsilon})s \log^{5} N} \left[\frac{\|\mathbf{x} - \mathbf{x}_{s}\|_{1}}{\sqrt{s}} + \sigma \sqrt{\frac{s \log N}{m}} \right]. \end{aligned}$$

or with error in l_1 norm:

$$\begin{aligned} \|\overline{\mathbf{x}} - \mathbf{x}\|_{1} &\leq \\ &\leq \min_{1 \leq s \leq \overline{s}} \quad C \sqrt{(1 + \log(\frac{1}{\epsilon})s \log^{5} N)} \left[\|\mathbf{x} - \mathbf{x}_{s}\|_{1} + s\sigma \sqrt{\frac{\log N}{m}} \right] \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

.