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An outline for today

A short summary from last lectures:

A lower estimate for RIP.
RIP of Random matrices .
A construction of a RIP matrix .

Incoherent bases and Structured Random matrices.

RIP estimates for Structured Random matrices (no proof
today).

Non-uniform versus uniform recovery of sparse vectors.
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Remains to do

Things that remains to be done:

The proof of RIP estimate for Structured Random matrices.

More about non-uniform recovery.

The recoverey of almost s-sparse vector with noise.
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A short summary from last lecture:

A short summary from last lecture: Recall the definition property
of a matrix:

The m × N matrix A satisfies Restricted Isometry Property (RIP)
with constant δs if

|‖Ax‖22 − ‖x‖22| ≤ δs‖x‖22,

for all s- sparse vectors x.

Theorem 4.1: If δs < 1 there is a constant C > 0 such that if any
m × N matrix A har RIP with constant δs , then

m > Cs log(Ne/s).

More precisely we get

m ≥ s log(2Ne/s)− log 4

2(log(
√

1− δs + 4
√

1 + δs)− log(1− δs))
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RIP for Gaussian Matrices

For Gaussian random matrices we have
Theorem 4.5: There is a constant C > 0 such that
for any ε > 0, and 0 < δ ≤ 1, the following holds: If

m > C
s

δ2
log(N/(sε) + lower order terms,

More precisely

m >
2s log(N/s) + 4s log log(N/s)

δs − log(1 + δs)
+ lower order terms .

then the Gaussian m × N matrix A (as above) satisfy RIP
constant δs = δ with a probability not less than 1− ε.
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Construction of matrices satisfyin RIP

Construction of RIP matrices:
We constructed an m × N matrix A statistfying the RIP property
with constant δs with

m ∼ C
s2

δ2s
logN.

We constructed a matrix A such that for any index-subset S ,
|S | = s, the corresponding matrix AS of columns vectors of A is
almost orthonormal.
More precisely:

AS = U + V,

where U is orthonormal and the column in V has length less than
δs/
√
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Structured Random Matrices

Definition: Structured Random matrices:

A structured m × N random matrix A is genererated by one
Random vector variable Z = (Z1,Z2, . . . ,ZN).

The random components Zj , 1 ≤ j ≤ N
- need not to be independent-
however: E (ZiZj) = 0 for i 6= j , and E (Z 2

j ) = 1 for all j .

All Zj are uniformly bounded: there is a constant K ≥ 1 such
that |Zj | ≤ K for all j .

Each row Ai is an independent copy of the random variable

Often the m × N matrix A is normalised:

A =
1√
m

(Aj)
N
j=1.

Note that Ai is the columns of A then

E (〈Ai ,Aj〉) = 1 for i 6= j and E (〈Ai ,Ai 〉) = 1 all j .
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Structured Random Matrices

Random Matrix from an Orthonormal N × N Matrix:

Let B be an orthonormal N × N matrix

We assume there is a constant K such that elements Bij of B
satisfies |Bij | ≤ K

√
N.

Let Z be the any row of B multiplied by
√
N, each row

chosen by equal probability 1
N .
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Example: The discrete Fourier matrix



Structured Random Matrices

Random Matrix from an Orthonormal basis

Let {ϕj(t)}j be an orthononomal basis on an interval I .

Assume that there is a constant K ≥ 1 such that |ϕ(t)| ≤ K
for all t ∈ I and all j .

Let T be a random variable with its values uniformly
distributed on the interval I .

Let Z = (Z1,Z2, . . . ,ZN), where Zj = ϕ(T ).
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Example: A wavelet basis and ..

the noiselet basis.
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Structured matrix form an incoherent pair of bases

Let {ej} and {fk} be a pair of orthonormal bases on RN .

Definition:
A pair of orthonormal bases is incoherent if all inner products
< ej , fk > are small.

Since ∑
j

< ej , fk >
2=

∑
k

< ej , fk >
2= 1,

an upper bound for these innerproducts has to be at least 1/
√
N.

Definition:
The pair of orthonormal bases is incoherent with constant K if all
the inner products above are bounded by K/

√
N.
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Random matrix from incoherent bases

How to get the Structured random Matrix from the pair of
incoherent bases:

Let E−1 be the N × N-matrix with rows ej .

Let F be the matrix with columns fk .

Then B = E−1F with entries < ej , fk > is an orthonormal
N × N-matrix as above with constant K .

the N × N matrix B we get stuctured random matrix by
selectiing each row by probaility 1

N .
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If U is the input signal we use the basis {ej} and random
measurement

yj = 〈U, ej〉,

and U is sparsely represented int the basis {fk} i.e

U =
∑
k

xk fk ,

for x = (xk) sparse. This gives the equation

y = Ax.
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RIP for Structured Random Matrices

For structured random matrices A with uniform bound K the best
known result (ref. Holger Rauhut, 2011)

Rauhut gives the proof of

Theorem 6.1
There is a constant C > 0 and D < 0 such that
for any ε > 0, and 0 < δ ≤ 1, the following holds:
If

m > D
K 2s

δ2
ln2(100s) ln(4N) ln(10m) ln(

7

ε
),

then the m × N structured random matrix A (as above) satisfy
RIP constant δs = δ with a probability not less than 1− ε.

The constant D is very large, it satisfies D < 163931.48.
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Uniform versus non-uniform recovery with random matrices

Let A be m×N random matrix. Let sparsness level s and let ε > 0
be given

Uniform recovery: With large probability (1− ε) a realisation
of A have the property that all s sparse vectors x can uniqely
be recorvered from the equation Ax = y by l1 opitmization:

min
x∈RN

‖x‖1 subject to Ax = y.

Non-uniform recovery: For all s sparse vectors x there is a
large probability (1− ε) that at reaslisation of A has the
propery that x can be recovered from the equation Ax = y by
l1 optimization:

min
x∈RN

‖x‖1 subject to Ax = y.
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Uniform recovery for Structured R. Matrices

Collorary Theorem 6.2
There is a constant C1 > 0 and D1 < 0 such that
for any ε > 0, the following holds:
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then the m × N structured random matrix A (as above) will have
the uniform recovery property with a probability not less than 1− ε.



Uniform recovery for Structured R. Matrices

Collorary Theorem 6.2
There is a constant C1 > 0 and D1 < 0 such that
for any ε > 0, the following holds: If

m

ln(10m)
> C1K

2s ln2(100s) ln(N),

m

ln(10m)
> D1K

2s ln(
1

ε
),

then the m × N structured random matrix A (as above) will have
the uniform recovery property with a probability not less than 1− ε.



Uniform recovery for Structured R. Matrices

Collorary Theorem 6.2
There is a constant C1 > 0 and D1 < 0 such that
for any ε > 0, the following holds: If

m

ln(10m)
> C1K

2s ln2(100s) ln(N),

m

ln(10m)
> D1K

2s ln(
1

ε
),

then

the m × N structured random matrix A (as above) will have
the uniform recovery property with a probability not less than 1− ε.



Uniform recovery for Structured R. Matrices

Collorary Theorem 6.2
There is a constant C1 > 0 and D1 < 0 such that
for any ε > 0, the following holds: If

m

ln(10m)
> C1K

2s ln2(100s) ln(N),

m

ln(10m)
> D1K

2s ln(
1

ε
),

then the m × N structured random matrix A (as above) will have
the uniform recovery property with

a probability not less than 1− ε.



Uniform recovery for Structured R. Matrices

Collorary Theorem 6.2
There is a constant C1 > 0 and D1 < 0 such that
for any ε > 0, the following holds: If

m

ln(10m)
> C1K

2s ln2(100s) ln(N),

m

ln(10m)
> D1K

2s ln(
1

ε
),

then the m × N structured random matrix A (as above) will have
the uniform recovery property with a probability not less than 1− ε.



Non-uniform recovery for Structured R. Matrices

Refer to Cande’s and Yaniv Plan
Theorem 6.3
There is a constant C0 > 0 such that
for any β > 0, K ≥ 1, the following holds:

If

m > C0(1 + log(ε))K 2s ln(N),

then the structured m × N random matrix A
(as above - with non-coherence constant K )
will have the non-uniform recovery property with
a probability not less than 1− 5

n − ε.
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Recovery with appoximative sparsness and noise

Refer to Cande’s et al.
Assume that the vector x to be recoverd is not s sparse but can be
well approximated by s-sparse functions for some s.

Assume also
we have some noise σz, i.e.

y = Ax + σz,

where z is Gaussian z N(0, 1).
(However assuming ‖Az‖∞ ≤ λN for some λN ≥ 0.)
We consider the l1 regularized least-square problem

min
x∈RN

‖Ax− y‖2 + λ‖x‖1, (∗)

Theorem 6.4: Let x be an arbitary vector in Rn. Then with
probability at least 1− 6

n − 6ε the solution to (∗) with
λ = 10

√
logN obeys
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