Mathematical Foundation for Compressed Sensing

Jan-Olov Strömberg

Royal Institute of Technology, Stockholm, Sweden

Lecture 12, March 6, 2012

An outline for today

- A short summary from last lectures:

An outline for today

- A short summary from last lectures:
- A lower estimate for RIP.

An outline for today

- A short summary from last lectures:
- A lower estimate for RIP.
- RIP of Random matrices .

An outline for today

- A short summary from last lectures:
- A lower estimate for RIP.
- RIP of Random matrices .
- A construction of a RIP matrix .

An outline for today

- A short summary from last lectures:
- A lower estimate for RIP.
- RIP of Random matrices .
- A construction of a RIP matrix .

■ Incoherent bases and Structured Random matrices.

An outline for today

- A short summary from last lectures:
- A lower estimate for RIP.
- RIP of Random matrices .
- A construction of a RIP matrix .
- Incoherent bases and Structured Random matrices.
- RIP estimates for Structured Random matrices (no proof today).

An outline for today

- A short summary from last lectures:
- A lower estimate for RIP.
- RIP of Random matrices.
- A construction of a RIP matrix .
- Incoherent bases and Structured Random matrices.
- RIP estimates for Structured Random matrices (no proof today).
- Non-uniform versus uniform recovery of sparse vectors.

Remains to do

Things that remains to be done:

- The proof of RIP estimate for Structured Random matrices.

Remains to do

Things that remains to be done:

- The proof of RIP estimate for Structured Random matrices.
- More about non-uniform recovery.

Remains to do

Things that remains to be done:

- The proof of RIP estimate for Structured Random matrices.
- More about non-uniform recovery.
- The recoverey of almost s-sparse vector with noise.

A short summary from last lecture:

A short summary from last lecture: Recall the definition property of a matrix:

A short summary from last lecture:

A short summary from last lecture: Recall the definition property of a matrix:

The $m \times N$ matrix A satisfies Restricted Isometry Property (RIP) with constant δ_{s} if

A short summary from last lecture:

A short summary from last lecture: Recall the definition property of a matrix:

The $m \times N$ matrix A satisfies Restricted Isometry Property (RIP) with constant δ_{s} if

$$
\left|\|\mathbf{A} \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \leq \delta_{s}\|\mathbf{x}\|_{2}^{2},
$$

for all s - sparse vectors \mathbf{x}.

A short summary from last lecture:

A short summary from last lecture: Recall the definition property of a matrix:

The $m \times N$ matrix A satisfies Restricted Isometry Property (RIP) with constant δ_{s} if

$$
\left|\|\mathbf{A} \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \leq \delta_{s}\|\mathbf{x}\|_{2}^{2}
$$

for all s - sparse vectors \mathbf{x}.
Theorem 4.1: If $\delta_{s}<1$ there is a constant $C>0$ such that if any $m \times N$ matrix \mathbf{A} har RIP with constant δ_{s}, then

$$
m>C s \log (\mathrm{Ne} / \mathrm{s})
$$

A short summary from last lecture:

A short summary from last lecture: Recall the definition property of a matrix:
The $m \times N$ matrix A satisfies Restricted Isometry Property (RIP) with constant δ_{s} if

$$
\left|\|\mathbf{A} \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \leq \delta_{s}\|\mathbf{x}\|_{2}^{2}
$$

for all s - sparse vectors \mathbf{x}.
Theorem 4.1: If $\delta_{s}<1$ there is a constant $C>0$ such that if any $m \times N$ matrix \mathbf{A} har RIP with constant δ_{s}, then

$$
m>C s \log (\mathrm{Ne} / \mathrm{s})
$$

More precisely we get

$$
m \geq \frac{s \log (2 \mathrm{Ne} / s)-\log 4}{2\left(\log \left(\sqrt{1-\delta_{s}}+4 \sqrt{1+\delta_{s}}\right)-\log \left(1-\delta_{s}\right)\right)}
$$

RIP for Gaussian Matrices

For Gaussian random matrices we have Theorem 4.5: There is a constant $C>0$ such that for any $\epsilon>0$, and $0<\delta \leq 1$, the following holds: If

$$
m>C \frac{s}{\delta^{2}} \log (N /(s \epsilon)+\text { lower order terms }
$$

then the Gaussian $m \times N$ matrix \mathbf{A} (as above) satisfy RIP constant $\delta_{s}=\delta$ with a probability not less than $1-\epsilon$.

RIP for Gaussian Matrices

For Gaussian random matrices we have Theorem 4.5: There is a constant $C>0$ such that for any $\epsilon>0$, and $0<\delta \leq 1$, the following holds: If

$$
m>C \frac{s}{\delta^{2}} \log (N /(s \epsilon)+\text { lower order terms }
$$

then the Gaussian $m \times N$ matrix \mathbf{A} (as above) satisfy RIP constant $\delta_{s}=\delta$ with a probability not less than $1-\epsilon$.

RIP for Gaussian Matrices

For Gaussian random matrices we have
Theorem 4.5: There is a constant $C>0$ such that for any $\epsilon>0$, and $0<\delta \leq 1$, the following holds: If

$$
m>C \frac{s}{\delta^{2}} \log (N /(s \epsilon)+\text { lower order terms }
$$

More precisely

$$
m>\frac{2 s \log (N / s)+4 s \log \log (N / s)}{\delta_{s}-\log \left(1+\delta_{s}\right)}+\text { lower order terms }
$$

then the Gaussian $m \times N$ matrix \mathbf{A} (as above) satisfy RIP constant $\delta_{s}=\delta$ with a probability not less than $1-\epsilon$.

Construction of matrices satisfyin RIP

Construction of RIP matrices:
We constructed an $m \times N$ matrix A statistfying the RIP property with constant δ_{s} with

$$
m \sim C \frac{s^{2}}{\delta_{s}^{2}} \log N
$$

Construction of matrices satisfyin RIP

Construction of RIP matrices:
We constructed an $m \times N$ matrix A statistfying the RIP property with constant δ_{s} with

$$
m \sim C \frac{s^{2}}{\delta_{s}^{2}} \log N
$$

We constructed a matrix \mathbf{A} such that for any index-subset S, $|S|=s$, the corresponding matrix \mathbf{A}_{S} of columns vectors of \mathbf{A} is almost orthonormal.

Construction of matrices satisfyin RIP

Construction of RIP matrices:
We constructed an $m \times N$ matrix A statistfying the RIP property with constant δ_{s} with

$$
m \sim C \frac{s^{2}}{\delta_{s}^{2}} \log N
$$

We constructed a matrix \mathbf{A} such that for any index-subset S, $|S|=s$, the corresponding matrix \mathbf{A}_{S} of columns vectors of \mathbf{A} is almost orthonormal.
More precisely:

$$
\mathbf{A}_{S}=\mathbf{U}+\mathbf{V}
$$

where \mathbf{U} is orthonormal and the column in \mathbf{V} has length less than δ_{s} / \sqrt{s}.

Structured Random Matrices

Definition: Structured Random matrices:

Structured Random Matrices

Definition: Structured Random matrices:

- A structured $m \times N$ random matrix \mathbf{A} is genererated by one Random vector variable $Z=\left(Z_{1}, Z_{2}, \ldots, Z_{N}\right)$.

Structured Random Matrices

Definition: Structured Random matrices:
■ A structured $m \times N$ random matrix \mathbf{A} is genererated by one Random vector variable $Z=\left(Z_{1}, Z_{2}, \ldots, Z_{N}\right)$.
■ The random components $Z_{j}, 1 \leq j \leq N$

- need not to be independent-

Structured Random Matrices

Definition: Structured Random matrices:
■ A structured $m \times N$ random matrix \mathbf{A} is genererated by one Random vector variable $Z=\left(Z_{1}, Z_{2}, \ldots, Z_{N}\right)$.

- The random components $Z_{j}, 1 \leq j \leq N$
- need not to be independent-
however: $E\left(Z_{i} Z_{j}\right)=0$ for $i \neq j$, and $E\left(Z_{j}^{2}\right)=1$ for all j.

Structured Random Matrices

Definition: Structured Random matrices:

- A structured $m \times N$ random matrix \mathbf{A} is genererated by one Random vector variable $Z=\left(Z_{1}, Z_{2}, \ldots, Z_{N}\right)$.
- The random components $Z_{j}, 1 \leq j \leq N$
- need not to be independent-
however: $E\left(Z_{i} Z_{j}\right)=0$ for $i \neq j$, and $E\left(Z_{j}^{2}\right)=1$ for all j.
■ All Z_{j} are uniformly bounded: there is a constant $K \geq 1$ such that $\left|Z_{j}\right| \leq K$ for all j.

Structured Random Matrices

Definition: Structured Random matrices:

- A structured $m \times N$ random matrix \mathbf{A} is genererated by one Random vector variable $Z=\left(Z_{1}, Z_{2}, \ldots, Z_{N}\right)$.
- The random components $Z_{j}, 1 \leq j \leq N$
- need not to be independenthowever: $E\left(Z_{i} Z_{j}\right)=0$ for $i \neq j$, and $E\left(Z_{j}^{2}\right)=1$ for all j.
■ All Z_{j} are uniformly bounded: there is a constant $K \geq 1$ such that $\left|Z_{j}\right| \leq K$ for all j.
- Each row \mathbf{A}_{i} is an independent copy of the random variable

Structured Random Matrices

Definition: Structured Random matrices:
■ A structured $m \times N$ random matrix \mathbf{A} is genererated by one Random vector variable $Z=\left(Z_{1}, Z_{2}, \ldots, Z_{N}\right)$.

- The random components $Z_{j}, 1 \leq j \leq N$
- need not to be independenthowever: $E\left(Z_{i} Z_{j}\right)=0$ for $i \neq j$, and $E\left(Z_{j}^{2}\right)=1$ for all j.
- All Z_{j} are uniformly bounded: there is a constant $K \geq 1$ such that $\left|Z_{j}\right| \leq K$ for all j.
- Each row \mathbf{A}_{i} is an independent copy of the random variable
- Often the $m \times N$ matrix \mathbf{A} is normalised:

$$
\mathbf{A}=\frac{1}{\sqrt{m}}\left(\mathbf{A}_{j}\right)_{j=1}^{N} .
$$

Structured Random Matrices

Definition: Structured Random matrices:
■ A structured $m \times N$ random matrix \mathbf{A} is genererated by one Random vector variable $Z=\left(Z_{1}, Z_{2}, \ldots, Z_{N}\right)$.

- The random components $Z_{j}, 1 \leq j \leq N$
- need not to be independenthowever: $E\left(Z_{i} Z_{j}\right)=0$ for $i \neq j$, and $E\left(Z_{j}^{2}\right)=1$ for all j.
■ All Z_{j} are uniformly bounded: there is a constant $K \geq 1$ such that $\left|Z_{j}\right| \leq K$ for all j.
- Each row \mathbf{A}_{i} is an independent copy of the random variable
- Often the $m \times N$ matrix \mathbf{A} is normalised:

$$
\mathbf{A}=\frac{1}{\sqrt{m}}\left(\mathbf{A}_{j}\right)_{j=1}^{N}
$$

■ Note that \mathbf{A}_{i} is the columns of \mathbf{A} then

$$
E\left(\left\langle\mathbf{A}_{i}, \mathbf{A}_{j}\right\rangle\right)=1 \text { for } i \neq j \text { and } E\left(\left\langle\mathbf{A}_{i}, \mathbf{A}_{i}\right\rangle\right)=1 \text { all } j
$$

Structured Random Matrices

Random Matrix from an Orthonormal $N \times N$ Matrix:

Structured Random Matrices

Random Matrix from an Orthonormal $N \times N$ Matrix:

- Let B be an orthonormal $N \times N$ matrix

Structured Random Matrices

Random Matrix from an Orthonormal $N \times N$ Matrix:
■ Let B be an orthonormal $N \times N$ matrix

- We assume there is a constant K such that elements $\mathbf{B}_{i j}$ of \mathbf{B} satisfies $\left|B_{i j}\right| \leq K \sqrt{N}$.

Structured Random Matrices

Random Matrix from an Orthonormal $N \times N$ Matrix:
■ Let B be an orthonormal $N \times N$ matrix

- We assume there is a constant K such that elements $\mathbf{B}_{i j}$ of \mathbf{B} satisfies $\left|B_{i j}\right| \leq K \sqrt{N}$.
- Let Z be the any row of \mathbf{B} multiplied by \sqrt{N}, each row chosen by equal probability $\frac{1}{N}$.

Example: The discrete Fourier matrix

Structured Random Matrices

Random Matrix from an Orthonormal basis

Structured Random Matrices

Random Matrix from an Orthonormal basis
■ Let $\left\{\varphi_{j}(t)\right\}_{j}$ be an orthononomal basis on an interval I.

Structured Random Matrices

Random Matrix from an Orthonormal basis
■ Let $\left\{\varphi_{j}(t)\right\}_{j}$ be an orthononomal basis on an interval I.
■ Assume that there is a constant $K \geq 1$ such that $|\varphi(t)| \leq K$ for all $t \in I$ and all j.

Structured Random Matrices

Random Matrix from an Orthonormal basis
■ Let $\left\{\varphi_{j}(t)\right\}_{j}$ be an orthononomal basis on an interval I.

- Assume that there is a constant $K \geq 1$ such that $|\varphi(t)| \leq K$ for all $t \in I$ and all j.
- Let T be a random variable with its values uniformly distributed on the interval l.

Structured Random Matrices

Random Matrix from an Orthonormal basis

■ Let $\left\{\varphi_{j}(t)\right\}_{j}$ be an orthononomal basis on an interval I.
■ Assume that there is a constant $K \geq 1$ such that $|\varphi(t)| \leq K$ for all $t \in I$ and all j.

- Let T be a random variable with its values uniformly distributed on the interval l.

■ Let $Z=\left(Z_{1}, Z_{2}, \ldots, Z_{N}\right)$, where $Z_{j}=\varphi(T)$.

Example: A wavelet basis and ..

Example: A wavelet basis and .. the noiselet basis.

Structured matrix form an incoherent pair of bases

Let $\left\{\mathbf{e}_{j}\right\}$ and $\left\{\mathbf{f}_{k}\right\}$ be a pair of orthonormal bases on \mathbb{R}^{N}.

Structured matrix form an incoherent pair of bases

Let $\left\{\mathbf{e}_{j}\right\}$ and $\left\{\mathbf{f}_{k}\right\}$ be a pair of orthonormal bases on \mathbb{R}^{N}.
Definition:

Structured matrix form an incoherent pair of bases

Let $\left\{\mathbf{e}_{j}\right\}$ and $\left\{\mathbf{f}_{k}\right\}$ be a pair of orthonormal bases on \mathbb{R}^{N}.
Definition:
A pair of orthonormal bases is incoherent if all inner products $<\mathbf{e}_{j}, \mathbf{f}_{k}>$ are small.

Structured matrix form an incoherent pair of bases

Let $\left\{\mathbf{e}_{j}\right\}$ and $\left\{\mathbf{f}_{k}\right\}$ be a pair of orthonormal bases on \mathbb{R}^{N}.

Definition:

A pair of orthonormal bases is incoherent if all inner products $<\mathbf{e}_{j}, \mathbf{f}_{k}>$ are small.

Since

$$
\sum_{j}<\mathbf{e}_{j}, \mathbf{f}_{k}>^{2}=\sum_{k}<\mathbf{e}_{j}, \mathbf{f}_{k}>^{2}=1
$$

an upper bound for these innerproducts has to be at least $1 / \sqrt{N}$.

Structured matrix form an incoherent pair of bases

Let $\left\{\mathbf{e}_{j}\right\}$ and $\left\{\mathbf{f}_{k}\right\}$ be a pair of orthonormal bases on \mathbb{R}^{N}.

Definition:

A pair of orthonormal bases is incoherent if all inner products $<\mathbf{e}_{j}, \mathbf{f}_{k}>$ are small.

Since

$$
\sum_{j}<\mathbf{e}_{j}, \mathbf{f}_{k}>^{2}=\sum_{k}<\mathbf{e}_{j}, \mathbf{f}_{k}>^{2}=1
$$

an upper bound for these innerproducts has to be at least $1 / \sqrt{N}$.
Definition:

Structured matrix form an incoherent pair of bases

Let $\left\{\mathbf{e}_{j}\right\}$ and $\left\{\mathbf{f}_{k}\right\}$ be a pair of orthonormal bases on \mathbb{R}^{N}.

Definition:

A pair of orthonormal bases is incoherent if all inner products $<\mathbf{e}_{j}, \mathbf{f}_{k}>$ are small.

Since

$$
\sum_{j}<\mathbf{e}_{j}, \mathbf{f}_{k}>^{2}=\sum_{k}<\mathbf{e}_{j}, \mathbf{f}_{k}>^{2}=1,
$$

an upper bound for these innerproducts has to be at least $1 / \sqrt{N}$.
Definition:
The pair of orthonormal bases is incoherent with constant K if all the inner products above are bounded by K / \sqrt{N}.

Random matrix from incoherent bases

How to get the Structured random Matrix from the pair of incoherent bases:

Random matrix from incoherent bases

How to get the Structured random Matrix from the pair of incoherent bases:

- Let \mathbf{E}^{-1} be the $N \times N$-matrix with rows \mathbf{e}_{j}.

Random matrix from incoherent bases

How to get the Structured random Matrix from the pair of incoherent bases:

- Let \mathbf{E}^{-1} be the $N \times N$-matrix with rows \mathbf{e}_{j}.

■ Let \mathbf{F} be the matrix with columns \mathbf{f}_{k}.

Random matrix from incoherent bases

How to get the Structured random Matrix from the pair of incoherent bases:

■ Let \mathbf{E}^{-1} be the $N \times N$-matrix with rows \mathbf{e}_{j}.
■ Let \mathbf{F} be the matrix with columns \mathbf{f}_{k}.
■ Then $\mathbf{B}=\mathbf{E}^{-1} \mathbf{F}$ with entries $<\mathbf{e}_{j}, \mathbf{f}_{k}>$ is an orthonormal $N \times N$-matrix as above with constant K.

Random matrix from incoherent bases

How to get the Structured random Matrix from the pair of incoherent bases:

- Let \mathbf{E}^{-1} be the $N \times N$-matrix with rows \mathbf{e}_{j}.
- Let \mathbf{F} be the matrix with columns \mathbf{f}_{k}.

■ Then $\mathbf{B}=\mathbf{E}^{-1} \mathbf{F}$ with entries $<\mathbf{e}_{j}, \mathbf{f}_{k}>$ is an orthonormal $N \times N$-matrix as above with constant K.

■ the $N \times N$ matrix B we get stuctured random matrix by selectiing each row by probaility $\frac{1}{N}$.

If U is the input signal we use the basis $\left\{\mathbf{e}_{j}\right\}$ and random measurement

$$
\mathbf{y}_{j}=\left\langle U, \mathbf{e}_{j}\right\rangle
$$

If U is the input signal we use the basis $\left\{\mathbf{e}_{j}\right\}$ and random measurement

$$
\mathbf{y}_{j}=\left\langle U, \mathbf{e}_{j}\right\rangle
$$

and U is sparsely represented int the basis $\left\{\mathbf{f}_{k}\right\}$ i.e

$$
U=\sum_{k} \mathbf{x}_{k} \mathbf{f}_{k}
$$

for $\mathbf{x}=\left(\mathbf{x}_{k}\right)$ sparse.

If U is the input signal we use the basis $\left\{\mathbf{e}_{j}\right\}$ and random measurement

$$
\mathbf{y}_{j}=\left\langle U, \mathbf{e}_{j}\right\rangle
$$

and U is sparsely represented int the basis $\left\{\mathbf{f}_{k}\right\}$ i.e

$$
U=\sum_{k} \mathbf{x}_{k} \mathbf{f}_{k}
$$

for $\mathbf{x}=\left(\mathbf{x}_{k}\right)$ sparse. This gives the equation

$$
\mathbf{y}=\mathbf{A x}
$$

RIP for Structured Random Matrices

For structured random matrices \mathbf{A} with uniform bound K the best known result (ref. Holger Rauhut, 2011)
Rauhut gives the proof of

RIP for Structured Random Matrices

For structured random matrices \mathbf{A} with uniform bound K the best known result (ref. Holger Rauhut, 2011)
Rauhut gives the proof of
Theorem 6.1
There is a constant $C>0$ and $D<0$ such that for any $\epsilon>0$, and $0<\delta \leq 1$, the following holds:
If

RIP for Structured Random Matrices

For structured random matrices \mathbf{A} with uniform bound K the best known result (ref. Holger Rauhut, 2011)
Rauhut gives the proof of
Theorem 6.1
There is a constant $C>0$ and $D<0$ such that for any $\epsilon>0$, and $0<\delta \leq 1$, the following holds:
If

$$
m>D \frac{K^{2} s}{\delta^{2}} \ln ^{2}(100 s) \ln (4 N) \ln (10 m) \ln \left(\frac{7}{\epsilon}\right)
$$

then

RIP for Structured Random Matrices

For structured random matrices \mathbf{A} with uniform bound K the best known result (ref. Holger Rauhut, 2011)
Rauhut gives the proof of
Theorem 6.1
There is a constant $C>0$ and $D<0$ such that for any $\epsilon>0$, and $0<\delta \leq 1$, the following holds:
If

$$
m>D \frac{K^{2} s}{\delta^{2}} \ln ^{2}(100 s) \ln (4 N) \ln (10 m) \ln \left(\frac{7}{\epsilon}\right)
$$

then the $m \times N$ structured random matrix \mathbf{A} (as above) satisfy RIP constant $\delta_{s}=\delta$ with

RIP for Structured Random Matrices

For structured random matrices \mathbf{A} with uniform bound K the best known result (ref. Holger Rauhut, 2011)
Rauhut gives the proof of
Theorem 6.1
There is a constant $C>0$ and $D<0$ such that for any $\epsilon>0$, and $0<\delta \leq 1$, the following holds:
If

$$
m>D \frac{K^{2} s}{\delta^{2}} \ln ^{2}(100 s) \ln (4 N) \ln (10 m) \ln \left(\frac{7}{\epsilon}\right)
$$

then the $m \times N$ structured random matrix \mathbf{A} (as above) satisfy RIP constant $\delta_{s}=\delta$ with a probability not less than $1-\epsilon$.

RIP for Structured Random Matrices

For structured random matrices \mathbf{A} with uniform bound K the best known result (ref. Holger Rauhut, 2011)
Rauhut gives the proof of
Theorem 6.1
There is a constant $C>0$ and $D<0$ such that for any $\epsilon>0$, and $0<\delta \leq 1$, the following holds:
If

$$
m>D \frac{K^{2} s}{\delta^{2}} \ln ^{2}(100 s) \ln (4 N) \ln (10 m) \ln \left(\frac{7}{\epsilon}\right)
$$

then the $m \times N$ structured random matrix \mathbf{A} (as above) satisfy RIP constant $\delta_{s}=\delta$ with a probability not less than $1-\epsilon$.

The constant D is very large, it satisfies $D<163931.48$.

Rauhut also state a better result:
Theorem 6.2
There is a constant $C>0$ and $D<0$ such that for any $\epsilon>0$, and $0<\delta \leq 1$, the following holds:

Rauhut also state a better result:
Theorem 6.2
There is a constant $C>0$ and $D<0$ such that for any $\epsilon>0$, and $0<\delta \leq 1$, the following holds: If

$$
\frac{m}{\ln (10 m)}>C \frac{K^{2} s}{\delta^{2}} \ln ^{2}(100 s) \ln (N)
$$

Rauhut also state a better result:
Theorem 6.2
There is a constant $C>0$ and $D<0$ such that for any $\epsilon>0$, and $0<\delta \leq 1$, the following holds: If

$$
\begin{aligned}
\frac{m}{\ln (10 m)}> & C \frac{K^{2} s}{\delta^{2}} \ln ^{2}(100 s) \ln (N) \\
& \frac{m}{\ln (10 m)}>D \frac{K^{2} s}{\delta^{2}} \ln \left(\frac{1}{\epsilon}\right)
\end{aligned}
$$

then

Rauhut also state a better result:

Theorem 6.2

There is a constant $C>0$ and $D<0$ such that for any $\epsilon>0$, and $0<\delta \leq 1$, the following holds: If

$$
\begin{aligned}
\frac{m}{\ln (10 m)}> & C \frac{K^{2} s}{\delta^{2}} \ln ^{2}(100 s) \ln (N) \\
& \frac{m}{\ln (10 m)}>D \frac{K^{2} s}{\delta^{2}} \ln \left(\frac{1}{\epsilon}\right)
\end{aligned}
$$

then the $m \times N$ structured random matrix \mathbf{A} (as above) satisfy RIP constant $\delta_{s}=\delta$ with

Rauhut also state a better result:

Theorem 6.2

There is a constant $C>0$ and $D<0$ such that for any $\epsilon>0$, and $0<\delta \leq 1$, the following holds: If

$$
\begin{aligned}
\frac{m}{\ln (10 m)}> & C \frac{K^{2} s}{\delta^{2}} \ln ^{2}(100 s) \ln (N) \\
& \frac{m}{\ln (10 m)}>D \frac{K^{2} s}{\delta^{2}} \ln \left(\frac{1}{\epsilon}\right)
\end{aligned}
$$

then the $m \times N$ structured random matrix \mathbf{A} (as above) satisfy RIP constant $\delta_{s}=\delta$ with a probability not less than $1-\epsilon$.

Rauhut also state a better result:

Theorem 6.2

There is a constant $C>0$ and $D<0$ such that for any $\epsilon>0$, and $0<\delta \leq 1$, the following holds: If

$$
\begin{aligned}
\frac{m}{\ln (10 m)}> & C \frac{K^{2} s}{\delta^{2}} \ln ^{2}(100 s) \ln (N) \\
& \frac{m}{\ln (10 m)}>D \frac{K^{2} s}{\delta^{2}} \ln \left(\frac{1}{\epsilon}\right)
\end{aligned}
$$

then the $m \times N$ structured random matrix \mathbf{A} (as above) satisfy RIP constant $\delta_{s}=\delta$ with a probability not less than $1-\epsilon$.

The constants C and D are very large:

Rauhut also state a better result:

Theorem 6.2

There is a constant $C>0$ and $D<0$ such that for any $\epsilon>0$, and $0<\delta \leq 1$, the following holds: If

$$
\begin{aligned}
\frac{m}{\ln (10 m)}> & C \frac{K^{2} s}{\delta^{2}} \ln ^{2}(100 s) \ln (N) \\
& \frac{m}{\ln (10 m)}>D \frac{K^{2} s}{\delta^{2}} \ln \left(\frac{1}{\epsilon}\right)
\end{aligned}
$$

then the $m \times N$ structured random matrix \mathbf{A} (as above) satisfy RIP constant $\delta_{s}=\delta$ with a probability not less than $1-\epsilon$.

The constants C and D are very large:
The constants satisfy $C<17190$ and $D<456$.

Uniform versus non-uniform recovery with random matrices

Let \mathbf{A} be $m \times N$ random matrix. Let sparsness level s and let $\epsilon>0$ be given

Uniform versus non-uniform recovery with random matrices

Let \mathbf{A} be $m \times N$ random matrix. Let sparsness level s and let $\epsilon>0$ be given

■ Uniform recovery: With large probability $(1-\epsilon)$ a realisation of \mathbf{A} have the property that all s sparse vectors \mathbf{x} can uniqely be recorvered from the equation $\mathbf{A x}=\mathbf{y}$ by I_{1} opitmization:

Uniform versus non-uniform recovery with random matrices

Let \mathbf{A} be $m \times N$ random matrix. Let sparsness level s and let $\epsilon>0$ be given

■ Uniform recovery: With large probability $(1-\epsilon)$ a realisation of \mathbf{A} have the property that all s sparse vectors \mathbf{x} can uniqely be recorvered from the equation $\mathbf{A x}=\mathbf{y}$ by I_{1} opitmization:

$$
\min _{\overline{\mathbf{x}} \in R^{N}}\|\overline{\mathbf{x}}\|_{1} \text { subject to } \mathbf{A} \overline{\mathbf{x}}=\mathbf{y}
$$

Uniform versus non-uniform recovery with random matrices

Let \mathbf{A} be $m \times N$ random matrix. Let sparsness level s and let $\epsilon>0$ be given

- Uniform recovery: With large probability $(1-\epsilon)$ a realisation of \mathbf{A} have the property that all s sparse vectors \mathbf{x} can uniqely be recorvered from the equation $\mathbf{A x}=\mathbf{y}$ by I_{1} opitmization:

$$
\min _{\overline{\mathbf{x}} \in R^{N}}\|\overline{\mathbf{x}}\|_{1} \text { subject to } \mathbf{A} \overline{\mathbf{x}}=\mathbf{y}
$$

■ Non-uniform recovery: For all s sparse vectors \mathbf{x} there is a large probability $(1-\epsilon)$ that at reaslisation of \mathbf{A} has the propery that \mathbf{x} can be recovered from the equation $\mathbf{A x}=\mathbf{y}$ by l_{1} optimization:

Uniform versus non-uniform recovery with random matrices

Let \mathbf{A} be $m \times N$ random matrix. Let sparsness level s and let $\epsilon>0$ be given

- Uniform recovery: With large probability $(1-\epsilon)$ a realisation of \mathbf{A} have the property that all s sparse vectors \mathbf{x} can uniqely be recorvered from the equation $\mathbf{A x}=\mathbf{y}$ by I_{1} opitmization:

$$
\min _{\overline{\mathbf{x}} \in R^{N}}\|\overline{\mathbf{x}}\|_{1} \text { subject to } \mathbf{A} \overline{\mathbf{x}}=\mathbf{y}
$$

■ Non-uniform recovery: For all s sparse vectors \mathbf{x} there is a large probability $(1-\epsilon)$ that at reaslisation of \mathbf{A} has the propery that \mathbf{x} can be recovered from the equation $\mathbf{A x}=\mathbf{y}$ by l_{1} optimization:

$$
\min _{\overline{\mathbf{x}} \in R^{N}}\|\overline{\mathbf{x}}\|_{1} \text { subject to } \mathbf{A} \overline{\mathbf{x}}=\mathbf{y}
$$

Uniform recovery for Structured R. Matrices

Collorary Theorem 6.2
There is a constant $C_{1}>0$ and $D_{1}<0$ such that for any $\epsilon>0$, the following holds:

Uniform recovery for Structured R. Matrices

Collorary Theorem 6.2
There is a constant $C_{1}>0$ and $D_{1}<0$ such that for any $\epsilon>0$, the following holds: If

$$
\frac{m}{\ln (10 m)}>C_{1} K^{2} s \ln ^{2}(100 s) \ln (N)
$$

Uniform recovery for Structured R. Matrices

Collorary Theorem 6.2
There is a constant $C_{1}>0$ and $D_{1}<0$ such that for any $\epsilon>0$, the following holds: If

$$
\begin{aligned}
\frac{m}{\ln (10 m)}> & C_{1} K^{2} s \ln ^{2}(100 s) \ln (N) \\
& \frac{m}{\ln (10 m)}>D_{1} K^{2} s \ln \left(\frac{1}{\epsilon}\right)
\end{aligned}
$$

then

Uniform recovery for Structured R. Matrices

Collorary Theorem 6.2
There is a constant $C_{1}>0$ and $D_{1}<0$ such that for any $\epsilon>0$, the following holds: If

$$
\begin{aligned}
\frac{m}{\ln (10 m)}> & C_{1} K^{2} s \ln ^{2}(100 s) \ln (N), \\
& \frac{m}{\ln (10 m)}>D_{1} K^{2} s \ln \left(\frac{1}{\epsilon}\right),
\end{aligned}
$$

then the $m \times N$ structured random matrix \mathbf{A} (as above) will have the uniform recovery property with

Uniform recovery for Structured R. Matrices

Collorary Theorem 6.2
There is a constant $C_{1}>0$ and $D_{1}<0$ such that for any $\epsilon>0$, the following holds: If

$$
\begin{aligned}
\frac{m}{\ln (10 m)}> & C_{1} K^{2} s \ln ^{2}(100 s) \ln (N) \\
& \frac{m}{\ln (10 m)}>D_{1} K^{2} s \ln \left(\frac{1}{\epsilon}\right)
\end{aligned}
$$

then the $m \times N$ structured random matrix \mathbf{A} (as above) will have the uniform recovery property with a probability not less than $1-\epsilon$.

Non-uniform recovery for Structured R. Matrices

Refer to Cande's and Yaniv Plan
Theorem 6.3
There is a constant $C_{0}>0$ such that for any $\beta>0, K \geq 1$, the following holds:

Non-uniform recovery for Structured R. Matrices

Refer to Cande's and Yaniv Plan
Theorem 6.3
There is a constant $C_{0}>0$ such that for any $\beta>0, K \geq 1$, the following holds: If

$$
m>C_{0}(1+\log (\epsilon)) K^{2} s \ln (N)
$$

then

Non-uniform recovery for Structured R. Matrices

Refer to Cande's and Yaniv Plan
Theorem 6.3
There is a constant $C_{0}>0$ such that for any $\beta>0, K \geq 1$, the following holds: If

$$
m>C_{0}(1+\log (\epsilon)) K^{2} s \ln (N)
$$

then the structured $m \times N$ random matrix \mathbf{A}
(as above - with non-coherence constant K)
will have the non-uniform recovery property with

Non-uniform recovery for Structured R. Matrices

Refer to Cande's and Yaniv Plan
Theorem 6.3
There is a constant $C_{0}>0$ such that for any $\beta>0, K \geq 1$, the following holds: If

$$
m>C_{0}(1+\log (\epsilon)) K^{2} s \ln (N)
$$

then the structured $m \times N$ random matrix \mathbf{A}
(as above - with non-coherence constant K)
will have the non-uniform recovery property with
a probability not less than $1-\frac{5}{n}-\epsilon$.

Recovery with appoximative sparsness and noise

Refer to Cande's et al.
Assume that the vector \mathbf{x} to be recoverd is not s sparse but can be well approximated by s-sparse functions for some s.

Recovery with appoximative sparsness and noise

Refer to Cande's et al.
Assume that the vector \mathbf{x} to be recoverd is not s sparse but can be well approximated by s-sparse functions for some s. Assume also we have some noise $\sigma \mathbf{z}$, i.e.

Recovery with appoximative sparsness and noise

Refer to Cande's et al.
Assume that the vector \mathbf{x} to be recoverd is not s sparse but can be well approximated by s-sparse functions for some s. Assume also we have some noise $\sigma \mathbf{z}$, i.e.

$$
\mathbf{y}=\mathbf{A} \mathbf{x}+\sigma \mathbf{z}
$$

where \mathbf{z} is Gaussian $\mathbf{z} N(0,1)$.
(However assuming $\|\mathbf{A z}\|_{\infty} \leq \lambda_{N}$ for some $\lambda_{N} \geq 0$.)

Recovery with appoximative sparsness and noise

Refer to Cande's et al.
Assume that the vector \mathbf{x} to be recoverd is not s sparse but can be well approximated by s-sparse functions for some s. Assume also we have some noise $\sigma \mathbf{z}$, i.e.

$$
\mathbf{y}=\mathbf{A} \mathbf{x}+\sigma \mathbf{z}
$$

where \mathbf{z} is Gaussian $\mathbf{z} N(0,1)$.
(However assuming $\|\mathbf{A z}\|_{\infty} \leq \lambda_{N}$ for some $\lambda_{N} \geq 0$.)
We consider the I_{1} regularized least-square problem

$$
\begin{equation*}
\min _{\overline{\mathbf{x}} \in R^{N}}\|\mathbf{A} \overline{\mathbf{x}}-\mathbf{y}\|_{2}+\lambda\|\overline{\mathbf{x}}\|_{1} \tag{*}
\end{equation*}
$$

Theorem 6.4: Let \mathbf{x} be an arbitary vector in \mathbb{R}^{n}. Then with probability at least $1-\frac{6}{n}-6 \epsilon$ the solution to $(*)$ with $\lambda=10 \sqrt{\log N}$ obeys

Theorem 6.4: Let \mathbf{x} be an arbitary vector in \mathbb{R}^{n}. Then with probability at least $1-\frac{6}{n}-6 \epsilon$ the solution to $(*)$ with $\lambda=10 \sqrt{\log N}$ obeys

$$
\begin{aligned}
& \|\overline{\mathbf{x}}-\mathbf{x}\|_{2} \leq \\
\leq & \min _{1 \leq s \leq \bar{s}} C \sqrt{\left(1+\log \left(\frac{1}{\epsilon}\right) s \log ^{5} N\right.}\left[\frac{\left\|\mathbf{x}-\mathbf{x}_{s}\right\|_{1}}{\sqrt{s}}+\sigma \sqrt{\frac{s \log N}{m}}\right],
\end{aligned}
$$

Theorem 6.4: Let \mathbf{x} be an arbitary vector in \mathbb{R}^{n}. Then with probability at least $1-\frac{6}{n}-6 \epsilon$ the solution to $(*)$ with $\lambda=10 \sqrt{\log N}$ obeys

$$
\|\overline{\mathbf{x}}-\mathbf{x}\|_{2} \leq
$$

$\leq \min _{1 \leq s \leq \bar{s}} C \sqrt{\left(1+\log \left(\frac{1}{\epsilon}\right) s \log ^{5} N\right.}\left[\frac{\left\|\mathbf{x}-\mathbf{x}_{s}\right\|_{1}}{\sqrt{s}}+\sigma \sqrt{\frac{s \log N}{m}}\right]$,
or with error in I_{1} norm:

$$
\begin{aligned}
&\|\overline{\mathbf{x}}-\mathbf{x}\|_{1} \leq \\
& \leq \min _{1 \leq s \leq \bar{s}} C \sqrt{\left(1+\log \left(\frac{1}{\epsilon}\right) s \log ^{5} N\right.}\left[\left\|\mathbf{x}-\mathbf{x}_{s}\right\|_{1}+s \sigma \sqrt{\frac{\log N}{m}}\right] .
\end{aligned}
$$

