Mathematical Foundations for Compressed Sensing Exercise Set 1

Please hand in individual handwritten solutions. Theorems, lemmas, definitions and propositions numbered in the format "Theorem 3.3, Lemma 3.5" etc. refers to the lecture notes, single numbering such as "Lemma 1 " is only used for this exercise paper.

1. Prove

Lemma 1. Suppose that $\left\{n_{k}\right\}_{k=1}^{L}$ is a sequence of integers such that

$$
\frac{n_{k+1}}{n_{k}}=v>1
$$

and $\left\{f_{k}\right\}_{k=1}^{L}$ is a sequence of non-negative functions on a probability space such that for $k=1,2, \ldots, L$,

$$
\left\|f_{k}\right\|_{n_{k}} \leq B
$$

for some $B>0$, where $\|\cdot\|_{p}$ denotes the usual L^{p}-norm. Then there is a constant $A \geq A_{v}>1$ so that

$$
\left\|\max _{1 \leq k \leq L} f_{k}\right\|_{n_{1}}^{n_{1}} \leq A B^{n_{1}}
$$

Hint: Use induction on $J \leq L$ with the assumption that

$$
\left\|\max _{J \leq k \leq L} f_{k}\right\|_{n_{J}}^{n_{J}} \leq A B^{n_{J}}
$$

2. Prove

Lemma 2. Assume that an $m \times N$-matrix A satisfies the RIP estimate with constants $\delta_{s} \leq \delta_{2 s}$ and that \mathbf{x} are \mathbf{y} are s-sparse vectors with $\langle\mathbf{x}, \mathbf{y}\rangle=$ 0 . Let $-\frac{\delta_{s}}{\delta_{2 s}} \leq t \leq \frac{\delta_{s}}{\delta_{2 s}}$, so that $\left|\|A \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right|=t \delta_{2 s}\|\mathbf{x}\|_{2}^{2}$. Then

$$
|\langle A \mathbf{x}, A \mathbf{y}\rangle| \leq \delta_{2 s} \sqrt{1-t^{2}}\|\mathbf{x}\|_{2}\|\mathbf{y}\|_{2}
$$

Hint: Use polarization arguments on vectors $\alpha^{2} \mathbf{x}+\gamma \mathbf{y}$ and $\beta^{2} \mathbf{x}-\gamma \mathbf{y}$ where \mathbf{x}, \mathbf{y} are s-sparse, $\gamma= \pm 1, \alpha \geq 0, \beta \geq 0$. Using RIP-estimates, obtain an estimate $|\langle A \mathbf{x}, A \mathbf{y}\rangle-\langle\mathbf{x}, \mathbf{y}\rangle| \leq f(\alpha, \beta) \delta_{2 s}\|\mathbf{x}\|_{2}\|\mathbf{y}\|_{2}$ and optimize f properly (consider cases $\alpha \beta>0, \alpha=0$ or $\beta=0$).
3. Improve Lemma 3.3 in the notes of Lecture 3 to

Lemma 3. If A is RIP and $A \mathbf{x}=\mathbf{0}$, then

$$
\left\|\mathbf{x}_{S_{1}}\right\|_{2} \leq \frac{\delta_{2 s}}{\sqrt{1-\delta_{2 s}^{2}}} \sum_{k \geq 2}\left\|\mathbf{x}_{S_{k}}\right\|_{2}
$$

where the notation is analogous as in the notes. Hint: Use Lemma 2 and optimize with respect to the introduced parameter t.
4. Prove that if $\delta_{2 s}<\frac{1}{\sqrt{3}}$ for an $m \times N$-matrix A, then $A \in M P_{1}(s)$, i.e. the solution to the optimization problem

$$
\left\{\begin{array}{l}
\min \|\mathbf{z}\|_{1} \\
A \mathbf{z}=\mathbf{w}
\end{array}\right.
$$

is s-sparse. Hint: Proceed as in the proof of Theorem 3.3 in Lecture 3 using the improved Lemma 3 above.
5. Suppose $\|\mathbf{x}\|_{2} \leq 1,\|\mathbf{x}\|_{1} \leq \sqrt{s}$. Denote by

$$
X(s)=\bigcup_{\substack{S \subset[N] \\|S|=s}} X_{S}
$$

the set of all s-sparse vectors (compare with Lecture 4) where $[N]=$ $\{1,2, \ldots, N\}$ and X_{S} denotes the set of all $\mathbf{x} \in \mathbf{C}^{N}$ where supp $\mathbf{x}=S$ for some indexset $S \subset[N]$ of cardinality s.
Let $X_{B}(s)=X(s) \cap\left\{\mathbf{x}:\|\mathbf{x}\|_{2} \leq 1\right\}$.
Prove that

$$
\frac{\mathbf{x}}{2} \in \operatorname{ch} X_{B}(s)
$$

where ch denotes the convex hull. Remember that the convex hull of a set U is defined as

$$
\left\{\sum_{i=1}^{n} a_{i} u_{i}: u_{i} \in U, a_{i} \geq 0, \sum_{i=1}^{n} a_{i}=1, n=1,2, \ldots\right\}
$$

Hint: Divide \mathbf{x} into decreasing blocks as in Lemma 3 and use estimates of the type

$$
\left\|\mathbf{x}_{S_{k}}\right\|_{2} \leq \frac{\left\|\mathbf{x}_{S_{k-1}}\right\|_{1}+\left\|\mathbf{x}_{S_{k}}\right\|_{1}}{2 \sqrt{s}}
$$

(why is this true?).

