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10 1 INTRODUCTION

1 Introduction

�The problem of distinguishing prime numbers from composite
numbers and of resolving the latter into their prime factors is
known to be one of the most important and useful in arithmetic.
It has engaged the industry and wisdom of ancient and modern
geometers to such an extent that it would be super�uous to dis-
cuss the problem at length. ... Further, the dignity of the science
itself seems to require that every possible means be explored for
the solution of a problem so elegant and so celebrated.� - C. F.
Gauss. [Gau]

Elliptic curves are becoming more and more important, not only as crypto-
graphical applications useful for the industry but also as an important tool
in mathematical theory (for example it was studied by Andrew Wiles when
proving Fermat's last theorem). In cryptography, where the industry re-
quires shorter public keys for embedded systems, elliptic curve cryptograph
(ECC) is simply harder to attack at a given key size and gives for that reason
better protection.

As for mathematical purposes each elliptic curve de�nes an abelian group.
Hence the theory creates a rich structure of an almost inexhaustible pool of
abelian groups.

This last property has come to have remarkable signi�cance in number
theory. On one hand due to Hendrik W. Lenstra's ingenious generalization
of the Pollard p− 1 (see section 8.2) to elliptic curves, we have the so called
elliptic curve method, ECM, (see section 8.6). A probabilistic factorization
algorithm dependent on the length of the smallest factor. On the other hand
we also have a very fast primality proving algorithm (see section 9) with
a natural extension which makes it possible to create primality certi�cates.
Each certi�cate describes a proof of primality for a given prime and can be
veri�ed almost instantaneously.

Many of the algorithms described in this thesis exploits in some sense the
random structure of elliptic curves - especially the order of the group is a
common algorithmic problem to lay down. Thanks to R. Schoof's idea (see
section 7.1) this is now possible even for elliptic curves with order up to 100
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digits.
I aim to explain and implement those algorithms in a way accessible

for an undergraduate student with appropriate mathematical background.
All implementations are made in the pseudo-code-like platform independent
language Python (see http://www.python.org and section 10).

I strongly encourage the reader to look at some of the algorithms and
compare them to the corresponding Python source code (referenced at the
end of each algorithm).

http://www.python.org�
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3 Preliminiaries

Let us �rst have a look at some basic algebraic de�nitions used frequently
throughout this thesis.

De�nition 1 (Finite �eld). A �nite �eld is a �eld with �nite cardinality
(i.e., the number of elements), and a �nite �eld with order p is denoted Fp.

We can identify Fp with Z/pZ by an isomorphism and we will use Fp and
Z/pZ interchangable. In order for Fp to exist, it is required that p is a prime
number.

De�nition 2 (Characteristic). The characteristic of a �eld k, written char(k),
is the smallest p ∈ Z+ s.t. p · 1k = 0k, or 0 if no such �nite p exist. Here 1k
and 0k is the identity and zero element in k respectively .

For example char(Fp) = p and char(R) = 0. The characteristic of a �eld
is a very important. One aspect is that some change of variables is possible
only when char(k) ful�lls some speci�c requirements. A simple example
is y2 = x2 + ax + 1. Completing this square is not possible in a �eld of
characteristic 2 as that would require �division by zero�.

3.1 A�ne space

An A�ne space is a set of points where you can subtract points to get a
vector (the line from one point to another) or add vector to point to get
another point, but you cannot add points, since there is no origin (see [Ful]
or [Wik1]). By An(k) or simply An (if k is understood) we mean the n-fold
cartesian product,

An(k) = k × · · · × k︸ ︷︷ ︸
n times

By an A�ne line we shall mean A1(k) and A2,A3 the A�ne plane and surface
respectively. If F ∈ k[x, y] is a polynomial, we call the zero-set,

V (F ) =
{

(x, y) ∈ A2 | F (x, y) = 0
}

an a�ne plane curve.
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Example 1. Let R[x, y] 3 F (x, y) = y − x2 then V (F ) is the A�ne plane
curve called a cubic curve.

3.2 Projective space

Suppose we want to introduce the notion of a �geometric in�nity�, that is
some some sort of �completeness�, in the A�ne space above. The reason
for this could be that we want a robust answer to questions of whether
certain asymptotic curves intersect or not. Let for example y2 = x2 + a and
y = x+ b (a, b ∈ k) be two plane A�ne curves. Now as x→∞ both curves
are asymptotic, but do they intersect in some sense? One way of enlarging
the A�ne space so those two curves do intersect is by identifying each tuple
(x, y) ∈ A2 with the point (X,Y, Z) = (X,Y, 1) ∈ A3. Then if we further
identify (X,Y, 1) with the line through (0, 0, 0) and itself we have that every
line through (0, 0, 0) can be uniquely identi�ed with one such point (x, y)

except for lines in the plane Z = 0.
These A�ne lines with Z = 0 are in the �completed� A�ne space (or

projective space) simply called projective points. When referred to those
lines in A�ne space we will call them points at in�nity. More formally,

De�nition 3 (Projective n-space). The projective n-space Pn(k) over a �eld
k is de�ned as,

Pn(k) =
(
kn+1 − {(0, 0, . . . , 0)})/ ∼

Where x ∼ y if ∃t 6= 0 such that y = tx.

If k is understood we will write Pn. To separate from A�ne coordinates
we write [X1 : X2 : · · · : Xn+1] for points in Pn.

As for answering our question of the two asymptotic curves above let us
introduce the notion of homogenization.

De�nition 4 (Homogenization). A homogenization f∗ in k[X,Y, Z] of a
polynomial f in k[x, y] is a polynomial with the property f∗(tX, tY, tZ) =

tf∗(X,Y, Z), t ∈ k, where f(X,Y ) = f∗(X/Z, Y/Z, 1). De�ne,

f∗ = Zdeg(f) · f(X/Z, Y/Z)
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It follows from the de�nition that homogeneous polynomials are de�ned
as sums of monomials with the same degree. Since f∗(tX, tY, tZ) = 0 ⇔
tf∗(X,Y, Z) = 0 it is natural to say that (X,Y, Z) is equivalent (or homoge-
nous) to (tX, tY, tZ). It follows that the zero-set (the curve) for homoge-
nized polynomials are subsets (called projective curves) of a projective space
whereas the zero-set for non-homogenized polynomials are subsets (A�ne
curves) of an A�ne space .

3.3 From projective to A�ne space and vice verse

If the projective coordinate Z 6= 0, all triples [X : Y : Z] have an A�ne
representation by the canonical map P2 3 [X : Y : Z] 7→ (X/Z, Y/Z) ∈ A2.
If Z = 0, there is no A�ne representation for those projective points [X :

Y : 0].

Note. It is worth to stress the fact that all projective points [X : Y : Z] are
can be interpreted as lines in A3.

As for projective curves they are very similar to A�ne curves (by de�ni-
tion) except they are de�ned by a homogenized polynomial. In this way we
can through the canonical change of variables above map a projective curve
into an A�ne curve and vice verse (keeping track of the point at in�nity).

Example 2. Continuing from the example in section 3.2 the homogenized
polynomials are Y 2 = X2 + aZ2 and Y = X + bZ. The points at in�nity
correspond to the plane Z = 0 where

Y 2 = X2

Y = X

Further we have that in the plane Z = 0 they actually intersect in projective
space! Using A�ne representation this is not true, but we then introduce
the notion of intersection �at in�nity�.

3.4 Notation

Throughout this thesis I will use the following notations,
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• k is a �eld (ex. k = Fp or k = C) and k[x1, . . . , xn] is the ring of
polynomials in x1, . . . , xn.

• p is a prime number and also q = pi, i = 1, 2, . . ..

• N is a composite number with N =
∏k
i=0 p

αi
i .

• A�ne coordinates will be represented by lower-case letters, x, y and
projective coordinates by capital letters X,Y, Z. They will relate im-
plicitly to each-other by the change of variables x = X/Z and y = Y/Z

if Z 6= 0.

3.5 Cubic plane curve

A general cubic a�ne plane curve is de�ned by the zero-set to F (x, y),

F (x, y) = ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx+ j

The curve is called singular (or non-smooth) in (x1, y1) if dF
dx = dF

dy = 0 at
(x1, y1) or equivalently there is no tangent-line de�ned at (x1, y1). Recall that
the tangentline at (x1, y1) for F is dF

dx (x−x1)+ dF
dy (y−y1) = 0. By de�nition

(4) there is also a natural extension to the projective representation,

F (X,Y, Z) = aX3+bX2Y+cXY 2+dY 3+eX2Z+fXY Z+gY 2Z+hXZ2+jZ3

A smooth curve, C, is a plane curve (either A�ne or projective) that is
de�ned by a non-singular polynomial. If this polynomial is F then

C = V (F )

Where V (F ) is the zero set to F .
It can be shown using Riemann-Roch theorem [Sil86, p 37-41] that any

non-singular cubic curve (for our purposes this is enough, the interested
reader can refer to the notion of genus in [Sil86, p. 39] describing this more
accurately) has a representation in the much simpler Weierstrass equation,

F : y2 + a1xy + a2y = x3 + b1x
2 + b2x+ b3

If char(k) 6= 2 we can complete the square on the left hand side by substi-
tuting y for 1

2(y − a1x− a3) to get

F : y2 = 4x3 + (a2
1 + 4b1)x2 + (4b2 + a1b3)x+ (a2

2 + 4b3) (1)
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where ai, bi ∈ k. If further char(k) > 3 another similar change of variables
transforms (1) into,

F : y2 = x3 + ax+ b, a, b ∈ k (2)

this equation is called Weierstrass form and will be often used when refer-
ring to cubic curves. For this reason it is important to know when the curve
de�ned by (2) is non-singular (i.e., so that it de�nes a smooth curve). Cal-
culating the partial derivatives to (2), the de�ned curve is singular if and
only if 2y = 0 and dF

dx = 0. These vanish simultaneously exactly when y = 0

(since char(k) 6= 2) and x is a multiple root of (2). This last condition is
categorized by the discriminant for the cubic F called ∆F . For F this dis-
criminant is ∆F = −16(4a3 + 27b2) and then F is singular if and only if
∆F = 0.

3.5.1 Intersection of curves

As we soon will see, de�ning a grouplaw on a curve is close related to charac-
terizing the intersection points between curves (lines, cubics etc). In projec-
tive geometry this theory is easier and more robust than in A�ne geometry.
A very important (and necessary for our purposes) theorem in projective
geometry is due to Bézout - a French mathematician in the 18:th century.

Before introducing Bézout's theorem we need to somewhat understand
intersection numbers (see �gure 1) for projective curves. If C, D are two
projective plane curves not sharing a common curve, then intersection num-
ber at a point x ∈ C ∩D, counting multiplicites will be denoted i(C,D;x).

The intersection number i(C,D;x) is de�ned as dimRx(k3)/(C,D), where
Rx is the set of rational functions de�ned at x (see [Ful, p. 74-85] for more
details and proofs).

Theorem 1 (Bézout's theorem for curves). Let C and D be projective curves
de�ned by polynomials of degree c respectively d over an algebraically closed
�eld k. Assume C and D do not share a common component (i.e, they
contain no common curve). Then C ∩ D is �nite, and more precisely, if
i(C,D;x) ≥ 1 counts the multiplicity (see above and �gure 1) at each inter-
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section point x we have that,
∑
x

i(C,D;x) = cd

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

Figure 1: y = x2 intersect y = 3 with multiplicity 2

Note. Consider again the curves from example 2. Then those two curves are
of degree 2 respectively 1 and share no common curve, moreover we have
that ∑

x

i(C,D;x) = 2

But they only intersect at in�nity! This intersection point must for that
reason have multiplicity 2.

It should be emphasized that Bézout's theorem can only be applied to
projective curves! Moreover, we shall see that Bézout's theorem is needed to
prove the group law on elliptic curves and for this reason it is one motivation
behind the choice of introducing the notion of projective space.

4 Elliptic Curves

The principal objects we will study in this thesis are planar smooth cubic
curves, more commonly referred to as elliptic curves. (This is not the whole
truth, but again, without the notion of genus [Sil86, p. 39], it is hard to
categorize it better.)
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De�nition 5 (Elliptic Curve). A projective curve E, over a �eld k with
char(k) 6= 2, 3, written E(k) de�ned by the non-singular Weierstrass form,

Ea,b(k) : ZY 2 = X3 + aZ2X + bZ3 (3)

is called a projective elliptic curve.

Note. We will write E(k) if a, b is understood and simly E when k is under-
stood. This is the projective de�nition of E. For simplicity we will also often
refer to the A�ne curve as E, we shall see that the projective representation
and the a�ne representation are one and the same if necessary adjustment
are made to the a�ne space.

Let us have a look at the di�erences between the A�ne and projective
representation of E(k).

There are two major reasons why projective coordinates are necessary,
�rst Bezout's theorem (theorem 1) is applicable only in projective coordi-
nates and we need that to prove the group law, secondly it is necessary in
order for the group law to be de�ned that we include the point at in�nity.
In projective corodinates this corresponds to points in the plane Z = 0 (see
section 3.2) de�ned over (3). If Z = 0 in (3), then X = 0 (this projective
point correspond to all vertical lines in the A�ne space) and we see that E
intersects Z = 0 in exactly one point, namely [0 : 1 : 0] (homogenous to all
points [0 : Y : 0]). This point will be introduced as O in A�ne space. Sum-
marized, in projective space we have a robust algebraic structure including
the point at in�nity whereas in A�ne coordinates this point must be �kept
track of seperately�. When implementing a�ne elliptic curves we actually
do this!

We refer to elliptic curves E(k) ⊂ P2 as the set of points P = (x, y) ∈ A2

(with projective equivalent [x : y : 1]) satisfying (2) together with a point
O = [0 : 1 : 0] ∈ P2 called the point at in�nity. With this view both A�ne
and projective coordinates can be used interchangeable.

Elliptic curves intersect the projective points Z = 0 in only one point,
this follows from the fact that there is only one asymptotic vertical line in
any elliptic curve, see for example �gure 2.

When R is replaced with a �nite �eld, the elliptic curve will not be as
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smooth as �gure 2 but it still give some understanding of the geometric
aspects of an elliptic curve.

−4 −2 0 2 4 6 8 10

−20

−15

−10

−5

0

5

10

15

20

Figure 2: E(R) de�ned by y2 = x3 − 60

4.1 Addition on E(k)

Let P , Q ∈ E(k) with P,Q 6= O and L the unique line connecting P , Q and
a third point of intersection, R also on E(k) (if P = Q, L is the tangentline
to E(k) at P ). The main question here is of course: is R well-de�ned?

This question is answered by Bezout's theorem which tell us that R is
well-de�ned in P2, but not in A2 since it may equal the point at in�nity O.
As we will see it is of great importance that R is well-de�ned and for this
reason we need to introduce projective coordinates and the point at in�nity
to A2.

De�ne a map from E × E −→ E given by ϕ : (P,Q) → R, then ϕ acts
similarly to an addition on E(k) except there is no identity (any two points
give raise to a unique third point not equal any of the two �rst). To remedy
this, we introduce the point at in�nity O and de�ne ⊕ on E(k) as follows:

P
⊕

Q = ϕ(O, ϕ(P,Q)) (4)

Using ⊕ we can de�ne the group law on E(k). (In fact it is easy to see
that by rede�ning ⊕ we can actually have any point as the identity).
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Figure 3: Illustration of the group law on E(R) de�ned by y2 = x3 − 60

Theorem 2 (Elliptic Curve Group Structure). An elliptic curve E(k), over
a �eld k, forms an abelian group with the operation ⊕ and the point O being
the identity.

Proof. We must prove the following statements. let P ,Q,R ∈ E(k),

(I) ⊕ is associative, (P
⊕
Q)
⊕
R = P

⊕
(Q
⊕
R).

(II) ⊕ is commutative, that is E(k) is abelian and P ⊕Q = Q
⊕
P ,

(III) There exist an identity O ∈ E(k) such that P ⊕O = O⊕P = P ,
∀P ∈ E(k).

(IV) P has an inverse −P ∈ E(k) such that P ⊕−P = O

Two point combinations (P,Q) and (Q,P ) both de�nes the same unique line
(see for example [Ful] or [Wik2]) and it follows from the de�nition of ϕ that
ϕ(P,Q) = ϕ(Q,P ), concluding (II).
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De�ne the inverse of P = [X1 : Y1 : Z1] as −P = [X1 : −Y1 : Z1]. The
line L intersecting E(k) in P and −P is de�ned by the projective equation
L = {X : X = ZX1} and by Bezout's theorem it must interesect E(k) in a
third point. If Z = 0 it follows that X = 0 and Y = t, and on the projective
plane this is O, concluding (IV) and (III). Only statement (I) is di�cult -
the associativity. To prove this we need the following lemma.

Lemma 1 (Nine associated points). Let C be an irreducible cubic curve, C′
and C′′ cubics. If C′ ∩ C =

⋃9
i=1 Pi, where Pi are non-singular points on C,

and suppose C′′ ∩ C = (
⋃8
i=1 Pi) ∪Q, then Q = P9.

Proof. See [Ful, p. 124].

With these tools in Algebraic geometry we can continue proving theo-
rem 2. The idea is to connect the points P + (Q + R) and (P + Q) + R

through 9 constructed intersecting lines (spanning 2 cubic curves) then we
use Bezout�s theorem and the associativity theorem above to show that they
must be equal.

De�ne three lines L1,L2, L3 and I1,I2,I3 the following way,

L1 ∩ E(k) = P ∪ Q ∪ −(P +Q)

L2 ∩ E(k) = (P +Q) ∪ R ∪ −((P +Q) +R)

L3 ∩ E(k) = (Q+R) ∪ O ∪ −(Q+R)

I1 ∩ E(k) = (P +Q) ∪ O ∪ −(P +Q)

I2 ∩ E(k) = Q ∪ R ∪ −(Q+R)

I3 ∩ E(k) = P ∪ (Q+R) ∪ −(P + (Q+R))

Each line intersects exactly three points on E(K), and is well-de�ned. It is
illustrated in this picture,

Those �rst three lines de�nes the cubic L1 · L2 · L3, intersecting E(k) at
eight points namely:

P, Q, P +Q, Q+R,

R, O, −(P +Q), −(Q+R)

and by Bezout's theorem, we know there must be a ninth point of intersec-
tion, call this point U ∈ E(k). Using lemma 1 (recall that any elliptic curve
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Figure 4: 9 Intersecting lines

is an irreducible cubic curve) we know that any other cubic passing through
those eight points also intersects U .

The last three lines de�nes the cubic I1 · I2 · I3. It also intersects those
eight points above and must therefore pass through U , but it also passes
through an additional point −(P + (Q+R)). But a cubic not containing a
common curve with E(k) cannot intersect E(k) in 10 points, thus two points
must be equal. By de�nition U is not equal to any of the �rst 8 points and
must therefore equal −(P + (Q+R)).

By symmetry in arguments we could just as well have started with the
cubic I1I2I3 and then deduced that U = −((P +Q) +R). Thus,

−((P +Q) +R) = U = −(P + (Q+R))

which concludes the proof for ⊕.

We write down the concrete algebraic operations for adding and doubling
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points on E(Fp). In A�ne coordinates those operations are:

1. −P = (x1,−y1)

2. if P 6= −Q then P +Q = (x3, y3), where

x3 = m2 − a− x1 − x2

y3 = m(x3 − x1) + y1

The slope m of the tangentline is de�ned as:

m = (y2 − y1)/(x2 − x1) (x2 6= x1)

m = (3x2
1 + 2ax1 + b)/2y1 (x1 = x2)

and �nally if x1 = x2 and y1 = 0 then P +Q = O.

3. if P = −Q, then P +Q = O.

Note. From here on we will drop the symbol ⊕ and instead use + and
+(−P ) will be written simply −P for group operations on E(k). A common
operation on E(k) is multiplication by elements in Z. Any abelian group is
a Z-module and therefore nP , n ∈ Z is canonically de�ned. It is custom to
de�ne nP through the map [n] : E −→ E as

P 7→ P + . . .+ P︸ ︷︷ ︸
n times

with [0]P = O and [−n]P = −([n]P ).

4.2 General theory

To proceed to more advanced topics on elliptic curves and especially the
algorithms we need to further develop our theory.

4.2.1 Order

An elliptic curve (de�nition 5) over a �nite �eld Fp obviously has a �nite
order. The order is clearly bounded above by 2p+1 because there is p values
for x and each y have a maximum of two solutions in x, plus the point at
in�nity.
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However, it is possible to write down a formula for the bound as a function
#Ea,b(Fp) : (a, b)→ Z, written

#Ea,b(Fp) = 1 +
∑

x∈Fp

(
1 +

(
x3 + ax+ b

p

)
)

= p+ 1 +
∑

x∈Fp

(
x3 + ax+ b

p

)
= p+ 1− ap

From here on we de�ne ap = −∑x∈Fp
(
x3+ax+b

p

)
and as usual

(
a
p

)
is the

Jacobi symbol (which is the same as quadratic character χ of an element in
Fp). Recall that

(
a
p

)
= 1 if a is a quadratic residue mod p and −1 otherwise,

also
(

0
p

)
= 0.

A nice way of guessing the bound is to assume that x3 + ax + b is a
random function and we give an heuristic bound on the sum by a random
walk on Z, starting at 0. After p steps the expected (in probabilistic sense)
distance walked is roughly of order √p [Wol1].

A sharp version of this was proven by Helmut Hasse.

Theorem 3 (Hasse). Let #E(Fp) be the order of the elliptic curve E(Fp),
then

|#E(Fp)− p+ 1| ≤ 2
√
p (5)

Proof. See [Sil86, p. 131-133].

4.2.2 Torsion points

A torsion point (or division point) is a point P ∈ E(k) of �nite order. A
torsion point of order n (i.e, a point P ∈ E s.t. [n]P = O) is called a
n-torsion point. The set of n-torsion points is called E(k)[n] or when k is
understood plainly E[n].

E(k)[n] = {P ∈ E(k) : [n]P = O}

The set of n-torsion points naturally de�nes a subgroup in E(k). Since k may
not be algebraically closed we can expect E[n] de�ned over k, the algebraic
closure of k (i.e., the extension �eld containining all roots for all polynomials
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in k[x]) to be di�erent (larger). To understand the set of torsion points we
need to interpret the torsion points in terms of the function [n]:

E[n] = ker([n])

This way of looking on [n] is the subject for the next section.

4.2.3 Division polynomials

We will see that there is a polynomial whose roots are exactly the torsion
points. This is an essential part of Schoof's algorithm in section 7.1.

If P = (x, y) ∈ Ea,b(Fp) then,

[2]P = (x′, y′)

(
(3x2 + a)2 − 4xy2

4y2
,
3x2 + a

2y
(x− x′)− y

)
(6)

using the formulas from section 4.1. We have that [2]P = O if and only if
4y2 = 0 and it follows that P ∈ E(Fp)[2]. In the following section we will
investigate and prove the existance of a recursion equation for polynomials
fn, whose roots are exactly the torsion points. We saw an example above of
f2 where f2

2 = 4y2 and and it follows that the 2-torsion points are exactly
the roots of y2 = x3 + ax+ b, as expected.

Theorem 4 (Division polynomials). Let Ea,b(Fp) be an elliptic curve, then
there is a polynomial fn ∈ Fp[x, y] depending on Ea,b(Fp) such that if P =

(x, y) ∈ Ea,b(Fp) and [n]P = O then fn(x, y) = 0. Moreover fn can be
constructed recursively using the following relations:

f2n+1 = fn+2f
3
n − f3

n+3fn−1 (7)

f2n = fn(fn+2f
2
n−1 − fn−2f

2
n+1)/y (8)

Note. ForE(F) the statement above is an equivalence, [n]P = O ⇔ fn(x, y) =

0.

Proof. I will give an outline of the proof over C and mention how it can be
extendable to Fp. For a more detailed proof see [Lan, p. 33-43].

An elliptic curve E(C) can be be considered as C/L, where L is a lattice

L = {aω1 + bω2 | a, b ∈ R}
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(see [Lan, p. 3]). An Elliptic function is a L-periodic meromorphic
function de�ned on the whole complex plane. If f is L-periodic then f(z +

ω) = f(z) when z ∈ C and ω ∈ L. The lattice L together with an elliptic
function, the so-called Weierstrass ℘-function has an algebraic meaning. The
℘ function satis�es Weierstrass' di�erential equation:

℘′ = 4℘3 + a℘+ b (9)

with a, b depending on L, and where

℘(z) =
1
z2

+
∑

ω∈L\{0}

[
1

(z − ω)2
− 1
ω2

]

We give (9) an algebraic meaning by identifying the point (℘(z), ℘′(z)) with
(x, y) on the Weierstrass equation

y2 = 4x3 + ax+ b (10)

and moreover this identi�cation de�nes, through ℘, an isomorphism between
C/L and the a�ne curve (over C) de�ned by (10), with the point at in�nity
added. Looking at an elliptic curve in this way the group law is trivial since
for z1, z2 ∈ C, P = (℘(z1), ℘′(z1)) and Q = (℘(z2), ℘′(z2)) we de�ne

P +Q =
(
℘(z1 + z2), ℘′(z1 + z2)

)

and the group law over the elliptic curve is induced by the group law overC/L.
We also have that when ℘ has a pole (i.e., when z = ω ∈ L), (℘, ℘′) is exactly
the point at in�nity.

We are interested in the n-torsion points u ∈ C/L with nu = 0. If for
example n = 2 then we have the 2-torsion points

0,
ω1

2
,
ω2

2
,
ω1 + ω2

2
(11)

and those mapped into the curve by (℘, ℘′) will go to 2-torsion points on the
elliptic curve.

Let us now consider the family of functions {fn} de�ned as

fn(z)2 = n2
∏

u∈C/L
nu=0,u 6=0

(℘(z)− ℘(u))
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If n is odd all factors in the product occur with multiplicity 2, since the
values ±u are not congruent mod L, and because ℘ is even they map to the
same value. This will also hold when n is even except for non-trivial points
u for which 2u ≡ 0. At those points ℘(z) − ℘(u) will be a double zero and
these correspond exactly to the roots of ℘′(z)2. Because solutions ℘′(z) = 0

corresponds to exactly those points, we can write

℘′(z)2 = 4
∏

2u=0
u6=0

(℘(z)− ℘(u))

Hence the product de�ning f2
n is a perfect square and since fn is de�ned in

℘ and ℘′ we use a theorem [Lan, p. 7] saying that any polynomial in ℘ and
℘′ are known to be elliptic functions.

1. n odd: fn(z) = Pn(℘(z)), where Pn is a polynomial of degree (n2−
1)/2 with leading coe�cient n.

2. n even: fn(z) = 1
2℘
′Pn(℘(z)), where Pn is a polynomial of degree

(n2 − 4)/2 with leading coe�cient n.

To create a recursive relation let us consider the function,

℘n(z) = ℘(nz)− ℘(z)

℘n(z) has poles at the zeros of f2
n with the same multiplicity, namely 2, and

moreover it has zeros at points z for which (n + 1)z ≡ 0 or (n − 1)z ≡ is
satifs�ed (because nz = z or nz = −z is equivalent to ℘n(nz) = ℘(z) since
℘ is even). The function

f2
n(℘(nz)− ℘(z))
fn+1fn−1

will have no poles or zeros in C/L hence it must be constant (Louville's
theorem [Wun, p. 194]).

By expanding around 0 this constant is −1 (see [Lan, p. 34]) and it
follows that

℘(nz) = ℘(z)− fn+1fn−1

f2
n

(12)
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Now consider

℘n − ℘m = ℘(nz)− ℘(mz) = fn+1fn−1f
2
m − fm+1fm−1f

2
n

for n,m ∈ Z and m > n. We see that ℘n − ℘m vanish at points u such that

(m± n)u ≡ 0

with multiplicity 1 (℘n and ℘m vanish at n±1 and m±1 respectively). But
neither fn or fm have a zero at these points, sincemu, nu 6≡ 0. Hence these
points must be the zeros of

fn+1fn−1f
2
m︸ ︷︷ ︸

(m±n)≡0

− fm+1fm−1f
2
n︸ ︷︷ ︸

(n±m)≡0

Finally we note that fn+mfm−n has the same zeros with only a pole at 0.
Hence they must be constant multiples of each other, but expanding around
0 we see that this constant is 1 showing that:

fn+1fn−1f
2
m − fm+1fm−1f

2
n = fn+mfm−n

By setting (n,m) = (n+1, n) and (n,m) = (n+1, n−1), obtain the following
recursive formulas

f2n+1 = fn+2f
3
n − f3

n+3fn−1 (13)

℘′f2n = fn
(
fn+2f

2
n−1 − fn−2f

2
n+1

)
(14)

Now if E is de�ned over N we can use the addition formulas to show that f1,
f2, f3 and f4 have integer coe�cients. By applying the recursive formulas
above we can inductively deduce that also fn must have integer coe�cient,
proving the theorem.

From (12) and (14) we can �nd an expression for [n]P in terms of the
division polynomials, i.e. if P = (x, y) then

[n](x, y) =

(
x− fn+1fn−1

f2
n

,
fn+2f

2
n−1 − fn−2f

2
n+1

yf3
n

)
(15)
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5 Practical computational considerations

Many algorithms in computational number theory have complexity relying
on the e�ciency in calculating the exponent of an element in a group. The
naive way of calculating gN , N ∈ Z in a group could be done by simply
multiplying the element with itself, requiring N operations. But there is a
much better approach: the binary ladder with complexity O(log(N)). Let us
in the forthcoming text in the context of elliptic curves only consider abelian
groups.

5.1 Binary ladder

A binary ladder expands N in the numeric base-2 (the binary base). If
N = NnNn−1, . . . , N0, where Ni is i:th binary bit of N we can write the N
recursively,

N(i) = 2N(i− 1) +Ni

and then N = N(n) moreover we have that,

N(i)g = 2N(i− 1)g +Nig

Using this representation of N it follows that each step in the recursion takes
one double and one addition, thus calculating Ng can be done in O(ln(N))

doublings and additions. This leads us to our �rst algorithm:

Algorithm 1 (Binary ladder).
Usage: G is an abelian group, g ∈ G, N ∈ Z+

Output: N · g ∈ G
Complexity: O(ln(N))
Python: listing 1
1: g0 = 1
2: g1 = g
3: for j = ln(N)− 1 to 0 do
4: if Nj = 1 then
5: g0 = g1 + g0

6: end if
7: g1 = g1 + g1

8: end for
9: return g0

As we will see in section 6.3, for elliptic curve arithmetic doubling a point
is generally less time-consuming than adding, especially in the Montgomery
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parametrization. We see that by �replacing� additions with doublings we
could make the ladder more e�cient.

Note. If we are for example considering the binary ladder we see that replac-
ing additions with doublings is the same as replacing ones with zeros in the
binary expansion.

6 Di�erent parametrization

For the interest of algorithm e�ciency it should be emphasized that the
computational aspects in implementing the elliptic curve arithmetic depends
highly on the parametrization, and below is a listing of some options. For
the mathematician they are all the same, but for a computational number
theorist they will be very di�erent!

• A�ne coordinates

• Projective coordinates

• Montgomery coordinates.

6.1 A�ne coordinates

Enough have been said about curves and elliptic curves to develop a set of
algorithms to implement the group structure compuationally. Let E(Fp) be
an elliptic curve with p > 3 and P = (x1, y1) and Q = (x2, y2) be points, not
necessarily di�erent, on E(Fp). Then if E(Fp) is de�ned by (2) the following
algorithms de�nes a group law over E(Fp).

Algorithm 2 (Elliptic curve addition - a�ne addition).
Input: P = (xp, yp), Q = (xq, yq) ∈ E(Fp)
Output: P +Q ∈ E(Fp)
Complexity: 2 multiplications, 7 additions and one �eld inverse
Python: listing 2
1: if P = O then
2: return Q
3: end if
4: if Q = O then
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5: return P
6: end if
7: if xp = xQ then
8: if yP = yQ then
9: m = (3x2

P + a)/2yP
10: else
11: return O
12: end if
13: else
14: m = (yQ − yP )/(xQ − xP )
15: end if
16: xP+Q = m2 − xP − xQ
17: yP+Q = m(xP − xP+Q)− yP
18: return P +Q = (xP+Q, yP+Q)

Algorithm 3 (A�ne inverse).
Usage: P = (xp, yp) ∈ E(Fp)
Complexity: O(1)
Python: listing 3
1: return (xP ,−yP )

As seen in algorithm 2, addition requires one �eld inverse. This calcula-
tion is asymptotically slower than for example integer multiplication and it
would be pro�table if we could avoid this. By using projective coordinates,
this is in fact possible.

Note. Usually we will in complexity analysis refer to addition as A, Multiply
with M and Inverse with I.

Here are some ideas of how long time it takes for a modern computer in
year 2006 to do various arithmetic calculations I will write some down here:

• Addition: Adding two 200-digits numbers can be done about 107

times in a few seconds.

• Multiplication: Multiplying the same numbers 107 will instead take
roughly a minute.

• Inverse: Calculating the inverse in Fp for p of the same size can be
done 106 times in a few seconds.

6.2 Projective coordinates

One major problem with A�ne coordinates in a computational perspective
is the fact that we need to calculate an inverse with the gcd-operation to
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evaluate the slope. This can be avoided by using projective coordinates and
instead represent the same point in projective coordinates where that inverse
is super�uous. Consider the A�ne point P = (x, y). Calculating [2]P then
involves calculating the slope m

m =
3x2 + a

2y
(16)

and [2]P will be on the k2-rational form ( g(x,y)
h(x,y) ,

v(x,y)
w(x,y)). But this rational

A�ne expression can be mapped on the projective point
[
g(x, y)
h(x, y)

:
v(x, y)
w(x, y)

: 1
]

= [g(x, y) : v(x, y) : h(x, y)w(x, y)]

so we do not need to compute an inverse in Fp!
This idea can be retired further, and a special case of the projective

parametrization is the so-called Montgomery parameterization, which to this
date is the fastest known.

6.3 Montgomery coordinates

As explained by Montgomery in [Mon] there is a special projective parametriza-
tion with very fast arithmetic properties, which exploits the fact that the
X-coordinate contains all information about the Y -coordinate except for at
most a sign (see (1)). For this reason it is in its original form only suitable
for some speci�c applications.

To derive this parametrization and its algorithms lets consider the elliptic
curve de�ned over Fp by the a�ne cubic equation:

y2 = b3x
3 + b2x

2 + b1x+ b0 (17)

with bi ∈ Fp and b3 6= 0. Let P1 = (x1, y1) and P2 = (x2, y2) be two points
on E(Fp) with di�erence P− = P1 − P2 = (x−, y−) and sum P+ = (x+, y+)

then it is rather easy to deduce a formula for x−x+

x−x+ =
(x1x2 − 1)2

x1x2
(18)

Further if b0 = 0, b1 = b3, b2 = A/B and b3 = 1/B with x = X/Z, y = Y/Z

in (17) we obtain the (projective) elliptic curve,

E(k) : BY 2Z = X(X2 +AXZ + Z2) (19)
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(which is well-de�ned only if B 6= 0 and A 6= ±2). On this curve we can �nd
an expression for the projective coordinates X+ and Z+:

X+ = Z−(X1X2 − Z1Z2)2 (20)

Z+ = X−(X1Z2 − Z1X2)2 (21)

and the following formula for [2]P1 = (X2 : Z2), given by Montgomery:

X2 = (X2
1 − Z2

1 )2 (22)

Z2 = 4X1Z1
(
(X1 − Z1)2 +

A+ 1
4

(4X1Z1)
)

(23)

By (20) and (21), X+ and Z+ can be calculated with 6 multiplications
if their di�erence X−, Z− is known. Further, we can double P1 in only 5

multiplications if (A+ 1)/4 is known.

Note. We will only write [X : Z] to denote a projective point with Mont-
gomery parametrization because the Y coordinate is not needed in this choice
of arithmetic.

Algorithm 4 (Montgomery add).
Input: P = (X1 : Z1), Q = (X2 : Z2) and R = P −Q = (X− : Z−) ∈ E(Fp)
Output: P +Q ∈ E(Fp)
Complexity: 8M + 2A
Python: listing 4
1: X3 = Z−(X1X2 − Z1Z2)2

2: Z3 = X−(X1Z2 − Z1X2)2

3: return (X3 : Z3)

Algorithm 5 (Montgomery double).
Input: P = (X1 : Z1) ∈ E(Fp)
Output: [2]P ∈ E(Fp))
Complexity: 7M + 4A
Python: listing 4
1: X2 = (X2

1 − Z2
1 )2

2: Z2 = 4X1Z1

(
(X1 − Z1)2 + A+1

4 (4X1Z1)
)

3: return (X2 : Z2)

Algorithm 6 (Montgomery ladder).
Input: P = (X1 : Z1) ∈ E(Fp) and N ∈ Z
Output: [N ]P ∈ E(Fp)
Complexity: O(log(N))
Python: listing 4
1: if n = 0 then
2: return O
3: end if
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4: if n = 1 then
5: return P
6: end if
7: if n = 2 then
8: return [2]P
9: end if

10: Q = P
11: R = [2]P //Uses algorithm 5
12: for j = nbits(n)− 2 to 0 do
13: if nj = 1 then
14: Q = R+Q : P //Uses algorithm 4 with parameter P = (X−, Z−)
15: R = [2]R //Uses algorithm 5
16: else
17: R = Q+R : P //Uses algorithm 4 with parameter P = (X−, Z−)
18: Q = [2]Q //Uses algorithm 5
19: end if
20: end for
21: return Q
Note: nbits(n) is the number of bits in an integer n and nj is the j:th bit of n.

7 Finding the order

Finding all points of an elliptic curve E(Fp) is quite easy if p is small, we
just verify which tuples in the cartesian product F2

p satisfy the elliptic equa-
tion [CrP, p. 350-359].
Algorithm 7 (Trivial method).
Input: An elliptic curve E(Fp)
Output: #E(Fp)
Complexity: O(p2)
Python: listing 5
1: k := 1 //Include O
2: for all (x, y) ∈ Fp × Fp do
3: if y2 = x3 + ax+ b then
4: k := k + 1
5: end if
6: end for
7: return k

Implementing algorithm 7 is simple and requires no overhead in terms of
precalculations, or any signi�cant dependencies on hard-to-write code - but
as usual simplicity has its price on speed. The trivial method requires O(p2)

operations (one loop through Fp for each element in Fp).
Another simple algorithm for calculating #E is the Jacobi method and

follows directly from section 4.2.1.
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Algorithm 8 (Jacobi method to calculate #E(k)).
Usage: For E(Fp) with p ∈ [3, 107]
Input: An elliptic curve E(Fp)
Output: #E(Fp)
Complexity: O(p ln2(p))
Python: listing 6
1: k := 1 //Include O
2: for all x ∈ Fp do
3: if

(
x3+ax+b

p

)
= 1 then

4: k := k + 1
5: end if
6: end for
7: return k

The Jacobi method obviously scales much better because we can evaluate(
a
p

)
in only O(p ln2(p)) operations - we can calculate almost the double

amount of digits! But in cryptographical calculations we are faced with
calculating the order of elliptic curves, E(Fp) with p > 1040 (about 128-bit
number). In our next section, we lay down a method capable of this.

7.1 Schoof's method

René Schoof published his paper [Sch] 1985 in which he revolutionized the
e�ciency of calculating #E over a �nite �eld. The algorithm itself is quite
short and concise, but the actual implementation contains most of the basic
algorithms in algorithmic number theory.

Schoof's idea is to calculate #E(Fp) (mod l) for many small primes l
and then �nally use the chinese remainder theorem to combine the results.
In order to understand how this is done we need to introduce the Frobenius
endomorphism and then �nally �nd an application for our beloved division
polynomials (see section 4.2.3).

7.1.1 The Frobenius endomorphism

Let E(Fp) be an elliptic curve, over which we have a group of endomorphisms,
End(E) (i.e., homomorphism from a group to itself, End(E) always contain
Z). A non-trivial endomorphism in this group is the so-called Frobenius
endomorphism:

Φp : (x, y) 7→ (xp, yp) (24)
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It is easy to see that this map restricted to E(Fp) is the identity (Fermat's
little theorem), and for that reason also an automorphism (isomorphism from
a group to itself), but it is non-trivial that it actually de�nes a automorphism
on E(Fp) (there is no p-th root of unity in Fp and actually xp−1 = 1 if x ∈ Fp).
But why is it important to consider the algebraic closure?

The Frobenius endomorphism also satis�es the quadratic equation x2 −
apx+ p

Φ2
p(P )− [ap]Φp(P ) + [p]P = O (25)

(see [CrP, p. 352]) for all P ∈ E(Fp) and especially for P ∈ E(Fp)[n].

7.1.2 Division polynomials and Schoof's method

Let E(Fp) be an elliptic curve de�ned by de�nition 5 and {fn}, n > 0 be the
set of division polynomials, depending on E. Each fn has deg(fn) number
of roots and all of them corresponds to a n-torsion point of the elliptic
curve. The problem is that not all roots of fn are de�ned over Fp. Thus
we must consider the �nite extension of Fp with respect to the roots of fn.
Mathematically we do this by considering Fp, the algebraic closure of Fp.
But computationally this is impossible, since Fp is uncountable.

In the next section we will see why we need all n-torsion points and also
how we can calculate with them (without really computing them), to �nally
explain Schoof's algorihtm.

7.1.3 Schoof's method explained

Combining these two tools we can �nally explain the beautiful algorithm.
Restricting (25) to E(Fp)[n], the following hold:

Φp(P )2 − [ap mod n]Φp(P ) + [p mod n]P = O (26)

Because for elements P ∈ E(Fp)[n], if k = k′ + ln, k, l ∈ Z, we have that

[k]P = [k′]P + [ln]P = [k′]P

motivating why it is possible to reduce our original equation mod n.
Now if n = ` is a prime number we de�ne Fp[x, y]/(fn(x), x3 + ax+ b−

y2) = Tn,p, the �nite �eld Fp extended with the roots of fn and with elements
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on the elliptic curve. Computationally this means that considering points in
the �nite extension �eld Tn,p is the same as computing with polynomials.

Rewriting (26) with P = (x, y) ∈ Tn,p we have,

(xp
2
, yp

2
) + [p mod n]P = [ap mod n](xp, yp) (27)

Note. The extension �eld Tn,p 6= E[n] but by de�nition x is a root to fn and
y2 = x3 + ax+ b - thus x de�nes a n-torsion point (except for the sign of y),
motivating (27).

Now we can pin-point the essence of Schoof's algorithm: Everything
in (27) is known except ap, but we �nd it by trial and error!

Using the chinese remainder theorem, after �nding ap for su�ciently
many `, we can determine ap modulo ∏ `. One might think that it is neces-
sary to �nd ap up to modulo in order p, but by Hasse's theorem

|ap| ≤ 2
√
p (28)

and it follows that it is enough to evaluate ap up to 2
√
p.

For ` = 2 it is possible to do better, in terms of speed. A 2-torsion
point correspond to points on E(Fp) where y = 0 (this can be seen either
geometrically or for example by expanding [2](x, y) as in (29)). Plugin y = 0

in (2)
0 = x3 + ax+ b (29)

that is, a point (x, y = 0) ∈ E(Fp)[2] must be a root to that equation over
Fp. To check if any such roots exist it is enough to recall that xp − x = 0 is
satis�ed if and only if x ∈ Fp. It then follows that if there exist x ∈ Fp such
that (29) is true then the following holds:

gcd(xp − x, x3 + ax+ b) 6= 1 (30)

Now, if this equation holds then E(Fp) has a non-trivial 2-torsion subgroup
and then 2|#E thus ap ≡ 0 (mod 2).
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Algorithm 9 (Schoof's method).
Usage: For E(Fp) with p ∈ [105, 10100]
Complexity: O(ln8(p))
Python: listing 7
Precalculations: An optimal set of primes L s.t. ap can be uniqely calculated.

1: K = {∅} //Set of equations: a ≡ b (mod `)
2: for all l ∈ L do
3: if x = 2 then
4: if gcd(xp − x, x3 + ax+ b) = 1 then
5: K = K ∪ {ap ≡ 0 (mod 2)}
6: else
7: K = K ∪ {ap ≡ 1 (mod 2)}
8: end if
9: else

10: u(X) = xp (mod Ψl)
11: v(X) = (x3 + ax+ b)(p−1)/2 (mod Ψl) //= yp−1 (mod Ψl)
12: P0 = (u(x), yv(x)) //P0 = (xp, yp)
13: P1 = (u(x)p, yv(x)p+1) //P1 = (xp

2
, yp

2
)

14: P2 = [p (mod 2)](x, y)
15: if P1 + P2 = O then
16: K = K ∪ {l, 0} //ap ≡ 0 (mod l)
17: next
18: else
19: Q = P0

20: for all k ∈ [1, l/2] do
21: if x(P1 + P2) = xQ then
22: if y(P1 + P2) = yQ then
23: K = K ∪ {ap ≡ k (mod l)}
24: else
25: K = K ∪ {ap ≡ l − k (mod l)} //P1 + P2 = −Q
26: end if
27: end if
28: Q = Q+ P0 //Q = [k]P0

29: end for
30: end if
31: end if
32: end for
33: return unique ap for which all equations in K are satis�ed (using CRT).
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8 Factorization

Let us begin this section with a continuation of the �rst quote in the intro-
duction, this time by Lenstra:

�Until recently, the subject of primality testing and factorization
was not taken seriously by most mathematicians. Nowadays, a
change in this attitude is noticeable. Partly, this change is due to
the introduction of more sophisticated mathematical techniques
than were used before. Indeed, the use of elliptic curves, which
is the main topic of this lecture, has been referred to as the
�rst application of 20-th Century mathematics to the problem of
prime factor decomposition.� - H. W. Lenstra, Jr. [Len2]

The most basic theorem in arithmetic acts as the origin of the foundation
for this very chapter.

Theorem 5 (The fundamental theorem of arithmetic). Every positive inte-
ger N > 1 can be written as a product of primes, and beside from permuta-
tions of the prime-numbers this representation is unique.

Proof. See [Gio, p. 10].

It is now, given a number N , natural to ask whether we can �nd this
unique representation - this is called the factoring problem.

De�nition 6 (The integer factorization problem). Given a positive integer
N , �nd all prime factors. That is write

N = p1p2 · · · pm

where pi is not necessarily distinct.

Even though this problem sounds trivial, for example 667 = 23 · 29,
something you easily do in your head it is far from obvious when the number
is bigger, try 999983 for example! Did you fail? Hint: Is it prime?

It is interesting to note that even if the exact di�culty of the factorization
problem is not known, there is no mathematical foundation for the belief that
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factoring is a hard problem. But in fact, on the other hand no-one has found
any suggestions that it is not!

There is an active research in the area of quantum computing which
theoretically predicts that it should be possible to solve the prime factor-
ization problem on a Quantum computer in polynomial time using Shor's
algorithm [Sho]. Only time will tell if this theory is practically possible. See
for example [CrP, p. 418-424] or [Eke] for more on this topic.

8.1 Factorization methods

The �rst method to solve the factorization problem is trial division. It tries
to divide an integer N with all positive integers k ≤ √N .

Algorithm 10 (Trial division).
Usage: N ∈ Z+

Complexity: O(
√
N)

Python: listing 8
1: for all k ∈ [2,

√
N ] do

2: while N ≡ 0 (mod k) do
3: N = N/k
4: output: k.
5: end while
6: end for

This algorithm is deterministic and will not fail, but it requires O(
√
N)

operations, and as N grows the allocation of such amount of compuational
power is unfeasible on even the best supercomputer. Note that for small N
it is an excellent algorithm, on a modern computer (2006) we can expect to
�nd factors in order of about size 109 in roughly a minute. But can we do
better?

Lets begin describing one of the most simple non-trivial algorithm, Pol-
lard p− 1.

8.2 Pollard p− 1

Let as usual N be a composite integer, and assume p is an unknown prime
divisor to N . Choose a ∈ Z/NZ. Then if at ≡ 1 (mod p) it is quite likely
that gcd(at − 1, N) is a non-trivial factor of N .

To explain how this works let us take a look at the group Z/NZ,
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Z/NZ ' Z/pα1
1 Z× Z/pα2

2 Z× · · · × Z/pαll Z

Assume that we have found a t such that pi−1|t. Then, by Fermat's little
theorem, we have that at ≡ 1 (mod pi) hence gcd(at − 1, n) is a non-trivial
factor of N .

If t is constructed as
t =

∏
p

p
lnB
ln p

where the product is taken over all primes p ≤ B, then we are guaranteed
that pi − 1|t if pi − 1 is B-smooth.

The see when we will �nd a non-trivial factor let us consider two scenar-
ious

• pi−1 is B-smooth for all i, thus at ≡ 1 (mod N) and gcd(at−1, n) = n.

• When a ∈ Fp have a �nite order being B-smooth it may happen that
at ≡ 1 (mod pi) even though pi − 1 is not B-smooth.

If we are faced with the �rst condition we simply try another, smaller B.
The second scenario is actually good for us, because if we �nd such an a it

is very likely that this a won't have the same order in all groups Z/piZ that
is B-smooth, thus we will actually succeed with somewhat better probability
(however, observe that the best known algorithm for �nding the order of an
element in Z/NZ depends on the non-trivial factorization of φ(N)).
Algorithm 11 (Pollard p− 1).
Usage: N ∈ Z+

Complexity: O(ln3N)
Python: listing 9
1: s = gcd(alcm(B)−1, N)
2: if 1 < s < N then
3: return s
4: end if
5: return �FAIL�
Note. As of this algorithm only the pseudo-code to �nd the �rst factor (not nec-
essarily prime) is included. The extension into �nding all factors is the same as in
algorithm 10.

The implementation above is a probabilistic algorithm, depending on the
probability that pi−1 is B-smooth, for pi|N . For �x k the algorithm will take
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O(ln3N ·k ln ln k) operations since the gcd operation is of order O(ln2N) and
binary exponentiation is O(lnN). Calculating lcm (least common multiple)
requires O(k · ln ln k) operations with the sieve of Eratosthenes. If assuming
constant k (not depending on N) we get that each iteration takes O(ln3N)

operations.
It is now clear that if we are unlucky and no prime divisor has smooth

order (section 8.3), the Pollard p− 1 algorithm will fail. Unless we're lucky
and �nd a, pi with ord(a, pi) small. However, this is unlikely.

Let us continue our adventure by looking at some more general ideas
behind modern factoring algorithms.

8.3 Smooth numbers

As seen above, the structure of a numbers' prime composition is of great
importance for factorization algorithms. For example a random integer is
expected to have one large prime factor and a couple of small ones. For
some integers, it may be so that they only have small prime factors. And
some have few large. It is obvious that the factorization of those di�erent
number have di�erent complexity.

De�nition 7 (B-smoothness). A positive integer n is called B-smooth if
none of its prime factors exceeds B.

Let further ψ(k,B) be the number of B-smooth numbers less than n.
Then the probability that a random positive integer in [1, k] is B-smooth is
ψ(k,B)/k,

And as we saw in Pollard p−1 and shall see in the elliptic curve method,
those numbers play a fundamental role in the theory of factorization.

Theorem 6 (Probability for smoothness). The probability that a random
integer k ∈ [1, x] is x1/u-smooth, is about u−u.

Proof. See [Can].

8.4 Ideas of factorization

First let us brie�y summarize two common methods to factor integers, in fact
those two constitutes the foundation for all factorization algorithms currently
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known:

1. Brute force methods (trial divisions with various modi�cations).

2. Finding �congruence collisions�.

The �rst was described above so let us take a look at the second . Let say we
have found N to be the di�erence of two squares N = x2 − y2 then y2 ≡ x2

(mod N). Then if x ≡ y (mod pi) and x 6≡ y (mod N) we have that x − y
is a non-trivial factor of N (not necessarily prime).

8.5 The general method

A method for generating algorithms can be described more generally: If the
following two properties hold for a group then an algorithm for factoring
integers can be created.

Let G(N) be a group de�ned �with respect to some integer N � and
suppose there is some homomorphism Φ : G(N) −→ G(p), p being prime
dividing N , but not necessarily known (this is not quite enough, G(N) and
G(p) must be �naturally� de�ned, for example de�ned through polynomials
or rational functions). Especially we need to be able to split G(N) using the
chinese remainder theorem. If we have found x and y in G(N) with x 6= y

such that Φ(x) = Φ(y), then a non-trivial factor of N can be found. How?
Let us make some examples.

Let's clarify this with an example,

Example 3 (Fermat method). Let G(7 · 5) = Z/35Z and x = d√35e = 6, if
y = 1 then x+y = 6 + 1 = 0 (mod 7) but 6 + 1 = 7 (mod 7 ·5) and we have
gcd(6+1, 35) = 7, a non-trivial factor of 35. We also have that x2−y2 = 35.

And �nally let us have a look at another example:

Example 4 (Pollard p − 1 (last step)). Let G(7 · 5) = (Z/35Z)∗ be a
multiplicative group. Also let x = 24, y = 1. We could for example let
Φ : (Z/35Z)∗ −→ (Z/5Z)∗, then x 6= y (mod 35), but Φ(x) = Φ(y). And we
can �nd the factor by gcd(16− 1, 35) = 5. See algorithm 11 for similarities.
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8.6 Elliptic curve method

Using the ideas from Pollard p − 1 in the context of elliptic curves we can
explain the elliptic curve method (ECM) for factoring integers. First we
need to introduce elliptic curves over a composite modulo.

8.6.1 Elliptic Curves over Z/NZ

It is useful to present some idea of how the elliptic curve E(Z/NZ) �look
like� when N is not prime.

De�nition 8. Let N be a positive integer coprime to 6. We de�ne the
elliptic curve E(Z/NZ) (called elliptic pseudo-curve) as the projective curve
de�ned by

Ea,b(k) : ZY 2 = X3 + aZ2X + bZ3

for a, b ∈ Z/NZ and 4a3 + 27b2 is invertible modulo N .

The group structure is preserved by the chinese remainder theorem (be-
cause the curve is de�ned by a polynomial), so

E(Z/NZ) ∼= E(Z/pα1
1 Z)× · · · × E(Z/pαkk ) (31)

Here N = pα1
1 · · · pαkk . But in a�ne coordinates the group contains a little bit

more complicated structure when N is composite. Let us consider a point
P = [X : Y : Z] ∈ E(Z/NZ). Either gcd(Z,N) = 1 and there exist an a�ne
representation of P . But if gcd(Z,N) > 1 there is no a�ne representation
of P (when we reduce it modulo some p, p|N we will get a point in E(Z/pZ)

that is the point at in�nity).
If we de�ne the a�ne group arithmetic in E(Z/NZ) we will have to

�secretely� add some points at in�nity whenever the group arithmetic fail
(because some elements are not invertible). If we instead de�ne the group
arithmetic in projective coordinates everything will work out just �ne (the
group law is correct [Coh, p. 477-479]).

However, for the purpose of factoring we actually welcome this com-
plication! We are actually only interested in such points P such that the
Z-coordinate shares common divisor with N (for which the a�ne arithmetic
fails or gcd(Z,N) 6= 1). Because for such points we have found a non-trivial
factor of N ! Let us consider an example of this:
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Example 5. Let N = 10 and de�ne the a�ne curve E(Z/10Z) by,

E : y2 = x3 + x+ 1

then it contains the following points,

(0, 1), (2, 1), (3, 1), (4, 3)

(4, 7), (5, 1), (7, 1), (8, 1)

Now if we try to add P = (0, 1) and Q = (2, 1) in E(Z/NZ) we end up
with a division by zero since the sum involves calculating (2yP )−1 = 2−1 in
Z/10Z which is not de�ned (as gcd(2, 10) > 1). What has happened is that
the canonical reduction mod 2 of P + Q into P + Q ∈ E(Z/2Z) is not an
a�ne point - that is P +Q is the point at in�nity in E(Z/2Z).

In more general terms we did the following: In E(Z/NZ) we have that
P 6= −Q, but when reducing mod 2, let Φ : E(Z/NZ)→ E(Z/2Z). It follows
that Φ(P ) = (0, 1) and Φ(Q) = (0, 1). Becuase −(0, 1) = (0, 1) we have that
Φ(P ) = Φ(−Q) - and a non-trivial factorization can be found. Please note
that the actual reduction is not necessary because the a�ne arithmetic will
simply fail. If we work with projective coordinates we can get similar results
by checking if gcd(N,Z) > 1. Finding any such point is exactly what ECM
to do.

8.6.2 Algorithm explaination

Let us take a look how H. Lenstra algorithm [Len] exploits the elliptic curves
de�ned over E(Z/NZ), where N is a composite integer, to create a factor-
ization method completely analogues to the p− 1 method.

Let P ∈ E(Z/NZ), this point can be reduced into each one of E(Z/piZ)

by simply reducing modulo pi. If one �nds an integerB such that #E(Z/piZ)

divides B for exactly one i, then [B]P = O in E(Z/piZ) but not in E(Z/NZ).
(Otherwise P would generate a sub-group with order strictly bigger than
#(Z/piZ) which is impossible). This mean that the computation will fail in
A�ne coordinates (similar to example 5), or if we use projective coordinates
the Z-coordinate will have a common factor with N - both will result in a
non-trivial factor of N . The advantage of this method compared to Pollard
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p− 1 is that we can choose another curve very easy, and hope that this new
curve has order, #E that is B-smooth.
Algorithm 12 (Elliptic Curve Method (A�ne)).
Usage: N ∈ Z
Python: listing 10
Precalculations: A list L of all primes up to B.
1: B = 1000 //Or some other practical limit
2: m =

∏k
i=0 p

lnB
ln p

3: Create a random curve E and a random point P ∈ E
4: if [m]P Failed then
5: Catch element g whose inverse was unde�ned.
6: return gcd(g,N)
7: else
8: goto 2
9: end if

Note. When doing calculations in projective coordinates the arithmetic will
never fail, for this reason we must have another way of �nding a non-trivial
factor. To do this we calculate gcd(Z,N) where Z is the projective Z coor-
dinate (see section 3.2).

9 Primality proving

Trial division (see algorithm 10) can of course be used to test small numbers
for proving primality, but for larger numbers there are better methods.

There is a method due to ideas of E. Lucas, from 1876.

Theorem 7 (Lucas theorem). If a,N are integers with N > 1, and

aN−1 ≡ 1 (mod N)

but a(N−1)/q 6≡ 1 (mod N) for every prime q|N − 1, then N is prime.

Proof. See [CrP, p. 173].

Again (analogues to Pollard p−1) the algorithm depends on the smooth-
ness of N − 1, something that is very improbable for large N . However, as
in ECM we can get around this by using elliptic curves.

Theorem 8 (Goldwasser-Kilian). Let N > 1 be a natural number and
gcd(6, N) = 1, and let K,m be natural numbers with K|m. Now consider the
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elliptic pseudo-curve1 E(Z/NZ). Assume there exist a point P ∈ E(Z/NZ)

s.t. [m]P is well-de�ned and moreover,

[m]P = O

For all prime q dividing K we can carry out the curve operations to �nd,

[m/q]P 6= O

Then for every prime p dividing N ,

#E(Fp) ≡ 0 (mod K)

In particular if also K > (N1/4 + 1)2 then N must be prime!

Proof. Let p be a prime factor of N . Because [m/q]P 6= O we have that
[K]P 6= O. But becauseK|m we have thatK must divide the order of P and
then also the order of the group. If further K > (N1/4 + 1)2 then #E(Fp) >
(N1/4 + 1)2 and Hasse theorem 3 implies that #E(Fp) < (p1/2 + 1)2. We
conclude from the two relations that p1/2 > N1/4 or equivalently p > N1/2

for all primes p. As N has all its prime factors larger than its square root it
must be prime.

9.1 Certi�cates

If you consider the Goldwasser-Kilian theorem above you see that it ends
with a relation �if K > (N1/4 + 1)2 then N is prime�. Thus we could
recursively store relations: R1 = (N,K1), R2 = (K1,K2), . . . , Ri = (Ki, p).
Primality for Ki follows from relation Ri and primality for Ki−1 follows from
Ri−1 and Ri and so forth, recursively.

Because Ki < Ki−1 (at least a factor 2 smaller) the recursion will ter-
minate quite fast. This chain of relations are called a prime certi�cate for
N .

9.2 Elliptic Curve primality proving explained

Let us now use theorem 8 to create an elliptic curve prime proving algorithm.
1We're not quite sure N is prime until after the algorithm is done.
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If m equals the order of some random elliptic pseudo-curve over Z/NZ
(calculated with for example Schoof's algorithm, see 7.1) then,

[m]P = O

as required, assume we can �nd the factorization ofm on the formm = F ·K
s.t. F is a product of small primes and K is a probable prime with K >

(N1/4 +1)2. If something failed we know N is composite! If the factorization
could not be found, hit another curve!

But if we were lucky (it will happen fairly often) then we check that,

[m/K]P 6= O

and we got a proof of primality for N .

Algorithm 13 (Elliptic Curve primality test).
Usage: Probable prime N

1: create a random pseudo-curve E(Z/NZ)
2: m = #E //Through algorithm 9
3: if not possible to �nd a probable prime K and integer F s.t. K · F = m and
F > (N1/4 + 1)2 then

4: goto 1
5: end if
6: Find a point P on E
7: Q = [m/K]P
8: if Q = O then
9: goto 6

10: end if
11: if [K]Q 6= O then
12: return N is composite
13: end if
14: return K is prime ⇒ N is prime
Note: If any part of the algorithm fails (unde�ned, invalid etc) then output com-
posite.

10 Getting down to implementation

I choose Python for its simplicity and pseudo-like syntax. It has native
support for large-integer multiplication (even if it is not that e�cient) it made
it possible for early trial-and-error approaches to get a feel for numerical
algorithms in general. A simple Fermat primality test could be implemented
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in a few lines of code. And ECM, using montgomery coordinates, in about
50! Very impressive.

Everything was written with an object oriented way, with hierarchies
behind common mathematical objects, the �eld class inherit group class and
so forth.

The code itself is about 2000 lines long and includes plenty of tests cases
where you can learn how it works. I think it is quite self-explanatory.

11 Ending words

The reader may now think that complete factoring of one integers is actually
the only problem that concerns the factorization problem. But this is not
true, sometimes, especially as an application to more complex factorization
algorithms we are faced with a sub-problem: Given a set of random integers,
�nd as many complete factored smooth numbers as possible. Thus we try to
maximize (#factored numbers)/time instead of minimize the time to factor
a given integer.

This last interesting aspect was investigated in ArizonaWinter School [AWS],
year 2006, under the supervision of D.J. Bernstein. Today we �nd these
smooth numbers with for example the sieve of erastothenes, but it is very
memory ine�cient. A proposed better approach is to use for example ECM
and trial division. Both algorithms are very memory e�cient which opens up
a new method where small embedded parallell computers are used to solve
those problems.



51

12 Source Code Listing

Here you can �nd a subset of functions included in the source code for this
thesis. The full Python module can be found at:

http://www.berlips.com/exjobb/field.tgz.

Some remarks on the syntax used in the code:

• x denotes an element and x.G is the �eld/group containing x.

• G is a �eld/group with many properties, for example x.G.one() could
be used to get the identity in G. For more options, see field.py.

• ZmodN is the group Z/NZ (includes both the abelian and
multiplicative structure).

• EC is an A�ne elliptic curve group. Note: we use the convention
x = True denotes the point at in�nity.

Listing 1: Group binary ladder (�eld.py)
1 # Binary ladder ,
2 # c a l c u l a t e s x^k
3 def __pow__(x , k ) :
4 pow=x
5 curr=x .G. one ( ) # Find the m u l t i p l i c a t i v e i d e n t i t y
6 # in the group G con ta in in g x
7

8 whi le k !=0:
9 i f k&1:
10 curr = curr ∗pow
11

12 pow = pow∗pow
13 k = k>>1
14

15 return curr

Listing 2: Elliptic curve A�ne addition (�eld.py)
1 # Af f i n e a dd i t i o n
2 # P = [ x1 , y1 ] , Q=[x2 , y2 ]

http://www.berlips.com/exjobb/field.tgz�
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3 # P,Q e l l i p t i c p o i n t s
4 def add ( s e l f , P,Q) :
5 # Ca l cu l a t e P+Q on an e l l i p t i c curve E
6 # check f o r i d e n t i t y e l ement s .
7 i f P == s e l f . zero_ :
8 return Q
9 i f Q == s e l f . zero_ :
10 return P
11 x1 , y1 = P
12 x2 , y2 = Q
13

14 i f P == Q:
15 i f y1 . i s_zero ( ) :
16 return True
17 # a l ( pha ) i s t he tangen t s l o p e a t P
18 a l = (3∗ x1∗x1 + s e l f . a )/(2∗ y1 )
19 x3 = a l ∗ a l − 2∗x1
20 y3 = a l ∗( x1−x3)−y1
21 e l s e :
22 i f x1 == x2 :
23 return True
24 # a l ( pha ) i s t he s l o p e o f t he l i n e between P and Q
25 a l = ( y2 − y1 )/ ( x2 − x1 )
26 x3 = a l ∗ a l − x1 − x2
27 y3 = a l ∗( x1 − x3)−y1
28

29 return [ x3 , y3 ]

Listing 3: Elliptic curve A�ne inverse (�eld.py)
1 # Af f i n e i n v e r s e
2 # P = [ x , y ]
3 def add_inv ( s e l f , P ) :
4 return [P [ 0 ] , −P [ 1 ]

Listing 4: Elliptic curve Montgomery arithmetic (�eld.py)
1 # Montgomery a r i t hme t i c over (4 a+10)y^2 = x^3 + ax^2+x
2 def ecmdouble ( s e l f ,P ) :
3 (x , d) = P
4 return ( x∗x−d∗d)∗∗2 , 4∗x∗d∗( x∗x+s e l f . a∗x∗d+d∗d)
5 def ecmadd ( s e l f , P, Q) :
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6 (x , d) = P
7 ( x1 , d1 ) = Q
8 return ( 4∗( x∗x1 − d∗d1 )∗∗2 , 8∗( x∗d1 − d∗x1 )∗∗2 )
9 def mul ( s e l f , r , P ) :
10 """ c a l c u l a t e r ∗P
11 """
12

13 Q = s e l f . ecmdouble (P)
14 b i t = r . numdigits (2 )
15 f o r b in xrange ( b it −2, −1 ,−1):
16 i f r . g e t b i t (b ) :
17 P = s e l f . ecmadd (P,Q)
18 Q = s e l f . ecmdouble (Q)
19 e l s e :
20 Q = s e l f . ecmadd (Q,P)
21 P = s e l f . ecmdouble (P)
22

23 return P

Listing 5: Elliptic curve trivial count for #E (�eld.py)
1 # Tr i v i a l count f o r e l l i p t i c curve ( s e l f ) .
2 # s e l f .R wi th parameters s e l f . a and s e l f . b
3 #
4 # s e l f .R.N i s the c a r d i n a l i t y o f t h e f i e l d s e l f .R
5 def t r i v i a l_count ( s e l f ) :
6 R = s e l f .R
7 a = s e l f . a
8 b = s e l f . b
9

10 count=1 # inc l u d e po in t a t i n f i n i t y
11

12 f o r x in xrange (0 ,R.N) :
13 x = R(x )
14 f o r y in xrange (0 ,R.N) :
15 y = R(y )
16 i f y∗y == x∗x∗x + a∗x + b :
17 count+=1
18 return count

Listing 6: Elliptic curve Jacobi-method for #E (�eld.py)
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1 # Jacobi−count f o r an e l l i p t i c curve ( s e l f )
2 # The e l l i p t i c curve i s d e f i n e d over
3 # s e l f .R wi th parameters s e l f . a and s e l f . b
4 #
5 # s e l f .R.N i s the c a r d i n a l i t y o f t h e f i e l d s e l f .R
6 def jacobi_count ( s e l f ) :
7 R = s e l f .R
8 a = s e l f . a
9 b = s e l f . b
10

11 count=1 # inc l u d e po in t o f i n f i n i t y
12 f o r x in xrange (0 ,R.N) :
13 x = R(x )
14 ysqr = (x∗x∗x + a∗x + b ) ;
15 i f ysqr . i s_zero ( ) :
16 count+=1
17 i f ysqr . i s_quadrat i c_res idue ( ) == 1 :
18 count+=2
19

20 return count

Listing 7: Schoof's method for #E (�eld.py)
1 # Schoo f s method c a l c u l a t i n g the order
2 # of an e l l i p t i c curve ( s e l f ) d e f i n e d over
3 # the f i e l d s e l f .R
4 #
5 # Outputs a l l e qua t i on s #E = k (mod l )
6 # on the form ( k , l )
7 def s choo f ( s e l f ) :
8 R = s e l f .R
9 K = Poly (R)
10 Y2 = K( [ s e l f . b , s e l f . a , 0 , 1 ] )
11 K. quot i ent (Y2 . x )
12 X = K( [ 0 , 1 ] )
13

14 h = X∗∗R.N − X
15

16 # [ Check l =2]
17

18 i f (h&Y2 ) . degree ( ) != 1 :
19 pr in t ( ( 2 , 1 ) )
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20 e l s e :
21 pr in t ( ( 2 , 0 ) )
22

23 pr ime_l i s t = base . prime_generate (3 , 1000)
24

25 # Find maximum prime number ( l ) needed :
26 prod = 2
27 n = 0
28 n4sqrt = 4∗ base . i s q r t_g r ea t e r (R.N)
29

30 f o r l in pr ime_l i s t :
31 i f prod > n4sqrt :
32 break
33 prod ∗= l
34 n+=1
35

36 de l pr ime_l i s t [ n : ]
37 ps i = s e l f . d iv i s i on_po lynomia l s (K, l )
38

39 prod = 1
40

41 # [ Check o th e r prime numbers l in l i s t ]
42 f o r l i d x in xrange ( l en ( pr ime_l i s t ) ) :
43

44 l = pr ime_l i s t [ l i d x ]
45 ps i_l = ps i [ i n t ( l +1)]
46

47 pt = R.N % l # reduced N modulo l
48 pi = pt + 1 # only used f o r i nde x in g
49

50 K. quot i ent (K.make_monic ( ps i_l . x ) )
51

52 ELC = EC(K, K( [ s e l f . a ] ) , K( [ s e l f . b ] ) )
53 Y2 = K( [ s e l f . b , s e l f . a , 0 , 1 ] )
54 X = K( [ 0 , 1 ] )
55

56 u = X ∗∗ R.N
57 v = Y2∗∗ ( (R.N − 1)/2)
58

59 P0 = ELC( [ u , v ] )
60 P1 = ELC( [ u∗∗R.N, v∗∗(R.N+1)])
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61

62 # P2 = (D/G, E/H)
63 i f pt % 2 == 0 :
64 D = X∗( p s i [ p i ]∗∗2∗Y2) − ( p s i [ pi −1] ∗ ps i [ p i +1])
65 G = ps i [ p i ]∗∗2∗Y2
66 E = ( p s i [ p i +2]∗ p s i [ pi −1]∗∗2 −
67 p s i [ pi −2]∗ ps i [ p i +1]∗∗2)∗K( [~R( 4 ) ] ) # note Y
68 H = ps i [ p i ]∗∗3∗Y2∗∗2
69 e l s e :
70 D = X∗( p s i [ p i ]∗∗2 ) − Y2∗( p s i [ pi −1] ∗ ps i [ p i +1])
71 G = ps i [ p i ]∗∗2
72 E = ( p s i [ p i +2]∗ p s i [ pi −1]∗∗2 −
73 p s i [ pi −2]∗ ps i [ p i +1]∗∗2)∗K( [~R( 4 ) ] ) # note Y
74 H = ps i [ p i ]∗∗3
75

76

77 # Add P2 + P1
78 # P1 = [D, G, E, H]
79 # P2 = [D ' , 1 , E ' , 1 ]
80 P12 = s e l f . add_tors ion_rat ional (
81 [ P1 . x [ 0 ] , K( [ 1 ] ) , P1 . x [ 1 ] , K( [ 1 ] ) ] ,
82 [D,G,E,H] , Y2)
83

84 i f P12 == True :
85 pr in t ( ( l , 0 ) )
86 cont inue
87

88 (Dp, Gp, Ep , Hp) = P12
89

90 P00 = [P0 . x [ 0 ] , K( [ 1 ] ) , P0 . x [ 1 ] , K( [ 1 ] ) ]
91 P03 = P00
92

93 # Try a l l a_p :
94 f o r k in xrange (1 , l /2+2):
95 i f (P03 [ 0 ] ∗P12 [ 1 ] − P03 [ 1 ] ∗P12 [ 0 ] ) . i s_zero ( ) :
96 i f (P03 [ 2 ] ∗P12 [ 3 ] − P03 [ 3 ] ∗P12 [ 2 ] ) . i s_zero ( ) :
97 pr in t ( ( l , k ) )
98 break
99 pr in t ( ( l , l−k ) )
100 break
101 P03 = ELC. add_tors ion_rat ional (P03 , P00 , Y2)
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Listing 8: Factorization - trial division (�eld.py)
1 # Tr i v i a l f a c t o r i z a t i o n o f a p o s i t i v e i n t e g e r N
2 # up to a bound B and us ing a p r e c a l c u l a t e d l i s t
3 # of primes ' primes ' .
4 def f a c t o r_ t r i a l (N, primes=None , B=None ) :
5 """ Returns sma l l e s t f a c t o r s o f a number us ing t r i a l d i v i s i o n
6 f a c t o r s are upper bound by B """
7 f a c t o r s = [ ]
8 i f primes == None :
9 primes = base . prime_generate (B)
10

11 f o r p in primes :
12 whi le N%p == 0 :
13 N = N/p
14 f a c t o r s . append (p)
15 return f a c t o r s

Listing 9: Factorization - Pollard p− 1 (�eld.py)
1 # Tries to f i n d a f a c t o r us ing the method o f p o l l a r d p−1
2 # B : the l e a s t common mu l t i p l e o f t h e i n t e g e r s up to some
3 # bound , computed us ing lcm .
4 def factor_pmin1 (N, B=None ) :
5 f o r a in [ 2 , 3 , 5 ] :
6 x = a∗∗B
7 g = gcd (x−1, N)
8 i f g != 1 and g != N:
9 return g
10 return N

Listing 10: Factorization - ECM (�eld.py)
1 # N i s a p o s i t i v e i n t e g e r to be f a c t o r e d
2 # B i s the s t a g e one bound
3 def factor_ecm (N, B=None ) :
4 """ Lens t ras a l g o r i t hm f o r f i n d i n g a f a c t o r in N,
5 based on E l l i p t i c curve a r i t hme t i c s
6 """
7 i f B==None :
8 B = 10000
9 C = 10
10 R = ZmodN(N)
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11

12 g6 =base . gcd (N, 6 )
13 i f g6 != 1 :
14 return N/g6
15

16 # Generate prime l i s t
17 primes = base . prime_generate (1000)
18

19 de l primes [ 0 : 2 ] # remove p=2,3 from the l i s t as we r e q u i r e gcd (N, 6)=1
20

21 # genera t e a a_i f o r each p_i s . t . p_i^a_i > B
22 pna = [ ] #pna = prime n a lpha
23 f o r p in primes :
24 pna . append ( [ p , i n t (math . l og (B)/math . l og (p ) ) ] )
25

26 whi le C>0:
27 E = EC(R, 0 ,0)
28 P=E. random_elt_curve ( )
29

30 g = base . gcd (E. d i s c r im inant ( ) . x ,N)
31 i f g==N: cont inue ;
32 i f g>1: return g
33

34 # Using a f f i n e c oo r d i na t e s
35 f o r pa in pna :
36 f o r j in xrange ( pa [ 1 ] ) :
37 try :
38 P = pa [ 0 ] ∗P
39 except ZeroDiv i s ionError , g :
40 return N/base . gcd (N, g . args [ 0 ] )
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