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Abstract

The following thesis contains an extensive account of the theory of class groups. First the form class group is
introduced through equivalence classes of certain integral binary quadratic forms with a given discriminant.
The sets of classes is then turned into a group through an operation referred to as “composition”. Then
the ideal class group is introduced through classes of fractional ideals in the ring of integers of quadratic
fields with a given discriminant. It is then shown that for negative fundamental discriminants, the ideal class
group and form class group are isomorphic. Some concrete computations are then done, after which some
of the most central conjectures concerning the average behaviour of class groups with discriminant less than
X — the Cohen-Lenstra heuristics — are stated and motivated. The thesis ends with a sketch of a proof by
Bob Hough of a strong result related to a special case of the Cohen-Lenstra heuristics.



Att rakna klasstal

Foljande mastersuppsats innehaller en utforlig redogorelse av klassgruppsteori. Forst introduceras formk-
lassgruppen genom ekvivalensklasser av en typ av bindra kvadratiska former med heltalskoefficienter och en
given diskriminant. Méngden av klasser gors sedan till en grupp genom en operation som kallas “kompo-
sition”. Darefter introduceras idealklassgruppen genom klasser av kvotideal i heltalsringen till kvadratiska
talkroppar med given diskriminant. Det visas sedan att formklassgruppen och idealklassgruppen &r isomorfa
for negativa fundamentala diskriminanter. Nagra konkreta berdkningar gors sedan, efter vilka en av de mest
centrala formodandena gallande det genomsnittliga beteendet av klassgrupper med diskriminant mindre an
X — Cohen-Lenstra heuristiken — formuleras och motiveras. Uppsatsen avslutas med en skiss av ett bevis av
Bob Hough av ett starkt resultat relaterat till ett specialfall av Cohen-Lenstra heuristiken.
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Chapter 1

Introduction

The study of class numbers goes back to Joseph-Louis Lagrange (1736-1813) and in particular to his work
Recherches d’Arithmétique, in which he studied the representation of integers by binary quadratic forms
ax? + bxy + cy?, with integer coefficients a, b, c.

Definition 1. Let f be a binary quadratic form and let m be an integer. Then f is said to represent m if
there exists integers x,y such that f(x,y) = m.

In particular he noticed the following fundamental fact.

Proposition 1. Let f, F' be binary quadratic forms. Then f and F' represent the same set of integers
whenever there exists integers «, 3,7, with ad — gy = +1 and

i =1((3 3) ()

Proof. Say that f represents an integer m, with f(A, B) = m for integers A, B. We have that

o B\ '_ 1 (& -
(0 (D)

is an integer matrix, and thus F' represents m, with

where X, Y are indeterminates.

()= s ()= ram = m

Conversely, it is easy to see that if F' represents m then f represents m too. O

Forms that are related through a matrix transformation as above, later came to be called equivalent.
This term was introduced by Carl Friedrich Gauf§ (1777-1855), whom we shall return to shortly. Lagrange
also noticed that such transformations preserve discriminants.

Definition 2. Let f(z,y) = az? + bzy + cy? be a binary quadratic form. Then Ay = b* — 4ac is called the
discriminant of f.

In other words, Lagrange noticed the following property.
Proposition 2. Let F, f be equivalent forms. Then Ap = Ay.

Proof. Covered in the sequel. O



He thus understood that the equivalence of binary quadratic forms is an equivalence relation in the
modern sense on the set of binary quadratic forms with a given discriminant. Therefore the set of binary
quadratic forms with a given discriminant, can be partitioned into classes, and the number of such classes
later came to be called the class number.

Lagrange further discovered the following result. [Wei06, p. 321].

Proposition 3. Every form ax? + by + cy? is equivalent to a form Az? + Bxy + Cy? where |B| < |A|,|C|.

Clearly there can only be finitely many forms with a given discriminant that satisfy such a bound, and
therefore we have the following important result.

Corollary 1. The class number is finite.

To actually compute the class number, one only has to list all forms satisfying the bound, and then
remove superfluous forms. One is then left with a list of forms, each contained in one and only one class.

The story continues with Adrien-Marie Legendre (1752-1833), and in particular with his work Essai sur
la Théorie des Nombres. In this essay Legendre noted that if one has two binary quadratic forms f, f’ given
by

f(X,Y)=aX?+2bXY +cY?
f-/(le Y/) — a/X/2 4 2b/X/Y/ + C/Y/2,

then it is possible to find bilinear forms B, B’ and a quadratic form F(U,V) = AU? + 2BUV + CV?2, such
that
FXY) (XY= FBX,Y; XY, B (X,Y; X",Y")).

Furthermore, Legendre seems to have taken for granted that the above product induced a well-defined
binary operation on the set of equivalence classes (with respect to Lagrange’s notion of equivalence) of
binary quadratic forms with a given discriminant. [WeiO6, p. 334] This is by no means obvious, and was
clarified greatly by the next actor in our story — Gau8.

Gauf}’ most important contribution to theory of class numbers and one of the most important contri-
butions to number theory in general was his work Disquisitiones Arithmeticee [Gau0l]. In it he replaced
Lagrange’s notion of equivalence with the appropriate one, only allowing ad — 8y = 1, generalized Legendre’s
operation to what he called the “law of composition”, and proved that the set of classes of forms with a
given discriminant forms with the composition law a finite abelian group — now called the (form) class group.
Furthermore, he formulated three central conjectures.

Conjecture 1. Let h(d) be the class number of the discriminant d. Then h(d) — oo as d — —oc0.

Conjecture 2. Gaufl made lists of negative discriminants with class number 1, 2, and 3, and believed them
to be complete.

Conjecture 3. There are infinitely many positive discriminants with class number 1.

The first conjecture was proven in 1934 by Hans Heilbronn. The second conjecture was proven for class
number 1 in 1952 by Kurt Heegner, for class number 2 in 1971 by Alan Baker and Harold Stark, for class
number 3 by Oesterlé in 1985, and for class numbers < 100 by Mark Watkins in 2004. The last conjecture
is still open.

Disquisitiones was hugely influential, but Gaufl’ composition law was considered by many to be pro-
hibitively complicated. It was simplified in 1851 by Johann Peter Gustav Lejeune Dirichlet (1805-1859) who
also made many other contributions to number theory and is often considered to be the founder of the field
of analytic number theory.

One of Dirichlet’s most ardent admirers was his student Richard Dedekind (1831-1916). Dedekind refor-
mulated the theory of class numbers in terms of abstract algebra and in particular in terms of what is now
known as quadratic field extensions. He noticed that the (ideal) class group appears as a set of equivalence



classes of (fractional) ideals in the ring of integers of a quadratic field extension. This greatly simplified the
theory, at the cost of making it more abstract.

In this thesis, I give a detailed account of the class group from the point of view of binary quadratic
forms and from the point of view of quadratic fields. In particular, I focus on class groups of forms with
negative discriminant, or equivalently, imaginary quadratic fields. The reader will be introduced to a series
of conjectures which are the spiritual successors to Gauf3’ conjectures — the heuristics by Henri Cohen and
Hendrik Lenstra. Among these is a prediction about the average size of the k-torsion subgroup of class
groups with discriminant d satisfying 0 < —d < X. The thesis ends with a sketch of a proof by Bob Hough
that this prediction holds for the case k = 3.

If the reader has further interest in the historical background, please see André Weil’s excellent book [Wei06].



Chapter 2

Preliminaries

In this chapter I introduce the form class group and the ideal class group, and prove that they are isomorphic.
The reader is assumed to be acquainted with the group SLy(Z) and have a rudimentary understanding of

how it acts on the upper half plane
H={ze€C:3(z) >0},

and especially fundamental domains of the orbit space H/SLy(Z). Should the reader need a refresher, I
recommend the part on elliptic modular forms in [RBvdG™08].

The exposition is largely in the spirit of [Bue89] and [Pinld] for the form class group, and [Neul3],
[Coh00] and the notes [Conbl [Cona) for the ideal class group.

2.1 Binary quadratic forms

Definition 3. A binary quadratic form @ is a bivariate homogeneous polynomial of degree 2 with integer
coefficients. In other words,
Q(z,y) = az® + bry + cy?,

where a,b,c € Z. We often write (a,b,c) as an abbreviation. We’ll also treat “binary quadratic form”,
“quadratic form”, and “form” as synonyms, unless otherwise noted.

Definition 4. Let Q = (a,b,c) be a form. Then the number Ag = b? — 4ac is called the discrimant of Q.
Definition 5. Let Q = (a, b, c) be a form. If ged(a, b, c) = 1, we say that @ is primitive.
Definition 6. Let @) be a form. If Ag > 0, we say that @ is indefinite. If Ag < 0, we say that @) is definite.

Notice that if a form @ = (a, b, ¢) is definite, then ac > % so that in particular a,c have the same signs.

Definition 7. Let Q = (a, b, c) be a definite form. If @ > 0 (and ¢ > 0) we say that @ is positive definite.
If a < 0 (and ¢ < 0) we say that @ is negative definite.

For D < 0, let Qp denote the set of primitive positive definite quadratic forms with discriminant D. Let
further
¢ : DD X SLQ(Z) — QD,

be defined by
$(@,7) =Qon.

Proposition 4. The map ¢ is well-defined and a (right) group action.



Proof. Let f = (a,b,c) € Qp, and v = (: ?) € SLy(Z). We see that

o(f)(@,y) = (for)(z,y)
= flaz + By, vz + dy)
= (aa? + bay + cy?)2? + (b(ad + By) + 2(aaB + cyd))xy + (aB? + bBS + c5?)y?.

And so ¢(f) is indeed a quadratic form. Furthermore, we see that
Ay = afyd(—20% + 8ac) + 6 (b* — dac) + B26*(b* — 4ac)
= Af det('y)Q = Af.
And so ¢(f) is definite. Let now 1,72 € SL2(Z). We then have that

o(fimv2) = fomn
= (fo’}/l) o2 = (rb(d)(f) 71)772)7

and clearly ¢(f,I) = f oI = f. It only remains to verify that ¢(f,~) is primitive positive definite for every
f €Qp and v € SLa(Z). To see this, recall that SLy(Z) is (freely) generated by

0 -1 1 1
S_(l O)andT—(O 1),
and hence by the above we only have to verify that ¢(f,S) and ¢(f,T) are primitive positive definite. We

see that
o(f,T) = (a,b+2a,a+b+c),

and
¢(f7 S) = (Cv -b, a)'

Since the first coefficients are positive, we have that ¢(f,.S) and ¢(f,T) are positive definite. Finally we see
that
ged(a, b+ 2a,a+ b+ c¢) = ged(a,a+b,a+ b+ ¢) = ged(a,a+ b, ¢) = ged(a, b, ¢) =1,

and
ged(e, —b,a) = ged(a, b,c) =1,

so that they also are primitive. We are done. O

Since ¢ is a group action we write f.y as a shorthand for ¢(f,~).
The group action induces an equivalence relation.

Definition 8. Let Q1,Q2 € Qp. We say that Q1 and Q2 are equivalent, and write Q1 ~ @2, if there exists
an element v € SLy(Z) such that Q2 = Q1.7.

We have that ~ is an equivalence relation and we denote the set of equivalence classes Qp/~ by H(D).
Of special interest is |H(D)|, which is denoted by h(D) and is called the class number.

Remark 1. If (%,b1,%) ~ (%,bo,*) then by =5 bo, so that % is an integer. Here and in the sequel, the
notation a =, b for integers a,b and n denotes congruence modulo n, in other words n | a — b.

Theorem 1. Let D < 0. Then the class number h(D) is finite.

We'll prove the theorem by selecting appropriate representatives for each equivalence class of forms in
H(D), and in doing so putting H (D) in one-to-one correspondence with a set that is obviously finite.



Definition 9. Let Q = (a,b,c) be a binary quadratic form. Then the (unique) root _b%@ of Q(z,1) =0
in H is called the principal root of @ and is denoted by 3¢.

Lemma 1. The map ;- : Qp — H defined by Q +— 3¢ is injective.
Proof. Let Q1 = (a1,b1,¢1), Q2 = (a2,b2,c2) € Qp satisfy 30, = Q,. Then

—bh_ b
201 2ay’
and
VDl _ /1P|
2a1 2a9

The last equation gives that a; = ag, whence the first equation gives that b; = by. Finally we have that

bi—-D b3-D
40,1 B 40,2

1= = C2,

whence Q1 = @2, and we are done. O

Recall now that SLy(Z) acts on H through linear fractional transformations. In other words if 7 € H and
v = (CCL Z) € SLy(Z) we have the action
(7) at +b
T) = .
7 cT +d

Recall also that every equivalence class in H/SLo(Z) has a unique representative in the (semi-closed) funda-
mental domain, defined by

- 1 1
flz{zeH:—§§%(2)<§and|z|>1
or

—% <R(z) <0and |z| =1}.

Lemma 2. Let v = (Ccl b> € SLy(Z) and f = (a,b,c) € Qp. Then 37, =7 (3¢).

d
Proof. Since 3., € H we only have to verify that f.y(y~*(3¢),1) = 0. This is straightforward.

FA(y G, D) = foy (dﬁf_b 1)

—c35+a’
_f(ad;,f—ab+b(—cz,f+a) cdgf—bc—i—d(—caf-i-a))
—c3f t+a ’ —c3ft+a
:f< 35 1 )
—c3r+a’ —c3p+a
__fGr)
(—c3f +a)?

We now introduce the set of reduced forms.

Definition 10. The set
Qred = (a,b,c) eQp:—a<b<a<cor0<b<a=c},

is called the set of reduced (primitive positive definite) forms.



Lemma 3. Let Q = (a,b,¢) € Qp. Then Q € Q54 if and only if 3¢ € Fi.
Proof. We have that

b
R =——
(a) =5,
and
ol = L2 = €
RIE=7e T o
Furthermore, we have that 3¢ € F if and only if
1 b 1 c?
——<—-——<-and - >1
5= 9 S22
or

1 b c
PN R — = 1.
5S75, S 0 and . 1
Which is true if and only if

—a<b<aandc>a
or
0<b<aandc=a,

if and only if (a, b, c) € Q%%. The lemma has been proved.

O

Lemma 4. Let Q. € H(D). Then |Q. N Q%4 = 1. In other words, every class of forms in H(D) has a

. . . er
unique representative in Q5.

Proof. Let @ be a representative of Q., so that [Q] = Q.. Let v € SL2(Z) be such that v~ (3¢) € Fi. Then

30~ € F1 and so Q.y € Qrf,’d. Hence Q.v € Q. N QrDed and we have proved existence.

Let Q1,Q2 € Q. N Q%Y. Then 30,,30, € Fi. We also have that Q; ~ Q2 and hence 30, = 730, for
some vy € SLa(Z). But since F; is a fundamental domain, we must have that v = I, and so 3¢, = 3¢,. Since

3 is injective, we conclude that Q1 = @2, and we have proved uniqueness.

By the above, we have that k(D) = |Q}$¢|. We can now prove theorem

Proof of theorem [l Let (a,b,c) € Q4. Then [b| < a < ¢, and so —b* >

4ac — b% > 3a? whence

and as a consequence

NN
3 - = 3

O

This implies that |D| =

The number of possible values for a and b is thus finite, and since ¢ is determined (through D) by the choice

of a and b, we are done.

2.2 Composition law

Hereafter D denotes a negative integer unless otherwise noted.

O

We now introduce the composition law. It turns H(D) into a group — the class group. To simplify the

exposition we define the law on pairs of united forms.



Definition 11. Let f = (a1,b1,¢1),9 = (az,b2,¢2) € Qp. If ged(ay, ag, @) =1, we say that f and g are
united.

Note that
b% — b% = 4(a1c1 — aszes),

and so by =5 by whence by 4+ by =5 0, as is implicit in the definition.

Lemma 5. Let f = (a,b,c) € Qp. Then for any nonzero integer m there exists relatively prime integers
x,y such that ged(f(z,y),m) = 1.

Proof. Let m € Z be arbitrary and put

P = product of primes p such that p | m, p|a, and p | ¢
@ = product of primes p such that p | m, p|a, and ptc
R = product of primes p such that p | m, pta, and p | ¢
S = product of primes p such that p | m, pta, and ptec.

Evidently these numbers are mutually relatively prime. In particular ged(@, RS) = 1. Now, let p be a prime
divisor of m. Then p | P,Q, R or S.

If p | P we have that p | aQ? and p | ¢(RS)?. But since f is primitive we have that p { b, and by
construction pt @, R and S. Hence p{bQRS and thus pt f(Q, RS).

If p | Q we have that p | aQ? and p | BQRS. But p{c and p t RS by construction, and so p { ¢(RS)2.
Hence p 1 f(Q, RS).

If p | R we have that p | ¢(RS)? and p | bQRS. But p{a and p { Q by construction, and so p 1 aQ?.
Hence p1 f(Q, RS).

If p | S we have that p | ¢(RS)? and p | bQRS. But p { a and p { @ by construction, and so p 1 aQ?.
Hence p 1 f(Q, RS).

It follows that f(Q, RS) and m have no common prime divisors, whence ged(f(Q, RS), m) = 1 and we
are done. O

Lemma 6. Let f € Qp, r be a nonzero integer, and z,y be relatively prime integers such that f(z,y) = r.
Then there exists integers s, ¢ such that f ~ (r,s,t).

Proof. By the extended Euclidean algorithm we have that there exists integers z, w such that xw — yz = 1.
Hence

f~r (; Z}) = (az® + bry + cy?, b(zxw + y2) + 2(azz + cyw), az® + bzw + cw?) = (r, s,t),

and we are done. O

Proposition 5. Let f = (a1,b1,¢1),9 = (ag,ba,c2) € Qp. Then there exists an h € Qp such that h ~ ¢
and f and h are united.

Proof. By lemma there exists relatively prime integers x,y such that (g(x,y),a1) = 1. By lemma |§| there
exists a form h = (g(z,y), s,t) such that g ~ h.
We have that ged(ar, g(z,y), 25) = 1, and thus f and h are united. O

Proposition 6. Let f = (a1,b1,¢1),9 = (a2,b2,c2) € Qp. If f and ¢ are united, then there exists integers
B, C with B unique modulo 2a;as such that

B =9,, by
B =34, bs
B?>-D
- daray



and as a consequence

fN (alaBaGZC)
g ~ (az, B,a1C).

Proof. Since f and g are united we have that

b
ng(a1, ag, %, 2&1&2) = 1,
and so there exists integers [y, l2, [3, [ such that
b1 + b
llal + lQCLQ + lg 1+ 02 + 21&1@2 =1.

Notice also that since b; =5 by we have that b1by + D =5 0, and
ajazby =24,4, 010202,
and since a1 D =44,4, a1b3 and asD =44,4, a2b?, we have that

D +b1by by + bo
=5 S2aia ayby R and

D + by1by b1 + b2
ag——-—=

2 =2a1as 42 bl 2 .

Put now Dt bib
B = llalbg + ZQGle + 13#
Then

b1 + be
2
by + bz) (2.1)

alB =2a1as (llalbg)al + (lzalbg)ag + (lgalbg)

= a1ba(l1a1 + laas + I3
= a1bo(1 — 2laras) =24,4, a1b2,
and similarly
a9 B =24,4, G2b1. (2.2)
We have furthermore that

b1 + bo b1 + b b1 + b 3D+b162b1+bz

D) B= l1a1b2 9 + lzagbl 9 +l 9 9
D +bb b1+
= %(hm +loar + I3~ ;— %) (2.3)
_ D+bib
—2a1a2 2 .

The congruences (2.1]) and (2.2]) are equivalent to B =a,, b1 and B =, be, respectively. Hence
B? — (by + by)B 4 byby = (B — b))(B — b3) =44,a, 0,
and thus
B2 E4a1a2 (bl + bQ)B — blbg.

10



Moreover, congruence (2.3)) is equivalent to
(b1 + b2)B =4a,4, D + b1ba,

so that B% =44,4, D.
We can now finish the proof. Let C' = E;’af. There exists integers d; and do such that B = by + 2a10;
and B = by + 2a205. This implies that

2

asC = = aléf + b101 + ¢1, and
4(11
B?2-D
a1C = = agég + baday + c2,
4@2

and so we conclude that
[T = (ay, B,a16? 4+ b16y + ¢1) = (a1, B, a3C), and
g.T% = (ag, B, ag0% + bads + ¢2) = (ag, B,a,0),
whence we are done with existence. From the above, it is clear that the system
a1B =244, a1b2

a2 B =2q,4, a2b1

bl-l-sz: D + b1by
2 —2(11{12 2 )

is equivalent to the system in the proposition. Say now that we have two solutions B, B’ to this system.
Then

2&10,2 ‘ (ll(B — B/)
2&1@2 ‘ ag(B — B/)

b1+b2(B—B’)

2a1az |

and since ged(ay, az, (b1 + b2)/2) = 1 we see that 2a1a2 | B — B’ by the extended Euclidean algorithm. O
Lemma 7. Let
D, ={(f,9) € Q% : 3a1,a2, B,C. f = (a1, B,ayC) and g = (as, B,a;C)},
and let o7 : ®1 — Qp be defined by
(a1, B,asC) oy (ag, B,a1C) = (aya9, B, C).
Then o7 is well-defined.

Proof. Say (a1, B,a2C) = (a}, B’,a4,C") and (ag, B,a1C) = (ab, B',a}C"). Then ay = a}, ay = a4, B= DB’
and a;C = a{C’ = a;C’. But since a; > 0, we get that C' = C’, and so (a1az2, B,C) = (ajah, B',C").
Moreover we have that aq,as > 0 and so ajas > 0. Finally it is clear that the discriminant of (ajaq, B, C)
is the same as e. g. (a2, B,a1C), whence we are done. O

Lemma 8. Let
Dy ={(f,9) € Q% : f and g united},

and let og : D9 — H(D) be defined by
(a1,b1,¢1) 02 (ag, b2, c2) = [(a1, B,a2C) o1 (as, B,a1C)],

where B and C are any integers as in proposition [} Then os is well-defined.

11



Proof. Suppose we have two solutions B, C' and B’, C" to the system in proposition[6] We want to show that
(araq,B',C") ~ (ayaz, B,C). We have that B’ =34,4, B and so B’ = B + 2ajasl for some integer [. We see
that

(a1a2, B/, O/).Sl == (alag, B, a1a212 + B/l + C/)7

Put X = ajasl>+B’l+C’. Since the discriminant is preserved, we have that D = B2—4a,a,C = B?>—4a1a:X
and thus X = C. Hence (ajaz, B',C’") ~ (a1as, B,C) and we are done. O
Definition 12. Let (f,g) € Q% be a pair of forms. Then (f/,¢’) € Q% is said to be a uniting of (f,g) if
f'~f, g ~g,and f’ and ¢’ are united.
Remark 2. By proposition [5| we have that for any (f,g) € Q% there exists a uniting of (f, g).
Lemma 9. Let f = (a1,b1,¢1),9 = (a2,ba,¢2) € Qp. Then f ~ g if and only if there exists integers a and
~ such that
aro® + biay + 6172 = a9y
2a1a 4 (b1 + b)Y =24, 0 (2.4)
(bl — bQ)OZ + 261’}/ =2a, 0.
Proof. Recall that f ~ g if and only if there exists integers «, 3,7y, d such that
ajo® + by + 0172 = as
b1(ad + B) + 2(ar1af + c176) = by
a162 +b1,6(5+01(52 Co
ad — By =1.
Suppose now that f ~ g. Then the first equation of (2.4)) is immediate. We further have that

2a1a + (b1 + b2)y — 2a20 = 2ca1 (1 + Sy — ad) + b1 (1 + By — ad) =0,
and
(b1 — b2)a+ 2¢17y + 2a28 = abi (1 + By — ad) + 2ye1 (1 + By — ad) = 0.

Hence the second and third equations of (2.4) are satisfied.
Suppose now that equations (2.4) hold. Then the first equation of (2.4) holds, so we only need to find
integers 3, d such that the the last three equations of (2.5)) hold. Inspired by the above, we put

_ 2(110[ + (b1 + bg)’}/

1)
2@2 ’
and
(b1 — bg)a + 261’)’
-8 = 5 .
az
Then 2y )
ab — By = aia” + 01y + c1y —1,
a2
and

a10? 4+ bay + 192

bi(ad + £7) + 2(a1aB + c176) = be a
2

= b,
Finally, we have that

dag (a1 B 4+ b1 B8 + ¢16%) = (a10? + biay + c17?) (b3 — b2 + 4aycy) = dasco,
where in the last step we used that Ay = Ay, = D, and so

dascy = bg - D= b% — b% +4aqc;.
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Lemma 10. Let o3 : 93, — H(D) be defined by

Jo39= fuo2 gu,
where (fy,gy) is any uniting of f and g. Then o3 is well-defined.

Proof. Suppose we have two unitings (fu, gu), (fv, go) of f and g. We want to show that f, 03 g, = fy 02 G-
Write

/

fu = (a1,b1,c1) ~ (a1, B,axC)

gu = (az,b2,c2) ~ (a2, B,a;C)

fo=( )N(G,B'%C)
(a )~ (

C2

/ /

alvblv 1
/ /

Co aB )a

2

gv = \Ag,

where B, C' and B’,C’ are some integers on the same form as in proposition [ Then
fu 02 gu = [(a1a2, B,C)]
fU 02 gy = [(alla/Zv B/a Cl)]a

Hence we are done if we can show that (ajaq, B,C) ~ (ajab, B',C"). We notice first that f ~ f, ~ f, and
g ~ Gu ~ Gu, SO that

(a17 B7 GQC) ~ (a/la BI? aIZC/)

(a2, B,a1C) ~ (ay, B', a} C").

Applying lemma [0} we have that there exists integers x1,y1,Z2,y2 such that

a123 + Bayy; + axCyl = d)
2a171 + (B + B )y, =24, 0
(B = B')z1 4 2a2Cy1 =341 0

asx3 + Broys + a1Cys = ab
2a922 + (B + B')y2 =245 0
(B — By +2a1Cys =2a;, 0.

If we can find integers X, Y such that
a1a2X? + BXY + CY? = dyd},
2a1a2X + (B+ B)Y = =2a}a; 0
!
(B —_ B )X + 2CY :20’/10’/2 0,
we are done. Put

1T
1 0 0 -C T1Y2
0 a1 az B Y12

Y1Yy2

X
Y
We then have that

ayaly = (a12? + Bxyy, + aaCy?)(asx3 + Baoys + a1Cy3) = a1as X + BXY + CY?.

13



It remains to verify the congruences. We have thatﬂ

B+ B B+ B
y1)(agzs + 5

and s0 2a1a2 X + (B + B')Y =344, 0. We also have that

2(0,133‘1 + yg) =24/ a} 2a1a02X + (B + B/)K

2a1(B — B/X +CY) =241a, 2(a1z1 + B —; B/yl)(B _2 leg + a1Cy2)
2a2(B “Bxy CY) =2q1a; 2(B - B/l“l + asCy1)(az + Chs B,yz)
(B — B')(B — B/X +CY) =414, 2(B — lel + agCyl)(B — leg +a1Cy2)
(B + B')(B — B/X + CY) =2414; 2C (a1 21 + B+ B y1)(agwa + B J; B/yg).

This yields that

B-B B- B
X + CY) Ea'lfl'g CLQ(

al( X+CY) =aal, 0,
and summing the last two congruences

B-B

B( X+CY) =alal 0.

Hence we have for any ki, ko, k3 € Z that

B-B

(klal + k2a2 + k3B)( X+ CY) 52(1/1@/2 0.

Notice now that ged(aq,aq, B) | ged(a1, B, a2C) = 1 so that ged(ay, az, B) = 1. By the extended Euclidean
algorithm we have that there exists l1,(s,l3 € Z such that l1a1 + loas + [3C = 1. Consequently

B-B B-B
X +CY = (lia1 + laag + I3B)(

X + CY) =a/al 0,
and we are done.

We conclude that (aia1, B,C) ~ (ajab, B',C") and so f, 02 gu = fv 92 G- O
Proposition 7. Let o : H(D)? — H(D) be defined by

[flolgl = foesg.
Then o is well-defined.

Proof. Let f1 ~ fa,91 ~ g2 € Qp, and let (f1, g}), (f3', 9%) be unitings of (f1,91) and (f2,g2) respectively.
We have that

fioz g1 = ffL 02 g}‘,
and
f2 03 g2 =f§ 02975-

We have that f3' ~ fo ~ f1 and g¥ ~ g2 ~ g1, and consequently (f3, ¢g%) is a uniting of (f1, g1). Consequently

f3' 0295 = f103 91,

and we are done. O

1Use that B2 = D +4ajabC' = B? —4a1a2C + dal af,C".
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Theorem 2. Let D be a negative integer. Then (H(D), o) is a finite abelian group.

Proof. Let F =[(a1,b1,¢1)],G,H € H(D). By lemmas [5| and @there exists integers asq, as, ba, b3, ca, c3 such
that G = [(az, b2, ¢3)], H = [(as, b3, c3)] and

ng(az, 2&1) = ng(CLg, 2&1&2) =1.

Consequently
ged(ar, az) = ged(ag, as) = ged(ag, as) =1,

and so (ag,b1,c1), (az, ba, c2), (as, bs, c3) are pairwise united. We now have that

(FoG)oH =

(

ay,bi, 01) o3 (Clz, b27€2)) oH

(
(

ai, bla Cl) 02 (a27 b2762)) oH

[(a1, B, Cagy) o1 (a2, B,Cay)] o H
[(a1a2,B,C) o H

= (a1az2, B,C) o3 (as, bs, c3)

= [(a1azas3, B',C")],

where B, B’,C,C’ are as in proposition [} In particular

B EQal b1
B EQag bg
B/ EQalag B
B/ =2a5 b3.
This implies that
B Egal b1
B =as bg
BI Ega1a2 B
BI Ea3 bg,
which in turn implies that
B/ E2a1 bl
B/ Ea2 b2
B/ =as bg.

Similarly, we have that
Fo(GoH)=Fo((az,bs,c2) 02 (as,bs,c3))
= Fol(agas, D, E)]
= (a1,b1,c1) o2 (aza3, D, E)
- [(a1a2a37D/aE/)]a

where D, D', E, E are as in proposition [6} In particular we have as above that

D =54, b2
D =34, b3
D' =5, by
D' =244, D.
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This implies that

D =as b2
D =as b3
_D EQal bl
D' =4,4, D,
which in turn implies that

D/ =2a1 b1
D/ =as b2
D/ =as bg.

By the Chinese remainder theorem, we have that D’ = B’ + 2a;1a2a36 for some § € Z, and so
(achgag,B',Cl).T‘s = (ajasas, D', %) = (a1azaz, D', E").

We thus conclude that F o (Go H) = (F oG) o H and so o is associative.
With B, C the same as above, we also have that

FoG= [(alag,B,C’)] = [(agal,B,C’)] = GOF,

so that o is commutative.
The form of the identity element depends on the residue of D modulo 4. If D =4 0, put I = [(1,0,—D/4)].
Since (ai,b1,c1) and (1,0, —D/4) are united, we find that

Fol=][(a1,B,0),

where B, C are any integers that satisfies

B =9,, b
B=5,0
B%*=4,, D
B?2-D
- da7
Since b? =, 0, we have that b; =5 0, and hence B = b; and C = bi;D = ¢; solve the system. Consequently

Fol=/{(a1,bi,c1)] = F,

and so I is the identity element.
If D=41,put I =[(1,1,(1 — D)/4)]. Since (a1,b1,c1) and (1,1, (1 — D)/4) are united, we find that

Fol={(a1,B,0C),

where B, C' are any integers that satisfies

B =94, b1
B=1
B?*=,, D
B B?2-D
da;
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Since b% =4 1, we have that b; =5 1, and hence B = by, C = ¢; is again a solution. Hence F ol = F', and so
I is the identity element. Let henceforth I denote the identity element.

It remains to find inverses. Put @ = [(c1,b1,a1)]. We have that (aq, c1, bl;rbl) = (a1,b1,¢1) = 1, and so
(a1,b1,c¢1) and (c1,b1,a1) are united. Hence

FoQ =[(aic1, B,C)],

where B, C' are any integers such that

B =5, b
B =5, 0y
B? =4a,¢, D
B?2-D
~ daie

Evidently B = b; and C' = 1 will do. Hence
FoQ=|[(arc1,b1,1)] =[(arc1,b1,1).5] = [(1, =b1,a1¢1)].
If D =4 0 we have that b; =5 0 and so b; = 2§ for some ¢ € Z. Consequently
[(1,=b1,arc1)] = [(1, =b1,a1c1).T°] = [(1,0,%)] = [(1,0,—D/4)] = I.
If D =41 we have that b; =5 1 and so by = 2§ + 1 for some § € Z. Consequently
(L, =br,arer)] = [(1, =br, arer). T = [(1,1,%)] = [(1, 1, (1 = D) /4)] = I,

and we conclude that H (D) is an abelian group. By theorem |1} it is finite, and so we are done. O

2.3 Number fields

We shall now adopt a different point of view — that of number fields.

Definition 13. We say that a field K containing Q which is finite-dimensional as a vector space over Q is
a number field. The dimension of K over Q is called the degree of K and is denoted by [K : Q].

Proposition 8. Let K be a number field. Then there exists a number 6 € K such that K = Q(#). Such a
number is called a primitive element of K.

Proof. See [STO01l p. 56] or [DF04. p. 509]. O

Definition 14. We say that a number field K of degree 2, i. e. K = Q(v/D), with D a square-free integer,
is a quadratic (number) field. If D < 0 we say that K is a imaginary quadratic field, and if D > 0 we say
that K is a real quadratic field.

Proposition 9. Let K be a number field and let « € K. Then there exists a unique non-zero monic
polynomial p € Q[z] such that p(a) = 0, with smallest degree.

Proof. We first prove that « is zero of some monic polynomial f € Q[z]. Let n = [K : Q]. Then the elements
1,a,...,a™ are QQ-linearly dependent, and hence there are numbers a; € Q, not all zero, such that

ana” + -+ ara+ag=0.

We may without loss of generality assume that a,, # 0, and so we put

An—1 a a
fla)=a"+ 2L o a4 22 e Qla).

GAp Gn, Qn,
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Let now S be the set of all non-zero monic polynomials in Q[x] that has « as a zero. We want to prove
that S has unique minimal element with respect to the degree. The existence of a minimal element follows
from the well-ordering principle. Suppose f, g are two minimal elements. Then deg(f) = deg(g) because
otherwise one of them would be non-minimal. By the division algorithm, we have that

for some ¢ € Q[z]. Clearly deg(q) = 0, and so ¢ is constant. Since f, g are both monic, we must therefore
have that ¢ = 1, and we are done. O

Definition 15. Let K be a number field and let « € K. Then the polynomial of proposition [Jis called the
minimal polynomial of «, and is denoted by minpol,,.

Remark 3. Evidently minimal polynomials are irreducible. Recall also that number fields are separable, in
other words for any a € K, we have that minpol, has distinct zeros in K.

Proposition 10. Let K = Q(f) be a number field of degree n. Then there are exactly n distinct embeddings
0;: K — Cof K in C. The elements 0;(0) = 6; are the distinct zeros in C of minpoly.

Proof. See [ST01l p. 38] or [DF04, p. 487]. O

Definition 16. Let K be a number field. We say that a € K is an algebraic integer of K if there exists a
monic polynomial p € Z[z] such that p(«) = 0. The set of algebraic integers of K is denoted by Zg.

Lemma 11. Let K be a number field. Then a € K is an algebraic integer of K if and only if Z[a] is a
finitely generated Z-module.

Proof. Suppose Z[a] is a finitely generated Z-module, say with generating set {g1(a),...,gn(a)} for some
polynomials g1, ..., g, € Z[z]. Put N = maxj<i<, g;- Evidently oV ™! € Z[a] and hence there exists integers
ki,...,k, such that

n
Nt = "kigi(a).
i=1
Put therefore p(z) = N1 — 3"  k;g;(z). It is clear that p € Z[z], and since deg(} ;. kigi(z)) = N, we
have that p is monic. Hence « is an algebraic integer.

Suppose now that « is an algebraic integer, say a zero of p(z) = 2" + ap_12" "'+ -+ a1z + ag. I claim
that G = {a"~!,...,a,1} is a generating set. To see this, let 3 € Z[a]. Then

B =bya + -4 bra+ by.

If we can show that o is a Z-combination of G for any non-negative integer k, we see from the above that
we are done. Clearly, it is true whenever k < n, because then o € G. For k > n, we use induction. As for

the base case, we see that

Q" = —ap_ 10" — o — a0 — ag,

and we are done with the base case. As for the inductive step, we let k& > n and assume that ol is a
Z-combination of G whenever [ < k. We thus have that

aftl = alky + ki 4+ kp_1a™ ),
for some integers k;. Consequently
ot = — ka0 + (ko — kp—1a1)a+ (k1 — kn,gag)az + oo+ (kpeo — an,l)anfl,
and we are done with the inductive step. O

Proposition 11. Let K be a number field. Then Zg is a ring.
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Proof. Let o, 8 € Zi. We only have to verify that 0,1, —a, a8, + 8 € Zk. As for the first and second,
note that 0 is a zero of x € Z[x], and that 1 is zero of x — 1 € Z[z]. As for the third, let p(z) € Z[z] be
monic such that p(a) = 0. Then clearly —« is a zero of p(—xz). As for the fourth, we may without loss of
generality assume that 8 # 0. With p as before, let n = deg(p). Put ¢(z) = 5"p(x/8) and notice that ¢ is
monic. Clearly ¢(af) = 0 and we are done.

The fifth is easy to prove with lemma We have that Z[a], Z[3] are finitely generated Z-modules and
want to show that Z[a+ 5] is a finitely generated Z-module. Say that Z[«a] is generated by G = {g1,...,9n}
and that Z[3] is generated by H = {hq,...,hy}. I claim that F = {g;h; }1<i<n,1<j<m generates Z[a + J].
As in the proof of the lemma, it is enough to show that (a+ )™ is a Z-combination of F’ for any non-negative

integer n. We have that
N

(@t =Y (Z) oF gk,
k=0
and so it is enough to show that o37 is a Z-combination of F for any non-negative integers i, j. Clearly
o'l = (kirgr + - + kingn) (Lj1he + - - + Ljmhm) = Z kirlisgrhs,

1<r<n
1<s<m

and we are done. O

Definition 17. Let K be a number field. Then a fractional ideal I of Zg is a subset of K on the form
I= %J where J is non-zero ideal of Zx and d # 0 is an integer. The set of fractional ideals of Zy is denoted
by Z(K).

Remark 4. Notice that I is a non-zero Zg-submodule of K such that there exists a non-zero integer d with
dI an ideal of Zg. This can be taken as the definition of a fractional ideal.
Lemma 12. Let I be a Z-submodule of K. Then [ is an ideal of Zy if and only if I C Z.

Proof. If I is an ideal Zg, then obviously I C Zg. Suppose therefore that I C Zg. We have already that
(I,+) is a subgroup of (K,+), and since (Zk,+) also is a subgroup of (K,+), we have that (I,+) is a
subgroup of (Zk,+). Closure under multiplication by elements from Zg follows by definition of being a
Z i -module. L]

Proposition 12. Let K be a number field, and let I be a Zg-submodule of K. It holds that I is a fractional
ideal if and only if there exists a d € Zg \ {0} such that dI C Zg.

Proof. Suppose [ is a fractional ideal. Then there exists a non-zero integer d such that dI is an ideal in Zg.
Since also d € Zg, and dI C Zk, we are done with one direction.

Suppose that I C K satisfies that dI C Zg for some d € Zg \ {0}. Let p = minpol,; and put n = deg(p)
and write p(x) = (z—aq)(z—az) ... (x —an—1)(x—d). Note also that all o; = 0 for else p would be reducible.
Now d' = (—1)"ayay ... a,_1d = [2°]p € Z, and by multiplicative closure, we have that d'I C Zg, and so
d'I C Zk is an ideal of Zg. O

Definition 18. Let I, J € Z(K). The product of I and J is defined to be
1J={> aib :a; € I,b; € Jn >1}.
i=1

Proposition 13. Let I, J € Z(K). Then IJ € Z(K).
Proof. We have that I = é]’ and J = %J’, where I, J' are ideals in Zx. Hence

1J = {ézaibi D a; GI/,bi € J’,n >1} = %I/J/.
=1

Since I'J’ is an ideal in Zg, we are done. O
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Remark 5. Notice that the product is commutative and for every I € Z(K) we have that IZx = I.
Proposition 14. Let A, B,C € Z(K). Then A(BC) = (AB)C.

Proof. Let © € A(BC). Then z = Y I, Z;n:ll a;b;jc;j. For every i,j we see that a;bijci; = (abij)ci; €
(AB)C, and hence by summation closure we have that € (AB)C. The converse is analogous and so we
are done. O

Definition 19. Let I € Z(K). If there exists a J € Z(K) such that I.J = Zg, we say that I is invertible.
The following notions are fundamental.

Definition 20. Let K be a number field of degree n over QQ, and let o; be the n distinct embeddings of K
in C. Then the characteristic polynomial C,, of a in K is

Cal@) = [[(x - oi(a).
i=1

Furthermore, the trace Trg/g(a) of a in K is defined as

Trgjg(a) = —[2""'|Cq,

where the notation [X]p denotes the coefficient of the term X in the expression p. The norm N g(a) of a
in K is defined as
N (@) = (=1)"[2"]Ca.

Remark 6. It is easy to see that the trace is Q-linear, and that the norm is multiplicative.

Lemma 13. Let K be a number field of degree n and let & € K. Then C,, € Q[z]. If furthermore o € Z,
then C,, € Z|x].

Proof. By proposition [8| we have that K = Q(6) for some 6 € K. Recall that Q(f) = Q[f] so that a = r(6)
for some r € Q[z] with deg(r) < n.
We now see that o;(a) = o4(r(0)) = r(6;), and hence the coefficients of C,, are symmetric polynomials

h; € Q[fy,...,0,]. We have that any symmetric polynomial over Q is a polynomial over Q in the elementary
symmetric polynomials of 6y, ...,60,, and consequently the h; are rational numbers.
The same argument shows that if & € Zg, then C,, € Z]x] O

Proposition 15. Let K be a number field of degree n, o; be the n embeddings of K in C, and {«; };L:l C K.
Then
det((oi(aj))1<ij<n)? = det((Trg g(aias)1<ij<n)-

This quantity is a rational number and is called the discriminant of {a;}}_; and is denoted by d(az, ..., ay).
Furthermore d(a1,...,a,) = 0 if and only if the a;s are linearly dependent over Q.
Proof. See [Coh00, p. 163]. O

Proposition 16. Let K be a number field, and let n = [K : Q]. Then Zx is a free Z-module of rank n.

Proof. Let (ai,...,a,) be a basis of K over Q. Since the a; are algebraic, we have that there exists an
integer b such that for all ¢ we have that ba; € Zk. Let now ¢ : K — Q™ be defined by

¢(z) = (Trr/g(br2), ..., Trgjg(bn)).

Since the trace is Q-linear, we have that ¢ is homomorphism of Q-modules. We have further that if x € Zg
then C,, € Z[z], and so ¢|z, is a homomorphism of Z-modules from Zy to Z". By proposition we have
that ¢ is injective. We have further that ¢(Zg) is an additive subgroup of Z", and thus ¢(Zy) = ZF for
k < n. This shows that Zx = ¢(Zk) is a free Z-module of rank k < n. But since the (by,...,b,) are linearly
independent over Q and thus also over Z, we find that rank(Zg) > n. Consequently rank(Zg) = n and we
are done. O
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Proposition 17. Let a1,...,a, and fB,..., 3, be bases of Zgk. Then d(ay,...,a,) =d(B1,...,Bn).
Proof. See [Coh00, p. 164]. O

Definition 21. Let K be a number field. Then the discriminant of K, denoted by d(K), is the discriminant
of any basis of Zg.

Lemma 14. Let K be a number field of degree n, and let I be any non-zero ideal of Zg. Then |Zk /I| < cc.

Proof. Let 0 # o € I. We have that Ny, g(«) = [[;_; 0i(), where the o; are the n embeddings. One of
the o; is the identity, say without loss of generality that oy = id. Then N (o) = a[]}_, 0i(a). Clearly
oi(a) € Zg for all i, and thus Nk g(a) = aff with 3 € Zg. Putting N = Nk g(«) we thus have that N € I,
and so (N) C I. Therefore Zy /I C Zk/(N).

By proposition we have that Zyx = Z", and (N) =2 NZ" as additive groups. Therefore Zy /(N) =
Z"/NZ™ = (Z/NZ)™, and we are done. O

Definition 22. Let I be a non-zero ideal of Zy. Then the number |Zg /1| is called the (absolute) norm of
I, and is denoted by N(I). If o € K, we put N'(al) = |Ngq(a)N(I).

Proposition 18. Let I € Z(K), and let n = [K : Q]. Then I is a free Z-module of rank n.

Proof. Since non-integral fractional ideals are just non-zero multiples of integral ideals, we may assume that
I is a non-zero integral ideal. We have that I is a Z-submodule of the Z-module Zg. Since Z is a PID, we
have that I is free with rank k for some k < n. If k¥ < n, we’d have that |Zx /I| = oo, which contradicts
lemma T4l Hence k = n and we are done. O

Proposition 19. Let 0 #2 P C Zk be a prime ideal. Then P is maximal.
Proof. By lemmawe have that Zy /P is a finite integral domain and thus a ﬁeldE| Hence P is maximal. [
Lemma 15. Let I C Zg be a non-zero ideal. Then I contains a product of non-zero prime ideals.

Proof. We will prove the lemma by induction on |Zg /I|. Assume the lemma is false, and let I be a non-zero
ideal with minimal |Zg /I| that doesn’t contain a product of non-zero prime ideals. Clearly Zy contains
products of non-zero prime ideals, and thus I # Zg. Consequently |Zg/I| > 2. Moreover, we have that
I cannot itself be a prime ideal, and thus there exists x,y ¢ I such that zy € I. With these z,y we have
that () + I,(y) +1 2 I, and so |(SEZ)%\, ‘(yz)%| < |Zk/I|. We therefore have prime ideals P,..., P. and
Q1,-..,Qs such that

P - P.C(x)+1,

and
Q- Qs C(y)+1
Consequently
P PQu--Qr C ((2) + D((y) + 1) = (xy) +al +yl +1° C I,
and we have a contradiction. O

Lemma 16. Let I € Z(K), and put I = {z € Zg : I C Zg}. Then I € I(K).

Proof. If z,y € I then (z + y)I C ol +yl C Zg so that z +y € I. If d € Zg and z € I, then
(dz)I C dZy C Zk. It follows that [ is Z g-submodule of Z-.

Since I € Zk, there exists a d € Zg \ {0} such that dI C Zg. Furthermore, since I # 0 there exists an
element z € I such that  # 0. Consequently dz € Zg \ {0}. Let now y € dxzI, then y = dzy’ for some
y' € I. Since v € I we have that y'z € y'I C Zg, and thus y € Zg. Hence dal C Zg whence we conclude
that I € Z(K), as desired. O

2Let A be a finite integral domain, and let 0 # = € A. Consider the set S = {za : a € A}, and notice that since A is an
integral domain, all the elements of S are distinct. Hence S = A, and thus there exists an element y € A such that zy = 1.
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Lemma 17. Let I € Z(K). If I is invertible, then the inverse is unique and is given by I.

Proof. We first prove uniqueness. Say that J; and J, are inverses of I. Then
J1=NZk =1 (IJ2) = (J1I)Jo =Lk Jy = Ja,

and we have uniqueness. 3 3

Let now J be such that I.J = Zk. If y € J, then yI C IJ = Zg so that y € I. Hence J C I. Multiplying
by I we thus have that Zyx C II. If x € I, then xI C Zg and thus I] C Zk. Hence I = Zy, and we are
done. O

Lemma 18. Let P C Zg be a prime ideal. If 0 # A, B C Z are ideals such that P D AB, then P D A or
P> B.

Proof. Say that P 7 A, and let © € A be such that ¢ P. Let y € B, then 2y € AB C P and so, using
that P is prime, we have that € P or y € P. But we know that ¢ P and so y € P. We conclude that
BCP. 0

Lemma 19. Let a« € K. We have that o € Zg if and only if there exists a non-zero finitely generated
Z-submodule A of K such that aA C A.

Proof. Suppose a € Zk. Then A = Z[a] is a finitely generated Z-submodule of K, and clearly A C A.

Suppose A is a finitely generated Z-module such that «A C A. Let ¢ : A — A be defined by ¢(z) = az.
Since aA C A we see that ¢ is an endomorphism of Z-modules. We have further that ¢(A) = aA C ZA,
and so by proposition 2.4 of [AM94] we have that

¢" +arg" T+ ay =0,
where a; € Z for all i. We see that ¢"(a) = o™, and thus a € Zk as claimed. O
Lemma 20. Let 0 #£ P C Zg be a prime ideal. Then P satisfies the following properties.
(i) Zx C P
(ii) PP = Zg

Proof. Tt is immediate that Zx C P and hence to show the first part we only need to show that P\ Zg is
non-empty. Let 0 # x € P. Then (z) C P. By lemma we also have that

() D PP,

for some non-zero prime ideals P;. Let r be minimal. If r = 1, then P D P; and thus by maximality P, = P,
so that P = (). It follows that P= %ZK #* ZK We therefore assume that r > 2. Since P D () D Py --- P,
we have that P D P; for some ¢, and thus by maximality P = P;. Without loss of generality we have that
it =1. Hence (z) D PPy --- P,. Since we picked r to be minimal, we have that (x) p Py--- P,.. Let therefore
y € Py--- P, be such that y ¢ (z). Nowﬁ y/x ¢ Zk and since also yP C PPy --- P, C (z), we have that
y/x € Zx. We thus conclude that y/z € P\ Zg, whence (i) is proven.

As for (i), let 2 € P be such that & ¢ Zg. Evidently P C Zg andso P C P+xP C Zg. By maximality
we thus have that P+xP = Zk or P+xP = P. If the former holds, we have that P+xP = P(Zk +2Zk) =
Zy and so Zi + xZx is an inverse for P, whence by lemma (17| we have that P =7k + 2Zy. If the latter
holds, we have that zP C P. But by proposition [I8 we have that P is a finitely generated Z-module, and
thus by lemma |19| we have that « € Zg. This is a contradiction, and thus we are done. O

3For if they would be equal, then ™! € Zg, and thus 1 = 2~ 'z € (z) = P, whence P = Zy. But prime ideals are proper,
and thus contradiction.
4For if this weren’t so, then y € (z), and thus contradiction.
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We have concluded that prime ideals of Zy are invertible. Hence we write P~! for the inverse of a
non-zero prime ideal P C Zg.

Proposition 20. Let I C Zk be an ideal different from 0 and Zy. Then I admits a factorization
I=P...P,
into non-zero prime ideals P; of Zx which is unique up to the order of the factors.

Proof. We first concentrate on existence.

Let r > 1 be an integer. We are going to prove that if I contains a product of  prime ideals (which it
does by lemma , then it is a product of prime ideals. As for the base case, say that » = 1. Then I D P,
but since I is proper and P is maximal, we must have I = P, and so we are done.

Assume now that the statement holds for an integer » > 1, and say that I O P; ... P.;1 for some prime
ideals P;. Since [ is proper, it is contained in a maximal ideal P. But then P D P; ... P,, whence we have
as before that P = P; for some i. Hence we have P, D I D Py ... P.;1. Multiplying by Pfl, we see that

Zx DP'IDP ...P_1Pyy...Poyy.

The first inclusion shows that Pi_ll is an ideal in Zg, and the second inclusion shows that it contains a
product of r prime ideals. By the inductive assumption we thus have that

P =Q...Qn,
for some prime ideals @);. Multiplying by P;, we get that
I=PQ:1...Qn,

and so we have proved existence.

We now concentrate on uniqueness. Say I = P;... P, = Q1...Qs. We can without loss of generality
assume that » > s > 1. For every P;, compare with the @;, and if they’re equal, multiply the equation with
Pi_l. At the end of the process, we have that

P,...P, _. =7k,
where 1 < 47 < i < --- < 4p_s < 7. If r > s, we have a contradiction, because prime ideals are proper.
Hence r = s, which means that every prime ideal was cancelled. In other words, we have that P; = Q,;) for
some permutation o € S,. O

Proposition 21. Let I € Z(K). Then I is invertible with I~! = I.

Proof. By lemma it is enough to construct an inverse. We have that I = é] for an integral ideal J C Zg,
and a number d € Zg \ {0}. If H is an inverse for J, we have that (dH)(3J) = HJ = Zg, so that dH is an
inverse of I. Hence we only have to find an inverse of J.

If J = Zk, we have that H = Zg is an inverse of J. If J is proper, we have by proposition [20] that
J = Py ...P, for prime ideals P;. Let H = Pfl ... P71 Since the product of ideals is commutative and
associative, we see that JH = Plel . PTPT_1 = Zx so that H is an inverse of J. O]

We have thus proved the following theorem.
Theorem 3. Let K be a number field. Then Z(K) is an abelian group.

Definition 23. Let I € Z(K). Then [ is principal if it is generated by one element. If I is generated by
g € K\ {0}, we write I = (g9)z,. We also write P(K) ={I € Z(K) : I = (g)z, for some g € Zg}.

Proposition 22. Let I € Z(K). Then [ is principal if and only if there exists a non-zero element = € Z,
and an element d € Zg \ {0}, such that I = %(z).
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Proof. Suppose that I is principal, say with generator g € I. Since I € Z(K), we have that dI = J for some

ideal J C Z and d € Zg \ {0}. We see that dg € J and thus dg = = for some x € J C Zg, and so g = 7.

If y € J is arbitrary, we thus have that y = dfg for some f € Zk. In other words y = fz, so that J = ().
If I = %(x), then clearly g = 2 generates I. We are done. O

Proposition 23. The set P(K) is a subgroup of Z(K).

Proof. Let I,J € P(K). We only need to show that I.J € P(K). Say I = (9)z, and J = (h)z,. I claim
that 1J = (gh)z,.. Let « € IJ, then

z =) digfih = () difi)gh € (gh)z,-
k=1 k=1

Let « € (gh)z, . Then x = agh for some a € Zk. But agh = (ag)(h) € I.J, and so we are done. O

Definition 24. The quotient group Z(K)/P(K) is denoted by Cl(K) and is called the ideal class group of
K.

As for quadratic fields, it turns out that for negative so-called fundamental discriminants D, we have

that CI(Q(v/D)) = H(D).

2.4 Equivalence

We now show the aforementioned isomorphism between the ideal class group and the form class group.

Proposition 24. Let K = Q(v/d) be a quadratic field with d squarefree and d # 1. Let 1,w be an integral
basis and d(K) be the discriminant of K. Then if d =4 1 we can take w = (1++/d)/2 and we have d(K) = d,
while if d =4 2 or 3, we can take w = v/d and we have d(K) = 4d.

Proof. Since v/d is irrational or purely complex, we have that {1,v/d} and {1, (1 + v/d)/2} are linearly
independent and hence we only have to show that they span Zg. To this end let a € Zg. If a € Q then
the rational root theorem gives us that o € Z and we are done. If a ¢ Q then it is easy to seeﬂ that we can
write
j+kvVd
o=
l

with ged(j, k,1) =1 and &, # 0. Hence we get that « is a root of

B(t) = I*t* — 2ljt + j* — k?d,

and since B(t) € Z[z] we get that minpol,, | B. Since B is of degree 2, we find that B is an integer multiple
of minpol,,, whence

2j 2 — k2d
2 2, PR

inpol, =1
minpol,, ; B

5There are unique numbers p1, p2, q1, g2 such that

a= p—l—l—pj\/g,
q1 q2

with (p1,¢q1) = (p2,92) = 1. Let [ =lem(qi1,g2) and write

1 l l
a:f(pi—l-pi\/g).

L\ ¢ q2
I pal ! ! Il 11
ged (pi,pi,z) = ged (’l,gcd (4’371)) = ged (&77> = ged (777) =1,
q1 Qg2 q1 q2 q1 g2 q1 q2
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Thus we must have that [ | 2j and [? | j2 — k%d. From the latter we have that there exists I’,1” € Z such that
K*d = j* — 1Pl = ged(j,1)%1",

and hence ged(j,1)? | k?d. We further have that ged(j,1, k) = ged(ged(j,1), k) = 1 and so ged(ged(4,1)%, k?) =
1. We thus conclude that ged(j,1)? | d, whence ged(j,1) = 1 because d is squarefree. Hence we have that
l|2and thusl=1orl=2.

If | = 2, then ged(5,2) = 1 and so j is odd. This implies that j2 =4 1, and hence k*d =4 1. This
implies that k2 =4 1, and so k is odd, and d =4, 1. We conclude that if d #, 1, then ! = 1 and so
a=j+kVvde (1,Vd).

If however d =4 1 we put w = 1+2‘/3, and notice that vd = 2w—1. If | = 1, then a = j —k+2kw € (1,w)z.
If [ = 2, then

a_2j’+1+(2k'+1)\/<§
B 2

=5 +k —1+43we (l,w)z,

where j', k' € Z.
We are done with the integral basis, and let us therefore focus on the discriminant. By proposition [I5]
we only have to compute Trg g(1), Trx/g(w), and Try/g(w?). If w = V/d, we have tha

Ci(z)=2* -2z +1
Co(zr)=2a%—d
Co2(z) = 2% — 2dx + d?,

whence Trg /(1) = 2, Trg/g(w) = 0, and TIK/Q(WQ). This gives us that d(1,w) = 4d, as claimed.
If w = (1 ++/d)/2, we have that C(z) is unchanged, and

Cw(x)*:cherl%d
1+d 1-d)>
CMZ(.T)— —T —(4) 5

whence Try g(1) = 2, Trg/g(w) = 1, and Trg/g(w?) = 32, It follows that d(1,w) = d, and we are done. [

Definition 25. An integer d is called a fundamental discriminant if d is the discriminant of a quadratic field
K. In other words d # 1 and either d =4 1 and is squarefree or d =4 0, and d/4 is squarefree with d/4 =4 2
or 3.

Proposition 25. Let () be a binary quadratic form and let d be a fundamental discriminant. If Ag = d,
then @ is primitive.

Proof. We prove the proposition by contradiction. Suppose that Ag = d and that g = ged(a, b,c) > 1. Then
b=gb', a=ga and c = gc for some a’,V’,c’ € Z. Thus

d = b* — dac = g*v* — 4g%d'd = g*(V'* — 4d'c),
and so d is not square-free. Hence d =4 0 and d/4 is square-free. If g is odd, then 4 | b2 — 4a/¢’, and so

b12_4//
d/4= g ————,

but since g > 3, we then have that d/4 is not square-free. If g is even, the fact that d/4 is square-free gives
us that g = 2, and so d/4 = b'? — 4a/¢’. But then d/4 =40 or 1. O

6Recall that Co(z) = (x — o1(a))(z — 02(a)) where o; are the embeddings of the primitive element into C; in our case

o1(Vd) = Vd and 02(Vd) = —Vd.
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If K is a quadratic field we will write K = Q(v/d) where d is a fundamental discriminant, and w =
(d++/d)/2. Clearly then {1,w} is an integral basis, and d = d(K). We will also write Cl(d) = CI(K).

Theorem 4. Let d be a negative fundamental discriminant. Then the maps

z/}FI(aﬂ ba C) = (aa 4)%\/3)27

and
_ Nijglawr — yws)

where A = (w1,w2)z Wit}ﬂ
wga(wl) — wla(wg)

Vd

induce inverse homomorphisms from H(d) to Cl(d).

>0,

To prove this theorem, we need some lemmas. In the sequel, discriminants are negative.
Lemma 21. Let I C Zk be an integral ideal. Then I has a Z-basis {a, 8} where a € Z and § € Zk.

Proof. By lemma we have that I has a Z-basis {a1, as} for some «o; € Zg. We also have that

a; = a1 +bhw

o = ao + bgw,

where without loss of generality we may assume that b; > bs. Notice that for any integers k,z,y € Z we
have that

a1z + sy = ar(x + ky) + (a2 — kan )y = (a1 — kao)x + as(kz + y),
and hence also {a1, a2 — kag} and {1 — kag, as} are bases for I. This fact allows us to use the Euclidean
algorithm on by, be, giving the following basis for I.

{a,b+ ged(by, b2)w}

Where a, b are integers. Clearly we may assume that a > 0, and since the rank of [ is 2, we in fact have that
a # 0. Subtracting multiples of a from b, we can therefore also assume that 0 < b < a. O

Lemma 22. Let I C Zg be an integral ideal with a Z-basis {a,b+ cw} where a € Z and 8 € Zg. If m is
an integer such that m € I, then a | m.

Proof. We have that m = ax + (b + cw)y for unique x,y € Z. Evidently y = 0 and thus the result. O

Lemma 23. Let I C Zk be an integral ideal. Then I has a unique Z-basis {a,b + cw} where a,b,c € Z,
anda>0,0<b<a,and 0 <c<a.

Proof. From the proof of lemma [21| we have integers a, b, ¢ such that {a,b+ cw} is a basis, and such that a
and b satisfy the above conditions. Say that we have two such bases, {a,b+ cw} and {a’,b’ 4+ ¢'w}. Then by
1emma we have that a = a’k; and a’ = aks for some k; € Z. Hence a = akiky whence k; = ko = £1, but
as a > 0 we must have k1 = ko = 1. This proves that a is unique.

Say that we have two bases, {a,b+cw} and {a, b +w}, with a,b, ¢, V', ¢’ satisfying the conditions. Then
there are integers z,y, ',y such that

bV +cdw=azx+ (b+ cw)y, and
b+ cw=adz" + (b +dw)y'.

"Here o denotes the non-trivial embedding.
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Since 1, w is an integral basis we find that

ax +by =¥
d=cy
adx' +by =b
c=cy.

The second and fourth equations imply that yy’ = 1 and so y = ¢’ = +1. But since ¢,¢’ > 0 we cannot have
that y = —1. Hence we conclude from the first equation that axz = b — b. Since —a < V' — b < a we must
have that = 0. Hence b = b’ and ¢ = ¢/, and we have proved uniqueness.

It remains to show that we can pick ¢ to satisfy 0 < ¢ < a. As is clear from the proof of lemma we
can pick ¢ to satisfy ¢ > 0. Furthermore, we have that aw € I and so aw = ax + (b+ cw)y for some z,y € Z.
Since 1, w is integral basis, we conclude that cy = a and so 0 < ¢ < a. O

Lemma 24. Let I C Zg be an integral ideal, and let {a,b+ cw} be the unique basis of lemma Then
N(I) = ac, where N (I) is the norm of definition

Proof. We have to show that |Zx /I| = ac. To this end, let o € Zg /I. Then
a=x+yw+1

= (z = ly/e]b) + (y mod ¢) + 1
= ((z — |y/c]b) mod a) + (y mod ¢) + I.

Hence any element of Zg /I can be written z + yw + I where 0 < 2 < a and 0 < y < ¢. Suppose now that
1+ 1w+ I = x9 + yow + I where both x1, x2, Y1, yo satisfy the bounds. Say, without loss of generality, that
y1 > Y2, and put z3 = 21 — z2 and y3 = y; — y2. Then 0 < y3 < ¢ and

3 + ysw = k1a + ko (b + cw),

for some ki, ko € Z. Hence x3 = kya + k2b and y3 = kac. The latter gives that k; = 0, whence the former
given k1 = 0. Hence x3 = y3 = 0. This gives uniqueness.
There are thus a choices for x, and ¢ choices for y. Yielding in total ac possible choices for z + yw. U

Proposition 26. Let I C Zk be an integral ideal with basis {«, @s}. Then

aso(ar) — ajo(as)

Vd

N(I) =

Proof. If {1, B2} is another basis for I, we have that

B1 = znia1 + T1202

B2 = xa1001 + Ta2002,

for integers x;; such that det((z;;)1<i j<2) = £1. Put X = (2;)1<i j<n. We then see that

B2 (B1) — Bro(B2) a0 (a1) — aro(as)
Vd Vd ’

and so we can assume that oy = a and oy = b+ cw, with a, b, ¢ as in lemma We see that

= det(X)

(b+ cw)a — a(b + co(w)) = acVd,

and thus the result follows from lemma 241 O
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Lemma 25. Let I C Zg be an integral ideal, and let {a,b + cw} be the unique basis of lemma Then
¢|aandc|b.

Proof. Let d = ged(a,¢). Then d = aky + cky for some integers k;. We have that akjw € I and hence
akiw 4 (b+ cw)ke = dw + bke € I.

Therefore
dw + bky = az + (b + cw)y,

for integers z,y. Hence d = cy, and thus ¢ | d | a. Tt remains to show that ¢ | b. Notice that w? = I; + low,
and hence
I5(b+ aw)w =cly + (b+ clo)w,

and so b + cly = cy for an integer y. Hence ¢ | b, and we are done. O
Lemma 26. Let I, J be integral ideals such that I D> J. Then N(I) | N(J).

Proof. By Noether’s third isomorphism theorem we have that

~7Zk/I
1/J i/
and so N
1/ =N
|1/J]
whence the lemma. O

Lemma 27. Let I be an integral ideal. Then for any x € I we have that N'(I) | Ngg(x).
Proof. Clearly N'((x)) = [Nk /g(x)| and since (z) C I, lemma 26 gives the lemma. O
We can now prove theorem [4]

Proof of theorem [} Let f = (a1,b1,c1) and g = (ag,b2,c2). We first prove that if ¢ = f.y for some
v € SLa(Z), then Yrr(f) = aprr(g) for some o € K*.
Put 7 = (—b; + v/d)/(2a1) and notice that 7 = 3;. Notice further that

—by+Vd

or — B
_ A1 _
20, 39 =7 (35)

Tt +a’
It is also easy to see that
az = a1Ng (-7 + ).
We now see that )
1, c——(1,7)z.
(1,3g)z _WJFO(( )z

Let z € (1,34)z. Then for some integers z,y € Z we have that

r(—y7+a)+y(or — )  ax— Py + (—yz +dy)T 1

= g = = 1’ s
z=x+ YT T +a T+ —”YT+5( )z
where the last step follows from that
a —p
(_7 5 ) € SLy(Z).
We conclude that
a2

Yrr(ag, ba, c2) = as(l,34)z = (1,7)z = o(—7 + a)¥rr(ay, bi, c1).

-7+ 0

28



Let now A1 = (w1, w2)z whereﬁ
woo(wy) — wio(ws)

Vd

and let Ay = (71, 72)z. We prove that if Ay = aA; for some o € K*, then ¥;p(A1) = ¥ (As).y for some
v € SLa(Z). We have that

>0,

T20(11) — T10(T2) woo(wy) — wyo(ws)
Vd Vd

where the inequality follows from that d < 0 and so Nk g(a) > 0. We further have that

:NK/Q(Q) > 07

Nijo(zmi —ym2) _ Nijo(@)Nk/glrw: — yws)
N (Az) Wk /o(a) Nk g(Ar)

Yrr(Az) = = sgn(Ng o(a))vrr(Ar) = Yrr(Ar).

We now need to verify that given that (aj,by,c;) is primitive positive definite, then ¥pr(ai,b1,c1) is a
fractional ideal, and that given that A is a fractional ideal in K, then ¥;r(A) is a primitive positive definite
quadratic form. The former is obvious and so we only concern ourselves with the latter.

Let A be a fractional ideal, so that A = B where k € Zg \ {0} and B is an integral ideal. Write
B = (w1,ws)z with w; satisfying the criterion. Then

brp(A) = N jo(1/k)Nijg(zwr —ywe) — Nigjg(zwr — yws)
N A Y )

We further see that
Nk jglawr — yws) = Nk jg(wi)z® — (Ngjg(wr + wa) — Nijg(wi) — N jo(wa))zy + N g(wa)y®.

By lemma we thus have that ;r(A) has integer coefficients. Since d < 0, we have that Ny g(w1) > 0.
It thus remains to show that ¢;r(A) has discriminant d. Indeed, since d is fundamental we have then by
proposition [25[ that 1y r(A) is primitive. We have that

s 4Nk glww
Rl @W K@i +w2) = Nicjg(w1) = Nigjg(w2))* - va/%(m)
= N(lB)Q ((o(wr)wa + wio(ws))? — dwiwao (wr)o(wa))
= N(.lB)2 ((o(w1)w2)? + 20 (w1 )wawi 0 (wa) + (w10 (w2))? — dwiwao (wr)o(w2))
1

= VB (o(wr)ws — wio(w))?

1

VAN (B))? = d
NEE (VAN (B =d.
where in the last step we used lemma [26] and the criterion on the w;.

We now arrive at the next step of the proof. Proving that the maps induced by ¥ py and ¢ ;p are inverses.

—b+Vd

2

Put w; = a and wy = . Then clearly w; € Zk and furthermore

wao(wi) —wio(we)
Vd

8We have that Ay = (1/d)A’ for some d € Z \ {0}. By lemma there are unique integers a, b, ¢ such that {a,b+ cw} is a
Z-basis for A’. It is easy to see that w1 = a/d and w2 = (b + cw)/d satisfies the criterion.
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So that if (a, b, c) is a primitive positive definite form of discriminant d, then A'(A4) = a and

Yrr(Yrr(a,b,c)) = Yrr((a, _b%\/a)@

Nicjglwa -y (=2542))
- N(4)

1 2,2 y? 2
:N(A)(ax +abxy+z(b —d))

2

= ax’® + bxy + y?
4a

= az? + bzy + cy®.
If A is a fractional ideal with basis {w,ws} satisfying the criterion, then

Yrr(Yrr(A)) = Yrr (NK/Q%L;A)_ yw2)>

wo0o(wy)twio(w
Nijolwr) "5t ™ +\/g)

N(A) 5
Z
- (NK/Q(Wl) 0(w1)W2>
N(A) 7 N(4) /,
_o(w)
N(4)

so that the induced maps indeed are inverses.
We finally arrive at the last step of the proof. Proving that ¢p; is a group homomorphism. In other
words, we want to prove that

wFI([(alvacL?C)] o [(a2aB7alc)D = '(/JFI([al’B’GQC])wFI([a27B7GIC])7

where a1, az, B, C are as in proposition [l The right hand side is clearly equal to

—B+/d

2 )Z7

(a1a2,

whereas the left hand side is equal to

aiag, ai a2

~B++vd -B+Vd <B+x/&>2

2 ’ 2 2
zZ
We have that )
—-B++d B2+ d—2BVd ~B++d
= = —B - a’la207
2 4 2
and thus
2
~B++Vd -B+Vd (-B+Vd ~B++vd -B+Vd ,-B+Vd
aiaz,ax , 02 , = | a1a2,a1 , 02 ,—B .
2 2 2 2 2 2 ’

Z
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Since ged(aq,as, B) = 1 we have by the extended Euclidean algorithm that

( ~B+Vd -B+Vd —B+x/&> ~B+Vd
aiaz,a; , a2 = = (m1a2, ————
Z

B
2 2 2 2

)Z7

and we are done.
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Chapter 3

Computation

We now have a firm theoretical grasp of what the class group is, but we have yet to see it “in the wild”. I
shall therefore give some computational examples.

3.1 Brute force

The brute force method of computing the class group H(d) for a negative fundamental discriminant d consists
of simply enumerating all reduced forms with discriminant d, and then making a Cayley table using Dirichlet
composition combined with a reduction of the compound. Since we know that H(d) is a finite abelian group,
we can then enumerate the finite abelian groups with order h(d) and compare them to the Cayley table of
H(d).

I use this method below on three fundamental discriminants, namely —19, —95, and —228.

Example 1. Let d = —19, and suppose that (a,b, c) is a reduced form of discriminant d. Then

/19
0 < -
<a< 3

O0<a<2

so that

We further have that —2 < b < 2. Since b — 4ac = —19 we immediately see that b # 0, and thus we are left
with the following candidates

Since ¢ = (19 + b?)/(4a) we eliminate all but the mutually opposite forms (1,41, *). But clearly only one of
these is reduced, namely (1,1,%) = (1,1,5). In conclusion H(—19) = {[(1,1,%)]} = C} and so h(—19) = 1.

Not very exhilarating, but —19 is one of only 9 negative fundamental discriminants d for which h(d) = 1.
The others are —3, —4, —7,—8,—11,—43, —67, and —163. This is the content of the theorem by Heegner,
which was mentioned in the introduction.

Example 2. Let d = —95, and suppose that (a,b, c) is a reduced form with discriminant d. Then

0<a<h,
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and
—-5<b<5h

For the same reason as before, we have that b # 0. Enumerating the candidates and eliminating those who
are not forms Witlﬂ discriminant d or are not reduced, we are left with the following list of reduced forms.

(1,1,24)
(2,+1,12)
(3,+1,8)
(4,+1,6)
(5,5,6)

Hence h(d) = 8.

We now compute the Cayley table of H(d). The computations are straightforward (albeit technical) and

are therefore omitted.

° | (1,1,24) | (21,12) |(2,-1,12) | (3,1,8) (3,-1,8) [(41,6) |(4,-16) |(55,6)
(1,1,24) (1,1,24) (2,1,12) (2,-1,12) | (3,1,8) (3,-1,8) (4,1,6) (4,-1,6) (5,5,6)
(2,1,12) (2,1,12) (4,1,6) (1,1,24) (4,-1,6) (5,5,6) (3,-1,8) (2,-1,12) | (3,1,8)
(2,—-1,12) || (2,-1,12) | (1,1,24) (4,-1,6) (5,5,6) (4,1,6) (2,1,12) (3,1,8) (3,-1,8)
(3,1,8) (331a8) (47_1’6) (575a6) (471a6) (171324) (27_1712) (37_1a ) (271712)
(3,-1,8) || (3,-1,8) | (5,5,6) (4,1,6) (1,1,24) | (4,-1,6) | (3,1,8) (2,1,12) | (2,-1,12)
(4,1,6) (4,1,6) (3,-1,8) | (2,1,12) | (2,—-1,12) | (3,1,8) (5,5,6) (1,1,24) | (4,-1,6)
(4,-1,6) || (4,-1,6) | (2,—-1,12) | (3,1,8) (3,-1,8) | (2,1,12) | (1,1,24) | (5,5,6) (4,1,6)
(5,5,6) (5,5,6) (3,1,8) (3,-1,8) | (2,1,12) | (2,-1,12) | (4,-1,6) | (4,1,6) (1,1,24)

By the fundamental theorem of finite abelian groups, we have the following candidates for H(d)

Cs
C4 X CQ
CQ X 02 X 027

where C,, is an abbreviation for Z/nZ. As we shall see later, there are good reasons to first compare H(d)
with groups of low rank. Hence we start with Cs. Using the table we see that [(2,1,12)] generates

and hence H(d) = Cs.

H{(d),

It turns out that for the most time, H(d) is cyclic. The heuristics by Cohen and Lenstra do in fact imply
that approximately 97.757% of odd order class groups with negative fundamental discriminants are cyclic.

The following is an example of when the class group is not cyclic.

Example 3. Let d = —228 and suppose that (a, b, ¢) is a reduced form with discriminant d. Then 0 < a < 8

and —8 < b < 8. Proceeding as before, we are left with the following list of reduced forms.

Hence h(d) =

10r somewhat sloppily, those who have non-integral c.
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Computing the Cayley table of H(d) we get the following.

° I

SO N O

(1
(2
(3
(6

By the fundamental theorem of finite abelian groups, we have that H(d) is isomorphic to either Cy4 or
Cy x Cy. Tt is however clear from the Cayley table that every element has order < 2, and so H(d) = Cy x Cs.

3.2 On elements with order less than or equal to two

In the last example, we saw that every element in the class group had order less than or equal to two. We
can in fact rather easily determine the exact number of elements in the class group with such an order.
The approach below is based on [Cox13, pp. 47-48].

Proposition 27. Let d < 0 be a fundamental discriminant and let » be the number of odd primes dividing
d. Define the number p depending on d as follows: if d =4 1 then p = r, and if d =4 0 then g =r + 1. Then
H(d) has exactly 2#~! elements of order less than or equal to 2.

For example, when d = —228, we see that the number of elements with order < 2 is equal to 22 = 4.
Using this with the fact that h(d) = 4 we thus have another way to conclude that H(d) = Cy x Cj.
To prove the proposition, we need a lemma.

Lemma 28. A form (a,b,c) € Q¢4 has order less than or equal to 2 in H(d) if and only if b= 0, or a = b,
ora=-c.

Proof. We have that [(a,b,c)]* = 1p(q) if and only if [(a,b,c)] = [(a,b,¢)]™* = [(a,—b,¢)] if and only if
(a,b,c) ~ (a,—b,c). Since (a,b,c) is reduced we have that

—a<b<a<cor —a<b=a<cor0<b<a=c

In the first case, it holds that —a < —b < a so that also (a, —b,c) is reduced. This can be the case if and
only if (a, b, c) = (a,—b, ¢) which holds if and only if b = 0.

In the second case, it holds that (a,a,c).S = (a,—a, ), so that (a,b,c) ~ (a, —b,c).

In the third case, it holds that (a,b,a).T = (a,—b,a), so that (a,b,c) ~ (a,—b,c). The lemma has been
proved. O

Proof of proposition[27 Let first d =4 1, with d square-free. We'll find a bijection f: A — B where
A={b>0:3k€Z.k>b,d= —bk}, and
B ={(a,b,c) € Q¥ :b=0,0ra=0b, or a=c}.

Clearly |A| = 271 so that if f exists, then |B| = 2"~1. Notice also that b # 0 for else we would have that
d =4 0. Hence we have that
B ={(a,b,c) € Q¥ :a=b,ora=c}

b,b,c ifb<c
f(b) = (b:b,¢) .
(¢,2c—b,c) ifb>c,

Put now
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where ¢ = (b + k)/4. We first prove that f has the stated co-domain. If b < ¢ we have that —b<b<b< ¢
so that (b,b,c) is reduced. If b > ¢ we have that 2¢ — b < ¢ and since

b+ k k—b
b=
2 5 > 0,

we have that (¢, 2c — b, ¢) is reduced. Furthermore, we see that (b,b,¢).ST = (¢,2¢ — b, ¢) and that

2c— b=

Agppey =b* —4be = b2 —b(b+ k) = —bk = d.

This shows that f indeed has the stated co-domain. It is easy to see that f is injective, and hence we only
need to show that it is surjective. Let (a,b,¢) € B, then a = b or a = ¢. Say first that a = b, so that
(a,b,¢) = (b,b,c). Then d = —b(4c — b) and since the form is positive definite and reduced, we have that
0 <b<c< 2 s0that 0 < b < 4e —b. This implies that b € A, so that f(b) = (b, 0, 40_4&) = (b,b,¢). Say
now that a = ¢, so that (a,b,c) = (¢,b,¢). Since 0 < b < ¢ we have that 2¢ — b < 2¢+ b, so that 2¢ — b € A.
We also have that 2¢ — b < ¢, so that

f(b) = (2¢—b,2¢—b,¢).ST = (¢, b, ¢).

This proves that f is surjective, and hence we have proven that |B| = 2+71.
Let now d = —4n with n square-free and n =4 1 or 2. Suppose also for simplicity that d # —4. This
means that
Bl B2
B ={(a,b,c) € Q¥ :b=0}{(a,b,c) € Q¥ :a=b,ora=c}.

Adopting the bijective proof above, we find that | By| = 2"~ (see also [Cox13, p. 48]). Say that (a,b,c) € By,
then n = ac. Since ged(a,c) = 1, a,c > 0, and a < c there are 2" ! choices for a. We conclude that
|B1| = 2771, so that |B| =2-2""! = 2" = 2#=1. We have thus proven the theorem. O

3.3 Dirichlet’s class number formula

Of theoretical interest, but of little use for practical computation, is following exact formula for the class
number, first published by Dirichlet in 1839.

Proposition 28. Let d < 0 be a fundamental discriminant and put
(d/n)
Lals) =2 =
n>1

for R(s) > 1, where (d/n) is the Jacobi symbol. Then there exists an analytic continuation of Ly to all of C
such that
Ad(s) = Ad(]. — S),

where

s 1
Aals) = ld/7 F () La(s).
Proof. See [Dav00l pp. 35-42, and pp. 65-72]. O
Theorem 5. Let d < 0 be a fundamental discriminant. Then
w(d)|d|"/?
h(d) = —————
(d) 27 ’
where
2 ifd<—4
w(d) =<4 ifd=-4
6 ifd=-3



Proof. See [Dav00, pp. 43-53]. O
One can use the functional equation of L4(s) to deduce the following proposition.
Proposition 29. Let d < —4 be a fundamental discriminant. Then

=3 (2) (f (ny/ ) + i'fexp(mww) ,

n>1

where

fom 2 /Oo ¢
erC—ﬁ ’ e ,

is known as the complementary error function.
Proof. See [Coh00] p. 233]. O
The above proposition yields the following efficient way to compute h(d).

Corollary 2. Let d < —4 be a fundamental discriminant. Then h(d) is the closest integer to the nth partial
sum of the series in proposition [29] where
_ { [d[ log |d|J
n= —.
2

Proof. See [Coh00] p. 234]. O

3.4 Better algorithms

The brute-force method is obviously quite slow. For computing the class group in practice, there are far
better methods. Cohen covers many, if not most, of the algorithms for computing class groups in [CohQ0,
chapter 5.4]. All of these algoritms are implemented in the computer algebra system PARI/GP [Theal,
which was originally developed by Cohen. In particular one can use the module gfbclassno to compute the
class number using the probabilistic “Baby Step Giant Step” method of Daniel Shanks [Coh00, algorithm
5.4.10] and the module quadclassunit to compute class groups using Kevin McCurley’s sub-exponential
algorithm [Coh00] algorithm 5.5.2] (for negative discriminants) and Johannes Buchmann’s sub-exponential
algorithm [Coh00] algorithm 5.9.2] (for positive discriminants). There is also the module gfbred for reducing
quadratic forms using [Coh00), algorithm 5.4.2] and the module gfbnucomp for composing them using [Coh00}
algorithm 5.4.9].

Many of these modules can be used through the module BinaryQF in the computer algebra system
SageMath [Theb].
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Chapter 4

Cohen-Lenstra heuristics

In this chapter I will motivate and formulate Henri Cohen and Hendrik Lenstra’s heuristics for imaginary
quadratic fields — closely following Cohen’s book [Coh00} section 5.10, pp. 289-293] and Cohen and Lenstra’s
paper [CHal.

4.1 Motivation

Upon investigating experimental data on h(d) for negative fundamental discriminants d, one notices that

(A) If p is a small odd prime, the proportion of fundamental discriminants d for which p | h(d) is significantly
greater than the expected 1/p. If p = 3, it is around 43%, if p = 5 it is around 23.5%, and so on.

(B) Looking at the odd partﬂ of the class group, cyclic groups seem to form the overwhelming majority.

The starting point is observation (B). What could explain it? By the below lemma and proposition, a
possible candidate is the size of the automorphism group.

Lemma 29. Let G be a finite abelian group. Then |[Aut(G)| > ¢(|G|), where ¢ is Euler’s totient function.

Proof. We first assume that G is a p-group. Then it is well-known that Aut(G) acts transitively on the
set X of elements of largest order. Therefore, by the orbit-stabilizer theorem, we see that [Aut(G)| = | X|!
for some positive integer [. We have that there at most |G|/p elements of smaller order, and therefore
|X| > |G|(1 - %) = ¢(|G]). It follows that |[Aut(G)| > ¢(|G).
If G is not a p-group, it is by the fundamental theorem of finite abelian groups a product of p-groups. In
other words, we have that
G~ A x--- XAy,

where |A;| = pl* for distinct primes p; and positive k;. We thus have that
[Aut(G)| = [Aut(Ay)[ - - [Aut(Ap)| = ¢(|A1]) - ¢(|An]) = ¢(| A - - [An]) = S(|G)),
where in the last step we used that ¢ is multiplicative. O

Proposition 30. Let G be a cyclic group. Then for any abelian group H such that |H| = |G|, we have that
Aut(G)| < |Aut(H).

Proof. Since G is cyclic, we have that |Aut(G)| = ¢(|G]|). By lemma 29| we see that ¢(|G|) = ¢(|H|) <
|Aut(H)|, and we are done. O

1Subgroups of elements of odd order.
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So cyclic groups have the smallest automorphism group. If G is an abelian group, we employ the notation
G, for its odd part. Motivated by the proposition, we guess that isomorphism classes of abelian groups G
have a “weight” proportional to 1/|Aut(G)], as this would imply that non-cyclic groups occur more rarely.

Definition 26. Let f be a function defined on the isomorphism classes of finite abelian groups of odd order.
We say that the average of f isﬂ

S f(H(d),)

. 0<—D<xzx
M(f) = lim Zb :
1
0<—d<zx

given that the limit exists. If f is the characteristic function of a property P, we call M(f) the probability
that P holds.

Conjecture 4. Let f be a function defined on the isomorphism classes of finite abelian groups of odd order.

Then
~ lim Ye1<a f(Go)/|Aut(G)|
M= B =5 A

where the sums are to be taken over isomorphism classes.

Using quite a few auxiliary results which are outside of the scope of this thesis (see |[CHb| for details)
and assuming conjecture [4] one can deduce the following.

Theorem 6. For any odd prime p and any integer 7 including r = oo, set (p), = [[,_,(1 —p~*), and let
C = [li>5 (k) = 2.29486. Let also d be a negative fundamental discriminant, and 7,(G) denote the p-rank
of an abelian group G. Then if conjecture [ is true it holds that

(A) The probability that H(d), is cyclic is equal to

¢(2)¢(3)

m ~ 0.977575.

(B) If p is an odd prime, the probability that p | h(d) is equal to

f(P) =1~ (P)oo-
For example f(3) & 0.43987, f(5) ~ 0.23967, and f(7) =~ 0.16320.
(C) If p is an odd prime, the average of p"»(H (D) ig 2,
Proof. See [CHDJ. O

Remark 7. As for (C), note that p"»(#(4) = |H(d)[p]|, where G[p] denotes the p-torsion subgroup of an
abelian group G, and so (C) can be equivalently stated as

S @R ~2 Y1
0<—d< X 0<—d<X

Putting p = 3 this is a famous theorem by Harold Davenport and Hans Heilbronn. We sketch a proof of a
sharper version of this theorem in the next chapter.

2The notation Zb indicates that the sum is taken over fundamental discriminants.
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Chapter 5

Average cardinality of torsion
subgroups

Let d be a negative fundamental discriminant, and let Hy(d) or Cl,(d) denote the set of elements of order
p in the form class group H(d) or ideal class group Cl(d), respectively. From conjecture 4 and by noticing
that |H,(d)| = |H(d)[p]| — 1, we have that
b b
S @~ Y 1. (5.1)

0<—d<X 0<—d<X

In [HoulO], Bob Hough proves (5.1]) for p = 3 by first making a broader prediction in terms of equidistribution.
In fact, he is able to prove something stronger, namely the following theorem.

Theorem 7. Let X > 0, then
b 5
> Hs(d)] = e1X + 2 X0+ o(X7/0),
0<—d<X
where c¢q, co € R are constants with ¢; > 0 and ¢y < 0.

This theorem has also been proved by Manjul Bhargava et al. [BST13], and Frank Thorne et al. [TT13],
but with different techniques. In the sequel, we give a rough outline of Hough’s proof of theorem The
analytical details are omitted, as they are well beyond the scope of this thesis.

5.1 Background

Let [I] € Cl(d) and recall from theorem [4] that there exists a unique class of forms [(a, b, ¢)] € H(d) for which

1) = (fa, 22,

We thus have a one-to-one correspondence between ideal classes and points in H/SLo(Z) given by

] < [3(a,b,0)]-

Definition 27. Let [I] € Cl(d) and let ¢ : H(d) — Cl(d) be the isomorphism induced from the maps in
theorem 4l Let @Q € ~%([I]) be arbitrary. Then the point in the fundamental domain F of the modular
surface H/SLy(Z) corresponding to the class [3¢] is called the CM-point of [I], and is denoted by (7.
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As a starting point Hough took the following theorem of William Duke [Duk88] and Yuri V. Linnik [Lin68],
here in the formulation of [Duk].

Theorem 8. Suppose that K € C°(H) is SLy(Z)-invariant and bounded on H. Then as d - —oo with d a
fundamental discriminant,

K(2)
2€301(a) N K(z)dp(z),

Z 1 H/SLo (Z)

2€301(d)

3 dzdy
T y2

where du(z) =

and 3ci(q) is the set of all CM-points of ideal classes in Cl(d).
In analogy with this theorem, and based on visual evidence, Hough formulates the following conjecture.

Conjecture 5. Let K be a continuous function of compact support on the fundamental domain F of the
modular surface. For each odd k > 1 we have that

> K@)

0<—d<X [I|€H(d)

b

lim :
X—o0 Z 1

0<—d<X

= [ K@),

where dp is the same measure as in theorem

Hough is able to prove conjecture 5| for the case k = 3, and establishes partial results towards the
conjecture for larger k. The latter is however beyond the scope of this thesis.

Remark 8. The result of Hough does indeed imply (5.1). Simply put K(z) =1 for z € F and the rest by
interpolation from 0.

Instead of working with CM points of ideal classes in Cl(d), Hough works with so-called Heegner points
of primitive ideals with classes in Cl(d). These points of view turn out to be equivalent.

Definition 28. Let A C Zyi be an ideal. We say that A is primitive if there exists no prime p € Z and no
ideal B C Zk such that A = (p)B. If k > 1 is odd we use the notation P (d) to denote primitive ideals with
classes in Clg(d).

Proposition 31. If A C Zk is a primitive (integral) ideal, we can write A = (N (A4),b + w), where b is
uniquely determined by
N(4) N(4)
NV < Y
2 svs 2 7
and
b+we A

Proof. Recall that by lemmawe have a unique basis {a,b+ cw} for A, wherea > 0,0<b<a,0<c<a,
and NV (A) = ac. Tt is easy to see that A is primitive iff ¢ = 1, whence we have the basis {N(A4),b+w}. Tt is
easy to see from the proof that —a/2 < b < a/2 still uniquely determines b. O

Definition 29. Let A = (N(A),b++/d) be primitive, with b as in proposition Then the point 34 = ?\f(g
(which lies in (—1/2,1/2] +iR™") is called the Heegner point of A.

Proposition 32. The collection of Heegner points of primitive ideals of class [A] are exactly the images of
the CM point (4] in the various fundamental domains for H/SLy(Z) with the strip (—1/2,1/2] + iR*.

Proof. See [IK04, C. 22]. O
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Corollary 3. The equidistribution of CM-points within F is equivalent to the equidistribution of the
corresponding Heegner points in (—1/2,1/2] 4+ iR™T.

We now introduce some notation. leen an integrable function f on RY let its Mellin transform f be
defined (when absolutely convergent) by f fo Jz°~dx where s € C, and be analytic continuation
elsewhere, let € denote arbitrarily small p051t1ve parameters, and let A < B denote A = O(B).

Hough’s main result can be given quantitatively as follows.

Theorem 9. Let k > 3 be odd, and let ¢, € C°(RT) with ¢ of compact support and 1) supported in
[1,00) with ¢ = 1 on a neighborhood of co. Let T' = T'(X) be a parameter and put 17 (y) = ¥(%). For T'

in the range X2~ #21¢ < T < X3~#+¢ we have that

22 ¢<;> Z4d)¢T \FZA/ P (d>

A€P,
square-free square-free
3 o dy 7T2 QNS (% + %) 1_1
- 2w+ et
™I Jo y: 2 (1)

k_l+e
+0 (X; ) +O(Xﬁ‘%+f) :

Ve

where

R AT | B

prime

Remark 9. Since ((1 — 2) < 0 we have that ¢, < 0.

Remark 10. Notice that the theorem only covers discriminants of the form —4d where d > 0, d =4 2 and d
is square-free. Hough’s method works for the other two cases (see proposition with minor modifications.

The equidistribution setting gives us a pretty geometric interpretation of the negative secondary main
term. Namely, if A € Py(d) then A* is principal, so that A* = (z + yv/—d) for some z,y € Z, with y # 0
since A is primitive. Consequently N (A*) = N(A)* = 22 + dy? > d so that N'(A) > d+ and thus

Vd

=

<di %,
Therefore there are no Heegner points in the set T = {z € (—=1/2,1/2] +iR* : $(z) > X2+ }. Hence we

expect ;
> D KGa)
0<—d<X A€P;(d)
>

0<—d<X

[ K@) - [ KEe)
(=1/2,1/2]+iR+ T

We have that Vol,(T) = 2X +~2, and thus we have a heuristic justification for the negative secondary main

141
term %Ck ¢(£(J1r)k)X%
In the following section I will sketch a proof of theorem [J] following Hough. Theorem [7] is then by

corollary |3| an easy consequence.

to asymptotically behave like

1
2 .
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5.2 Set-up

From basic Fourier analysis, we have the following theorem.

Proposition 33. Let C.(S) (C°(S)) denote the space of continous (smooth) functions defined on S with
compact support. The linear span of function of the form

e(fe)¥ly), feZyeCTRY),
is dense (with respect to the supremum-norm) in C.(R/Z x RT).
Proof. Take the Fourier series in the first variable and apply (say) theorem 1.4.2 of [DM72]. O

With this in mind, we only have to prove the theorem for functions K (z,y) = e(fz)¢(y) with f € Z and
1 € C(RT). The rest follows from linearity.

The most central piece of the proof is the following parameterization of primitive ideals A such that
A #1 and [AF] = [1].

Proposition 34. Let d =4 2 be square-free and k > 3 be odd. The set
{(I,m,n,t) € (ZT)* - Im* = 1>n® 4 £2d, ged (Imn, t) = 1},

is in bijection with primitive ideal pairs {A, A} with A # 1 and A* principal. Explicitly, the ideals A, A are
given as Z-modules by

A= (Im,Int ' +vV—=d)z A= (Im,~Int™" +/—d)z,
where N(A) = Im and ¢! is the inverse of ¢ modulo m.

In order to prove the proposition, we need an alternative characterization of primitive ideals. It is based
on the behaviour of the principal ideals (p) C Zg for p € Z prime.

Proposition 35. Let as usual K = Q(v/d), with d fundamental, let w = d%ﬂ, and let p be a prime number.
Then

(i) If p | d, then p is ramified and we have (p) = P? where P = (p) + (w), except when p = 2 and d =4 12
in which case P = (p) + (1 + w).

(ii) If (d/p) = —1, then p is inert and we have (p) = P a prime ideal in Zg.

(iii) If (d/p) =1, then p is split and we have (p) = PP with P = (p) + (w — %4£%) where b is any solution to
b? =4, d, and where P = {@: a € P} is the conjugate ideal.

Proof. See [Coh00] p. 219]. O

Keeping in mind that (see chapter 2.3) ideals in Zx have unique prime ideal factorization, we make the
following definition.

Definition 30. Let d be a fundamental discriminant. The ideal

o= ] P

P|(d)
P prime ideal

is called the different of d.

With the different of d, we can give the alternative characterization.
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Proposition 36. Let A C Zg be an ideal. Then A is primitive iff A = LB with L |9, (B,?) = (1) and
(B,B) = (1).

Proof. Evidently A is primitive iff it has no inert primes, any prime ideal resulting from ramification only
occurs once, and for prime ideals P resulting from splitting it only contains one of P or P; in its prime ideal
factorization.

Proposition [35] gives us that d only contains primes that result from ramification. These primes are not
inert, since if a prime ideal P resulting from ramification of a prime ¢ | d would be inert then P? = (p)? =
(p?) = (q) for some prime p, but this is a contradiction. They also cannot have resulted from the splitting
of a prime, because if a prime ideal P resulting from ramification of a prime ¢ | d would resulting from the
splitting of a prime p, then PP = (p) and P2 = (q) so that (p?) = (PP)? = (¢?). Thus p = ¢ and so P = P,
which contradicts the assumption that P resulted from the splitting of a prime.

Furthermore, the condition (B,0) = (1) is equivalent to B not consisting of any prime ideal resulting
from ramification, and the condition (B, B) = (1) implies that B has no inert primes, and that if P | B
results from splitting, then only one of P and P occurs in the factorization of B. Thus it is easy to see that
if A= LB with L and B satisfying the criteria, then A is primitive.

Conversely, if A is primitive, we have that A = Plk ... Pk, Clearly prime ideals resulting from ramifica-
tion can only occur once in the factorization, because if some P; resulting from ramification of ¢ | d occurs
k; > 2 times, we have that Pf = (q)Q for some ideal @, and so A is not primitive. Grouping all prime
ideals resulting from ramification together in the prime ideal factorization of A, we then see that A = LB
for some L | . The conditions on B follow from arguing as before. O

We can now prove the parameterization.

Proof of proposition[3]} Let A # (1) be primitive with A* principal. By proposition [36{ we have that there
exists ideals H, B so that A = HB and H |0, (B,0) = (1), and (B, B) = (1). We have that B # 1 because
otherwise A = H so thatﬂ [H]* = [H*] = [H] = [1] and thus H = (1), which leads to the contradiction
A = (1). Now since k — 1 is even, we have that A*H~(* =1 = HB* is principal, say

HB* = (x4 tv/—d).

Since HB* is on the form given in proposition we also see that it is primitive. Put m = AN(B) and
| = N(H) and notice that I | d, and [ is square-free. Taking the norm of HB* we see that

ImF = 2% + %4,

and consequently [ | z, whence we can write z = In and we get mF = In? + t2I' where I’ = d/I. Since
HB* is primitive we further see that ged(t,In) = 1, so that also ged(n,t) = 1. It is moreover the case
that ged(m,t) = 1 because if p | gcd(m,t) then p? | m* — 21’ = In? so that p | gcd(In,t) = 1 which is a
contradiction.

Finally, since HB* is primitive, we have that n,t # 0. Multiplying by —1 if necessary, we may assume
that ¢ > 0. By replacing A with A if necessary, we may also assume that n > 0.

We have now shown how, given an ideal pair {A, A} we can get a quadruple (I,m,n,t) € (Z)* satisfying
Im* = 1?n% + t2d and gcd(Imn,t) = 1. Suppose conversely we are given a quadruple (I,m,n,t) € (Z;)*
satisfying the conditions. Then clearly I | Im* — ?n? = ¢2d so that from co-primality I | d. This gives us
that [ is square-free. I further claim that ged(m,n) = 1. Indeed, if p | (m,n) then from co-primality, we
have that p { ¢ and thus p? | % = d, which is a contradiction. From ged(m,n) =1 we conclud that
ged(m, d) = 1. Write now (In +tv/—d) = HC with H | 0 and (C,0) = (1). Then (Im*) = (I)(m*) = H2CC.

1Here we use that k is odd, say k = 2k’ 4+ 1 and that H consists of prime ideals resulting from ramification. This means that
H?*" is principal whence obviously [H*] = [H].

2For the sake of readability, we prove this in a footnote. Say that p | (m,d), then p | m and p | d so p | I>n? and thus p | I or
p | n. If p| n then p | (m,n) which is a contradiction. Thus we have that p | I. This implies that p | m* — in? and so p | tZ%,

but from co-primality we have that pt¢ and so p | %. Then p | (I, %) =1 and we have a contradiction.
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Since (m,1) | (m,d) = 1 we have that (I) = H? and CC = (m*). We also have that C divides (In + tv/—d)
and (C,0) = (1), whence also (C,C) = (1). Therefore there exists an ideal B such that C = B¥. Since also
(B,B) = (1) and (B,?) = (1) we conclude that B is primitive. Put now A = HB. Then A = HB, and
clearly A, A are primitive. Furthermore

A¥ = H*BF = (H?)"T HC = ()" (In + tvV—d),

is principal. This completes the bijection.

Now let A be the ideal in the pair {4, A} which satisfies n,t > 0. We want to give A explicitly as a
Z-module. Since A is primitive, we can write A = (N(A),b + v/—d)z and from the bijection we see that
N(A) = Im. It thus only remains to find b modulo Im. We have that

A? = (12m2, Imb + Imv/—d, b2 — d + 2bv/—d)z,

but from the bijection we also have that A? = (I)B?. Hence we must have that [ | b> — d so that [ | b*> and
since [ is square-free, [ | b. Write therefore b = [b'. Since Im € A, we have that Im? and Imb’ +m+/—d € B2
This implies that the ideal

A(BY)* 2 B2 = (I)~"T A* = (In + tvV—d),

k—

contains (lm)(lm2)TS (Imb' + m+/—d). In other words, there are integers z,y such that
U 4 17 mF = = (In + tV=d) (x + yvV—d),
multiplying by m and using that Im* = (In + tv/—d)(In — tv/—d), we see that
(In — tvV/=d)(I'= b + 12" v/=d) = ma + myv/—d.
Expanding and equating coefficients, we get
m| 1T (n—tb),

so that n =, tb'. Multiplying by the inverse ¢! of t modulo m, and then by I, we get Im | b—Int~!, whence
we are done. O

We can now end this thesis by giving a rough sketch of how to prove theorem [9]

5.3 Proof sketch

Using proposition 31} we see that the sum in theorem [J] can be written as

d Vd
Ix= Y ¢(X> > “’(n)
dE42 AEPk(—4d)

[n(d)|=1 A=(a,b+v/—d)z

where p(n) is the Mobius functionﬂ We now have that

d Vd
Ix= ) ¢<X> > w(Ta>
d=42 (1)#A primitive

lu(d)|=1 [A]F=[1]€Cl(—4d)
A=(a,b+v—d)z

3Defined by p(n) = 0 if n is divisible by the square of a prime, and by u(pipz...pr) = (—1)" for distinct primes p;.
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because while criterion [A]¥ = [1] implies that the class [A] has order dividing k, the conditions on 7" and the
support of ) make sure that classes with order less than k do not appear. Introducing the parameterization
from proposition [34] we get

Imk — 12n?2 Imk — [2n2
Ix= ) ¢< 2X )w< ImtT )

I,m,teZt nez
61

where 4] represents the conditions

Imk — [2n2

ged(Imn, t) = 1, Im* — 12n? =42 2t%, and |u( 2

)| = 1.

Notice that the latter two conditions correspond to the conditions d =4 2 and d is square-free. We shall
introduce the last condition in a clever way. Let N be an integer and consider the sum

> uls).

s2|N
Say that the prime factorization of N is N = p%kﬁ'll .p2Ertle with I; € {0,1}, and put ¢ = plfl ...pF and
r = pll1 ...plr. Say now that s? | N. Then s consists of the same primes as N, and thus s = p?sl SR
Hence s; < k; + %, but since the s; are integers we have that s; < k;, which means that s | ¢. Hence

D ouls) = uls)=lg=1],

s2|N slg

where [] is the Iverson—bracketﬂ But ¢ = 1 iff N is square-free, and hence

ImF — 12n?2
(== D uls)

52| imk —12n2
t
This means that

Imk — 12n2 Imk — [2n2
Ix= 2 ¢< £2X )w( ImtT )X D, ).

l,m,teZt nez
G2

k_12,2
2 imk—12n
S

| 22

where %5 are the same conditions as %7 except square-freeness. What makes this clever is that the sum can
be split over s at a parameter Z which then makes it possible to write .y = .# + & where .# is a main
term and & is an error term. Namely

Imk — 12n2 Imk — [2n2
M= > ¢ (th > W <lmtT ) x> uls),

l,m,teZt neZ
©a t

and

ImF — 12n?2 Imk — [2n?
€= 2. 9 ( £2X ) v ( ImtT ) <DL )
I,m,teZt nez 2| zm’tzz?n?
=3 e

s>Z

Through an array of analytical tools, Hough is finally able to evaluate the main term,

4Let P be a statement. Then [P] = 0 if P is true, and [P] = 1 if P is false.
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k

Proposition 37. Let k > 3 and let ¢ be the same constant as before. Then for Z <« T%X2~5¢ we have
that

= TSI 000 (5 1 ) axie

10 (X%+ﬁ+ﬁ) +O (XMerlz7Y) 40 (X%“T*%) :
and estimate the error term

Proposition 38. We have that
X1+e X%+e
+

& —_
<7TZ T5

By Mellin inversion one obtains that

dE42
d square-free

so proving theorem |§| is now only a matter of picking the right Z. Letting Z = T%X257¢it can be shown
that .
*+E
£ < X4k +X%+%%2+s’
T%

2

and thus the theorem is proved.
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