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Abstract

The following thesis contains an extensive account of the theory of class groups. First the form class group is
introduced through equivalence classes of certain integral binary quadratic forms with a given discriminant.
The sets of classes is then turned into a group through an operation referred to as “composition”. Then
the ideal class group is introduced through classes of fractional ideals in the ring of integers of quadratic
fields with a given discriminant. It is then shown that for negative fundamental discriminants, the ideal class
group and form class group are isomorphic. Some concrete computations are then done, after which some
of the most central conjectures concerning the average behaviour of class groups with discriminant less than
X – the Cohen-Lenstra heuristics – are stated and motivated. The thesis ends with a sketch of a proof by
Bob Hough of a strong result related to a special case of the Cohen-Lenstra heuristics.



Att räkna klasstal

Följande mastersuppsats inneh̊aller en utförlig redogörelse av klassgruppsteori. Först introduceras formk-
lassgruppen genom ekvivalensklasser av en typ av binära kvadratiska former med heltalskoefficienter och en
given diskriminant. Mängden av klasser görs sedan till en grupp genom en operation som kallas “kompo-
sition”. Därefter introduceras idealklassgruppen genom klasser av kvotideal i heltalsringen till kvadratiska
talkroppar med given diskriminant. Det visas sedan att formklassgruppen och idealklassgruppen är isomorfa
för negativa fundamentala diskriminanter. N̊agra konkreta beräkningar görs sedan, efter vilka en av de mest
centrala förmodandena gällande det genomsnittliga beteendet av klassgrupper med diskriminant mindre än
X – Cohen-Lenstra heuristiken – formuleras och motiveras. Uppsatsen avslutas med en skiss av ett bevis av
Bob Hough av ett starkt resultat relaterat till ett specialfall av Cohen-Lenstra heuristiken.
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Chapter 1

Introduction

The study of class numbers goes back to Joseph-Louis Lagrange (1736-1813) and in particular to his work
Recherches d’Arithmétique, in which he studied the representation of integers by binary quadratic forms
ax2 + bxy + cy2, with integer coefficients a, b, c.

Definition 1. Let f be a binary quadratic form and let m be an integer. Then f is said to represent m if
there exists integers x, y such that f(x, y) = m.

In particular he noticed the following fundamental fact.

Proposition 1. Let f, F be binary quadratic forms. Then f and F represent the same set of integers
whenever there exists integers α, β, γ, δ with αδ − βγ = ±1 and

F (X,Y ) = f

((
α β
γ δ

)(
X
Y

))
,

where X,Y are indeterminates.

Proof. Say that f represents an integer m, with f(A,B) = m for integers A,B. We have that(
α β
γ δ

)−1
=

1

αδ − βγ

(
δ −β
−γ α

)
,

is an integer matrix, and thus F represents m, with

F (A−1
(
A
B

)
) = f(AA−1

(
A
B

)
) = f(A,B) = m.

Conversely, it is easy to see that if F represents m then f represents m too.

Forms that are related through a matrix transformation as above, later came to be called equivalent.
This term was introduced by Carl Friedrich Gauß (1777-1855), whom we shall return to shortly. Lagrange
also noticed that such transformations preserve discriminants.

Definition 2. Let f(x, y) = ax2 + bxy + cy2 be a binary quadratic form. Then ∆f = b2 − 4ac is called the
discriminant of f .

In other words, Lagrange noticed the following property.

Proposition 2. Let F, f be equivalent forms. Then ∆F = ∆f .

Proof. Covered in the sequel.
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He thus understood that the equivalence of binary quadratic forms is an equivalence relation in the
modern sense on the set of binary quadratic forms with a given discriminant. Therefore the set of binary
quadratic forms with a given discriminant, can be partitioned into classes, and the number of such classes
later came to be called the class number.

Lagrange further discovered the following result. [Wei06, p. 321].

Proposition 3. Every form ax2 + bxy+ cy2 is equivalent to a form Ax2 +Bxy+Cy2 where |B| ≤ |A|, |C|.

Clearly there can only be finitely many forms with a given discriminant that satisfy such a bound, and
therefore we have the following important result.

Corollary 1. The class number is finite.

To actually compute the class number, one only has to list all forms satisfying the bound, and then
remove superfluous forms. One is then left with a list of forms, each contained in one and only one class.

The story continues with Adrien-Marie Legendre (1752-1833), and in particular with his work Essai sur
la Théorie des Nombres. In this essay Legendre noted that if one has two binary quadratic forms f, f ′ given
by

f(X,Y ) = aX2 + 2bXY + cY 2

f ′(X ′, Y ′) = a′X ′2 + 2b′X ′Y ′ + c′Y ′2,

then it is possible to find bilinear forms B,B′ and a quadratic form F (U, V ) = AU2 + 2BUV + CV 2, such
that

f(X,Y )f ′(X ′, Y ′) = F (B(X,Y ;X ′, Y ′), B′(X,Y ;X ′, Y ′)).

Furthermore, Legendre seems to have taken for granted that the above product induced a well-defined
binary operation on the set of equivalence classes (with respect to Lagrange’s notion of equivalence) of
binary quadratic forms with a given discriminant. [Wei06, p. 334] This is by no means obvious, and was
clarified greatly by the next actor in our story – Gauß.

Gauß’ most important contribution to theory of class numbers and one of the most important contri-
butions to number theory in general was his work Disquisitiones Arithmeticæ [Gau01]. In it he replaced
Lagrange’s notion of equivalence with the appropriate one, only allowing αδ−βγ = 1, generalized Legendre’s
operation to what he called the “law of composition”, and proved that the set of classes of forms with a
given discriminant forms with the composition law a finite abelian group – now called the (form) class group.
Furthermore, he formulated three central conjectures.

Conjecture 1. Let h(d) be the class number of the discriminant d. Then h(d)→∞ as d→ −∞.

Conjecture 2. Gauß made lists of negative discriminants with class number 1, 2, and 3, and believed them
to be complete.

Conjecture 3. There are infinitely many positive discriminants with class number 1.

The first conjecture was proven in 1934 by Hans Heilbronn. The second conjecture was proven for class
number 1 in 1952 by Kurt Heegner, for class number 2 in 1971 by Alan Baker and Harold Stark, for class
number 3 by Oesterlé in 1985, and for class numbers ≤ 100 by Mark Watkins in 2004. The last conjecture
is still open.

Disquisitiones was hugely influential, but Gauß’ composition law was considered by many to be pro-
hibitively complicated. It was simplified in 1851 by Johann Peter Gustav Lejeune Dirichlet (1805-1859) who
also made many other contributions to number theory and is often considered to be the founder of the field
of analytic number theory.

One of Dirichlet’s most ardent admirers was his student Richard Dedekind (1831-1916). Dedekind refor-
mulated the theory of class numbers in terms of abstract algebra and in particular in terms of what is now
known as quadratic field extensions. He noticed that the (ideal) class group appears as a set of equivalence
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classes of (fractional) ideals in the ring of integers of a quadratic field extension. This greatly simplified the
theory, at the cost of making it more abstract.

In this thesis, I give a detailed account of the class group from the point of view of binary quadratic
forms and from the point of view of quadratic fields. In particular, I focus on class groups of forms with
negative discriminant, or equivalently, imaginary quadratic fields. The reader will be introduced to a series
of conjectures which are the spiritual successors to Gauß’ conjectures – the heuristics by Henri Cohen and
Hendrik Lenstra. Among these is a prediction about the average size of the k-torsion subgroup of class
groups with discriminant d satisfying 0 < −d < X. The thesis ends with a sketch of a proof by Bob Hough
that this prediction holds for the case k = 3.

If the reader has further interest in the historical background, please see André Weil’s excellent book [Wei06].
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Chapter 2

Preliminaries

In this chapter I introduce the form class group and the ideal class group, and prove that they are isomorphic.
The reader is assumed to be acquainted with the group SL2(Z) and have a rudimentary understanding of
how it acts on the upper half plane

H = {z ∈ C : =(z) > 0},

and especially fundamental domains of the orbit space H/SL2(Z). Should the reader need a refresher, I
recommend the part on elliptic modular forms in [RBvdG+08].

The exposition is largely in the spirit of [Bue89] and [Pin15] for the form class group, and [Neu13],
[Coh00] and the notes [Conb, Cona] for the ideal class group.

2.1 Binary quadratic forms

Definition 3. A binary quadratic form Q is a bivariate homogeneous polynomial of degree 2 with integer
coefficients. In other words,

Q(x, y) = ax2 + bxy + cy2,

where a, b, c ∈ Z. We often write (a, b, c) as an abbreviation. We’ll also treat “binary quadratic form”,
“quadratic form”, and “form” as synonyms, unless otherwise noted.

Definition 4. Let Q = (a, b, c) be a form. Then the number ∆Q = b2 − 4ac is called the discrimant of Q.

Definition 5. Let Q = (a, b, c) be a form. If gcd(a, b, c) = 1, we say that Q is primitive.

Definition 6. Let Q be a form. If ∆Q > 0, we say that Q is indefinite. If ∆Q < 0, we say that Q is definite.

Notice that if a form Q = (a, b, c) is definite, then ac > b2

4 so that in particular a, c have the same signs.

Definition 7. Let Q = (a, b, c) be a definite form. If a > 0 (and c > 0) we say that Q is positive definite.
If a < 0 (and c < 0) we say that Q is negative definite.

For D < 0, let QD denote the set of primitive positive definite quadratic forms with discriminant D. Let
further

φ : QD × SL2(Z)→ QD,

be defined by
φ(Q, γ) = Q ◦ γ.

Proposition 4. The map φ is well-defined and a (right) group action.
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Proof. Let f = (a, b, c) ∈ QD, and γ =

(
α β
γ δ

)
∈ SL2(Z). We see that

φ(f)(x, y) = (f ◦ γ)(x, y)

= f(αx+ βy, γx+ δy)

= (aα2 + bαγ + cγ2)x2 + (b(αδ + βγ) + 2(aαβ + cγδ))xy + (aβ2 + bβδ + cδ2)y2.

And so φ(f) is indeed a quadratic form. Furthermore, we see that

∆φ(f) = αβγδ(−2b2 + 8ac) + α2δ2(b2 − 4ac) + β2δ2(b2 − 4ac)

= ∆f det(γ)2 = ∆f .

And so φ(f) is definite. Let now γ1, γ2 ∈ SL2(Z). We then have that

φ(f, γ1γ2) = f ◦ γ1γ2
= (f ◦ γ1) ◦ γ2 = φ(φ(f, γ1), γ2),

and clearly φ(f, I) = f ◦ I = f . It only remains to verify that φ(f, γ) is primitive positive definite for every
f ∈ QD and γ ∈ SL2(Z). To see this, recall that SL2(Z) is (freely) generated by

S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
,

and hence by the above we only have to verify that φ(f, S) and φ(f, T ) are primitive positive definite. We
see that

φ(f, T ) = (a, b+ 2a, a+ b+ c),

and
φ(f, S) = (c,−b, a).

Since the first coefficients are positive, we have that φ(f, S) and φ(f, T ) are positive definite. Finally we see
that

gcd(a, b+ 2a, a+ b+ c) = gcd(a, a+ b, a+ b+ c) = gcd(a, a+ b, c) = gcd(a, b, c) = 1,

and
gcd(c,−b, a) = gcd(a, b, c) = 1,

so that they also are primitive. We are done.

Since φ is a group action we write f.γ as a shorthand for φ(f, γ).
The group action induces an equivalence relation.

Definition 8. Let Q1, Q2 ∈ QD. We say that Q1 and Q2 are equivalent, and write Q1 ∼ Q2, if there exists
an element γ ∈ SL2(Z) such that Q2 = Q1.γ.

We have that ∼ is an equivalence relation and we denote the set of equivalence classes QD/∼ by H(D).
Of special interest is |H(D)|, which is denoted by h(D) and is called the class number.

Remark 1. If (∗, b1, ∗) ∼ (∗, b2, ∗) then b1 ≡2 b2, so that b1+b2
2 is an integer. Here and in the sequel, the

notation a ≡n b for integers a, b and n denotes congruence modulo n, in other words n | a− b.

Theorem 1. Let D < 0. Then the class number h(D) is finite.

We’ll prove the theorem by selecting appropriate representatives for each equivalence class of forms in
H(D), and in doing so putting H(D) in one-to-one correspondence with a set that is obviously finite.
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Definition 9. Let Q = (a, b, c) be a binary quadratic form. Then the (unique) root −b+
√
D

2a of Q(z, 1) = 0
in H is called the principal root of Q and is denoted by zQ.

Lemma 1. The map z− : QD → H defined by Q 7→ zQ is injective.

Proof. Let Q1 = (a1, b1, c1), Q2 = (a2, b2, c2) ∈ QD satisfy zQ1
= Q2. Then

−b1
2a1

=
−b2
2a2

,

and √
|D|

2a1
=

√
|D|

2a2
.

The last equation gives that a1 = a2, whence the first equation gives that b1 = b2. Finally we have that

c1 =
b21 −D

4a1
=
b22 −D

4a2
= c2,

whence Q1 = Q2, and we are done.

Recall now that SL2(Z) acts on H through linear fractional transformations. In other words if τ ∈ H and

γ =

(
a b
c d

)
∈ SL2(Z) we have the action

γ(τ) =
aτ + b

cτ + d
.

Recall also that every equivalence class in H/SL2(Z) has a unique representative in the (semi-closed) funda-
mental domain, defined by

F̃1 = {z ∈ H : −1

2
≤ <(z) <

1

2
and |z| > 1

or

−1

2
≤ <(z) ≤ 0 and |z| = 1}.

Lemma 2. Let γ =

(
a b
c d

)
∈ SL2(Z) and f = (a, b, c) ∈ QD. Then zf.γ = γ−1(zf ).

Proof. Since zf.γ ∈ H we only have to verify that f.γ(γ−1(zf ), 1) = 0. This is straightforward.

f.γ(γ−1(zf ), 1) = f.γ

(
dzf − b
−czf + a

, 1

)
= f

(
adzf − ab+ b(−czf + a)

−czf + a
,
cdzf − bc+ d(−czf + a)

−czf + a

)
= f

(
zf

−czf + a
,

1

−czf + a

)
=

f(zf , 1)

(−czf + a)2
= 0.

We now introduce the set of reduced forms.

Definition 10. The set

Qred
D = {(a, b, c) ∈ QD : −a < b ≤ a < c or 0 ≤ b ≤ a = c},

is called the set of reduced (primitive positive definite) forms.
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Lemma 3. Let Q = (a, b, c) ∈ QD. Then Q ∈ Qred
D if and only if zQ ∈ F̃1.

Proof. We have that

<(zQ) = − b

2a
,

and

|zQ|2 =
b2 −D

4a2
=
c

a
.

Furthermore, we have that zQ ∈ F̃1 if and only if

−1

2
≤ − b

2a
<

1

2
and

c2

a2
> 1

or

−1

2
≤ − b

2a
≤ 0 and

c2

a2
= 1.

Which is true if and only if

−a < b ≤ a and c > a

or

0 ≤ b ≤ a and c = a,

if and only if (a, b, c) ∈ Qred
D . The lemma has been proved.

Lemma 4. Let Qc ∈ H(D). Then |Qc ∩ Qred
D | = 1. In other words, every class of forms in H(D) has a

unique representative in Qred
D .

Proof. Let Q be a representative of Qc, so that [Q] = Qc. Let γ ∈ SL2(Z) be such that γ−1(zQ) ∈ F̃1. Then

zQ.γ ∈ F̃1 and so Q.γ ∈ Qred
D . Hence Q.γ ∈ Qc ∩Qred

D and we have proved existence.

Let Q1, Q2 ∈ Qc ∩ Qred
D . Then zQ1

, zQ2
∈ F̃1. We also have that Q1 ∼ Q2 and hence zQ1

= γ.zQ2
for

some γ ∈ SL2(Z). But since F̃1 is a fundamental domain, we must have that γ = I, and so zQ1
= zQ2

. Since
z− is injective, we conclude that Q1 = Q2, and we have proved uniqueness.

By the above, we have that h(D) = |Qred
D |. We can now prove theorem 1.

Proof of theorem 1. Let (a, b, c) ∈ Qred
D . Then |b| ≤ a ≤ c, and so −b2 ≥ −a2. This implies that |D| =

4ac− b2 ≥ 3a2 whence

a ≤
√
|D|
3
,

and as a consequence

−
√
|D|
3
≤ b ≤

√
|D|
3
.

The number of possible values for a and b is thus finite, and since c is determined (through D) by the choice
of a and b, we are done.

2.2 Composition law

Hereafter D denotes a negative integer unless otherwise noted.
We now introduce the composition law. It turns H(D) into a group – the class group. To simplify the

exposition we define the law on pairs of united forms.
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Definition 11. Let f = (a1, b1, c1), g = (a2, b2, c2) ∈ QD. If gcd(a1, a2,
b1+b2

2 ) = 1, we say that f and g are
united.

Note that
b21 − b22 = 4(a1c1 − a2c2),

and so b1 ≡2 b2 whence b1 + b2 ≡2 0, as is implicit in the definition.

Lemma 5. Let f = (a, b, c) ∈ QD. Then for any nonzero integer m there exists relatively prime integers
x, y such that gcd(f(x, y),m) = 1.

Proof. Let m ∈ Z be arbitrary and put

P = product of primes p such that p | m, p | a, and p | c
Q = product of primes p such that p | m, p | a, and p - c
R = product of primes p such that p | m, p - a, and p | c
S = product of primes p such that p | m, p - a, and p - c.

Evidently these numbers are mutually relatively prime. In particular gcd(Q,RS) = 1. Now, let p be a prime
divisor of m. Then p | P,Q,R or S.

If p | P we have that p | aQ2 and p | c(RS)2. But since f is primitive we have that p - b, and by
construction p - Q,R and S. Hence p - bQRS and thus p - f(Q,RS).

If p | Q we have that p | aQ2 and p | bQRS. But p - c and p - RS by construction, and so p - c(RS)2.
Hence p - f(Q,RS).

If p | R we have that p | c(RS)2 and p | bQRS. But p - a and p - Q by construction, and so p - aQ2.
Hence p - f(Q,RS).

If p | S we have that p | c(RS)2 and p | bQRS. But p - a and p - Q by construction, and so p - aQ2.
Hence p - f(Q,RS).

It follows that f(Q,RS) and m have no common prime divisors, whence gcd(f(Q,RS),m) = 1 and we
are done.

Lemma 6. Let f ∈ QD, r be a nonzero integer, and x, y be relatively prime integers such that f(x, y) = r.
Then there exists integers s, t such that f ∼ (r, s, t).

Proof. By the extended Euclidean algorithm we have that there exists integers z, w such that xw − yz = 1.
Hence

f ∼ f.
(
x z
y w

)
= (ax2 + bxy + cy2, b(xw + yz) + 2(axz + cyw), az2 + bzw + cw2) = (r, s, t),

and we are done.

Proposition 5. Let f = (a1, b1, c1), g = (a2, b2, c2) ∈ QD. Then there exists an h ∈ QD such that h ∼ g
and f and h are united.

Proof. By lemma 5, there exists relatively prime integers x, y such that (g(x, y), a1) = 1. By lemma 6 there
exists a form h = (g(x, y), s, t) such that g ∼ h.

We have that gcd(a1, g(x, y), b1+s2 ) = 1, and thus f and h are united.

Proposition 6. Let f = (a1, b1, c1), g = (a2, b2, c2) ∈ QD. If f and g are united, then there exists integers
B,C with B unique modulo 2a1a2 such that

B ≡2a1 b1

B ≡2a2 b2

C =
B2 −D
4a1a2

,

9



and as a consequence

f ∼ (a1, B, a2C)

g ∼ (a2, B, a1C).

Proof. Since f and g are united we have that

gcd(a1, a2,
b1 + b2

2
, 2a1a2) = 1,

and so there exists integers l1, l2, l3, l such that

l1a1 + l2a2 + l3
b1 + b2

2
+ 2la1a2 = 1.

Notice also that since b1 ≡2 b2 we have that b1b2 +D ≡2 0, and

a1a2b1 ≡2a1a2 a1a2b2,

and since a1D ≡4a1a2 a1b
2
2 and a2D ≡4a1a2 a2b

2
1, we have that

a1
D + b1b2

2
≡2a1a2 a1b2

b1 + b2
2

, and

a2
D + b1b2

2
≡2a1a2 a2b1

b1 + b2
2

.

Put now

B = l1a1b2 + l2a2b1 + l3
D + b1b2

2
.

Then

a1B ≡2a1a2 (l1a1b2)a1 + (l2a1b2)a2 + (l3a1b2)
b1 + b2

2

= a1b2(l1a1 + l2a2 + l3
b1 + b2

2
)

= a1b2(1− 2la1a2) ≡2a1a2 a1b2,

(2.1)

and similarly

a2B ≡2a1a2 a2b1. (2.2)

We have furthermore that

b1 + b2
2

B = l1a1b2
b1 + b2

2
+ l2a2b1

b1 + b2
2

+ l3
D + b1b2

2

b1 + b2
2

=
D + b1b2

2
(l1a1 + l2a1 + l3

b1 + b2
2

)

≡2a1a2

D + b1b2
2

.

(2.3)

The congruences (2.1) and (2.2) are equivalent to B ≡2a1 b1 and B ≡2a2 b2, respectively. Hence

B2 − (b1 + b2)B + b1b2 = (B − b1)(B − b2) ≡4a1a2 0,

and thus
B2 ≡4a1a2 (b1 + b2)B − b1b2.

10



Moreover, congruence (2.3) is equivalent to

(b1 + b2)B ≡4a1a2 D + b1b2,

so that B2 ≡4a1a2 D.

We can now finish the proof. Let C = B2−D
4a1a2

. There exists integers δ1 and δ2 such that B = b1 + 2a1δ1
and B = b2 + 2a2δ2. This implies that

a2C =
B2 −D

4a1
= a1δ

2
1 + b1δ1 + c1, and

a1C =
B2 −D

4a2
= a2δ

2
2 + b2δ2 + c2,

and so we conclude that

f.T δ1 = (a1, B, a1δ
2
1 + b1δ1 + c1) = (a1, B, a2C), and

g.T δ2 = (a2, B, a2δ
2
2 + b2δ2 + c2) = (a2, B, a1C),

whence we are done with existence. From the above, it is clear that the system

a1B ≡2a1a2 a1b2

a2B ≡2a1a2 a2b1

b1 + b2
2

B ≡2a1a2

D + b1b2
2

,

is equivalent to the system in the proposition. Say now that we have two solutions B,B′ to this system.
Then

2a1a2 | a1(B −B′)
2a1a2 | a2(B −B′)

2a1a2 |
b1 + b2

2
(B −B′),

and since gcd(a1, a2, (b1 + b2)/2) = 1 we see that 2a1a2 | B −B′ by the extended Euclidean algorithm.

Lemma 7. Let

D1 = {(f, g) ∈ Q2
D : ∃a1, a2, B,C. f = (a1, B, a2C) and g = (a2, B, a1C)},

and let ◦1 : D1 → QD be defined by

(a1, B, a2C) ◦1 (a2, B, a1C) = (a1a2, B,C).

Then ◦1 is well-defined.

Proof. Say (a1, B, a2C) = (a′1, B
′, a′2C

′) and (a2, B, a1C) = (a′2, B
′, a′1C

′). Then a1 = a′1, a2 = a′2, B = B′

and a1C = a′1C
′ = a1C

′. But since a1 > 0, we get that C = C ′, and so (a1a2, B,C) = (a′1a
′
2, B

′, C ′).
Moreover we have that a1, a2 > 0 and so a1a2 > 0. Finally it is clear that the discriminant of (a1a2, B, C)
is the same as e. g. (a2, B, a1C), whence we are done.

Lemma 8. Let
D2 = {(f, g) ∈ Q2

D : f and g united},
and let ◦2 : D2 → H(D) be defined by

(a1, b1, c1) ◦2 (a2, b2, c2) = [(a1, B, a2C) ◦1 (a2, B, a1C)],

where B and C are any integers as in proposition 6. Then ◦2 is well-defined.

11



Proof. Suppose we have two solutions B,C and B′, C ′ to the system in proposition 6. We want to show that
(a1a2, B

′, C ′) ∼ (a1a2, B,C). We have that B′ ≡2a1a2 B and so B′ = B + 2a1a2l for some integer l. We see
that

(a1a2, B
′, C ′).Sl = (a1a2, B, a1a2l

2 +B′l + C ′),

Put X = a1a2l
2+B′l+C ′. Since the discriminant is preserved, we have that D = B2−4a1a2C = B2−4a1a2X

and thus X = C. Hence (a1a2, B
′, C ′) ∼ (a1a2, B, C) and we are done.

Definition 12. Let (f, g) ∈ Q2
D be a pair of forms. Then (f ′, g′) ∈ Q2

D is said to be a uniting of (f, g) if
f ′ ∼ f , g′ ∼ g, and f ′ and g′ are united.

Remark 2. By proposition 5 we have that for any (f, g) ∈ Q2
D there exists a uniting of (f, g).

Lemma 9. Let f = (a1, b1, c1), g = (a2, b2, c2) ∈ QD. Then f ∼ g if and only if there exists integers α and
γ such that

a1α
2 + b1αγ + c1γ

2 = a2

2a1α+ (b1 + b2)γ ≡2a2 0

(b1 − b2)α+ 2c1γ ≡2a2 0.

(2.4)

Proof. Recall that f ∼ g if and only if there exists integers α, β, γ, δ such that

a1α
2 + b1αγ + c1γ

2 = a2

b1(αδ + βγ) + 2(a1αβ + c1γδ) = b2

a1β
2 + b1βδ + c1δ

2 = c2

αδ − βγ = 1.

(2.5)

Suppose now that f ∼ g. Then the first equation of (2.4) is immediate. We further have that

2a1α+ (b1 + b2)γ − 2a2δ = 2αa1(1 + βγ − αδ) + γb1(1 + βγ − αδ) = 0,

and
(b1 − b2)α+ 2c1γ + 2a2β = αb1(1 + βγ − αδ) + 2γc1(1 + βγ − αδ) = 0.

Hence the second and third equations of (2.4) are satisfied.
Suppose now that equations (2.4) hold. Then the first equation of (2.4) holds, so we only need to find

integers β, δ such that the the last three equations of (2.5) hold. Inspired by the above, we put

δ =
2a1α+ (b1 + b2)γ

2a2
,

and

−β =
(b1 − b2)α+ 2c1γ

2a2
.

Then

αδ − βγ =
a1α

2 + b1αγ + c1γ
2

a2
= 1,

and

b1(αδ + βγ) + 2(a1αβ + c1γδ) = b2
a1α

2 + b1αγ + c1γ
2

a2
= b2,

Finally, we have that

4a2(a1β
2 + b1βδ + c1δ

2) = (a1α
2 + b1αγ + c1γ

2)(b22 − b21 + 4a1c1) = 4a2c2,

where in the last step we used that ∆f = ∆g = D, and so

4a2c2 = b22 −D = b22 − b21 + 4a1c1.

12



Lemma 10. Let ◦3 : Q2
D → H(D) be defined by

f ◦3 g = fu ◦2 gu,

where (fu, gu) is any uniting of f and g. Then ◦3 is well-defined.

Proof. Suppose we have two unitings (fu, gu), (fv, gv) of f and g. We want to show that fu ◦2 gu = fv ◦2 gv.
Write

fu = (a1, b1, c1) ∼ (a1, B, a2C)

gu = (a2, b2, c2) ∼ (a2, B, a1C)

fv = (a′1, b
′
1, c
′
1) ∼ (a′1, B

′, a′2C
′)

gv = (a′2, b
′
2, c
′
2) ∼ (a′2, B

′, a′1C
′),

where B,C and B′, C ′ are some integers on the same form as in proposition 6. Then

fu ◦2 gu = [(a1a2, B, C)]

fv ◦2 gv = [(a′1a
′
2, B

′, C ′)],

Hence we are done if we can show that (a1a2, B,C) ∼ (a′1a
′
2, B

′, C ′). We notice first that f ∼ fu ∼ fv and
g ∼ gu ∼ gv, so that

(a1, B, a2C) ∼ (a′1, B
′, a′2C

′)

(a2, B, a1C) ∼ (a′2, B
′, a′1C

′).

Applying lemma 9, we have that there exists integers x1, y1, x2, y2 such that

a1x
2
1 +Bx1y1 + a2Cy

2
1 = a′1

2a1x1 + (B +B′)y1 ≡2a′1
0

(B −B′)x1 + 2a2Cy1 ≡2a′1
0

a2x
2
2 +Bx2y2 + a1Cy

2
2 = a′2

2a2x2 + (B +B′)y2 ≡2a′2
0

(B −B′)x2 + 2a1Cy2 ≡2a′2
0.

If we can find integers X,Y such that

a1a2X
2 +BXY + CY 2 = a′1a

′
2

2a1a2X + (B +B′)Y ≡2a′1a
′
2

0

(B −B′)X + 2CY ≡2a′1a
′
2

0,

we are done. Put

(
X
Y

)
=

(
1 0 0 −C
0 a1 a2 B

)
x1x2
x1y2
y1x2
y1y2

 .

We then have that

a′1a
′
2 = (a1x

2
1 +Bx1y1 + a2Cy

2
1)(a2x

2
2 +Bx2y2 + a1Cy

2
2) = a1a2X

2 +BXY + CY 2.

13



It remains to verify the congruences. We have that1

2(a1x1 +
B +B′

2
y1)(a2x2 +

B +B′

2
y2) ≡2a′1a

′
2

2a1a2X + (B +B′)Y,

and so 2a1a2X + (B +B′)Y ≡2a′1a
′
2

0. We also have that

2a1(
B −B′

2
X + CY ) ≡2a′1a

′
2

2(a1x1 +
B +B′

2
y1)(

B −B′

2
x2 + a1Cy2)

2a2(
B −B′

2
X + CY ) ≡2a′1a

′
2

2(
B −B′

2
x1 + a2Cy1)(a2 +

B +B′

2
y2)

(B −B′)(B −B
′

2
X + CY ) ≡2a′1a

′
2

2(
B −B′

2
x1 + a2Cy1)(

B −B′

2
x2 + a1Cy2)

(B +B′)(
B −B′

2
X + CY ) ≡2a′1a

′
2

2C(a1x1 +
B +B′

2
y1)(a2x2 +

B +B′

2
y2).

This yields that

a1(
B −B′

2
X + CY ) ≡a′1a′2 a2(

B −B′

2
X + CY ) ≡a′1a′2 0,

and summing the last two congruences

B(
B −B′

2
X + CY ) ≡a′1a′2 0.

Hence we have for any k1, k2, k3 ∈ Z that

(k1a1 + k2a2 + k3B)(
B −B′

2
X + CY ) ≡2a′1a

′
2

0.

Notice now that gcd(a1, a2, B) | gcd(a1, B, a2C) = 1 so that gcd(a1, a2, B) = 1. By the extended Euclidean
algorithm we have that there exists l1, l2, l3 ∈ Z such that l1a1 + l2a2 + l3C = 1. Consequently

B −B′

2
X + CY = (l1a1 + l2a2 + l3B)(

B −B′

2
X + CY ) ≡a′1a′2 0,

and we are done.
We conclude that (a1a1, B,C) ∼ (a′1a

′
2, B

′, C ′) and so fu ◦2 gu = fv ◦2 gv.

Proposition 7. Let ◦ : H(D)2 → H(D) be defined by

[f ] ◦ [g] = f ◦3 g.

Then ◦ is well-defined.

Proof. Let f1 ∼ f2, g1 ∼ g2 ∈ QD, and let (fu1 , g
u
1 ), (fu2 , g

u
2 ) be unitings of (f1, g1) and (f2, g2) respectively.

We have that
f1 ◦3 g1 = fu1 ◦2 gu1 ,

and
f2 ◦3 g2 = fu2 ◦2 gu2 .

We have that fu2 ∼ f2 ∼ f1 and gu2 ∼ g2 ∼ g1, and consequently (fu2 , g
u
2 ) is a uniting of (f1, g1). Consequently

fu2 ◦2 gu2 = f1 ◦3 g1,

and we are done.

1Use that B′2 = D + 4a′1a
′
2C
′ = B2 − 4a1a2C + 4a′1a

′
2C
′.
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Theorem 2. Let D be a negative integer. Then (H(D), ◦) is a finite abelian group.

Proof. Let F = [(a1, b1, c1)], G,H ∈ H(D). By lemmas 5 and 6 there exists integers a2, a3, b2, b3, c2, c3 such
that G = [(a2, b2, c3)], H = [(a3, b3, c3)] and

gcd(a2, 2a1) = gcd(a3, 2a1a2) = 1.

Consequently
gcd(a1, a2) = gcd(a1, a3) = gcd(a2, a3) = 1,

and so (a1, b1, c1), (a2, b2, c2), (a3, b3, c3) are pairwise united. We now have that

(F ◦G) ◦H = ((a1, b1, c1) ◦3 (a2, b2, c2)) ◦H
= ((a1, b1, c1) ◦2 (a2, b2, c2)) ◦H
= [(a1, B,Ca2) ◦1 (a2, B,Ca1)] ◦H
= [(a1a2, B,C)] ◦H
= (a1a2, B,C) ◦2 (a3, b3, c3)

= [(a1a2a3, B
′, C ′)],

where B,B′, C, C ′ are as in proposition 6. In particular

B ≡2a1 b1

B ≡2a2 b2

B′ ≡2a1a2 B

B′ ≡2a3 b3.

This implies that

B ≡2a1 b1

B ≡a2 b2
B′ ≡2a1a2 B

B′ ≡a3 b3,

which in turn implies that

B′ ≡2a1 b1

B′ ≡a2 b2
B′ ≡a3 b3.

Similarly, we have that

F ◦ (G ◦H) = F ◦ ((a2, b2, c2) ◦2 (a3, b3, c3))

= F ◦ [(a2a3, D,E)]

= (a1, b1, c1) ◦2 (a2a3, D,E)

= [(a1a2a3, D
′, E′)],

where D,D′, E,E′ are as in proposition 6. In particular we have as above that

D ≡2a2 b2

D ≡2a3 b3

D′ ≡2a1 b1

D′ ≡2a2a3 D.
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This implies that

D ≡a2 b2
D ≡a3 b3
D′ ≡2a1 b1

D′ ≡a2a3 D,

which in turn implies that

D′ ≡2a1 b1

D′ ≡a2 b2
D′ ≡a3 b3.

By the Chinese remainder theorem, we have that D′ = B′ + 2a1a2a3δ for some δ ∈ Z, and so

(a1a2a3, B
′, C ′).T δ = (a1a2a3, D

′, ∗) = (a1a2a3, D
′, E′).

We thus conclude that F ◦ (G ◦H) = (F ◦G) ◦H and so ◦ is associative.
With B,C the same as above, we also have that

F ◦G = [(a1a2, B,C)] = [(a2a1, B, C)] = G ◦ F,

so that ◦ is commutative.
The form of the identity element depends on the residue of D modulo 4. If D ≡4 0, put I = [(1, 0,−D/4)].

Since (a1, b1, c1) and (1, 0,−D/4) are united, we find that

F ◦ I = [(a1, B,C)],

where B,C are any integers that satisfies

B ≡2a1 b1

B ≡2 0

B2 ≡4a1 D

C =
B2 −D

4a1
.

Since b21 ≡4 0, we have that b1 ≡2 0, and hence B = b1 and C =
b21−D
4a1

= c1 solve the system. Consequently

F ◦ I = [(a1, b1, c1)] = F,

and so I is the identity element.
If D ≡4 1, put I = [(1, 1, (1−D)/4)]. Since (a1, b1, c1) and (1, 1, (1−D)/4) are united, we find that

F ◦ I = [(a1, B,C)],

where B,C are any integers that satisfies

B ≡2a1 b1

B ≡2 1

B2 ≡4a1 D

C =
B2 −D

4a1
.

16



Since b21 ≡4 1, we have that b1 ≡2 1, and hence B = b1, C = c1 is again a solution. Hence F ◦ I = F , and so
I is the identity element. Let henceforth I denote the identity element.

It remains to find inverses. Put Q = [(c1, b1, a1)]. We have that (a1, c1,
b1+b1

2 ) = (a1, b1, c1) = 1, and so
(a1, b1, c1) and (c1, b1, a1) are united. Hence

F ◦Q = [(a1c1, B,C)],

where B,C are any integers such that

B ≡2a1 b1

B ≡2c1 b1

B2 ≡4a1c1 D

C =
B2 −D
4a1c1

.

Evidently B = b1 and C = 1 will do. Hence

F ◦Q = [(a1c1, b1, 1)] = [(a1c1, b1, 1).S] = [(1,−b1, a1c1)].

If D ≡4 0 we have that b1 ≡2 0 and so b1 = 2δ for some δ ∈ Z. Consequently

[(1,−b1, a1c1)] = [(1,−b1, a1c1).T δ] = [(1, 0, ∗)] = [(1, 0,−D/4)] = I.

If D ≡4 1 we have that b1 ≡2 1 and so b1 = 2δ + 1 for some δ ∈ Z. Consequently

[(1,−b1, a1c1)] = [(1,−b1, a1c1).T δ+1] = [(1, 1, ∗)] = [(1, 1, (1−D)/4)] = I,

and we conclude that H(D) is an abelian group. By theorem 1, it is finite, and so we are done.

2.3 Number fields

We shall now adopt a different point of view – that of number fields.

Definition 13. We say that a field K containing Q which is finite-dimensional as a vector space over Q is
a number field. The dimension of K over Q is called the degree of K and is denoted by [K : Q].

Proposition 8. Let K be a number field. Then there exists a number θ ∈ K such that K = Q(θ). Such a
number is called a primitive element of K.

Proof. See [ST01, p. 56] or [DF04, p. 509].

Definition 14. We say that a number field K of degree 2, i. e. K = Q(
√
D), with D a square-free integer,

is a quadratic (number) field. If D < 0 we say that K is a imaginary quadratic field, and if D > 0 we say
that K is a real quadratic field.

Proposition 9. Let K be a number field and let α ∈ K. Then there exists a unique non-zero monic
polynomial p ∈ Q[x] such that p(α) = 0, with smallest degree.

Proof. We first prove that α is zero of some monic polynomial f ∈ Q[x]. Let n = [K : Q]. Then the elements
1, α, . . . , αn are Q-linearly dependent, and hence there are numbers ai ∈ Q, not all zero, such that

anα
n + · · ·+ a1α+ a0 = 0.

We may without loss of generality assume that an 6= 0, and so we put

f(x) = xn +
an−1
an

xn−1 + · · ·+ a1
an
x+

a0
an
∈ Q[x].

17



Let now S be the set of all non-zero monic polynomials in Q[x] that has α as a zero. We want to prove
that S has unique minimal element with respect to the degree. The existence of a minimal element follows
from the well-ordering principle. Suppose f, g are two minimal elements. Then deg(f) = deg(g) because
otherwise one of them would be non-minimal. By the division algorithm, we have that

f(x) = q(x)g(x),

for some q ∈ Q[x]. Clearly deg(q) = 0, and so q is constant. Since f, g are both monic, we must therefore
have that q = 1, and we are done.

Definition 15. Let K be a number field and let α ∈ K. Then the polynomial of proposition 9 is called the
minimal polynomial of α, and is denoted by minpolα.

Remark 3. Evidently minimal polynomials are irreducible. Recall also that number fields are separable, in
other words for any α ∈ K, we have that minpolα has distinct zeros in K.

Proposition 10. Let K = Q(θ) be a number field of degree n. Then there are exactly n distinct embeddings
σi : K → C of K in C. The elements σi(θ) = θi are the distinct zeros in C of minpolθ.

Proof. See [ST01, p. 38] or [DF04, p. 487].

Definition 16. Let K be a number field. We say that α ∈ K is an algebraic integer of K if there exists a
monic polynomial p ∈ Z[x] such that p(α) = 0. The set of algebraic integers of K is denoted by ZK .

Lemma 11. Let K be a number field. Then α ∈ K is an algebraic integer of K if and only if Z[α] is a
finitely generated Z-module.

Proof. Suppose Z[α] is a finitely generated Z-module, say with generating set {g1(α), . . . , gn(α)} for some
polynomials g1, . . . , gn ∈ Z[x]. Put N = max1≤i≤n gi. Evidently αN+1 ∈ Z[α] and hence there exists integers
k1, . . . , kn such that

αN+1 =

n∑
i=1

kigi(α).

Put therefore p(x) = xN+1 −
∑n
i=1 kigi(x). It is clear that p ∈ Z[x], and since deg(

∑n
i=1 kigi(x)) = N , we

have that p is monic. Hence α is an algebraic integer.
Suppose now that α is an algebraic integer, say a zero of p(x) = xn + an−1x

n−1 + · · ·+ a1x+ a0. I claim
that G = {αn−1, . . . , α, 1} is a generating set. To see this, let β ∈ Z[α]. Then

β = bNα
N + · · ·+ b1α+ b0.

If we can show that αk is a Z-combination of G for any non-negative integer k, we see from the above that
we are done. Clearly, it is true whenever k < n, because then αk ∈ G. For k ≥ n, we use induction. As for
the base case, we see that

αn = −an−1αn−1 − · · · − a1α− a0,

and we are done with the base case. As for the inductive step, we let k ≥ n and assume that αl is a
Z-combination of G whenever l ≤ k. We thus have that

αk+1 = α(k0 + k1α+ · · ·+ kn−1α
n−1),

for some integers ki. Consequently

αk+1 = −kn−1a0 + (k0 − kn−1a1)α+ (k1 − kn−2a2)α2 + · · ·+ (kn−2 − an−1)αn−1,

and we are done with the inductive step.

Proposition 11. Let K be a number field. Then ZK is a ring.
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Proof. Let α, β ∈ ZK . We only have to verify that 0, 1,−α, αβ, α + β ∈ ZK . As for the first and second,
note that 0 is a zero of x ∈ Z[x], and that 1 is zero of x − 1 ∈ Z[x]. As for the third, let p(x) ∈ Z[x] be
monic such that p(α) = 0. Then clearly −α is a zero of p(−x). As for the fourth, we may without loss of
generality assume that β 6= 0. With p as before, let n = deg(p). Put q(x) = βnp(x/β) and notice that q is
monic. Clearly q(αβ) = 0 and we are done.

The fifth is easy to prove with lemma 11. We have that Z[α],Z[β] are finitely generated Z-modules and
want to show that Z[α+β] is a finitely generated Z-module. Say that Z[α] is generated by G = {g1, . . . , gn}
and that Z[β] is generated by H = {h1, . . . , hm}. I claim that F = {gihj}1≤i≤n,1≤j≤m generates Z[α + β].
As in the proof of the lemma, it is enough to show that (α+β)n is a Z-combination of F for any non-negative
integer n. We have that

(α+ β)n =

N∑
k=0

(
n

k

)
αkβn−k,

and so it is enough to show that αiβj is a Z-combination of F for any non-negative integers i, j. Clearly

αiβj = (ki1g1 + · · ·+ kingn)(lj1h1 + · · ·+ ljmhm) =
∑

1≤r≤n
1≤s≤m

kirljsgrhs,

and we are done.

Definition 17. Let K be a number field. Then a fractional ideal I of ZK is a subset of K on the form
I = 1

dJ where J is non-zero ideal of ZK and d 6= 0 is an integer. The set of fractional ideals of ZK is denoted
by I(K).

Remark 4. Notice that I is a non-zero ZK-submodule of K such that there exists a non-zero integer d with
dI an ideal of ZK . This can be taken as the definition of a fractional ideal.

Lemma 12. Let I be a ZK-submodule of K. Then I is an ideal of ZK if and only if I ⊂ ZK .

Proof. If I is an ideal ZK , then obviously I ⊂ ZK . Suppose therefore that I ⊂ ZK . We have already that
(I,+) is a subgroup of (K,+), and since (ZK ,+) also is a subgroup of (K,+), we have that (I,+) is a
subgroup of (ZK ,+). Closure under multiplication by elements from ZK follows by definition of being a
ZK-module.

Proposition 12. Let K be a number field, and let I be a ZK-submodule of K. It holds that I is a fractional
ideal if and only if there exists a d ∈ ZK \ {0} such that dI ⊂ ZK .

Proof. Suppose I is a fractional ideal. Then there exists a non-zero integer d such that dI is an ideal in ZK .
Since also d ∈ ZK , and dI ⊂ ZK , we are done with one direction.

Suppose that I ⊂ K satisfies that dI ⊂ ZK for some d ∈ ZK \ {0}. Let p = minpold and put n = deg(p)
and write p(x) = (x−α1)(x−α2) . . . (x−αn−1)(x−d). Note also that all αi = 0 for else p would be reducible.
Now d′ = (−1)nα1α2 . . . αn−1d = [x0]p ∈ Z, and by multiplicative closure, we have that d′I ⊂ ZK , and so
d′I ⊂ ZK is an ideal of ZK .

Definition 18. Let I, J ∈ I(K). The product of I and J is defined to be

IJ = {
n∑
i=1

aibi : ai ∈ I, bi ∈ J, n ≥ 1}.

Proposition 13. Let I, J ∈ I(K). Then IJ ∈ I(K).

Proof. We have that I = 1
dI
′ and J = 1

f J
′, where I ′, J ′ are ideals in ZK . Hence

IJ = { 1

df

n∑
i=1

aibi : ai ∈ I ′, bi ∈ J ′, n ≥ 1} =
1

df
I ′J ′.

Since I ′J ′ is an ideal in ZK , we are done.
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Remark 5. Notice that the product is commutative and for every I ∈ I(K) we have that IZK = I.

Proposition 14. Let A,B,C ∈ I(K). Then A(BC) = (AB)C.

Proof. Let x ∈ A(BC). Then x =
∑n
i=1

∑mi

j=1 aibijcij . For every i, j we see that aibijcij = (aibij)cij ∈
(AB)C, and hence by summation closure we have that x ∈ (AB)C. The converse is analogous and so we
are done.

Definition 19. Let I ∈ I(K). If there exists a J ∈ I(K) such that IJ = ZK , we say that I is invertible.

The following notions are fundamental.

Definition 20. Let K be a number field of degree n over Q, and let σi be the n distinct embeddings of K
in C. Then the characteristic polynomial Cα of α in K is

Cα(x) =

n∏
i=1

(x− σi(α)).

Furthermore, the trace TrK/Q(α) of α in K is defined as

TrK/Q(α) = −[xn−1]Cα,

where the notation [X]p denotes the coefficient of the term X in the expression p. The norm NK/Q(α) of α
in K is defined as

NK/Q(α) = (−1)n[x0]Cα.

Remark 6. It is easy to see that the trace is Q-linear, and that the norm is multiplicative.

Lemma 13. Let K be a number field of degree n and let α ∈ K. Then Cα ∈ Q[x]. If furthermore α ∈ ZK ,
then Cα ∈ Z[x].

Proof. By proposition 8 we have that K = Q(θ) for some θ ∈ K. Recall that Q(θ) = Q[θ] so that α = r(θ)
for some r ∈ Q[x] with deg(r) < n.

We now see that σi(α) = σi(r(θ)) = r(θi), and hence the coefficients of Cα are symmetric polynomials
hi ∈ Q[θ1, . . . , θn]. We have that any symmetric polynomial over Q is a polynomial over Q in the elementary
symmetric polynomials of θ1, . . . , θn, and consequently the hi are rational numbers.

The same argument shows that if α ∈ ZK , then Cα ∈ Z[x]

Proposition 15. Let K be a number field of degree n, σi be the n embeddings of K in C, and {αj}nj=1 ⊂ K.
Then

det((σi(αj))1≤i,j≤n)2 = det((TrK/Q(αiαj)1≤i,j≤n).

This quantity is a rational number and is called the discriminant of {αj}nj=1 and is denoted by d(α1, . . . , αn).
Furthermore d(α1, . . . , αn) = 0 if and only if the αjs are linearly dependent over Q.

Proof. See [Coh00, p. 163].

Proposition 16. Let K be a number field, and let n = [K : Q]. Then ZK is a free Z-module of rank n.

Proof. Let (a1, . . . , an) be a basis of K over Q. Since the ai are algebraic, we have that there exists an
integer b such that for all i we have that bai ∈ ZK . Let now φ : K → Qn be defined by

φ(x) = (TrK/Q(b1x), . . . ,TrK/Q(bnx)).

Since the trace is Q-linear, we have that φ is homomorphism of Q-modules. We have further that if x ∈ ZK
then Cx ∈ Z[x], and so φ|ZK

is a homomorphism of Z-modules from ZK to Zn. By proposition 15, we have
that φ is injective. We have further that φ(ZK) is an additive subgroup of Zn, and thus φ(ZK) ∼= Zk for
k ≤ n. This shows that ZK ∼= φ(ZK) is a free Z-module of rank k ≤ n. But since the (b1, . . . , bn) are linearly
independent over Q and thus also over Z, we find that rank(ZK) ≥ n. Consequently rank(ZK) = n and we
are done.
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Proposition 17. Let α1, . . . , αn and β1, . . . , βn be bases of ZK . Then d(α1, . . . , αn) = d(β1, . . . , βn).

Proof. See [Coh00, p. 164].

Definition 21. Let K be a number field. Then the discriminant of K, denoted by d(K), is the discriminant
of any basis of ZK .

Lemma 14. Let K be a number field of degree n, and let I be any non-zero ideal of ZK . Then |ZK/I| <∞.

Proof. Let 0 6= α ∈ I. We have that NK/Q(α) =
∏n
i=1 σi(α), where the σi are the n embeddings. One of

the σi is the identity, say without loss of generality that σ1 = id. Then NK/Q(α) = α
∏n
i=2 σi(α). Clearly

σi(α) ∈ ZK for all i, and thus NK/Q(α) = αβ with β ∈ ZK . Putting N = NK/Q(α) we thus have that N ∈ I,
and so (N) ⊂ I. Therefore ZK/I ⊂ ZK/(N).

By proposition 16, we have that ZK ∼= Zn, and (N) ∼= NZn as additive groups. Therefore ZK/(N) ∼=
Zn/NZn ∼= (Z/NZ)n, and we are done.

Definition 22. Let I be a non-zero ideal of ZK . Then the number |ZK/I| is called the (absolute) norm of
I, and is denoted by N (I). If α ∈ K, we put N (aI) = |NK/Q(a)|N (I).

Proposition 18. Let I ∈ I(K), and let n = [K : Q]. Then I is a free Z-module of rank n.

Proof. Since non-integral fractional ideals are just non-zero multiples of integral ideals, we may assume that
I is a non-zero integral ideal. We have that I is a Z-submodule of the Z-module ZK . Since Z is a PID, we
have that I is free with rank k for some k ≤ n. If k < n, we’d have that |ZK/I| = ∞, which contradicts
lemma 14. Hence k = n and we are done.

Proposition 19. Let 0 6= P ⊂ ZK be a prime ideal. Then P is maximal.

Proof. By lemma 14 we have that ZK/P is a finite integral domain and thus a field.2 Hence P is maximal.

Lemma 15. Let I ⊂ ZK be a non-zero ideal. Then I contains a product of non-zero prime ideals.

Proof. We will prove the lemma by induction on |ZK/I|. Assume the lemma is false, and let I be a non-zero
ideal with minimal |ZK/I| that doesn’t contain a product of non-zero prime ideals. Clearly ZK contains
products of non-zero prime ideals, and thus I 6= ZK . Consequently |ZK/I| ≥ 2. Moreover, we have that
I cannot itself be a prime ideal, and thus there exists x, y /∈ I such that xy ∈ I. With these x, y we have
that (x) + I, (y) + I ) I, and so | ZK

(x)+I |, |
ZK

(y)+I | < |ZK/I|. We therefore have prime ideals P1, . . . , Pr and

Q1, . . . , Qs such that
P1 · · ·Pr ⊂ (x) + I,

and
Q1 · · ·Qs ⊂ (y) + I.

Consequently
P1 · · ·PrQ1 · · ·Qr ⊂ ((x) + I)((y) + I) = (xy) + xI + yI + I2 ⊂ I,

and we have a contradiction.

Lemma 16. Let I ∈ I(K), and put Ĩ = {x ∈ ZK : xI ⊂ ZK}. Then Ĩ ∈ I(K).

Proof. If x, y ∈ Ĩ then (x + y)I ⊂ xI + yI ⊂ ZK so that x + y ∈ Ĩ. If d ∈ ZK and x ∈ Ĩ, then
(dx)I ⊂ dZK ⊂ ZK . It follows that Ĩ is ZK-submodule of ZK .

Since I ∈ ZK , there exists a d ∈ ZK \ {0} such that dI ⊂ ZK . Furthermore, since I 6= 0 there exists an
element x ∈ I such that x 6= 0. Consequently dx ∈ ZK \ {0}. Let now y ∈ dxĨ, then y = dxy′ for some
y′ ∈ Ĩ. Since y′ ∈ Ĩ we have that y′x ∈ y′I ⊂ ZK , and thus y ∈ ZK . Hence dxĨ ⊂ ZK whence we conclude
that Ĩ ∈ I(K), as desired.

2Let A be a finite integral domain, and let 0 6= x ∈ A. Consider the set S = {xa : a ∈ A}, and notice that since A is an
integral domain, all the elements of S are distinct. Hence S = A, and thus there exists an element y ∈ A such that xy = 1.
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Lemma 17. Let I ∈ I(K). If I is invertible, then the inverse is unique and is given by Ĩ.

Proof. We first prove uniqueness. Say that J1 and J2 are inverses of I. Then

J1 = J1ZK = J1(IJ2) = (J1I)J2 = ZKJ2 = J2,

and we have uniqueness.
Let now J be such that IJ = ZK . If y ∈ J , then yI ⊂ IJ = ZK so that y ∈ Ĩ. Hence J ⊂ Ĩ. Multiplying

by I we thus have that ZK ⊂ ĨI. If x ∈ Ĩ, then xI ⊂ ZK and thus ĨI ⊂ ZK . Hence ĨI = ZK , and we are
done.

Lemma 18. Let P ⊂ ZK be a prime ideal. If 0 6= A,B ⊂ ZK are ideals such that P ⊃ AB, then P ⊃ A or
P ⊃ B.

Proof. Say that P 6⊃ A, and let x ∈ A be such that x /∈ P . Let y ∈ B, then xy ∈ AB ⊂ P and so, using
that P is prime, we have that x ∈ P or y ∈ P . But we know that x /∈ P and so y ∈ P . We conclude that
B ⊂ P .

Lemma 19. Let α ∈ K. We have that α ∈ ZK if and only if there exists a non-zero finitely generated
Z-submodule A of K such that αA ⊂ A.

Proof. Suppose α ∈ ZK . Then A = Z[α] is a finitely generated Z-submodule of K, and clearly αA ⊂ A.
Suppose A is a finitely generated Z-module such that αA ⊂ A. Let φ : A→ A be defined by φ(x) = αx.

Since αA ⊂ A we see that φ is an endomorphism of Z-modules. We have further that φ(A) = αA ⊂ ZA,
and so by proposition 2.4 of [AM94] we have that

φn + a1φ
n−1 + · · ·+ an = 0,

where ai ∈ Z for all i. We see that φn(α) = αn+1, and thus α ∈ ZK as claimed.

Lemma 20. Let 0 6= P ⊂ ZK be a prime ideal. Then P̃ satisfies the following properties.

(i) ZK ( P̃

(ii) PP̃ = ZK

Proof. It is immediate that ZK ⊂ P̃ and hence to show the first part we only need to show that P̃ \ ZK is
non-empty. Let 0 6= x ∈ P . Then (x) ⊂ P . By lemma 15 we also have that

(x) ⊃ P1 · · ·Pr,

for some non-zero prime ideals Pi. Let r be minimal. If r = 1, then P ⊃ P1 and thus by maximality P1 = P ,
so that P = (x). It follows that P̃ = 1

xZK 6= ZK .3 We therefore assume that r ≥ 2. Since P ⊃ (x) ⊃ P1 · · ·Pr
we have that P ⊃ Pi for some i, and thus by maximality P = Pi. Without loss of generality we have that
i = 1. Hence (x) ⊃ PP2 · · ·Pr. Since we picked r to be minimal, we have that (x) 6⊃ P2 · · ·Pr. Let therefore
y ∈ P2 · · ·Pr be such that y /∈ (x). Now4 y/x /∈ ZK and since also yP ⊂ PP2 · · ·Pr ⊂ (x), we have that
y/x ∈ ZK . We thus conclude that y/x ∈ P̃ \ ZK , whence (i) is proven.

As for (ii), let x ∈ P̃ be such that x /∈ ZK . Evidently xP ⊂ ZK and so P ⊂ P+xP ⊂ ZK . By maximality
we thus have that P +xP = ZK or P +xP = P . If the former holds, we have that P +xP = P (ZK+xZK) =
ZK and so ZK + xZK is an inverse for P , whence by lemma 17 we have that P̃ = ZK + xZK . If the latter
holds, we have that xP ⊂ P . But by proposition 18, we have that P is a finitely generated Z-module, and
thus by lemma 19 we have that x ∈ ZK . This is a contradiction, and thus we are done.

3For if they would be equal, then x−1 ∈ ZK , and thus 1 = x−1x ∈ (x) = P , whence P = ZK . But prime ideals are proper,
and thus contradiction.

4For if this weren’t so, then y ∈ (x), and thus contradiction.
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We have concluded that prime ideals of ZK are invertible. Hence we write P−1 for the inverse of a
non-zero prime ideal P ⊂ ZK .

Proposition 20. Let I ⊂ ZK be an ideal different from 0 and ZK . Then I admits a factorization

I = P1 . . . Pr,

into non-zero prime ideals Pi of ZK which is unique up to the order of the factors.

Proof. We first concentrate on existence.
Let r ≥ 1 be an integer. We are going to prove that if I contains a product of r prime ideals (which it

does by lemma 15), then it is a product of prime ideals. As for the base case, say that r = 1. Then I ⊃ P ,
but since I is proper and P is maximal, we must have I = P , and so we are done.

Assume now that the statement holds for an integer r > 1, and say that I ⊃ P1 . . . Pr+1 for some prime
ideals Pi. Since I is proper, it is contained in a maximal ideal P . But then P ⊃ P1 . . . Pr, whence we have
as before that P = Pi for some i. Hence we have Pi ⊃ I ⊃ P1 . . . Pr+1. Multiplying by P−1i , we see that

ZK ⊃ P−1i I ⊃ P1 . . . Pi−1Pi+1 . . . Pr+1.

The first inclusion shows that P−1i I is an ideal in ZK , and the second inclusion shows that it contains a
product of r prime ideals. By the inductive assumption we thus have that

P−1i I = Q1 . . . Qn,

for some prime ideals Qi. Multiplying by Pi, we get that

I = PiQ1 . . . Qn,

and so we have proved existence.
We now concentrate on uniqueness. Say I = P1 . . . Pr = Q1 . . . Qs. We can without loss of generality

assume that r ≥ s ≥ 1. For every Pi, compare with the Qj , and if they’re equal, multiply the equation with
P−1i . At the end of the process, we have that

Pi1 . . . Pir−s = ZK ,

where 1 ≤ i1 ≤ i2 ≤ · · · ≤ ir−s ≤ r. If r > s, we have a contradiction, because prime ideals are proper.
Hence r = s, which means that every prime ideal was cancelled. In other words, we have that Pi = Qσ(i) for
some permutation σ ∈ Sr.

Proposition 21. Let I ∈ I(K). Then I is invertible with I−1 = Ĩ.

Proof. By lemma 17, it is enough to construct an inverse. We have that I = 1
dJ for an integral ideal J ⊂ ZK ,

and a number d ∈ ZK \ {0}. If H is an inverse for J , we have that (dH)( 1
dJ) = HJ = ZK , so that dH is an

inverse of I. Hence we only have to find an inverse of J .
If J = ZK , we have that H = ZK is an inverse of J . If J is proper, we have by proposition 20 that

J = P1 . . . Pr for prime ideals Pi. Let H = P−11 . . . P−1r . Since the product of ideals is commutative and
associative, we see that JH = P1P

−1
1 . . . PrP

−1
r = ZK so that H is an inverse of J .

We have thus proved the following theorem.

Theorem 3. Let K be a number field. Then I(K) is an abelian group.

Definition 23. Let I ∈ I(K). Then I is principal if it is generated by one element. If I is generated by
g ∈ K \ {0}, we write I = (g)ZK

. We also write P(K) = {I ∈ I(K) : I = (g)ZK
for some g ∈ ZK}.

Proposition 22. Let I ∈ I(K). Then I is principal if and only if there exists a non-zero element x ∈ ZK ,
and an element d ∈ ZK \ {0}, such that I = 1

d (x).
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Proof. Suppose that I is principal, say with generator g ∈ I. Since I ∈ I(K), we have that dI = J for some
ideal J ⊂ ZK and d ∈ ZK \ {0}. We see that dg ∈ J and thus dg = x for some x ∈ J ⊂ ZK , and so g = x

d .
If y ∈ J is arbitrary, we thus have that y = dfg for some f ∈ ZK . In other words y = fx, so that J = (x).

If I = 1
d (x), then clearly g = x

d generates I. We are done.

Proposition 23. The set P(K) is a subgroup of I(K).

Proof. Let I, J ∈ P(K). We only need to show that IJ ∈ P(K). Say I = (g)ZK
and J = (h)ZK

. I claim
that IJ = (gh)ZK

. Let x ∈ IJ , then

x =

n∑
k=1

dkgfkh = (

n∑
k=1

dkfk)gh ∈ (gh)ZK
.

Let x ∈ (gh)ZK
. Then x = agh for some a ∈ ZK . But agh = (ag)(h) ∈ IJ , and so we are done.

Definition 24. The quotient group I(K)/P(K) is denoted by Cl(K) and is called the ideal class group of
K.

As for quadratic fields, it turns out that for negative so-called fundamental discriminants D, we have
that Cl(Q(

√
D)) ∼= H(D).

2.4 Equivalence

We now show the aforementioned isomorphism between the ideal class group and the form class group.

Proposition 24. Let K = Q(
√
d) be a quadratic field with d squarefree and d 6= 1. Let 1, ω be an integral

basis and d(K) be the discriminant of K. Then if d ≡4 1 we can take ω = (1+
√
d)/2 and we have d(K) = d,

while if d ≡4 2 or 3, we can take ω =
√
d and we have d(K) = 4d.

Proof. Since
√
d is irrational or purely complex, we have that {1,

√
d} and {1, (1 +

√
d)/2} are linearly

independent and hence we only have to show that they span ZK . To this end let α ∈ ZK . If α ∈ Q then
the rational root theorem gives us that α ∈ Z and we are done. If α /∈ Q then it is easy to see5 that we can
write

α =
j + k

√
d

l
,

with gcd(j, k, l) = 1 and k, l 6= 0. Hence we get that α is a root of

B(t) = l2t2 − 2ljt+ j2 − k2d,

and since B(t) ∈ Z[x] we get that minpolα | B. Since B is of degree 2, we find that B is an integer multiple
of minpolα, whence

minpolα = t2 − 2j

l
t+

j2 − k2d
l2

.

5There are unique numbers p1, p2, q1, q2 such that

α =
p1

q1
+
p2

q2

√
d,

with (p1, q1) = (p2, q2) = 1. Let l = lcm(q1, q2) and write

α =
1

l

(
p1l

q1
+
p2l

q2

√
d

)
.

Then

gcd

(
p1l

q1
,
p2l

q2
, l

)
= gcd

(
p1l

q1
, gcd

(
p2l

q2
, l

))
= gcd

(
p1l

q1
,
l

q2

)
= gcd

(
l

q1
,
l

q2

)
= 1,

and we are done.
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Thus we must have that l | 2j and l2 | j2−k2d. From the latter we have that there exists l′, l′′ ∈ Z such that

k2d = j2 − l2l′ = gcd(j, l)2l′′,

and hence gcd(j, l)2 | k2d. We further have that gcd(j, l, k) = gcd(gcd(j, l), k) = 1 and so gcd(gcd(j, l)2, k2) =
1. We thus conclude that gcd(j, l)2 | d, whence gcd(j, l) = 1 because d is squarefree. Hence we have that
l | 2 and thus l = 1 or l = 2.

If l = 2, then gcd(j, 2) = 1 and so j is odd. This implies that j2 ≡4 1, and hence k2d ≡4 1. This
implies that k2 ≡4 1, and so k is odd, and d ≡4 1. We conclude that if d 6≡4 1, then l = 1 and so
α = j + k

√
d ∈ (1,

√
d)Z.

If however d ≡4 1 we put ω = 1+
√
d

2 , and notice that
√
d = 2ω−1. If l = 1, then α = j−k+2kω ∈ (1, ω)Z.

If l = 2, then

α =
2j′ + 1 + (2k′ + 1)

√
d

2
= j′ + k′ − 1 + 3ω ∈ (1, ω)Z,

where j′, k′ ∈ Z.
We are done with the integral basis, and let us therefore focus on the discriminant. By proposition 15

we only have to compute TrK/Q(1), TrK/Q(ω), and TrK/Q(ω2). If ω =
√
d, we have that6

C1(x) = x2 − 2x+ 1

Cω(x) = x2 − d
Cω2(x) = x2 − 2dx+ d2,

whence TrK/Q(1) = 2, TrK/Q(ω) = 0, and TrK/Q(ω2). This gives us that d(1, ω) = 4d, as claimed.

If ω = (1 +
√
d)/2, we have that C1(x) is unchanged, and

Cω(x) = x2 − x+
1− d

4

Cω2(x) = x− 1 + d

2
x−

(
1− d

4

)2

,

whence TrK/Q(1) = 2, TrK/Q(ω) = 1, and TrK/Q(ω2) = 1+d
2 . It follows that d(1, ω) = d, and we are done.

Definition 25. An integer d is called a fundamental discriminant if d is the discriminant of a quadratic field
K. In other words d 6= 1 and either d ≡4 1 and is squarefree or d ≡4 0, and d/4 is squarefree with d/4 ≡4 2
or 3.

Proposition 25. Let Q be a binary quadratic form and let d be a fundamental discriminant. If ∆Q = d,
then Q is primitive.

Proof. We prove the proposition by contradiction. Suppose that ∆Q = d and that g = gcd(a, b, c) > 1. Then
b = gb′, a = ga′ and c = gc′ for some a′, b′, c′ ∈ Z. Thus

d = b2 − 4ac = g2b′2 − 4g2a′c′ = g2(b′2 − 4a′c′),

and so d is not square-free. Hence d ≡4 0 and d/4 is square-free. If g is odd, then 4 | b′2 − 4a′c′, and so

d/4 = g2
b′2 − 4a′c′

4
,

but since g ≥ 3, we then have that d/4 is not square-free. If g is even, the fact that d/4 is square-free gives
us that g = 2, and so d/4 = b′2 − 4a′c′. But then d/4 ≡4 0 or 1.

6Recall that Cα(x) = (x − σ1(α))(x − σ2(α)) where σi are the embeddings of the primitive element into C; in our case

σ1(
√
d) =

√
d and σ2(

√
d) = −

√
d.
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If K is a quadratic field we will write K = Q(
√
d) where d is a fundamental discriminant, and ω =

(d+
√
d)/2. Clearly then {1, ω} is an integral basis, and d = d(K). We will also write Cl(d) = Cl(K).

Theorem 4. Let d be a negative fundamental discriminant. Then the maps

ψFI(a, b, c) = (a,
−b+

√
d

2
)Z,

and

ψIF (A) =
NK/Q(xω1 − yω2)

N (A)
,

where A = (ω1, ω2)Z with7

ω2σ(ω1)− ω1σ(ω2)√
d

> 0,

induce inverse homomorphisms from H(d) to Cl(d).

To prove this theorem, we need some lemmas. In the sequel, discriminants are negative.

Lemma 21. Let I ⊂ ZK be an integral ideal. Then I has a Z-basis {a, β} where a ∈ Z and β ∈ ZK .

Proof. By lemma 16 we have that I has a Z-basis {α1, α2} for some αi ∈ ZK . We also have that

α1 = a1 + b1ω

α2 = a2 + b2ω,

where without loss of generality we may assume that b1 ≥ b2. Notice that for any integers k, x, y ∈ Z we
have that

α1x+ α2y = α1(x+ ky) + (α2 − kα1)y = (α1 − kα2)x+ α2(kx+ y),

and hence also {α1, α2 − kα1} and {α1 − kα2, α2} are bases for I. This fact allows us to use the Euclidean
algorithm on b1, b2, giving the following basis for I.

{a, b+ gcd(b1, b2)ω}

Where a, b are integers. Clearly we may assume that a ≥ 0, and since the rank of I is 2, we in fact have that
a 6= 0. Subtracting multiples of a from b, we can therefore also assume that 0 ≤ b < a.

Lemma 22. Let I ⊂ ZK be an integral ideal with a Z-basis {a, b + cω} where a ∈ Z and β ∈ ZK . If m is
an integer such that m ∈ I, then a | m.

Proof. We have that m = ax+ (b+ cω)y for unique x, y ∈ Z. Evidently y = 0 and thus the result.

Lemma 23. Let I ⊂ ZK be an integral ideal. Then I has a unique Z-basis {a, b + cω} where a, b, c ∈ Z,
and a > 0, 0 ≤ b < a, and 0 < c ≤ a.

Proof. From the proof of lemma 21 we have integers a, b, c such that {a, b+ cω} is a basis, and such that a
and b satisfy the above conditions. Say that we have two such bases, {a, b+ cω} and {a′, b′ + c′ω}. Then by
lemma 22 we have that a = a′k1 and a′ = ak2 for some ki ∈ Z. Hence a = ak1k2 whence k1 = k2 = ±1, but
as a > 0 we must have k1 = k2 = 1. This proves that a is unique.

Say that we have two bases, {a, b+ cω} and {a, b′+ c′ω}, with a, b, c, b′, c′ satisfying the conditions. Then
there are integers x, y, x′, y′ such that

b′ + c′ω = ax+ (b+ cω)y, and

b+ cω = a′x′ + (b′ + c′ω)y′.

7Here σ denotes the non-trivial embedding.
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Since 1, ω is an integral basis we find that

ax+ by = b′

c′ = cy

a′x′ + b′y′ = b

c = c′y.

The second and fourth equations imply that yy′ = 1 and so y = y′ = ±1. But since c, c′ > 0 we cannot have
that y = −1. Hence we conclude from the first equation that ax = b′ − b. Since −a < b′ − b < a we must
have that x = 0. Hence b = b′ and c = c′, and we have proved uniqueness.

It remains to show that we can pick c to satisfy 0 < c ≤ a. As is clear from the proof of lemma 21, we
can pick c to satisfy c ≥ 0. Furthermore, we have that aω ∈ I and so aω = ax+ (b+ cω)y for some x, y ∈ Z.
Since 1, ω is integral basis, we conclude that cy = a and so 0 < c ≤ a.

Lemma 24. Let I ⊂ ZK be an integral ideal, and let {a, b + cω} be the unique basis of lemma 23. Then
N (I) = ac, where N (I) is the norm of definition 22.

Proof. We have to show that |ZK/I| = ac. To this end, let α ∈ ZK/I. Then

α = x+ yω + I

= (x− by/ccb) + (y mod c) + I

= ((x− by/ccb) mod a) + (y mod c) + I.

Hence any element of ZK/I can be written x + yω + I where 0 ≤ x < a and 0 ≤ y < c. Suppose now that
x1 + y1ω+ I = x2 + y2ω+ I where both x1, x2, y1, y2 satisfy the bounds. Say, without loss of generality, that
y1 ≥ y2, and put x3 = x1 − x2 and y3 = y1 − y2. Then 0 ≤ y3 < c and

x3 + y3ω = k1a+ k2(b+ cω),

for some k1, k2 ∈ Z. Hence x3 = k1a + k2b and y3 = k2c. The latter gives that k2 = 0, whence the former
given k1 = 0. Hence x3 = y3 = 0. This gives uniqueness.

There are thus a choices for x, and c choices for y. Yielding in total ac possible choices for x+ yω.

Proposition 26. Let I ⊂ ZK be an integral ideal with basis {α1, α2}. Then

N (I) =

∣∣∣∣α2σ(α1)− α1σ(α2)√
d

∣∣∣∣ .
Proof. If {β1, β2} is another basis for I, we have that

β1 = x11α1 + x12α2

β2 = x21α1 + x22α2,

for integers xij such that det((xij)1≤i,j≤2) = ±1. Put X = (xij)1≤i,j≤n. We then see that

β2σ(β1)− β1σ(β2)√
d

= det(X)
α2σ(α1)− α1σ(α2)√

d
,

and so we can assume that α1 = a and α2 = b+ cω, with a, b, c as in lemma 23. We see that

(b+ cω)a− a(b+ cσ(ω)) = ac
√
d,

and thus the result follows from lemma 24.
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Lemma 25. Let I ⊂ ZK be an integral ideal, and let {a, b + cω} be the unique basis of lemma 23. Then
c | a and c | b.

Proof. Let d = gcd(a, c). Then d = ak1 + ck2 for some integers ki. We have that ak1ω ∈ I and hence

ak1ω + (b+ cω)k2 = dω + bk2 ∈ I.

Therefore
dω + bk2 = ax+ (b+ cω)y,

for integers x, y. Hence d = cy, and thus c | d | a. It remains to show that c | b. Notice that ω2 = l1 + l2ω,
and hence

I 3 (b+ cω)ω = cl1 + (b+ cl2)ω,

and so b+ cl2 = cy for an integer y. Hence c | b, and we are done.

Lemma 26. Let I, J be integral ideals such that I ⊃ J . Then N (I) | N (J).

Proof. By Noether’s third isomorphism theorem we have that

ZK/J
I/J

∼= ZK/I,

and so
N (J)

|I/J |
= N (I),

whence the lemma.

Lemma 27. Let I be an integral ideal. Then for any x ∈ I we have that N (I) | NK/Q(x).

Proof. Clearly N ((x)) = |NK/Q(x)| and since (x) ⊂ I, lemma 26 gives the lemma.

We can now prove theorem 4.

Proof of theorem 4. Let f = (a1, b1, c1) and g = (a2, b2, c2). We first prove that if g = f.γ for some
γ ∈ SL2(Z), then ψFI(f) = αψFI(g) for some α ∈ K×.

Put τ = (−b1 +
√
d)/(2a1) and notice that τ = zf . Notice further that

−b2 +
√
d

2a2
= zg = γ−1(zf ) =

δτ − β
−γτ + α

.

It is also easy to see that
a2 = a1NK/Q(−γτ + α).

We now see that

(1, zg)Z ⊂
1

−γτ + α
(1, τ)Z.

Let z ∈ (1, zg)Z. Then for some integers x, y ∈ Z we have that

z = x+ yτ ′ =
x(−γτ + α) + y(δτ − β)

−γτ + α
=
αx− βy + (−γx+ δy)τ

−γτ + β
∈ 1

−γτ + β
(1, τ)Z,

where the last step follows from that (
α −β
−γ δ

)
∈ SL2(Z).

We conclude that

ψFI(a2, b2, c2) = a2(1, zg)Z =
a2

−γτ + β
(1, τ)Z = σ(−γτ + α)ψFI(a1, b1, c1).
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Let now A1 = (ω1, ω2)Z where8

ω2σ(ω1)− ω1σ(ω2)√
d

> 0,

and let A2 = (τ1, τ2)Z. We prove that if A2 = αA1 for some α ∈ K×, then ψIF (A1) = ψIF (A2).γ for some
γ ∈ SL2(Z). We have that

τ2σ(τ1)− τ1σ(τ2)√
d

= NK/Q(α)
ω2σ(ω1)− ω1σ(ω2)√

d
> 0,

where the inequality follows from that d < 0 and so NK/Q(α) > 0. We further have that

ψIF (A2) =
NK/Q(xτ1 − yτ2)

N (A2)
=
NK/Q(α)NK/Q(xω1 − yω2)

|NK/Q(α)|NK/Q(A1)
= sgn(NK/Q(α))ψIF (A1) = ψIF (A1).

We now need to verify that given that (a1, b1, c1) is primitive positive definite, then ψFI(a1, b1, c1) is a
fractional ideal, and that given that A is a fractional ideal in K, then ψIF (A) is a primitive positive definite
quadratic form. The former is obvious and so we only concern ourselves with the latter.

Let A be a fractional ideal, so that A = 1
kB where k ∈ ZK \ {0} and B is an integral ideal. Write

B = (ω1, ω2)Z with ωi satisfying the criterion. Then

ψIF (A) =
NK/Q(1/k)NK/Q(xω1 − yω2)

|NK/Q(1/k)|N (B)
=
NK/Q(xω1 − yω2)

N (B)
.

We further see that

NK/Q(xω1 − yω2) = NK/Q(ω1)x2 − (NK/Q(ω1 + ω2)−NK/Q(ω1)−NK/Q(ω2))xy +NK/Q(ω2)y2.

By lemma 27 we thus have that ψIF (A) has integer coefficients. Since d < 0, we have that NK/Q(ω1) > 0.
It thus remains to show that ψIF (A) has discriminant d. Indeed, since d is fundamental we have then by
proposition 25 that ψIF (A) is primitive. We have that

∆ψIF (A) =
1

N (B)2
(NK/Q(ω1 + ω2)−NK/Q(ω1)−NK/Q(ω2))2 −

4NK/Q(ω1ω2)

N (B)2

=
1

N (B)2
(
(σ(ω1)ω2 + ω1σ(ω2))2 − 4ω1ω2σ(ω1)σ(ω2)

)
=

1

N (B)2
(
(σ(ω1)ω2)2 + 2σ(ω1)ω2ω1σ(ω2) + (ω1σ(ω2))2 − 4ω1ω2σ(ω1)σ(ω2)

)
=

1

N (B)2
(σ(ω1)ω2 − ω1σ(ω2))2

=
1

N (B)2
(
√
dN (B))2 = d,

where in the last step we used lemma 26 and the criterion on the ωi.
We now arrive at the next step of the proof. Proving that the maps induced by ψFI and ψIF are inverses.

Put ω1 = a and ω2 = −b+
√
d

2 . Then clearly ωi ∈ ZK and furthermore

ω2σ(ω1)− ω1σ(ω2)√
d

= a.

8We have that A1 = (1/d)A′ for some d ∈ ZK \ {0}. By lemma 25 there are unique integers a, b, c such that {a, b+ cω} is a
Z-basis for A′. It is easy to see that ω1 = a/d and ω2 = (b+ cω)/d satisfies the criterion.
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So that if (a, b, c) is a primitive positive definite form of discriminant d, then N (A) = a and

ψIF (ψFI(a, b, c)) = ψIF ((a,
−b+

√
d

2
)Z)

=
NK/Q(xa− y

(
−b+
√
d

2

)
)

N (A)

=
1

N (A)
(a2x2 + abxy +

y2

4
(b2 − d))

= ax2 + bxy + y2
b2 − d

4a

= ax2 + bxy + cy2.

If A is a fractional ideal with basis {ω1, ω2} satisfying the criterion, then

ψFI(ψIF (A)) = ψFI

(NK/Q(xω1 − yω2)

N (A)

)

=

NK/Q(ω1)

N (A)
,

ω2σ(ω1)+ω1σ(ω2)
N (A) +

√
d

2
)


Z

=

(NK/Q(ω1)

N (A)
,
σ(ω1)ω2

N (A)

)
Z

=
σ(ω1)

N (A)
A,

so that the induced maps indeed are inverses.
We finally arrive at the last step of the proof. Proving that ψFI is a group homomorphism. In other

words, we want to prove that

ψFI([(a1, B, a2C)] ◦ [(a2, B, a1C)]) = ψFI([a1, B, a2C])ψFI([a2, B, a1C]),

where a1, a2, B, C are as in proposition 6. The right hand side is clearly equal to

(a1a2,
−B +

√
d

2
)Z,

whereas the left hand side is equal toa1a2, a1−B +
√
d

2
, a2
−B +

√
d

2
,

(
−B +

√
d

2

)2


Z

.

We have that (
−B +

√
d

2

)2

=
B2 + d− 2B

√
d

4
= −B−B +

√
d

2
− a1a2C,

and thusa1a2, a1−B +
√
d

2
, a2
−B +

√
d

2
,

(
−B +

√
d

2

)2


Z

=

(
a1a2, a1

−B +
√
d

2
, a2
−B +

√
d

2
,−B−B +

√
d

2

)
Z

.
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Since gcd(a1, a2, B) = 1 we have by the extended Euclidean algorithm that(
a1a2, a1

−B +
√
d

2
, a2
−B +

√
d

2
,−B−B +

√
d

2

)
Z

= (a1a2,
−B +

√
d

2
)Z,

and we are done.
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Chapter 3

Computation

We now have a firm theoretical grasp of what the class group is, but we have yet to see it “in the wild”. I
shall therefore give some computational examples.

3.1 Brute force

The brute force method of computing the class group H(d) for a negative fundamental discriminant d consists
of simply enumerating all reduced forms with discriminant d, and then making a Cayley table using Dirichlet
composition combined with a reduction of the compound. Since we know that H(d) is a finite abelian group,
we can then enumerate the finite abelian groups with order h(d) and compare them to the Cayley table of
H(d).

I use this method below on three fundamental discriminants, namely −19, −95, and −228.

Example 1. Let d = −19, and suppose that (a, b, c) is a reduced form of discriminant d. Then

0 < a ≤
√

19

3
,

so that
0 < a ≤ 2.

We further have that −2 ≤ b ≤ 2. Since b2 − 4ac = −19 we immediately see that b 6= 0, and thus we are left
with the following candidates

(1,±2, ∗)
(1,±1, ∗)
(2,±1, ∗)
(2,±2, ∗).

Since c = (19 + b2)/(4a) we eliminate all but the mutually opposite forms (1,±1, ∗). But clearly only one of
these is reduced, namely (1, 1, ∗) = (1, 1, 5). In conclusion H(−19) = {[(1, 1, ∗)]} ∼= C1 and so h(−19) = 1.

Not very exhilarating, but −19 is one of only 9 negative fundamental discriminants d for which h(d) = 1.
The others are −3,−4,−7,−8,−11,−43,−67, and −163. This is the content of the theorem by Heegner,
which was mentioned in the introduction.

Example 2. Let d = −95, and suppose that (a, b, c) is a reduced form with discriminant d. Then

0 < a ≤ 5,
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and
−5 ≤ b ≤ 5

For the same reason as before, we have that b 6= 0. Enumerating the candidates and eliminating those who
are not forms with1 discriminant d or are not reduced, we are left with the following list of reduced forms.

(1, 1, 24)

(2,±1, 12)

(3,±1, 8)

(4,±1, 6)

(5, 5, 6)

Hence h(d) = 8.
We now compute the Cayley table of H(d). The computations are straightforward (albeit technical) and

are therefore omitted.

◦ (1, 1, 24) (2, 1, 12) (2,−1, 12) (3, 1, 8) (3,−1, 8) (4, 1, 6) (4,−1, 6) (5, 5, 6)

(1, 1, 24) (1, 1, 24) (2, 1, 12) (2,−1, 12) (3, 1, 8) (3,−1, 8) (4, 1, 6) (4,−1, 6) (5, 5, 6)
(2, 1, 12) (2, 1, 12) (4, 1, 6) (1, 1, 24) (4,−1, 6) (5, 5, 6) (3,−1, 8) (2,−1, 12) (3, 1, 8)
(2,−1, 12) (2,−1, 12) (1, 1, 24) (4,−1, 6) (5, 5, 6) (4, 1, 6) (2, 1, 12) (3, 1, 8) (3,−1, 8)
(3, 1, 8) (3, 1, 8) (4,−1, 6) (5, 5, 6) (4, 1, 6) (1, 1, 24) (2,−1, 12) (3,−1, 8) (2, 1, 12)
(3,−1, 8) (3,−1, 8) (5, 5, 6) (4, 1, 6) (1, 1, 24) (4,−1, 6) (3, 1, 8) (2, 1, 12) (2,−1, 12)
(4, 1, 6) (4, 1, 6) (3,−1, 8) (2, 1, 12) (2,−1, 12) (3, 1, 8) (5, 5, 6) (1, 1, 24) (4,−1, 6)
(4,−1, 6) (4,−1, 6) (2,−1, 12) (3, 1, 8) (3,−1, 8) (2, 1, 12) (1, 1, 24) (5, 5, 6) (4, 1, 6)
(5, 5, 6) (5, 5, 6) (3, 1, 8) (3,−1, 8) (2, 1, 12) (2,−1, 12) (4,−1, 6) (4, 1, 6) (1, 1, 24)

By the fundamental theorem of finite abelian groups, we have the following candidates for H(d)

C8

C4 × C2

C2 × C2 × C2,

where Cn is an abbreviation for Z/nZ. As we shall see later, there are good reasons to first compare H(d)
with groups of low rank. Hence we start with C8. Using the table we see that [(2, 1, 12)] generates H(d),
and hence H(d) ∼= C8.

It turns out that for the most time, H(d) is cyclic. The heuristics by Cohen and Lenstra do in fact imply
that approximately 97.757% of odd order class groups with negative fundamental discriminants are cyclic.
The following is an example of when the class group is not cyclic.

Example 3. Let d = −228 and suppose that (a, b, c) is a reduced form with discriminant d. Then 0 < a ≤ 8
and −8 ≤ b ≤ 8. Proceeding as before, we are left with the following list of reduced forms.

(1, 0, 57)

(2, 2, 29)

(3, 0, 19)

(6, 6, 11)

Hence h(d) = 4.

1Or somewhat sloppily, those who have non-integral c.
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Computing the Cayley table of H(d) we get the following.

◦ (1, 0, 57) (2, 2, 29) (3, 0, 19) (6, 6, 11)

(1, 0, 57) (1, 0, 57) (2, 2, 29) (3, 0, 19) (6, 6, 11)
(2, 2, 29) (2, 2, 29) (1, 0, 57) (6, 6, 11) (3, 0, 19)
(3, 0, 19) (3, 0, 19) (6, 6, 11) (1, 0, 57) (2, 2, 29)
(6, 6, 11) (6, 6, 11) (3, 0, 19) (2, 2, 29) (1, 0, 57)

By the fundamental theorem of finite abelian groups, we have that H(d) is isomorphic to either C4 or
C2×C2. It is however clear from the Cayley table that every element has order ≤ 2, and so H(d) ∼= C2×C2.

3.2 On elements with order less than or equal to two

In the last example, we saw that every element in the class group had order less than or equal to two. We
can in fact rather easily determine the exact number of elements in the class group with such an order.

The approach below is based on [Cox13, pp. 47-48].

Proposition 27. Let d < 0 be a fundamental discriminant and let r be the number of odd primes dividing
d. Define the number µ depending on d as follows: if d ≡4 1 then µ = r, and if d ≡4 0 then µ = r+ 1. Then
H(d) has exactly 2µ−1 elements of order less than or equal to 2.

For example, when d = −228, we see that the number of elements with order ≤ 2 is equal to 22 = 4.
Using this with the fact that h(d) = 4 we thus have another way to conclude that H(d) ∼= C2 × C2.

To prove the proposition, we need a lemma.

Lemma 28. A form (a, b, c) ∈ Qred
d has order less than or equal to 2 in H(d) if and only if b = 0, or a = b,

or a = c.

Proof. We have that [(a, b, c)]2 = 1H(d) if and only if [(a, b, c)] = [(a, b, c)]−1 = [(a,−b, c)] if and only if
(a, b, c) ∼ (a,−b, c). Since (a, b, c) is reduced we have that

−a < b < a < c, or − a < b = a < c, or 0 ≤ b ≤ a = c.

In the first case, it holds that −a < −b < a so that also (a,−b, c) is reduced. This can be the case if and
only if (a, b, c) = (a,−b, c) which holds if and only if b = 0.

In the second case, it holds that (a, a, c).S = (a,−a, c), so that (a, b, c) ∼ (a,−b, c).
In the third case, it holds that (a, b, a).T = (a,−b, a), so that (a, b, c) ∼ (a,−b, c). The lemma has been

proved.

Proof of proposition 27. Let first d ≡4 1, with d square-free. We’ll find a bijection f : A→ B where

A = {b > 0 : ∃k ∈ Z. k > b, d = −bk}, and

B = {(a, b, c) ∈ Qred
d : b = 0, or a = b, or a = c}.

Clearly |A| = 2r−1 so that if f exists, then |B| = 2r−1. Notice also that b 6= 0 for else we would have that
d ≡4 0. Hence we have that

B = {(a, b, c) ∈ Qred
d : a = b, or a = c}.

Put now

f(b) =

{
(b, b, c) if b < c

(c, 2c− b, c) if b ≥ c,
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where c = (b+ k)/4. We first prove that f has the stated co-domain. If b < c we have that −b < b ≤ b < c
so that (b, b, c) is reduced. If b > c we have that 2c− b < c and since

2c− b =
b+ k

2
− b =

k − b
2

> 0,

we have that (c, 2c− b, c) is reduced. Furthermore, we see that (b, b, c).ST = (c, 2c− b, c) and that

∆(b,b,c) = b2 − 4bc = b2 − b(b+ k) = −bk = d.

This shows that f indeed has the stated co-domain. It is easy to see that f is injective, and hence we only
need to show that it is surjective. Let (a, b, c) ∈ B, then a = b or a = c. Say first that a = b, so that
(a, b, c) = (b, b, c). Then d = −b(4c − b) and since the form is positive definite and reduced, we have that
0 < b ≤ c < 2c, so that 0 < b < 4c− b. This implies that b ∈ A, so that f(b) = (b, b, 4c−b+b4 ) = (b, b, c). Say
now that a = c, so that (a, b, c) = (c, b, c). Since 0 ≤ b ≤ c we have that 2c− b < 2c+ b, so that 2c− b ∈ A.
We also have that 2c− b < c, so that

f(b) = (2c− b, 2c− b, c).ST = (c, b, c).

This proves that f is surjective, and hence we have proven that |B| = 2µ−1.
Let now d = −4n with n square-free and n ≡4 1 or 2. Suppose also for simplicity that d 6= −4. This

means that

B =

B1︷ ︸︸ ︷
{(a, b, c) ∈ Qred

d : b = 0}t

B2︷ ︸︸ ︷
{(a, b, c) ∈ Qred

d : a = b, or a = c} .
Adopting the bijective proof above, we find that |B2| = 2r−1 (see also [Cox13, p. 48]). Say that (a, b, c) ∈ B1,
then n = ac. Since gcd(a, c) = 1, a, c > 0, and a < c there are 2r−1 choices for a. We conclude that
|B1| = 2r−1, so that |B| = 2 · 2r−1 = 2r = 2µ−1. We have thus proven the theorem.

3.3 Dirichlet’s class number formula

Of theoretical interest, but of little use for practical computation, is following exact formula for the class
number, first published by Dirichlet in 1839.

Proposition 28. Let d < 0 be a fundamental discriminant and put

Ld(s) =
∑
n≥1

(d/n)

ns
,

for <(s) > 1, where (d/n) is the Jacobi symbol. Then there exists an analytic continuation of Ld to all of C
such that

Λd(s) = Λd(1− s),
where

Λd(s) = |d/π|
s+1
2 Γ(

s+ 1

2
)Ld(s).

Proof. See [Dav00, pp. 35-42, and pp. 65-72].

Theorem 5. Let d < 0 be a fundamental discriminant. Then

h(d) =
w(d)|d|1/2

2π
,

where

w(d) =


2 if d < −4

4 if d = −4

6 if d = −3

.
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Proof. See [Dav00, pp. 43-53].

One can use the functional equation of Ld(s) to deduce the following proposition.

Proposition 29. Let d < −4 be a fundamental discriminant. Then

h(d) =
∑
n≥1

(
d

n

)(
erfc

(
n

√
π

|d|

)
+

√
|d|
πn

exp(−πn2/|d|)

)
,

where

erfc =
2√
π

∫ ∞
x

e−t
2

dt,

is known as the complementary error function.

Proof. See [Coh00, p. 233].

The above proposition yields the following efficient way to compute h(d).

Corollary 2. Let d < −4 be a fundamental discriminant. Then h(d) is the closest integer to the nth partial
sum of the series in proposition 29, where

n =

⌊√
|d| log |d|

2π

⌋
.

Proof. See [Coh00, p. 234].

3.4 Better algorithms

The brute-force method is obviously quite slow. For computing the class group in practice, there are far
better methods. Cohen covers many, if not most, of the algorithms for computing class groups in [Coh00,
chapter 5.4]. All of these algoritms are implemented in the computer algebra system PARI/GP [Thea],
which was originally developed by Cohen. In particular one can use the module qfbclassno to compute the
class number using the probabilistic “Baby Step Giant Step” method of Daniel Shanks [Coh00, algorithm
5.4.10] and the module quadclassunit to compute class groups using Kevin McCurley’s sub-exponential
algorithm [Coh00, algorithm 5.5.2] (for negative discriminants) and Johannes Buchmann’s sub-exponential
algorithm [Coh00, algorithm 5.9.2] (for positive discriminants). There is also the module qfbred for reducing
quadratic forms using [Coh00, algorithm 5.4.2] and the module qfbnucomp for composing them using [Coh00,
algorithm 5.4.9].

Many of these modules can be used through the module BinaryQF in the computer algebra system
SageMath [Theb].
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Chapter 4

Cohen-Lenstra heuristics

In this chapter I will motivate and formulate Henri Cohen and Hendrik Lenstra’s heuristics for imaginary
quadratic fields – closely following Cohen’s book [Coh00, section 5.10, pp. 289-293] and Cohen and Lenstra’s
paper [CHa].

4.1 Motivation

Upon investigating experimental data on h(d) for negative fundamental discriminants d, one notices that

(A) If p is a small odd prime, the proportion of fundamental discriminants d for which p | h(d) is significantly
greater than the expected 1/p. If p = 3, it is around 43%, if p = 5 it is around 23.5%, and so on.

(B) Looking at the odd part1 of the class group, cyclic groups seem to form the overwhelming majority.

The starting point is observation (B). What could explain it? By the below lemma and proposition, a
possible candidate is the size of the automorphism group.

Lemma 29. Let G be a finite abelian group. Then |Aut(G)| ≥ φ(|G|), where φ is Euler’s totient function.

Proof. We first assume that G is a p-group. Then it is well-known that Aut(G) acts transitively on the
set X of elements of largest order. Therefore, by the orbit-stabilizer theorem, we see that |Aut(G)| = |X|l
for some positive integer l. We have that there at most |G|/p elements of smaller order, and therefore
|X| ≥ |G|(1− 1

p ) = φ(|G|). It follows that |Aut(G)| ≥ φ(|G|).
If G is not a p-group, it is by the fundamental theorem of finite abelian groups a product of p-groups. In

other words, we have that
G ∼= A1 × · · · ×An,

where |Ai| = pkii for distinct primes pi and positive ki. We thus have that

|Aut(G)| ≥ |Aut(A1)| · · · |Aut(An)| ≥ φ(|A1|) · · ·φ(|An|) = φ(|A1| · · · |An|) = φ(|G|),

where in the last step we used that φ is multiplicative.

Proposition 30. Let G be a cyclic group. Then for any abelian group H such that |H| = |G|, we have that
|Aut(G)| ≤ |Aut(H)|.

Proof. Since G is cyclic, we have that |Aut(G)| = φ(|G|). By lemma 29 we see that φ(|G|) = φ(|H|) ≤
|Aut(H)|, and we are done.

1Subgroups of elements of odd order.

37



So cyclic groups have the smallest automorphism group. If G is an abelian group, we employ the notation
Go for its odd part. Motivated by the proposition, we guess that isomorphism classes of abelian groups G
have a “weight” proportional to 1/|Aut(G)|, as this would imply that non-cyclic groups occur more rarely.

Definition 26. Let f be a function defined on the isomorphism classes of finite abelian groups of odd order.
We say that the average of f is2

M(f) = lim
x→∞

∑[

0<−D≤x

f(H(d)o)

∑[

0<−d≤x

1
,

given that the limit exists. If f is the characteristic function of a property P , we call M(f) the probability
that P holds.

Conjecture 4. Let f be a function defined on the isomorphism classes of finite abelian groups of odd order.
Then

M(f) = lim
x→∞

∑
|G|≤x f(Go)/|Aut(G)|∑
|G|≤x 1/|Aut(G)|

,

where the sums are to be taken over isomorphism classes.

Using quite a few auxiliary results which are outside of the scope of this thesis (see [CHb] for details)
and assuming conjecture 4, one can deduce the following.

Theorem 6. For any odd prime p and any integer r including r = ∞, set (p)r =
∏r
k=1(1 − p−k), and let

C =
∏
k≥2 ζ(k) ≈ 2.29486. Let also d be a negative fundamental discriminant, and rp(G) denote the p-rank

of an abelian group G. Then if conjecture 4 is true it holds that

(A) The probability that H(d)o is cyclic is equal to

ζ(2)ζ(3)

3(2)∞Cζ(6)
≈ 0.977575.

(B) If p is an odd prime, the probability that p | h(d) is equal to

f(p) = 1− (p)∞.

For example f(3) ≈ 0.43987, f(5) ≈ 0.23967, and f(7) ≈ 0.16320.

(C) If p is an odd prime, the average of prp(H(d)) is 2.

Proof. See [CHb].

Remark 7. As for (C), note that prp(H(d)) = |H(d)[p]|, where G[p] denotes the p-torsion subgroup of an
abelian group G, and so (C) can be equivalently stated as∑[

0<−d<X

|H(d)[p]| ∼ 2
∑[

0<−d<X

1.

Putting p = 3 this is a famous theorem by Harold Davenport and Hans Heilbronn. We sketch a proof of a
sharper version of this theorem in the next chapter.

2The notation
∑[ indicates that the sum is taken over fundamental discriminants.
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Chapter 5

Average cardinality of torsion
subgroups

Let d be a negative fundamental discriminant, and let Hp(d) or Clp(d) denote the set of elements of order
p in the form class group H(d) or ideal class group Cl(d), respectively. From conjecture 4 and by noticing
that |Hp(d)| = |H(d)[p]| − 1, we have that∑[

0<−d<X

|Hp(d)| ∼
∑[

0<−d<X

1. (5.1)

In [Hou10], Bob Hough proves (5.1) for p = 3 by first making a broader prediction in terms of equidistribution.
In fact, he is able to prove something stronger, namely the following theorem.

Theorem 7. Let X > 0, then ∑[

0<−d<X

|H3(d)| = c1X + c2X
5/6 + o(X5/6),

where c1, c2 ∈ R are constants with c1 > 0 and c2 < 0.

This theorem has also been proved by Manjul Bhargava et al. [BST13], and Frank Thorne et al. [TT13],
but with different techniques. In the sequel, we give a rough outline of Hough’s proof of theorem 7. The
analytical details are omitted, as they are well beyond the scope of this thesis.

5.1 Background

Let [I] ∈ Cl(d) and recall from theorem 4 that there exists a unique class of forms [(a, b, c)] ∈ H(d) for which

[I] = [(a,
−b+

√
d

2
)].

We thus have a one-to-one correspondence between ideal classes and points in H/SL2(Z) given by

[I]↔ [z(a,b,c)].

Definition 27. Let [I] ∈ Cl(d) and let ψ : H(d) → Cl(d) be the isomorphism induced from the maps in
theorem 4. Let Q ∈ ψ−1([I]) be arbitrary. Then the point in the fundamental domain F of the modular
surface H/SL2(Z) corresponding to the class [zQ] is called the CM-point of [I], and is denoted by z[I].
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As a starting point Hough took the following theorem of William Duke [Duk88] and Yuri V. Linnik [Lin68],
here in the formulation of [Duk].

Theorem 8. Suppose that K ∈ C∞(H) is SL2(Z)-invariant and bounded on H. Then as d→ −∞ with d a
fundamental discriminant, ∑

z∈zCl(d)

K(z)

∑
z∈zCl(d)

1
→
∫
H/SL2(Z)

K(z)dµ(z),

where dµ(z) = 3
π

dxdy
y2 , and zCl(d) is the set of all CM-points of ideal classes in Cl(d).

In analogy with this theorem, and based on visual evidence, Hough formulates the following conjecture.

Conjecture 5. Let K be a continuous function of compact support on the fundamental domain F of the
modular surface. For each odd k > 1 we have that

lim
X→∞

∑[

0<−d<X

∑
[I]∈Hk(d)

K(z[I])

∑[

0<−d<X

1
=

∫
F
K(z)dµ(z),

where dµ is the same measure as in theorem 8.

Hough is able to prove conjecture 5 for the case k = 3, and establishes partial results towards the
conjecture for larger k. The latter is however beyond the scope of this thesis.

Remark 8. The result of Hough does indeed imply (5.1). Simply put K(z) = 1 for z ∈ F and the rest by
interpolation from 0.

Instead of working with CM points of ideal classes in Cl(d), Hough works with so-called Heegner points
of primitive ideals with classes in Cl(d). These points of view turn out to be equivalent.

Definition 28. Let A ⊂ ZK be an ideal. We say that A is primitive if there exists no prime p ∈ Z and no
ideal B ⊂ ZK such that A = (p)B. If k > 1 is odd we use the notation Pk(d) to denote primitive ideals with
classes in Clk(d).

Proposition 31. If A ⊂ ZK is a primitive (integral) ideal, we can write A = (N (A), b + ω), where b is
uniquely determined by

−N (A)

2
< b ≤ N (A)

2
,

and
b+ ω ∈ A.

Proof. Recall that by lemma 23 we have a unique basis {a, b+ cω} for A, where a > 0, 0 ≤ b < a, 0 < c ≤ a,
and N (A) = ac. It is easy to see that A is primitive iff c = 1, whence we have the basis {N (A), b+ω}. It is
easy to see from the proof that −a/2 < b ≤ a/2 still uniquely determines b.

Definition 29. Let A = (N (A), b+
√
d) be primitive, with b as in proposition 31. Then the point zA = b+

√
d

N (A)

(which lies in (−1/2, 1/2] + iR+) is called the Heegner point of A.

Proposition 32. The collection of Heegner points of primitive ideals of class [A] are exactly the images of
the CM point z[A] in the various fundamental domains for H/SL2(Z) with the strip (−1/2, 1/2] + iR+.

Proof. See [IK04, C. 22].

40



Corollary 3. The equidistribution of CM-points within F is equivalent to the equidistribution of the
corresponding Heegner points in (−1/2, 1/2] + iR+.

We now introduce some notation. Given an integrable function f on R+ let its Mellin transform f̃ be
defined (when absolutely convergent) by f̃(s) =

∫∞
0
f(x)xs−1dx where s ∈ C, and be analytic continuation

elsewhere, let ε denote arbitrarily small positive parameters, and let A� B denote A = O(B).
Hough’s main result can be given quantitatively as follows.

Theorem 9. Let k ≥ 3 be odd, and let φ, ψ ∈ C∞(R+) with φ of compact support and ψ supported in
[1,∞) with ψ ≡ 1 on a neighborhood of ∞. Let T = T (X) be a parameter and put ψT (y) = ψ( yT ). For T

in the range X
1
2−

1
k−2+ε < T < X

1
2−

1
k+ε we have that∑

d≡42
square-free

φ

(
d

X

) ∑
A∈Pk(−4d)

ψT (=zA)

/ ∑
d≡42

square-free

φ

(
d

X

)

=
3

πT

∫ ∞
0

ψ(y)
dy

y2
+
π2

2
ck
φ̃
(
1
2 + 1

k

)
φ̃(1)

X
1
k−

1
2

+O

(
X

k
4−1+ε

T
k
2

)
+O

(
X

1
2k−2−

1
2+ε
)
,

where

ck =
Γ( 1

2 −
1
k )ζ(1− 2

k )

kπ3/2Γ(1− 1
k )

(1− 2
1
k + 21−

1
k )
∏
p≥3
prime

[
1 +

1

p+ 1

(
1

p
1
k

− 1

p1−
2
k

− 1

p1−
1
k

− 1

p

)]
.

Remark 9. Since ζ(1− 2
k ) < 0 we have that ck < 0.

Remark 10. Notice that the theorem only covers discriminants of the form −4d where d > 0, d ≡4 2 and d
is square-free. Hough’s method works for the other two cases (see proposition 24) with minor modifications.

The equidistribution setting gives us a pretty geometric interpretation of the negative secondary main
term. Namely, if A ∈ Pk(d) then Ak is principal, so that Ak = (x + y

√
−d) for some x, y ∈ Z, with y 6= 0

since A is primitive. Consequently N (Ak) = N (A)k = x2 + dy2 ≥ d so that N (A) ≥ d 1
k and thus

=(zA) =

√
d

N (A)
≤ d 1

2−
1
k .

Therefore there are no Heegner points in the set T = {z ∈ (−1/2, 1/2] + iR+ : =(z) > X
1
2−

1
k }. Hence we

expect ∑[

0<−d<X

∑
A∈Pk(d)

K(zA)

∑[

0<−d<X

1
,

to asymptotically behave like ∫
(−1/2,1/2]+iR+

K(z)dµ(z)−
∫
T

K(z)dµ(z).

We have that Volµ(T ) = 3
πX

1
k−

1
2 , and thus we have a heuristic justification for the negative secondary main

term π2

2 ck
φ̃( 1

2+
1
k )

φ̃(1)
X

1
k−

1
2 .

In the following section I will sketch a proof of theorem 9 following Hough. Theorem 7 is then by
corollary 3 an easy consequence.
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5.2 Set-up

From basic Fourier analysis, we have the following theorem.

Proposition 33. Let Cc(S) (C∞c (S)) denote the space of continous (smooth) functions defined on S with
compact support. The linear span of function of the form

e(fx)ψ(y), f ∈ Z, ψ ∈ C∞c (R+),

is dense (with respect to the supremum-norm) in Cc(R/Z× R+).

Proof. Take the Fourier series in the first variable and apply (say) theorem 1.4.2 of [DM72].

With this in mind, we only have to prove the theorem for functions K(x, y) = e(fx)ψ(y) with f ∈ Z and
ψ ∈ C∞c (R+). The rest follows from linearity.

The most central piece of the proof is the following parameterization of primitive ideals A such that
A 6= 1 and [Ak] = [1].

Proposition 34. Let d ≡4 2 be square-free and k ≥ 3 be odd. The set

{(l,m, n, t) ∈ (Z+)4 : lmk = l2n2 + t2d, gcd(lmn, t) = 1},

is in bijection with primitive ideal pairs {A,A} with A 6= 1 and Ak principal. Explicitly, the ideals A,A are
given as Z-modules by

A = (lm, lnt−1 +
√
−d)Z A = (lm,−lnt−1 +

√
−d)Z,

where N (A) = lm and t−1 is the inverse of t modulo m.

In order to prove the proposition, we need an alternative characterization of primitive ideals. It is based
on the behaviour of the principal ideals (p) ⊂ ZK for p ∈ Z prime.

Proposition 35. Let as usual K = Q(
√
d), with d fundamental, let ω = d+

√
d

2 , and let p be a prime number.
Then

(i) If p | d, then p is ramified and we have (p) = P 2 where P = (p) + (ω), except when p = 2 and d ≡16 12
in which case P = (p) + (1 + ω).

(ii) If (d/p) = −1, then p is inert and we have (p) = P a prime ideal in ZK .

(iii) If (d/p) = 1, then p is split and we have (p) = PP with P = (p) + (ω− d+b
2 ) where b is any solution to

b2 ≡4p d, and where P = {a : a ∈ P} is the conjugate ideal.

Proof. See [Coh00, p. 219].

Keeping in mind that (see chapter 2.3) ideals in ZK have unique prime ideal factorization, we make the
following definition.

Definition 30. Let d be a fundamental discriminant. The ideal

d =
∏
P |(d)

P prime ideal

P,

is called the different of d.

With the different of d, we can give the alternative characterization.
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Proposition 36. Let A ⊂ ZK be an ideal. Then A is primitive iff A = LB with L | d, (B, d) = (1) and
(B,B) = (1).

Proof. Evidently A is primitive iff it has no inert primes, any prime ideal resulting from ramification only
occurs once, and for prime ideals P resulting from splitting it only contains one of P or P ; in its prime ideal
factorization.

Proposition 35 gives us that d only contains primes that result from ramification. These primes are not
inert, since if a prime ideal P resulting from ramification of a prime q | d would be inert then P 2 = (p)2 =
(p2) = (q) for some prime p, but this is a contradiction. They also cannot have resulted from the splitting
of a prime, because if a prime ideal P resulting from ramification of a prime q | d would resulting from the
splitting of a prime p, then PP = (p) and P 2 = (q) so that (p2) = (PP )2 = (q2). Thus p = q and so P = P ,
which contradicts the assumption that P resulted from the splitting of a prime.

Furthermore, the condition (B, d) = (1) is equivalent to B not consisting of any prime ideal resulting
from ramification, and the condition (B,B) = (1) implies that B has no inert primes, and that if P | B
results from splitting, then only one of P and P occurs in the factorization of B. Thus it is easy to see that
if A = LB with L and B satisfying the criteria, then A is primitive.

Conversely, if A is primitive, we have that A = P k11 . . . P krr . Clearly prime ideals resulting from ramifica-
tion can only occur once in the factorization, because if some Pi resulting from ramification of q | d occurs
ki ≥ 2 times, we have that P kii = (q)Q for some ideal Q, and so A is not primitive. Grouping all prime
ideals resulting from ramification together in the prime ideal factorization of A, we then see that A = LB
for some L | d. The conditions on B follow from arguing as before.

We can now prove the parameterization.

Proof of proposition 34. Let A 6= (1) be primitive with Ak principal. By proposition 36 we have that there
exists ideals H,B so that A = HB and H | d, (B, d) = (1), and (B,B) = (1). We have that B 6= 1 because
otherwise A = H so that1 [H]k = [Hk] = [H] = [1] and thus H = (1), which leads to the contradiction
A = (1). Now since k − 1 is even, we have that AkH−(k−1) = HBk is principal, say

HBk = (x+ t
√
−d).

Since HBk is on the form given in proposition 36 we also see that it is primitive. Put m = N (B) and
l = N (H) and notice that l | d, and l is square-free. Taking the norm of HBk we see that

lmk = x2 + t2d,

and consequently l | x, whence we can write x = ln and we get mk = ln2 + t2l′ where l′ = d/l. Since
HBk is primitive we further see that gcd(t, ln) = 1, so that also gcd(n, t) = 1. It is moreover the case
that gcd(m, t) = 1 because if p | gcd(m, t) then p2 | mk − t2l′ = ln2 so that p | gcd(ln, t) = 1 which is a
contradiction.

Finally, since HBk is primitive, we have that n, t 6= 0. Multiplying by −1 if necessary, we may assume
that t > 0. By replacing A with A if necessary, we may also assume that n > 0.

We have now shown how, given an ideal pair {A,A} we can get a quadruple (l,m, n, t) ∈ (Z+)4 satisfying
lmk = l2n2 + t2d and gcd(lmn, t) = 1. Suppose conversely we are given a quadruple (l,m, n, t) ∈ (Z+)4

satisfying the conditions. Then clearly l | lmk − l2n2 = t2d so that from co-primality l | d. This gives us
that l is square-free. I further claim that gcd(m,n) = 1. Indeed, if p | (m,n) then from co-primality, we

have that p - t and thus p2 | lm
k−l2n2

t2 = d, which is a contradiction. From gcd(m,n) = 1 we conclude2 that

gcd(m, d) = 1. Write now (ln+ t
√
−d) = HC with H | d and (C, d) = (1). Then (lmk) = (l)(mk) = H2CC.

1Here we use that k is odd, say k = 2k′+ 1 and that H consists of prime ideals resulting from ramification. This means that

H2k′ is principal whence obviously [Hk] = [H].
2For the sake of readability, we prove this in a footnote. Say that p | (m, d), then p | m and p | d so p | l2n2 and thus p | l or

p | n. If p | n then p | (m,n) which is a contradiction. Thus we have that p | l. This implies that p | mk − ln2 and so p | t2 d
l
,

but from co-primality we have that p - t and so p | d
l
. Then p | (l, d

l
) = 1 and we have a contradiction.
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Since (m, l) | (m, d) = 1 we have that (l) = H2 and CC = (mk). We also have that C divides (ln+ t
√
−d)

and (C, d) = (1), whence also (C,C) = (1). Therefore there exists an ideal B such that C = Bk. Since also
(B,B) = (1) and (B, d) = (1) we conclude that B is primitive. Put now A = HB. Then A = HB, and
clearly A,A are primitive. Furthermore

Ak = HkBk = (H2)
k−1
2 HC = (l)

k−1
2 (ln+ t

√
−d),

is principal. This completes the bijection.
Now let A be the ideal in the pair {A,A} which satisfies n, t > 0. We want to give A explicitly as a

Z-module. Since A is primitive, we can write A = (N (A), b +
√
−d)Z and from the bijection we see that

N (A) = lm. It thus only remains to find b modulo lm. We have that

A2 = (l2m2, lmb+ lm
√
−d, b2 − d+ 2b

√
−d)Z,

but from the bijection we also have that A2 = (l)B2. Hence we must have that l | b2 − d so that l | b2 and
since l is square-free, l | b. Write therefore b = lb′. Since lm ∈ A, we have that lm2 and lmb′+m

√
−d ∈ B2.

This implies that the ideal

A(B2)
k−3
2 B2 = (l)−

k−1
2 Ak = (ln+ t

√
−d),

contains (lm)(lm2)
k−3
2 (lmb′ +m

√
−d). In other words, there are integers x, y such that

l
k+1
2 mk−1b′ + l

k−1
2 mk−1√−d = (ln+ t

√
−d)(x+ y

√
−d),

multiplying by m and using that lmk = (ln+ t
√
−d)(ln− t

√
−d), we see that

(ln− t
√
−d)(l

k−1
2 b′ + l

k−3
2

√
−d) = mx+my

√
−d.

Expanding and equating coefficients, we get

m | l
k−1
2 (n− tb′),

so that n ≡m tb′. Multiplying by the inverse t−1 of t modulo m, and then by l, we get lm | b− lnt−1, whence
we are done.

We can now end this thesis by giving a rough sketch of how to prove theorem 9.

5.3 Proof sketch

Using proposition 31, we see that the sum in theorem 9 can be written as

SX =
∑
d≡42
|µ(d)|=1

φ

(
d

X

) ∑
A∈Pk(−4d)

A=(a,b+
√
−d)Z

ψ

(√
d

Ta

)
,

where µ(n) is the Möbius function.3 We now have that

SX =
∑
d≡42
|µ(d)|=1

φ

(
d

X

) ∑
(1) 6=A primitive

[A]k=[1]∈Cl(−4d)
A=(a,b+

√
−d)Z

ψ

(√
d

Ta

)
,

3Defined by µ(n) = 0 if n is divisible by the square of a prime, and by µ(p1p2 . . . pr) = (−1)r for distinct primes pi.
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because while criterion [A]k = [1] implies that the class [A] has order dividing k, the conditions on T and the
support of ψ make sure that classes with order less than k do not appear. Introducing the parameterization
from proposition 34 we get

SX =
∑

l,m,t∈Z+,n∈Z
C1

φ

(
lmk − l2n2

t2X

)
ψ

(√
lmk − l2n2
lmtT

)
,

where C1 represents the conditions

gcd(lmn, t) = 1, lmk − l2n2 ≡4t2 2t2, and |µ(
lmk − l2n2

t2
)| = 1.

Notice that the latter two conditions correspond to the conditions d ≡4 2 and d is square-free. We shall
introduce the last condition in a clever way. Let N be an integer and consider the sum∑

s2|N

µ(s).

Say that the prime factorization of N is N = p2k1+l11 . . . p2kr+lrr with li ∈ {0, 1}, and put q = pk11 . . . pkrr and
r = pl11 . . . p

lr
r . Say now that s2 | N . Then s consists of the same primes as N , and thus s2 = p2s11 . . . p2srr .

Hence si ≤ ki + li
2 , but since the si are integers we have that si ≤ ki, which means that s | q. Hence∑

s2|N

µ(s) =
∑
s|q

µ(s) = [q = 1],

where [·] is the Iverson-bracket.4 But q = 1 iff N is square-free, and hence

|µ(
lmk − l2n2

t2
)| =

∑
s2| lmk−l2n2

t2

µ(s).

This means that

SX =
∑

l,m,t∈Z+,n∈Z
C2

φ

(
lmk − l2n2

t2X

)
ψ

(√
lmk − l2n2
lmtT

)
×

∑
s2| lmk−l2n2

t2

µ(s),

where C2 are the same conditions as C1 except square-freeness. What makes this clever is that the sum can
be split over s at a parameter Z which then makes it possible to write SX = M + E where M is a main
term and E is an error term. Namely

M =
∑

l,m,t∈Z+,n∈Z
C2

φ

(
lmk − l2n2

t2X

)
ψ

(√
lmk − l2n2
lmtT

)
×

∑
s2| lm

k−l2n2

t2

s≤Z

µ(s),

and

E =
∑

l,m,t∈Z+,n∈Z
C2

φ

(
lmk − l2n2

t2X

)
ψ

(√
lmk − l2n2
lmtT

)
×

∑
s2| lm

k−l2n2

t2

s>Z

µ(s).

Through an array of analytical tools, Hough is finally able to evaluate the main term,

4Let P be a statement. Then [P ] = 0 if P is true, and [P ] = 1 if P is false.
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Proposition 37. Let k ≥ 3 and let ck be the same constant as before. Then for Z � T
k
4X

1
2−

k
8−ε we have

that

M =
6

π3
φ̃(1)ψ̃(−1)

X

T
+ ψ(∞)φ̃

(
1

2
+

1

k

)
ckX

1
2+

1
k

+O
(
X

1
2+

1
2k−2+ε

)
+O

(
X1+εT−1Z−1

)
+O

(
X

k
4+εT−

k
2

)
.

and estimate the error term

Proposition 38. We have that

E � X1+ε

TZ
+
X

k
4+ε

T
k
2

.

By Mellin inversion one obtains that∑
d≡42

d square-free

φ

(
d

X

)
=

2

π2
φ̃(1) +O

(
X1/2

)
,

so proving theorem 9 is now only a matter of picking the right Z. Letting Z = T
k
4X

1
2−

k
8−ε it can be shown

that

E � X
k
4+ε

T
k
2

+X
1
2+

1
2k−2+ε,

and thus the theorem is proved.
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