4. Irreducible sets.

(4.1) Definition. A topological space X is irreducible if X is non-empty, and if any two non-empty open subsets of X intersect. Equivalently X is irreducible if $X \neq \emptyset$ and X is not the union of two closed subsets different from X. A subset Y of X is irreducible if it is an irreducible topological space with the induced topology.
(4.2) Proposition. Let X be a topological space.
(1) A subset Y of X is irreducible if and only if the closure \bar{Y} is irreducible.
(2) Every irreducible subset Y of X is contained in a maximal irreducible subset.
(3) The maxmial irreducible subsets of X are closed, and they cover X.

Proof. (i) The first claim follows easily from the observation that every open subset that intersects \bar{Y} also intersects Y.
(ii) Let Y be an irreducible subset of X, and let !! \mathcal{I} be the family consisting of all irreducible subsets of X that contain Y. For every chain !! $\mathcal{J}=\left\{Z_{\alpha}\right\}_{\alpha \in I}$ in \mathcal{I} we have that $Z=\cup_{\alpha \in I} Z_{\alpha}$ is irreducible. This is because, when U and V are open sets that intersect Z there are α and β in \mathcal{I} such that $U \cap Z_{\alpha}$ and $V \cap Z_{\beta}$ are non-empty. Since \mathcal{J} is a chain we have that either the sets $U \cap Z_{\alpha}$ and $V \cap Z_{\alpha}$, or the sets $U \cap Z_{\beta}$ and $V \cap Z_{\beta}$, are non-empty. In particular $(U \cap Z) \cap(V \cap Z)$ is non-empty. Since all chains have maximal elements it follows from Zorns Lemma that \mathcal{I} has maximal elements.
(iii) The third claim is an immediate consequence of assertions (1) and (2).
(4.3) Definition. The maximal irreducible subsets of X are called the irreducible components of X.
(4.4) Example. The irreducible components of the topological space with the trivial topology is X itself.
(4.5) Example. The irreducible components of the topological space X with the discrete topology are the points of X.
(4.6) Example. The topological space X with the finite complement topology is irreducible exactly when X consists of infinitely many points, or consists of one point.
(4.7) Example. Let x be a point of the topological space X. Then the closure $!!\{x\}$ is irreducible.
(4.8) Definition. Let X be an irreducible topological space. If there is a point x in X such that $X=\overline{\{x\}}$ we call x a generic point of X.
(4.9) Definition. A topological space X is compact if every open covering $\left\{U_{\alpha}\right\}_{\alpha \in I}$ has a finite subcover, that is, there is a finite subset J of I such that $X=\cup_{\beta \in J} U_{\beta}$.
(4.10) Example. The topological space X with the trivial topology is compact. topology4
(4.11) Example. The topological space X with the discrete topology is compact if and only if the set X is finite.
(4.12) Example. The topological space X with the finite complement topology is compact.
(4.13) Definition. The combinatorial dimension, or simply the dimension, of a topological space X is the supremum of the length n of all chains

$$
X_{0} \subset X_{1} \subset \cdots \subset X_{n}
$$

of irreducible closed subsets X_{i} of X. We denote the dimension of X by $\operatorname{dim}(X)$.
Let Y be a closed irreducible subset of X. The combinatorial codimension, or simply the codimension, of Y in X is the supremum of the length n of all chains

$$
Y=X_{0} \subset X_{1} \subset \cdots \subset X_{n}
$$

of irreducible closed subsets X_{i} of X. We denote the codimension of Y in X by $\operatorname{codim}(Y, X)$.
(4.14) Example. The topological space X with the trivial topology has dimension 0.
(4.15) Example. The topological space with the discrete topology has dimension 0 .
(4.16) Example. Let $X=\left\{x_{0}, x_{1}\right\}$ be the topological space consisting of two points and with open sets $\left\{\emptyset, X,\left\{x_{0}\right\}\right\}$. Then X has dimension 1.
(4.17) Remark. Let X be a topological space and $\left\{X_{\alpha}\right\}_{\alpha \in I}$ its irreducible components. Then $\operatorname{dim}(X)=\sup _{\alpha \in I} \operatorname{dim}\left(X_{\alpha}\right)$.
(4.18) Remark. For every subset Y of X with the induced topology we have that $\operatorname{dim}(Y) \leq \operatorname{dim}(X)$. This is because when Z is closed and irreducible in Y, then the closure \bar{Z} of Z in X is irreducible by Proposition (4.2), and since Z is closed in Y we obtain that $\bar{Z} \cap Y=Z$.
(4.19) Remark. A topological space X is noetherian if the open subsets of X satisfy the maximum condition. That is, every chain of open subsets of X has a maximal element. Equivalently the space X is noetherian if the closed subsets of X satisfy the minimum condition. That is, every chain of closed subsets have a minimal element. A space is locally noetherian if every point $x \in X$ has a neighbourhood that is noetherian.
(4.20) Example. The topological space X with the trivial topology is noetherian.
(4.21) Example. The topological space X with the discrete topology is noetherian exactly when the space consists of a finite number of points.
(4.22) Example. A topological space with the finite complement topology is noetherian.
(4.23) Remark. Let X be a noetherian topological space. Then every subspace Y of X is noetherian. This is because a chain $\left\{Z_{\alpha}\right\}_{\alpha \in I}$ of closed subsets in Y gives a chain $\left\{\bar{Z}_{\alpha}\right\}_{\alpha \in I}$ of closed subsets in X, where \bar{Z}_{α} is the closure of Z_{α} in X. We have that $\bar{Z}_{\alpha} \cap Y=Z_{\alpha}$ and consequently that when $Z_{\alpha} \subset Z_{\beta}$ then $\bar{Z}_{\alpha} \subset \bar{Z}_{\beta}$.
(4.24) Remark. A noetherian topological space X is compact. This is because if $\left\{U_{\alpha}\right\}_{\alpha \in I}$ is an open covering of X without a finite subcovering we can find, by induction on n, a sequence of indices $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \ldots$ in I such that $U_{\alpha_{1}} \subset U_{\alpha_{1}} \cup$ $U_{\alpha_{2}} \subset U_{\alpha_{1}} \cup U_{\alpha_{2}} \cup U_{\alpha_{3}} \subset \cdots$. Hence X is not noetherian.

Conversely, if every open subset of X is compact, then X is noetherian. This is because if X is not noetherian then we can find an infinite sequence of open subsets $U_{1} \subset U_{2} \subset \cdots$ of X. Then the union $\cup_{n=1}^{\infty} U_{n}$ is an open subset of X with a covering $\left\{U_{n}\right\}_{n \in \mathbf{N}}$ that does not have a finite subcovering.
(4.25) Proposition. A noetherian topological space X has only a finite number of distinct irreducible components $X_{1}, X_{2}, \ldots, X_{n}$. Moreover we have that X is not contained in $\cup_{i \neq j} X_{j}$ for $i=1,2, \ldots, n$.

Proof. Let \mathcal{I} be the collection of all closed subsets of the topological space X for which the Lemma does not hold. Assume that \mathcal{I} is not empty. Since X is noetherian the collection \mathcal{I} then has a minimal element Y. Then Y can not be irreducible, so Y is the union $Y=Y^{\prime} \cup Y^{\prime \prime}$ of two closed subsets $Y^{\prime}, Y^{\prime \prime}$ different from Y. By the minimality of Y the sets Y^{\prime} and $Y^{\prime \prime}$ both have a finite number of irreducible components. Consequently Y can be written as a union of a finite number of closed
$\rightarrow \quad$ irreducible subsets. It follows from Proposition (4.2) that Y has only a finite number of irreducible components. This contradicts the assumption that \mathcal{I} is not empty. Hence \mathcal{I} is empty and the Proposition holds.

If i is such that $X_{i} \subseteq \cup_{i \neq j} X_{j}$ we have that X_{i} is covered by the closed subsets $X_{i} \cap X_{j}$ for $i \neq j$. Since X_{i} is irreducible it follows that X_{i} must be contained in one of the X_{j}, which contradicts the maximality of X_{i}.

(4.26) Exercises.

1. Find the generic points of the topological space X with the trivial topology.

Let X with a distinguished element x_{0} be the topological space with open subsets consisting of all subsets that contain x_{0}.
(1) Find the irreducible subsets of X.
(2) Find the generic point of all the irreducible subsets.
2. A topological space X is called a Kolmogorov space if there for every pair x, y of distinct points of X is an open set which contains one of the points, but not the other. Show that when X is a Kolmogorov space which is irreducible and has a generic point, then there is only one generic point.
3. A topological space is called a Hausdorff space if there for every pair of distinct points x, y of X are two open disjoint subsets of X such that one contains x and the other contains y. Determine the irreducible components of a Hausdorff space.
4. Let X be an irreducible topological space, and $f: X \rightarrow Y$ a continuous map to a topological space Y.
(1) Show that the the image $f(X)$ of X is an irreducible subset of Y.
(2) Show that if x is a generic point of X, then $f(x)$ is a generic point of $f(X)$.
5. Let X be an irreducible topological space. Show that all open subsets are irreducible.
6. Let $X=\mathbf{N}$ be the natural numbers and let \mathcal{U} be the collection of sets consisting of X, \emptyset and the subsets $\{0,1, \ldots, n\}$ for all $n \in \mathbf{N}$.
(1) Show that X with the collection of sets \mathcal{U} is a topological space.
(2) Show that the topological space of part (1) is irreducible.
(3) Show that the topological space of part (1) has exactly one generic point.
(4) What is the dimension of X ?

