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12 January 2006 1. Notation notation 1.1
1. Notation.

(1.1) Notation. Let !I! be a set. For every set !M! we write !M?! for the set
of all maps I — M, that is the set of all families !(x4)acr! with !z, € M! for all
la € I'. When !G! is a group we we define the support of an element (g, )a € I
as the subset of I consisting of the o such that g, # 0. We write !G)! for the
set of all maps I — G with finite support , that is all !(ga)acr! in G! with only a
finite number of the g, different from 0.

Denote by !N! the natural numbers. For !(v4)acs! in N we let l|y| =
|(Va)acr] = D ger Va!- Let = (pa)acr! be in N We write p < v if po < vq
for all @« € I, and we write p < v if p < v and p < v. Moreover we write

wrv= (:uoz + Va)aé]-
For every element g = (g )acr! in GT we write

g =TJoe= [ o

ael a€l,v,#0

Let lu™ : M — G! for n € N be maps from M to G. For every element
2 = (24)acr! in M1, and every element v = (v, )qer in N we write

lu” (z)! = H u’(xy) = H u’ (zy).

ael a€l,v,#0

Hence the maps u™ : M — G for n € N give a map
uw M — G

for each v € NU),
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12 January 2006 2. Exponential sequences exp 2.1

2. Exponential sequences.

(2.1) Notation. Let !A! be a ring and let !B! be an A-algebra.

(2.2) Definition. (III §7 p. 256, B 87) An exponential sequence with values in
B is a sequence le = (e, )nen! of elements le,, € B! such that

(1) €y = 1.
(ii) emen = (m;;”)eern.
The set of exponential sequences with values in B we denote by !£(B)!. We define

the product of two exponential sequences e = (e, )nen and !f = (f)nen! by

ef:( Z eifj)neN-

i+i=n

(2.3) Module structure. The product of two exponential sequences with values
in B is again an exponential sequence with values in B. This follows from the

s ()~ (")

i+j=m
that we obtain by considering the coefficient of ¢ in the identity (1+¢)™(1+t)" =
(1 + ¢)™*t™. With this product it is clear that £(B) is an abelian group with unit
(1,0,0,...). The inverse of the element f = (fn)nen is ((—1)" fn)neN-
For all elements ! f € B! and all exponential sequences e = (e, )pen in £(B) we
have that the product

fe= (fnen)nEN
is an exponential sequence. It is clear that £(B) with this product is a B-module.

We let IE(B) = £4(B)! when we want to emphasize that we consider £(B) as an
A-module via the A-algebra structure on B.

(2.4) Remark. Let B be an A-algebra. When !C! is a B-algebra we have that
Ea(C) and Ep(C) are the same abelian group, and that £4(C) is the B-module
Ep(C) considered as an A-module via the A-algebra structure on B.

(2.5) The exponential functor. Let B and C be A-algebras and let 14 : B — C!
be an A-algebra homomorphism. We obtain a map

E():E(B) — E(C)
defined on all exponential sequences e = (e, ),en of £(B) by

EW)(e) = E(P)((en)nen) = (¥(en))en-

It is clear that £(1) is an A-module homomorphism and that £ is a functor from
A-algebras to A-modules.
\divpotensall.tex



12 January 2006 2. Exponential sequences exp 2.2

(2.6) Characterization of homomomorphisms to exponential sequences.
Let IM! be an A-module. A map

lu: M — £(B)!
is the same as maps

Ww": M — B! for n=0,1,...

1

where v and u°, u!,... are related by

u(x) = (u"(2))nen

for all  in M. We have that the maps u™ : M — B for n = 0,1,... define an
A-module homomorphism v : M — &(B) if and only if, for all f € A and all x
and y in M, the follovving equations hold:

(i) u’(x) =
(i) u"(fz) = f "u"(z).
(111; (x)u"(x) = (mgn)u"”"(:v).

(V) u™(z +y) = 35 jmn v (@)1 (y).
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3. The algebra of divided powers.

(3.1) Introduction. Let M be an A-module. We shall in (3.19) show that
the functor from A-algebras to A-modules which maps an A-algebra B to the A-
module homomorphisms !Hom 4 (M, E(B))! from M to £(B) is representable. That
is, there is a A-algebra IT'(M)!, and for every A-algebra B a canonical bijection

W (B) : Homa a1 (I'(M), B) — Homa (M, E(B))!

from the A-algebra homomorphisms from I'(M) to B, which makes ¥,; into an
isomorphism of functors from A-algebras to A-modules.

The A-algebra I'(M) is called the algebra of divided powers of M. It is easy
to construct I'(M) directly. However, before we construct I'(M) we shall give its
properties in order to emphasize that these properties follow since th A-algebra
I'(M) represents the functor that maps B to Homa(M,E(B)), and not of its
construction.

We shall denote the multiplication on I'(M) by x. The reason for introducing
a particular notation for the multiplication is that we later shall show that the
ring T'(M) is graded, and that, when M is an algebra, each graded piece I'" (M)
is a ring under another multiplication, and it is important to distinguish the two
multiplications.

(3.2) Assumption. We assume until Section (3.19) that for every A-module
M the functor from A-algebras to A-modules which maps the A-algebra B to the
A-module Hom 4 (M, E(B)) is representable by an A-algebra I'(M).

When we need to emphasize the A-algebra structure we write |I'(M) = T" 4 (M)!.

(3.3) Unicity. Since I'(M) represents the functor which maps the A-algebra B
to the A-module Hom 4 (M, E(B)) it is unique up to an isomorphism of A-algebras.

(3.4) Functoriality in the modules. Let !N! be an A-module and let lu : M —
N! be an A-module homomorphism. We obtain an A-algebra homomorphism

T(u): (M) — T'(N)!
which is the image of the identity map on I'(IN) by the composite map
Hom 4 s (D(N), T(N)) 200,

Hom 4 (u,id)
AN

Hom4 (N, E(I'(N)))

Hom (M, E(T(N))) ~2 AN

Hom 4 _a15(I'(M),T'(N)).
It is clear from the definition of I'(u) that I' is a functor from A-modules to A-
algebras.
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12 January 2006 3. The algebra of divided powers alg 3.2

(3.5) The universal map. The image of the identity map on I'(M) by the bi-
jection Wy (I'(M)) : Hom g a1 (I'(M), T'(M)) — Homa (M, E(I'(M)) is a universal
A-module homomorphism
v - M — E(T(M))!,
such that there is a bijective correspondence between A-module homomorphisms
u: M — £(B) and A-algebra homomorphisms ¢ : I'(M) — B given by
u=E(p)Tm-
The homomorphism v : M — E(T'(M)) is given by homomorphisms
M —=T(M)forn=0,1,...
that satisfy the conditions

(i) 7ir(z) =1.

1) v (fz) = [y (@). .

(i) 37 () % iy (@) = ("0 )i ().

(i) Yir(e +y) = iy Vi (@) x 7ar (1)

(3.6) The grading. For every natural number n we let !I'"(M)! be the sub-A-

module of I'(M) generated by the elements 7%, (x) = xaervs5 (z4) for all v in N
with [v] =n and all = (24)aer in MT, where we let IT?(M) = Al. We also let

Iyt s M — T (M)

(i

denote the map induced by v}, : M — I'(M). In particular we have the map
v, M — A given by 78,(z) =1 for all z in M.

For every A-module homomorphism u : M — N and every nonnegative integer
n it follows from the definitions that we have a commutative diagram

M 2, prar)

« [

N —— I'"™(N),
TN
where T (u) : T"(M) — T"™(N)! is the A-module homomorphism on graded
pieces induced by T'(u).
Let f = (fa)aer be in AD) and let & = (24)aer be in M. By repeated
application of the properties (i)-(iv) of Section (3.5) we obtain the formula

S faza) = S ).

acel yeN(I)7|1/|:n
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(3.7) Theorem. The A-algebra T'(M) is a graded and augmented with T™(M) as
the elements of degree n, and I is a functor from A-modules to graded augmented
A-algebras.

Proof. We first show that the A-algebra I'(M) is generated by the elements v}, (x)
for all n in N and all  in M. In order to see this we let I'(M)" be the sub-A-
algebra of I'(M) generated by these elements. For each A-algebra B we have that
v 2 M — E(I(M)) factors via the A-submodule E(I'(M)’) of E(I'(M)). From
the isomorphism

U (T(M)') : Homg a1 (T(M),T(M)") — Homa (M, E(T(M)))

we consequently obtain an A-algebra homomorphism I'(M) — I'(M)" which com-
posed with the inclusion map I'(M)" — T'(M) gives the identity. Hence we have
that I'(M)' =T'(M)

To show that I'(M) is a graded A-algebra with I'™(M) as the elements of de-
gree n we observe that the A-algebra structure on I'(M) induces an A-algebra
structure on @52 I (M) such that the map ¢ : &5, ['™(M) — I'(M), induced by
the inclusions of the A-modules I'(M) in T'(M), is an A-algebra homomorphism.
The maps v}, : M — I'""(M) for n in N induce an A-module homomorphism
M — (@22 ,'™(M)) since they satisfy the the relations (i)-(iv) of Section (3.5).
Consequently we obtain an A-algebra homomorphism ¢ : I'(M) — @52, I'™(M)
whose composite with ¢ : @52 ;I'™"(M) — I'(M) is the identity on I'(M). Hence 1)
is injective. It follows from the definition of 1) that the composite of the restric-
tion of ¢ to I'"(M) and the projection @22 I (M) — I'™(M) is the identity on
'™ (M) for all n. Consequently we also have that v is surjective, and therefore an
isomorphism.

Corresponding to the A-linear map M — &(A) which maps z to (1,0,0,...)
for all x in M we obtain an A-algebra homomorphism

le : T(M) — Al

of graded A-algebra I'(M) called the augmentation map . Let u: M — N be a
homomorphism of A-modules. Then T'(u) : I'(M) — T'(N) clearly induces a map
of graded augmented A-algebras.

(3.8) Remark. The map
Y+ M — TH(M)

is an isomorphism of A-modules.
To see this we let 1A[M] = A@M! be the A-algebra of dual numbers , that is, the
multiplication on A@® M is given by (f +gz)(f'+¢'2") = ff'+ f'gz+ fg'z’ for all
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fif',g9,9 in Aand all z, 2" in M. Then we have an A-module homomorphism M —
E(A[M]) which maps z to 1 + x, and thus an A-algebra homomorphism I'(M) —
A[M] which maps 7v},(x) to . Consequently we have a surjection I''(M) — M
whose composite with v, : M — T''(M) is the identity on M. Hence 7}, is an
isomorphism.

(3.9) Functoriality in the rings. Let B be an A-algebra and let C' be a B-
algebra via the homomorphism ¢ : B — C. Moreover, let N be a B-module and
let !|P! be a C-module, and let v : N — P! be a B-module homomorphism,
where we consider P as a B-module via 1. It follows from Remark (2.4) that
the universal C-module homomorphism vyp : P — E-(I'¢(P)) gives a B-module
homomorphism v : P — Ep(I'c(P)), where we consider I'c(P) as a B-module via
1. Composition with v gives a B-module homomorphism N — Eg(I'¢(P)) which
corresponds to a B-algebra homomorphism

IPy(v) : T(N) — Do (P)! (3.9.1)

uniquely determined by

for all ly € M!. Clearly the diagram

N — £5(Tp(N))

l ls(rm))

P — 50(F0(P))

P

commutes.

Let M be an A-module. From the homomorphism (3.9.1) with N = M ®4 B,
P=M®4C, and v =1d ® 41 we obtain a map

T T%(M @4 B) — T (M ©,4 C)!

such that the diagram

M @i B 245, T (M ®4 B)
id®Awl W (3.9.2)
M XA C Fg(M XA C)
YM® 4 C

commutes.
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(3.10) Tensor products. Let B be an A-algebra via the homomorphism !y :
A — B! and N an B-module. Moreover, let lu : M — N! be an A-module
homomorphism, where we consider N as a A-module via the A-algebra structure
on B. It follows from (3.9.1) that we have an A-algebra homomorphism I'y,(u) :
Ca(M) — I'g(N) where I'g(N) is considered as a A-module via the A-algebra
structure on B. Extending scalars we obtain a B-algebra homomorphism

ITy(u)p : TA(M) @4 B — Tp(N)! (3.10.1)

determined by

Lo (u)B(Yir (2) ®@a 1) = 7i; (u(2))
for all z € M. Let C be a B-algebra via the homomorphism v : B — C. Assume
that N is also a C-module, and that the B-modules structure on N is induced by
v . Then we clearly have a commutative diagram

Ftp(u)B
s

La(M)®a B I'p(N)

i ®A¢l lrwd) (3.10.2)

(3.11) Theorem. ([R1], Thm. III, 3 p. 262) Let B be an A-algebra via the
homomorphism ¢ : A — B. The map of graded B-algebras

T,(u)p : TA(M)®4 B — Tp(M @4 B) (3.11.1)

obtained from (3.10.1) applied to the canonical A-module homomorphism v : M —
M ®4 B, is an isomorphism. The inverse is determined by mapping vy, (z @4 f)
to Yy () @a f™ forall f € B and x € M.

Moreover, for every map v : B — C of A-algebras we have a commutative
diagram

'y (u)B
-

FA(M)®AB Fc(M®AB>

id®A¢l lF(id@b) (3.11.2)
FA(M) R4 C ——— Fc(M(X)A C)

Fw(v)c
where v: M — M ® 4 C is the canonical map.
Proof. We shall construct the inverse to I',(u)p. Let x : Ta(M) = Ta(M)®a B

be the canonical A-algebra homomorphism. From the composite of the univer-
sal map vy : M — E4(Ta(M)) with the A-module homomorphism E4(x) :
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Ea(TA(M)) — E4(Ta(M) ®4 B) we obtain an A-module homomorphism M —
Ea(TA(M) ®a B). It follows from from Remark (2.4) that we have a A-module
isomorphism £4(Fa(M) ®4 B) — E(Ta(M) ®4 B). Consequently we obtain
an A-module homomorphism M — Ep(I'a(M) ®4 B) where the target is con-
sidered as a A-module via ¢. We extend scalars to B and obtain a B-module
homomorphism

M®4 B — Eg(TA(M)®4 B).
This homomorphism corresponds to a B-algebra homomorphism

FB(M(X)A B)—>FA(M) ®a B (3113)

which is easily checked to be the inverse to the map I',(u)p. It is clear that the
homomorphism (3.11.3) maps yj;(x ®4 f) to vj;(x) ®4 f" for all f € B.

The last part of the Theorem follows from the commutativity of Diagram
(3.10.2).

(3.12) The extended universal map. ([R1] IV §1 p.265) Let B be an A-
algebra. For every natural number n we have a canonical map
Ye=0O)B: M®aB—T"(M)®a B! (3.12.1)
determined by
VB wa®afa)= Y,  vulw)®af
acl veNW) |v|=n
for all f = (fa)aer in B and all z = (To)aer in M. This map is the composite
of the universal homomorphism 7}, g : M ®a B — 't (M ® 4 B) with the inverse
of the B-algebra isomorphism I'y,(u)p : T4 (M) ®4 B — I'(M ®4 B) of (3.11.1).
That is
Mean = Le(w)BVB-
Let v : B — C be a homomorphism of A-algebras. It follows from the commu-
tativity of the Diagrams (3.9.2) and (3.11.2) that we have a commutative diagram

M@sB —2 T"(M)®4 B

| |1a@as (3.12.2)
M®sC — (M) ®a C.

Yo
(3.13) Direct limits. ([R1], Thm. 3 p.277) Let I be a partially ordered and
directed set. Moreover let (M, ug)aﬁej,asg! be a directed system of A-modules.

We denote the direct limit of the system by "M =1lim M, and let lu, : M, —

——ael

M! for o in I be the canonical maps . Because of the functoriality of I' we obtain
a directed system !(I'(M), T'(u2))a.per.a<p! of A-algebras.
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(3.14) Theorem. The A-algebra homomorphism

limT(M,,) — T(limM,) (3.14.1)
acl acl

obtained from the maps T'(uy) : T'(M,) — T'(lim M) for all a in I is an
—acl
1somorphism.

Proof. We construct an inverse to the homomorphism (3.14.1). The canonical map
I'(M,) — lim T'(M,) corresponds to an A-module homomorphism v, : M, —

—a€el

E(lim  T'(M,)). We clearly have that v, = vgu? for all « and 3 in I with a < 3.

ael
Consequently we obtain an A-module homomorphism

imM, — &(limI(M,)). (3.14.2)
ael acl

The map (3.14.2) corresponds to a map of A-algebras

I'(limM,) — HmI'(M.,,)

acl acl

which clearly is the inverse to the map (3.14.1).
(3.15) Exact sequences. ([R1], IV 8 p. 278) A sequence of maps

L5 M 2 N (3.15.1)

Uz

is exact if v is surjective, and for all pairs of elements x1, x5 of M we have that
v(z1) = v(xs) if and only if there is an element !w € L! such that u;(w) = x; and
uz(w) = .

In particular, when the sequence (3.15.1) is exact, we have that for all x in M
there is a w in L such that u(w) = z = us(w).

(3.16) Theorem. ([R1], Thm. IV 5 p. 232) Let L = M % N be an ezact

U2
sequence of A-modules. Then the sequence

Flu) )
[(L) = I(M)—2T(N) (3.16.1)
[(u2)

is an exact sequence of A-algebras.



12 January 2006 3. The algebra of divided powers alg 3.8

Proof. Tt is clear that I'(v) is surjective and that I'(v)['(u1) = I'(vuy) = T'(vug) =
I'(v)T'(uz2). Let J be the image of I'(L) by the map I'(u;) — I'(uz). Then J is
contained in the kernel of I'(v).

Observe that every element in I'(M) can be written in the form ~y(uq(w’)) =
v(uz(w')) for some element w’ in L. This is because every element in I'(M)
is an A-linear combination of elements v, (z) with ' = (fta)aecr! in N and
T = (Zo)aer in MY, and for every « in I we can find an element w/, in L such
that z, = ui(w),) = uz(wl,). Hence

Var () = vy (ur (w)) = i (ua(w') = T(ur)vp (w') = yo(uz)yz(w’).  (3.16.2)

In particular we obtain that J is an ideal because it is generated, as an ideal,
by the elements T'(uy )Y (w) — I'(ug)y% (w) for all v € NU) and w € M!, and from
(3.16.2) we obtain

v (@) (D(ur) vz (w) = T(uz)vE (w)) = (ua) v (W)L (ua) vy (w)
= D(uz)vp (W) (u2) vz (w) = T'(ua) (v (w')yz (w)) = T(uz) (vL (w)vE (w)).
We shall show that the kernel of I'(v) is contained in the ideal J, and hence

equal to J. Let luy : I'(M) — I'(M)/3! be the residue map. It follows from the
definition of J that the composite maps of A-modules

L= M2 grm)) 202,

u2

&I (M)/3)

are equal. Consequently the homomorphism &(uz)vyys factors via an A-module
homomorphism N — E(I'(M)/T). Correspondingly there is an A-algebra homo-
morphism I'(N) — T'(M)/J which composed with I'(v) : I'(M) — T'(N) is equal
to uy. Consequently the kernel of I'(v) is contained in J.

We have proved that J is the kernel of the map I'(v), and thus that the sequence

[(u1)—T(uz) ['(v)
5 —

(L) (M) I(N) — 0 (3.16.3)

is exact.
Let z; and x5 be elements in I'(M) that have the same image by I'(v). Since
the sequence (3.16.3) is exact we can find an element w in I'(L) such that

2y — 3 = ([(u1) = T(ug))(w).

Let © = 1 — ['(uq)(w) = x9 — T'(u2)(w). As we observed, every element x in
['(M) can be written on the form = = TI'(uy)(w’) = T'(ug)(w’) for some w’ in
['(L). We therefore obtain that 1 = = + I'(u1)(w) = T'(u1)(w + w’) and that
29 = x + ['(ug)(w) = I'(uz)(w + w’). Hence we have proved that the sequence
(3.16.1) is exact.
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(3.17) Corollary. ([R1], Prop. IV.8) Let v : M — N be a surjection of A-

modules. Then we have an exact sequence

['(v)

0= T (M) —>T(N)—0

where J is the ideal in I'(M) generated by the elements v}, (x) withn > 1 and with
x in the kernel of v

Proof. Let L be the kernel of v. We have an exact sequence

LxM—=M%N

u2

where vy (w, z) = x and uz(w,z) = w+ z for all w € L and all x € M. It follows
from the Theorem that we have an exact sequence of A-modules

Plu) )
N(Lx M) = (M) 2% rv)
I'(uz)

and consequently an exact sequence of A-modules

['(u1)—D(uz) ['(v)

I'(L x M) I'(M) T'(N) — 0.

Hence we have that the kernel of I'(v) is generated by elements on the form (I'(uq)—
T(u2))VY o 0y (w, ) = v, (2) — %, (x +w) for all v € ND | all w = (wa)aer in L,
and all = (z4)aer in M1 It follows from the formula 755 (wa +2a) = V15 (Ta) +
220‘261 V(o) *vis " (wa), which holds for all o in I, that 7%, (x) —v%,(w+x) =
[acr vai (@a) = [Taer vaf (Wa + x4) lies in the ideal of I'(M) generated by the

elements 737" (wq) with p < v, and w, € L. Hence we have proved the Corollary.

(3.18) Direct sums. Let M and N be A-modules. The natural A-algebra
homomorphism I'(M) — I'(M) ® 4 I'(IN) gives a canonical homomorphism

M 2% E(T(M)) — E(T(M) ©4 T(N))

of A-modules. Similarly we have a canonical homomorphism of A-modules
N =% E(D(N)) — E(L(M) @4 T(N)).

We therefore obtain an A-module homomorphism

M & N — E(0(M) @4 T(N)). (3.18.1)
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(3.19) Theorem. ([R1], III §7 p. 256) The A-algebra homomorphism
I'M@®N)—->T(M)®aT'(N)) (3.19.1)

corresponding to the map (3.18.1) is an isomorphism. It is determined by mapping

Viron (©,Y) to 34 Yy () ®a vy (y) for all z in M and y in N.
The inverse is determined by mapping vy () ®a 1 to Vo n (7)), and 1@4 R ()
to Yyren (y) for allx € M andy € N.

Proof. We shall construct the inverse to the map (3.19.1). Observe that the natural
A-module homomorphisms M — M & N and N — M & N give homomorphisms
I'(M) — I'(M & N) respectively I'(N) — I'(M @& N) of A-algebras. Consequently
we obtain an A-algebra homomorphism

[(M)®4 T(N) — T(M & N) (3.19.2)

which is determined by mapping the elements v3;(x) ®4 1 to vi;qn (), and the
elements 1 ®4 Y% (y) to Vi;en (). Consequently (3.19.2) is the inverse to the map
(3.19.1).

(3.20) Co-product structure. We have a homomorphism of graded augmented
A-algebras
AT (M) —-T(M)®4 T'(M)!

determined by
Avir(@) = D (@) ©a 74 () (3:20.1)
i+j=n
for all x in M and n in N.

This homomorphism is obtained by composing the A-algebra homomorphism
I'M) — I'(M & M), corresponding to the diagonal map M — M & M with the
isomorphism I'(M & M) — T'(M) @4 I'(M) of (3.19.1).

It is clear that the augmentation ¢ : I'(M) — A is a co-unit for the multiplication
defined by A, and it follows from formula (3.20.1) that the co-multiplication is
associative and commutative.

(3.21) Construction of divided powers. It remains to prove that the A-
algebra I'( M) exists. We want the A-algebra I'(M) to give a canonical isomorphism
of A-modules

Hom 4 _a14(I'(M), B) — Homa (M, E(B)),

for all A-algebras B, that is functorial in B. It follows from the conditions (i)-(iv)
of Section (2.6) for A-module homomorphisms M — £(B) that these requirements
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are fulfilled by the residue ring I'(M) of the polynomial ring over A in the inde-
pendent variables X (n,x) for all (n,z) € N x M, modulo the ideal generated by
the elements

(i) X(0,z)—1.

(ii) X(n, fz)— f"X(n,x).

(iif) X (m,2)X(n,z) — (") X (m +n, ).

(iv) X(n,z+y) =254 j—n X (6 2) X (5, 9).
for all z and y in M and all f in A. The universal homomorphism

Yo M —T"(M)

maps « € M to the residue class v}, (x) of X(n,z) in I'(M).
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4. Symmetric tensors.

(4.1) Notation. Let M be an A-module. Denote by !T'(M) = T (M)! the tensor
algebra of the module M over A. We denote by !T"(M) = Ta(M)! the tensor
product of M with itself n times over A. The symmetric group !S,,! operates on
T™(M) by!!

0(21 ®A T2 @A QaTy) = Ty-1(1) WA To-1(2) ®A QA To-1(p)

for all x1,29,...,2, in M and lo! in &,. The elements x in T" (M) such that
o(z) = x for all o in &,, we call symmetric tensors of order n. The symmetric
tensors form an A-submodule of 7™ (M) that we denote by !T'S™(M)!. Let

ITS(M) = @22 T'S™ (M),

We have that TS°(M) = A and TS (M) = M.

For each element = in M the tensor product !x®4™! of x with itself n times is
in TS™(M).

Let mq, mo, ..., m, be natural numbers, and let!!

m(i)=my+mo+---4+m; for i=1,2,....n
with m(0) = 0. The subgroup of !&,,(,)! of elements that map the interval!!
[m(i —1) + 1, m(i)]

to itself for i = 1,2,...,n, we denote by "G, jmy[-jm,- Let 'Sy my..m,! be
the elements in &,,(,) such that

om(i—1)+1)<o(m(i—1)+2)<---<o(m(i)) for i=1,2,...,n.

It is clear that the elements in &, m,
the classes of &,,(1)/ Gy ms || -

(4.2) The shuffle product. For z in T'S™(M) and y in T'S™(M) we have that
T ®4 y is invariant under the group &,,),. We define the product of x and y by

m,, form a full set of representatives for

.....

Ty = Z No(z®ay) = Z o(r®aAY).

J€6m+n/6m‘n 0€Gm,n
The product gives an A-linear homomorphism

TS™(M)®a TS (M) — TS™™(M)
\divpotensall.tex
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that extends, by linearity, to an A-linear product
TS(M)®aTS(M)— TS(M).

With this product, often called the shuffie product , we have that T'S(M) becomes
a commutative graded A-algebra with unit 1 in 7.S°(M). To prove this the only
difficult part is to verify that the product is commutative and associative.

We first show associativity. Let z,y,z be elements in T™ (M), T"(M) and
TP(M) respectively. We shall consider &,,4,, as the subgroup of &,,,4,,4, which
fixes the elements in the interval [m + n 4+ 1,m 4+ n + p|]. Since we have a se-
quence of subgroups &, inip 2 Spgnlp 2 Gpyynp the product in &y ypyp of
the representatives &, 4y, p for Spqnip/ S.itn|p, and the representative &,y 1 for
Stnlp/Gmin|p are representatives for &, pnip/Gmnjp.- Consequently we obtain
that

(xy)rz= Y r((@xy)®az)

TEGern,p
= Z Z To(x @AY R4 2) = Z V(T @AY R4 2).
T€6m+n,p Je@m,n ’UEGmy"%P

Analogously we obtain that = * (y*z) = Zveem,n,p v(x®ay®a z). Consequently
we have that (zxy) xz = x % (y * 2).

In order to show that the product is commutative we define the premutations
LW in &,y by

(l)=14+n,02)=2+n,...,t(m)=m-+n
tm+1)=1,u(m+2)=2,...;¢(m+n) =n.

We have that :™(y ®4 ) = 2 ®4 y and the correspondence &,, ., — S,y that
maps o to ot is a bijections. Consequently we obtain that

Y*xT = Z o(y®@az) = Z ollr®ay) = Z o(r®ay) =x*y.

0€G, m €S, m 0E€EGm.n

(4.3) Functoriality in the module. Let u: M — N be a homomorphism of
A-modules. It is clear that the map !T(u) : T(M) — T(N)! of tensor algebras
induces a map !T'S(u) : TS(M) — TS(N)! of graded A-algebras. Thus T'S is a
functor from A-modules to graded A-algebras.
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(4.4) Theorem. ([R1], Thm. IV p. 272) Let M be a free A-module with basis
lea)act!. Then TS(M) is a free A-module with basis [(e®4Y),cno! for v =
(Va)acr in N where 1e®aV = ke re@ave,

Proof. Let |J = I be the set of maps from the interval ![1,n])! to I. Then
NE = {ey1) ®a €p2) @A - @A €p(n) fpes is an A-basis for T"(M). We have that
S, operates on the elements of F by permutation of the factors. Let !O! be
the set whose elements are the orbits under this action. For every orbit w in O
we let le, = Z€€w gl. It is clear that the elements £, are invariant under &,,.
Consequently they are in T'S™(M ). They are also linearly independent since they
are sums of different elements of E. We shall show that they generate T'S™(M ). Let
z be in TS™(M). Then there is a family (A.).cg in AF) such that z = Y __p A-e.
Since  is in T'S™ (M) we must have that A,y = Ac for all e in ' and 0 in &,,. It
follows that x is in the submodule of T'S™(M) generated by ¢, for all w € O.

It remains to show that the elements ¢, with w € O are the same as the elements
e for v in N, To prove this we let u : J — N be the maps such that the
image of p : [1,n] — I is defined by u,(a) = cardp=*(a) for all « in I. It is
clear that u,, = u,, if and only if po = p1o for some ¢ in &,,. Consequently the
elements of ¢, are of the form

Ew = Z €p(1) @A €p2) ®A " DA €pn)
peJu,=v

for some v in NU). For u, = v we have v, = u,(a) = card p~*(a) for all a € I.

Let {p(1),p(2),...,p(n)} ={7(1),7(2),...,m(m)}, where w(1), 7(2),...,7(m) are
different elements of I. Then v ;) = uy(x(;)) = card p~t(m(i)) fori =1,2,...,m,
and we obtain that

D o) @A) @a - Da Cppm)

peJu,=v

. QAVr(1) QAVr(2) QAVr(m)

= > Cr(r)  OACxz)  Bar @Al
Uee"r(l)"’r<2) ----- Vi (m)

_ ®avga) O AVr(2) QAVr(m)

= %) €r2) X Ca(m)

(4.5) Divided powers and symmetric tensors. For all natural numbers n
we have that £®4" is in T'S™(M). In the algebra T'S(M) we have for all x and y
in M and f in A that
(i) 2% =1.
(i) (fz)@am = fra®an,
(111) r®am L .Qan — (mr'rib‘n)x@)A(m—l—n).
)

(iv) (x4 y)®a™ = D iti=n x8At 5 y®ad,
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The first two formulas are direct consequences of the definitions. Moreover the
third formula follows from the equations

x®Am *x®An — § O—(x®Am R4 x@An)
0€Gmn

- Z og®almtn) — <m +n) g®almtn),

m
0€Gmn

and the fourth from the equations

($+y)®An — Z Z U($®Ai R4 y®Aj) — Z x@Ai*y@)Aj_

(4.6) Theorem. ([R1], Prop. III.1 p. 254) We have a homomorphism of graded

A-algebras
(M) —TS(M)

uniquely determined by mapping vy (x) to x®A™ for all x € M and n € N.

([R1], Thm. IV.5 p.272) When M is free we have that the algebra homomor-
phism is an isomorphism. In particular, if (eq)acr 5 a basis for M, then the ele-
ments (Vyr(€))ven = (*acrVai (€a))ven form a basis for the A-module I'(M).

Proof. The existence of the map of the Theorem follows from the equalities (i)-
(iv) of (4.5). When M is free the map is an A-module isomorphism because the
elements e” form a basis for the A-module T'S(M), the elements %, (e) generate
the A-module I'(M), and v¥,(e) maps to e” for all v in N,
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5. The symmetric algebra.

(5.1) Notation. For any A-module M we write !M*! for the dual Hom 4 (M, A)
of M as an A-module. Let !S(M)! be the symmetric algebra of the A-module
M, and let 1S™(M)! be the symmetric product n times of M with itself over A.
Moreover, let!!

1S(M)%,! = @22 g Homa(S™ (M), A) = &2, S™(M)*

be the graded dual of S(M).
The homomorphism M — S(M)® 4 S(M) of A-modules defined by mapping x
torz®414+1®4 x for all x in M defines uniquely an A-algebra homomorphism

IA:S(M)— S(M)®a S(M)!.
The dual of A gives a multiplication

S(M)3 @4 S(M)z, — (S(M) @4 S(M))5 = S(M); (5.1.1)

gr gr-

For lu! and !v! in S(M);, we denote the image of u ® v by the map (5.1.1), that

is the product of u and v, by u x v.

(5.2) Proposition. The multiplication defined in (5.1.1) is associative and com-
mutative, and makes S(M)3, to a graded A-algebra with identity equal to the iden-
tity in Hom 4 (S°(M), A) = Hom (4, A).

Proof. The only difficult part is to verify commutativity and associativity. To
check commutativity and associativity it suffices to check the corresponding prop-
erties on elements of S(M), that is, to check that A followed by the map !7 :
S(M)®a S(M) — S(M) @4 S(M)! that switches the coordinates is equal to A,
and that (1 ®4 A)A = (A ®4 1)A as maps S(M) — S(M) @4 S(M) @4 S(M).
However, to prove these formulas we only have to check that they hold on elements
on x of M because all the maps are A-algebra homomorphism and A is determined
by its value on M. However, for all x in M we have that

TA@Z)=7T(1Q®arx+2R41) =24 1+1R4 = A(z)
such that 7A = A, and

(104 AA@) =124 A)(1Qsx+2R41)
=1R41@0424+1Q042R414+2R41041=(AR4 1)1 Q@az+2®41)

such that (Id @4 A)A = (A ®4 id)A.
\divpotensall.tex
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(5.3) Explicit description. Let m and n be natural numbers, and let u
and v be A-module homomorphism in S™(M)* = Hom4 (S™ (M), A) respectively
S™(M)* = Homa(S™(M),A). Then, by definition, the images of the elements
(u®av)(T1T2- T§ @A Tit1Tit2* * Tmin) by the product

uRapv: S"(M)* @4 S"(M)" — A
where 1,22, ..., Tmyn are elements in M is given by:

(u XA U)(301SL‘2 c T QA Ti1Ti42 ¢ '$m+n)
{ 0 when ¢#m

w(x1xg -+ ;) * V(Tip1Tiv2  Tmapn) when i=m.
Hence the product u % v is determined by

UK V(T122 .. Timan) = (W R4 V)(Az1Azs -+ AZpyys)
m—+n

= (weav)(|] (@i®al+1®am;)

=1
= (u®av) Z Z To(1)To(2) " To(i) ®A To(i+1)Ta(i42) ** * To(it))
i+j=m+4n O’EG-;,J'

= Z U(l'g(l)l'g(g) te xa(m)) * U(xa(m—i—l)xa(m—i—Q) o 'xa(m,n))-
U€6m+n

(5.3.1)

(5.4) Divided powers and the symmetric algebra. For every element u in
the dual module M* of M we define the element !o™(u)! in the n’th graded part
S™(M)* of S(M)z, by!!

o™ (u)(z12e -+ xp) = u(xy) * u(w) * - - * u(xy)

for all 21,22,...,2, in M, and we let 0%(u) = id. For all w and v in M* and f in
A we have that
(i) o%u) = 1.

(i) o"(fu) = fro™(u).

(iif) o™ (u) % o™(u) = (") o™ (u).

(iv) o™(u+v) =32 -, ol (u) x o (v).

The equalities (i) and (ii) follow immediately from the definitions. To show
formula (iii) we use formula (5.3.1) and obtain for all x1,xa, ..., Zy4n in M the
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equalities

(0™ (u) % o™ (v)) (2122 - - T gn)

= Z o™ (U)(To(1)To(2) To(m)) DA 0 (V) (Zo(ma1)To(m+2) *** To(mtn))

€S mn
= Z U(Ty(1)) * U(Te(2)) * -+ * U( T (1))
0€Gm n
* U(xa(m—i-l)) * U(xa(m+2)) T *U(xa(m—i-n))'
(5.4.1)
— When u = v we obtain from (5.4.1) that o™ (u)o™(u) = (™F")o™*"(u). In
— order to prove formula (iv) we use (5.4.1) once more and obtain

o™ (u+v)(r122 - Ty) = H(u +v)(x;)

i=1
Z Z W(Zo(1))U(To(2)) U To())V(@o(141))0(Zo(i42)) -+ V(T o(i45))
i+j=noceB; ;

= Z (Ji(u) * Uj(v))($1$2 STy

i+i=n

(5.5) The symmetric algebra of a free module. Let M be a free A-module
n with basis (€q)acr, and let !(eX)acr! be the dual basis for M* = Hom (M, A).
n Then S™(M)* has a basis consisting of the elements !e”* = (J] . es)*! for all
n v e NU) with |v| = n. For v in NU) we let le*” = x4e70v>(e) = 0¥ (e*)!.

(5.6) Theorem. We have that S(M)g, is a free A-module with basis (e™),en( -

Proof. We have to show that the elements (e*"),cn) are linearly independent

over A.
Let my,ms, ..., m, be natural numbers and let m(i) = my +mg + - - - +m; for
i=1,2,...,n and m(0) = 0. For every set of elements uy,us,...,u, in M* we
— obtain from formula (5.4.1), and induction on n, that

(0™ (u1) x 0™ (ug) * - -+ % 0" (up ) (T122 * * * Trny fmpfetm, )

n

= Z H Ui( o (m(i—1)+1))Ui(Ta(m@i-1)42)) - Ui (To(m())) (5.6.1)

..... My, =1

for all elements x1, 2, ..., m,+my+-+m, Of M.
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Let !p: [1,p] — I' be a map from the interval [1, p] to I. For v € NU) with |v| =
p, and v, = 0 when a is not in {av, ..., an} we write v(i) = Vo, + Vay + -+ + Va,
fori=1,2,...,m and v(0) = 0. We obtain from (5.6.1) that

e (epyep) - eopy) = ([ o (€2 (eprepe - - €oip) =
a€cl
> He (€p(o(w(i-1)41)))€m: (Ca(ow(i-1)4+2))) - - €y (€p(a(w)))-
cesS =1

Consequently we obtain that

e (ep)€p(2) i)
1 when i=p(oc(w(i—1)+1))
=< =plow(i—14+2)))=---=plo(v(@))) for i=1,2,....n
0 otherwise.

Hence we have that

ael
for all v € N(), and we have proved the Theorem.

(5.6) Relation between divided powers and the symmetric algebra.
It follows from the formulas (i)-(iv) of (5.4) that we have a homomorphism of

graded A-algebras
I(M*) — S(M)g,

which is uniquely determined by mapping ~v5,(u) to o?(u) for all natural numbers
p and all elements v in M*. When M is a free A-module with basis (e;);c; the ho-
momorphism maps the basis (v},(€*)),cn of I'(M*) to the basis (0¥ (e*)),enn
of S(M);, and thus is an isomorphism. Clearly the last part of Theorem (4.6)
follows.
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6. Polynomial laws.

(6.1) Definition. Let M and N be A-modules. A polynomial law !'U! on
A-algebras from M to N is a map

WWg: M ®4B— N ®u B!

for each A-algebra B such that, for every homomorphism v : B — C of A-algebras,
the diagram

MosB —25 . NoyB

e [1a@as (6.1.1)

MsC —— N®yC.
Uc

is commutative. We say that U is homogeneous of degree n if
Up(9z) = g"Us(2)

for all zin M ®4 B and all g € B.

The set of all polynomial laws from the module M to the module N we denote

by 'P(M,N)=Pa(M,N)!, and the subset of all homogeneous polynomial laws of
degree n we denote by 'P"(M,N) = P4 (M, N)!.
(6.2) Remark. For every A-module M we have a covariant functor !F),! from
A-algebras to A-modules defined by Fj;(B) = M ®4 B and Fj; () = id ® 41 for
all A-algebras B and all A-algebra homomorphisms ¢ : B — C. A polynomial law
from M to an A-module N is the same as a natural transformation of functors
F M — F N-

(6.3) Remark. We have that P(M,N) and P"(M, N) are A-modules when we
define addtion of two polynomial laws U and !V! by

(U+V)g=Up+ V5,
and multiplication by an element f € A by
(fU)s = fUs

for all A-algebras B.
Let M, N and !P! be A-modules, and let U and V be polynomial laws from M

to IV, respectively, from N to P. We define the composite !VU! of U and V by

(VU)p =VUp
\divpotensall.tex
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for all A algebras B. It is clear that VU is a polynomial law from M to P, and
that the corresponding maps

P(M,N)®4P(M,N)— P(M,P)

and
P*(N,P)®4 P"(M,N) — Pm+”(M, P)

are A-modules homomorphisms.

For fixed M the correspondences that maps an A-module N to the A-module
P(M, N), respectively P™(M, N), are covariant functors from A-modules to A-
modules. Similarly, for a fixed A-module N, the correspondences that maps an
A-module M to the A-module P(M, N), respectively P™(M, N), are contravariant
functors from A-modules to A-modules.

Let M, N,M’, N be A-modules, and let U and !U’! be polynomial laws from
M to N, respectively from M’ to N’. Then there is a polynomial law U & U’!
from M @& N to M’ & N’ defined by

U U)p=Up® Uy

for all A-algebras B.

(6.4) Example. Let u: M — N be a homomorphism of A-modules. Then the
homomorphisms u®4id : M® 4 B — N ®4 B, for all A-algebras B, is a polynomial
law.

(6.5) Polynomial laws and functors. Let M be an A-module, and let G,
be a covariant functor from A-algebras to A-modules. Assume that for every
A-algebra B we have that Gj;(B) is a B-module and that there is a B-module
homomorphism!!

up : GM(B) — GM(A) ®a B,

and a map!!
B : M ®s B — G (B)

such that for every A-algebra C' and every A-algebra homomorphism ¢ : B — C
the digrams

GM(B) B GM(A) ®AB
Gurle) | |ertareas

uc
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and
MoaB —22 Gu(B)

GM(id®AsD)l lGM(SD)
M@sC —— Gul(C).

Bc

Then the composite map
upfp: M ®4 B — GM(A) ®a B,
for all A-algebras B define a polynomial law from M to Gp;(A). If we have that

Be(92) = 9" BB(2)
for all z€ M ®4 B and g € B we have that the polyomial law is homogeneous of
degree n. We obtain a unique A-module homomorphism

I (M) — Gu(A)
such that

Va(z) = Ba(w)

for all z € M.
(6.6) Example. (The universal polynomial law) Let M be an A-module and let
n be a non-negative integer. We saw in (3.12) that, for every A-algebra B, we

have a map
1B M ®a B —T%(M)®a B,
and it follows from Diagram (3.12.2) that these maps, for all A-algebras B, define

a polynomial law from M to I'; (M) that we denote by !y™!. It follows from (3.12)
that 4™ is a polynomial law of degree n.

(6.7) Remark. Let !(ty)acs! be a family of independent variables over the
ring A, and let !A[t] = A[ta]acs! be the polynomial ring in the variables ¢, with
coefficients in A. It follows from the definition of Yip in (3.12) that, for every
family (24)aer in M), we have that
Yag(Q_ta®ata) = Y An(z)®@at”. (6.7.1)
acl veNW |v|=n

Let U be a polynomial law from M to N. By the definition of a polynomial law it
follows that for every family (z4)acr in M) there is a unique family with finite
support !(y, (x)),enn! of elements ly, () € N! such that

UAM(Z To @A ta) = Z yl,(x) ®a tv. (6.7.2)

acl veN{)
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(6.8) Lemma. Let B be an A-algebra and let (fo)acr be in BY). We denote by

Y Alt] - B
the A-algebra homomorphism determined by ¢ (to) = fo for all « € I. Then we
have that
VO wa®afa)= Y,  Aul(@)®af (6.8.1)
a€el veNW) |lv|=n
and
UB(Z Tao ¥4 foz) = Z yu(x> ®a fY. (682)
acl acNW)

Moreover, when U is homogeneous of degree n we have that

Up(D wa®afa)= Y, y(@)@af" (6.8.3)

acl vENW,Jv|=n

Proof. Since 4™ and U are polynomial laws, we obtain from (6.7.1) and (6.7.2)

that the equations (6.8.1) and (6.8.2) hold.
Let s be a variable over A that is independent of the variables ¢, for all a in I.
When U is homogeneous of degree n we obtain that

SnUA[S:ﬂ(Z Ta @A ta) = UA[S,ﬂ(Zxa XA Sta) = Z Yo @A S|V|tl/.
acl a€El rveN)

It follows from (6.8.5) that the equation (6.8.3) holds.

(6.9) Theorem. (Thm IV.1) Let M and N be A-modules, and let n be a non-
negative integer. We have an isomorphism of A-modules

Homu (I (M), N) — P2 (M, N) (6.9.1)

that maps an A-module homomorphism u : T (M) — N to the polynomial law
uy™ defined by

(uy")B = (u®aidp)vg
for all A-algebras B.

For fized M this is an isomorphism of covariant functors from A-modules to
A-modules.

Proof. We first show that the map (6.9.1) is injective. Let u : I'"(M) — N be an
A-modules homomorphism and let U = uy™. For every family (24)acs in M,
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and every family (fo)acr in BY), where B is an A-algebra, it follows from (6.8.1)
that

UB(Zxa ®A foz) = (U ®A id)V%(Zxa ®A fa)

ael acl

=(weaid)( Y @ eaf)= Y wile)@af”

veNWD |lv|=n veNWD |v|=n

Since the elements of the form %, (z) with |v| = n, and (74 )aer in M) generate
'™(M) it follows that Up is completely determined by u. Consequently the map
(6.9.1) is injective.

We next show that (6.9.1) is surjective. Assume first that M is a free A-module
with a basis (eq)aecr. It follows from (6.7.2) and (6.8.3) that there is a uniquely
determined family (y,),cn of elements y, (x) in N such that

UB(Zea XA foz) - Z yu(x> ®A fy

acel yeN(I)7|y|:n

for all (fo)aecr in BY). Moreover, it follows from Theorem (4.6) that we can define
a unique A-module homomorphism

w:T"(M)— N

by

u(vir(e)) = yo
for all v in NU). Then U is the image of u by the map (6.9.1). In fact, for all
(fa)aer in BY, we have that

Us(D ea®afa)= Y, wulx)®af

o€l veNO [v]=n

and it follows from (6.8.1) that

(u@aidp)YR(D | ea ®a fo) = (W@aidp)( > Yile)@a f¥)
ael veNW |lv|=n

= Y wH@eaf = Y w@eal

veNW |v|=n veNWD |v|=n

Hence we have proved the theorem when M is a free A-module.
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When M is not free we choose a surjective homomorphism of A-modules v :
M" — M from a free A-module M’. There is a polynomial law !U’! from M’ to N
defined by Uy = Up(v ®4 idp) for all A-algebras B. As we just have shown there
is an A-module homomorphism lu’ : '™ (M') — N! such that Uy = (v ®41dp)v}
for all A-algebras B. We shall show that v’ factors via the homomorphism

T (v) : T"(M') — I™(M)

and an A-module homomorphism u : '™ (M) — N.
It follows from (6.7) that for all families (2)aecs in (M) we have a unique
family with finite support (y,)(x),en of elements y, () in N such that

UhinQ 2l ®@ate) =Uag(Q_v(zl) ®@ata) = > y(z)®at”. (6.9.2)

ael acl veNWD |v|=n

In particular we see that y, (x) is zero if v = (v4)aer and v, # 0 for some « such
that 2/, is in the kernel of v. It follows from (6.8.1) that

U,Qx[t](z Th®ata) = (u' ®Aid8)7;§[t](z T, @ata) = Z u'yp(a) @at”.
ael ael yeN(I)’|y|:n

(6.9.3)
From (6.9.2) and (6.9.3) we obtain that

Yo (@) = vy (27).

Hence we have that u/'~%,(2") = 0 when v = (V4 )aer and v, # 0 for some « such
that 2/, is in the kernel of v. It follows from Corollary (3.17) that the elements
~v¥(2') with z!, in the kernel of v for some « such that v, # 0 generate the
kernel of I'"(v). Consequently we have that ' factors via I'"(v) and an A-module
homomorphism

u:I"(M)— N,

that is,
u = ul™(v),

as we wanted to show.

In order to show that (6.9.1) is surjective it remains to prove that U is the
image of u by (6.9.1). To this end, let (z4)acr be in M) and choose (/,)acr
in (M")) such that v(z!,) = x4 for all @ € I. For every A-algebra B, and all
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(fa)aer in BU) it follows from (6.8.1) that

Us() w0 ®a fo) =Us(D_v(zl) ®a fo)

acl acl
= Up(v@aidp)(d 2, ®a fo) = Up(D_ ), ®a fa)
ael aecl
= (' @A ldp)VB()_ 7o ®a fo) = (W ®aidp)( Y (@) @a fY)
acl veNWD |v|=n
= Y we@)eaf = Y al i) @a f
veNW |v|=n veNW) |v|=n

= Y wi@)®af”

veNWU |Jv|=n

=@®aid)( Y (@) @a M) = (@ IdVE(D Ta ®a fa)-

yeN(I)’|y|:n OLGI

Consequently we have that Up = (u ® 4 id)7}, as we wanted to prove.
The last part of the Theorem is obvious.

(6.10) Proposition. Let U be a polynomial law from M to N. Then the corre-
sponding A-module homomorphism uy : T™ (M) — N! is uniquely determined by
the following condition:

For allv € NU and all z = (z,) € M) we have that

uy (Vi () = yu (@)

where the element y,(x) € N forv € N are determined by the equation

UA[t](Z To XA toz) - Z yu(x> ®A ¥

acl rveNU)

given in (6.7.2).
Proof. The proposition follows from the relation Uy = (u®.4id A[t])%z[ 1 and the
equations (6.7.1) and (6.7.2).

(6.11) Base extension. A homogeneous polynomial law U on A-algebras from
M to N induces a polynomial law U, on A[t]-algebras from M ® 4 A[t] to N® 4 A[t],
by restriction to A[t]-algebras. Consequently we have an A[t]-linear homomor-
phism

w, T (M @4 Alt]) — N @4 Al
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such that
UUt/er\LJ@AA[t} = (Ut)A[t] = UA[t]-

Consequently it follows from Proposition (6.10) that uy : I'"™(M) — N is uniquely
determined by

uy, (”Y]T\L/.@AA[t] (2))

for all z € M ® 4 A[t]. We paraphrase this by saying that after base extension to
Alt] the homomorphism w is determined by the value of 3, (x) for all © € M.

(6.12) Homomorphisms to symmetric tensors. For all A-algebras B we
write |Gy (B) = TE(M ®4 B)!. We have a natural B-module homomorphism!!

up ZTE(M@A B) —>TX(M> ®a B

that maps (1 ®4 91) @B (x2 ®A g2) B -+ Rp (Ty, @A gn) 10 T1 QA T2 R4 -+ R4
Tn®AGg192 - - - gpn for all elements x1, xo, ..., x, in M and all elements g1, g2, ..., gn
in B. Moreover, we have a map!!

ﬂB:M®AB—>Tg(M®AB)
defined by fp(2) =2 ®p 2®p -+ -®p z for all z € M ®4 B. It is clear that

Belgz) = 9" Bp(?) (6.12.1)
for all g € B. It follows from (6.5) that the maps
upfBp: M ®a B —Ti(M)®s B

for all A-algebras B gives a homogeneous polynomial law of degree n from M to
Ta(M). Hence there is a unique B-module homomorphism

o : I4(M) — TH(M)

such that
p(vi(z)) = Balz)
for all x € M. It follows from the definition of the homomorphism ¢ that it
coincides with the composite map of the inclusion TS} (M) — T4 (M) with the
homomorphism I'; (M) — T'S%t (M) induced by the homomorphism of Theorem
(4.6).
Similarly we obtain a homogeneous polynomial law from M to S’} (M) of degree

n, and a unique B-module homomorphism

@ : T4 (M) — SE(M)
such that

e(vi(z)) = B4(z) ="

for all z € M.



!

l

l

l

!

l

l

12 January 2006 6. Polynomial laws polynomial 6.9

(6.13) Remark. Theorem (6.9) asserts that for a fixed A-module M the A-
algebra I'"; (M) represents the covariant functor that maps an A-module N to
P% (M, N) This is a fundamental result on polynomial laws. We therefore give a
second proof of Theorem (6.9). Note that in the above proof we used the second
part of Theorem (4.6) that describes an explicit basis of I'"(M) as an A-module
when we have an explicit basis of the A-module M. The second proof of Theorem
(6.9) does not use this result. We shall show that in fact the last asertion of
Theorem (4.6) follows from Theorem (6.9). Hence we obtain another proof of the
second part of Theorem (4.6) that does not depend on the theory of the symmetric
tensors, or of the symmetric algebra.

(6.14) Differential operators. An important ingredient in the second proof of
Theorem (6.9) are certain differential operators that we shall introduce next. We
shall throughout use the notation of Remark (6.7).

Let M and N be A-modules, and let = be an element in M. For every A-algebra
B, every element z € M ® 4 B, and every polynomial law U € P(M, N) it follows

from (6.7.2) that we have unique elements !(%U)B(z)! in N such that

< 7/ o)
Up.)(z+ 2 ®@atq) = Z <WU) (2) @4 t7,
B

n=0

where only a finite number of the elements ( 88;::) U)p(z) are different from 0.
Consequently we obtain a map

(n)
!(a(n)U) M ®s4 B— N®y B! for n=0,1,....
ox B

Since U is a polynomial law from M to N it is clear that the maps (%U )B, for

all A-algebras B, give a polynomial law

o U!
ox(m)

!

from M to N. It follows directly from the definition of —;:;U that if 'V €
Pa(M,N)! and if f € A we have that

o(n) o(n) o(n) o(m) o)
o) (fU) = f—&ﬂ(n)U and 920 U+V)= 8$(”)U+ 9200 V.
We consequently obtain an A-linear homomorphism
RSN

|yt P(M.N) — P(M,N)L.
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This homomorphism induces an A-linear map
| o)

"0z (™)
In fact, let U be homogeneous of degree m. We have for each z € M ® 4 B that

: P (M,N)—P" " (M,N)! for m=0,1,....

o)
Y (5 U (2t5) @4 (tats)" = Upjto 1, (2ts + T @4 tats)
SN0

m . o)
= t5UBJt. 15 (2 + T ®a ta) = 1] Z (890(”)U)B<z) ®4 ta.

It follows that
o) . o) o
[ts] B

. (n) (n) (n) men
That is (%U)B(z) = 0 when n > m and (%)B[w](ztﬁ) = (%)B(z)tﬂ in
Bltg] when n < m. The homomorphism M ®4 A[tg] — M obtained by mapping
x ®4 g(treta) to g(f)x, for all g(tg) € Alts], maps z ®4 tg to fz. Since U is a
polynomial law we consequently obtain that

o) 0 when n>m
(WU) (fz) = { m—mns 8™
x B f (3;0U)B  when n <m.
Consequently we have that the polynomial law %U is homogeneous of degree
m — n when U is homogeneous of degree m, as asserted.

(6.15) Theorem. Let M and N be A-modules. The differential operators a—:)

form=20,1,..., and for all x € M, commute, and for all x and y in M, and f in
A, the following equations hold:
(1) & =id,

a(m) n oM™
2 B(fx)(”) f x(m) "

(2)
(3) otm) gy (m—l—n) g(m+n)
(4)

ox(m) §x(n) — m ax(TV)lJrn)(')
o) . Z a9 gl

dz+y)™

Proof. We shall use the same notation as in Remark (6.7). For all A-algebras B,
all elements z € M ® 4 B, and all polynomials laws U from M to N, we have that

o)

UB[ta,tg](Z +rRata +y®atsg) = Z (W

U) (z+r®ats) ®aty
Blta]

> (a(m) o U) (2) (6.15.1)
= — - 2)®a tzltg. 5.
2o 22\ 9atm) Gy )
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Similarly we obtain that

gn)  Hlm) .
UBlty,ta](2Hy@atp+r@ata) ZO Z (ay<n> PP U)B (2)@athtr. (6.15.2)
Comparing the expressions to the right in equation (6.15.1) and (6.15.2) we obtain

g(m)  g(n) o) glm)

that - By = Byl gl and we have proved that the differential operators
commute.

(1) Equation (1) clearly holds.
(2) We have that

> o) )
———=U | (2)®atqa=Uspp, (2 + fr@ata)
2 <6<fas>< ") s

> /7 o)
= Uppta)(z+ 2 @4 fta) = Y (WU) (2) ®a (fta)™
n=0 X B

It follows that (%U) (z) = f”(;{::) U)p for all A-algebras B, for all z €

M ® 4 B, and for all polynomial laws U from M to N. That is, equation (2) holds.
(3) We have that

o)
UB[ta,tﬁ](Z +xr XA (toz + tﬂ)) = E (ax(p) U) (Z) XA (ta + t,@)p
B

=0
o) m+nY\ ,m.n

_Z Z (ax<p> ) (z)®A< o )tatﬂ. (6.15.3)

p=0 m+n=p

Let = y in equation (6.15.1) and compare the coefficient of ¢;'t}; in (613.1) with
the coefficient of the same monomial in equation (6.15.3). We obtain that

om) o) m+n olm+n)
(783:(’”) pRo) U) (2) = ( . ) (7890(”””)) (2).
B B
Hence we have proved that equation (3) holds.
(4) We have that

> o)
Uppra) (2 + (z +9) ®ata) = ) | ————5U | () @at. (6.15.4)
n=0 6(1[} + y) B

Let t, = tg in equation (6.15.1) and compare the coefficient of ¢ in equation
(6.15.1) with the coefficient of £* in (6.15.4). We obtain that (=22 1) (z) =

A (aw+y) ™)
> i jenl 88;()) aay(z;) U)g(z). Consequently equation (4) holds.
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(6.16) Construction of an inverse to (6.9.1). The reason for introducing and
studying differential operators is that they make it possible to construct a natural
inverse to the map (6.9.1). This construction is the main ingredient in the second
proof of Theorem (6.9.1).

For every v = (Vq)aer in ND and x = (Ta)acr in MT we write !aa;_(”:) =
8("04) |
Hae[ dx(va) ™
Let !Enda(Pa(M, N))! be the endomorphism ring of the A-module P4 (M, N),
and let !D! be the A-subalgebra of Enda(P4(M,N)) generated by the elements

% forn=0,1,... and for all x € M. It follows from Theorem (6.15) that D is

commutative and that we have a canonical A-module homomorphism
M — E4(D)

(n) . .
that maps . € M to Y ., %t”. This homomorphism corresponds to a canon-

ical A-algebra homomorphism
'(M)— D (6.16.1)

that is determined by mapping v}, (x) to % for all n € N and all x € M.
For every polynomial law U in P(M, N) we have a canonical A-module homo-
morphism

Endu (P(M, N)) — P(M, N) (6.16.2)

that maps u to u(U). Moreover we have an A-linear map
P(M,N) — N (6.16.3)

that maps U to Ua(0). When we compose the maps (6.16.2) and (6.16.3) we
obtain a canonical A-module homomorphism End4 (P4 (M, N)) — N. The latter
map restricts, on the subalgebra D of End4(Pa(M,N), to a canonical A-linear

homomorphism
D— N (6.16.4)

that maps aaw(:y)) to (%U)A(O) for all v € N and all z € M), The composite

of the maps (6.16.1) and (6.16.4) is a canonical A-module homomorphism
r'M)— N

that is determined by mapping v”(x) to (;I(—(VV))U)A(O) for all v € N and all

z € M. We consequently have defined a canonical A-linear homomorphism

Pa(M,N)— Homu(I'a(M),N) (6.16.5)
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that maps U € P4(M, N) to the A-module homomorphism
uy : T'a(M) — N

defined by
oW

w i) = (550 ©)

for all v € N and all z € M!. Since the polynomial law %U is homogeneous
of degree n — |v| when U is homogeneous of degree n we obtain that (6.16.5)
induces a canonical A-linear homomorphism

I'PA(M, N) — Hom4 (I (M), N)! (6.16.6)
that maps U € P} (M.N) to the A-module homomorphism
uy - FZ(M) — N

defined by
, oW
wis@) = (550) O = (6.16.7
X A
where the elements 3, in N are defined uniquely by the equation
Urf(D>_wa®atea) = Y. 4y ®at” (6.16.8)
a€cl veNW) |v|=n

for all x € M), with the same notation as in Remark (6.7).

(6.17) (Second proof of Theorem (6.9)) We shall show that the map (6.16.6) is
the inverse of the map (6.9.1).

Let v € Homa(I'™(M), N). Then v is mapped by (6.9.1) to the polynomial
law vy™ € P"(M,N) such that (vy")p = (v ®4 idg)yE for all A-algebras B.
Moreover we have that vy™ is mapped, by the homomorphism (6.16.6), to the
homomorphism u,~~» defined by

(vhs () <—a(y) ”) (0)
Upyr Y\ L)) = AUy .
K Ox W) N
However, it follows from equation (6.7.1) that

(U'y")A[t](Z To ®ata) = (V®24 idA[t])’Yﬁ[t](Z To @4 ta)
acl ael

Cwoaidig) Y @eat = X oG@)eat. (6111
veNW) |v|=n veNW) |v|=n
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It follows from the defining equation (6.16.7) and from the equations (6.16.8) and
(6.17.1), that wyyn (v37(x)) = v(v3,(2)), thus the composite map of (6.9.1) with
(6.16.6) is the identity.

Conversely, let U € P%(M,N). Then U is mapped by (6.16.6) to the homo-
morphism uy : I'"(M) — N defined by uy(v¥,(x)) = y,, where y, is given by
(6.16.8). Moreover we have that uy is mapped by (6.9.1) to the polynomial law
uyy™ defined by (upy™)p = (uy ®4 idp)y} for all A-algebras B. It follows from
the equations (6.7.1) and (6.7.2), and from the defining equations (6.16.7), and
(6.16.8) that we have equalities

(upy™) Zwa ®aty (uy ®aidagy) %4 [t] Zxa ®ata)
acl acl
= (uy ®aida) Y m@eat'= > up(yy(x) @at”
veNW) |v|=n veNW |v|=n

o) ) ,
= > (WU)A(O’W: 2. weal

veNW |v|=n veNW) |lv|=n

= Ua)(D_ Ta @4 ta). (6.17.2)

The homomorphism M ®4 Afts] — M ®4 B defined by mapping = ®4 g(ts) to
1®a9(fa) forallz € M and g(t,) € Alta] maps ) o 2a®atq to z. Consequently
it follows from equation (6.17.2) that (uyy™)p(2) = Up(z) and we have shown that
upyy™ = Up. That is, the composite of the maps (6.16.6) and (6.9.1) is the identity.
Hence we have a second proof of Theorem (6.9).

We can now give the second proof of the second part of Theorem (4.6). For
completeness we repeat the statment.

(6.18) Theorem. ([R1], Thm. IV.5 p. 272) When M is a free A-module with
basis (€q)acs we have that T™(M) is a free A-module with basis v (e) for all
v e NU) with |v| = n.

Proof. Tt suffices to show that for every v with |v| = n there is an A-module
homomorphism w,, : I'"(M) — A such that

u (") = { (1) Z;’j (6.18.1)

For every A-algebra B we have that every element z € M ® 4 B can be written
uniquely in the form z = Y~ _; ea®4 fo With (fo)acr in B, Consequently, by the
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A-module homomorphism M ® 4 Alt,] — M ®4 B defined by mapping  ® 4 ()
to r ®a g(fo) for all z € M and g(t,) € A[t], the element ) eq ®4 t in
M ®4 Alt], where J is the subset of I where v, # 0, maps to z. It follows
that every polynomial law U € P"(M, A) is uniquely determined by the elements
Ua)(Dones 2 €a ®a ty) for all finite subsets J of I. Moreover, it is clear that we
obtain a polynomial law in P™ (M, N) by choosing an arbitrary family (f,),en) of
elements f, in A and defining U by Uap(}_,cj €a®atla) = ZueNU>,|u|=n fu@ath.

For every v € N) with |v| = n we let the polynomial law U, in P"(M, A) be
defined by

1®4tY when _—_y
(UV)A[t](Z o XA ta): Z fu ®a t“:{ A 1%

0 when v
acJ HGN(J),|/J,|:71 ILL #

for all finite subsets J of I. It follows from Theorem (6.9) that U, corresponds to
a homomorphism u,, : (M) — A with the properties described in (6.18.1).
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7. Multiplicative polynomial laws.

(7.1) Bilinear maps. Let M and N be A-modules, and let B be an A-algebra.
We shall keep the notation of Remark (6.6), so that in particular (t,)aer is a
family of independent variables over A, and A[t] is the polynomial ring in the
variables t,, over A. Let (fa)acr and (ga)aer be elements in BY) | and let (z4)acr
and (Yo )aer be in M| respectively in N,

We have a canonical isomorphism of B-modules

(M®N)®@saB— (M®sB)®(N®asB) (7.1.1)

that maps the element » . (Zo + Ya) @4 fo t0 D e/ (Za) @A fa + (Ya) ®a fa-

Its inverse maps (3. qe; Ta @4 fa) + (Xacr Yo @4 ga) 10 X 20cr(Ta +0) @ fo +
Y aci(0+ Ya) ® go. Moreover we have a canonical B-bilinear homomorphism

(M ®4B)x (N®aB)— (M®sB)®p (N ®a B). (7.1.2)

From the canonical isomorphisms of B-modules (M ® 4 B) ® (N ®4 B) == (M ®4
B)x (N ®a B) and (M ®4 B) 5 (N ®4 B) = M ®4 N ®4 B and the homo-
morphisms (7.1.1) and (7.1.2) we obtain a canonical map

!TB:(TM’N)B:(M@N)@AB%M@)AN@AB!

such that the image of »_  _;(Ta + ¥a) ®4 fo is Zaﬂel Ta @AY QA fafp Itis
clear that for all A-algebra homomorphisms ¢ : B — C' we have a commutative
diagram

(M®N)®as B _Is M ®a N ®as B
idyen ®A1/)l J{idMEBN Ray

(M@ N)easC T—> M®s N®yC.
C
That is, the map T'g, for all A-algebras B, is a polynomial law from the A-module
M & N to the A-module M ® 4 N, and it is clear that T is homogeneous of degree
2.

When we compose the polynomial law T with the universal polynomial law
Yiren from M ®4 N to I'™(M ®4 N) we obtain a polynomial law 3T of
degree 2n from M & N to I'"'(M ®4 N). Correspondingly we have a canonical
A-algebra homomorphism

lopyn T2 (M @& N) - T"(M ®4 N)! (7.1.3)
\divpotensall.tex
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such that
(prr,v ®41dB)(Viten)B = (Viig.n)BT5 (7.1.4)
for all A-algebras B.

The inverse of the A-algebra isomorphism (3.19.1) is a canonical isomorphism
of A-algebras

I'M)®@sT(N)—-T(M@&4 N) (7.1.5)

that is determined by mapping v}, (2)®41 to Yyen () and 1@ 4vx (¥) to Vien ()
for all z € M and y € N. Consequently the image of v}, (x) ®4 7% (y) is equal to
Yaron () Varen (y) for all v, in N and for all z € M) and y € NU). From
(7.1.5) we obtain a canonical isomorphism

Ditjenl (M) @4 TV(N) - T™"(M @ N), (7.1.6)
which together with the map ¢, n gives a homomorphism of A-modules
ol v THM) @4 T9(N) = T"(M ®4 N)! (7.1.7)

for all non-negative integers ¢ and j such that i + j = 2n.

(7.2) Lemma. Let (Sq)acs and (to)acr be two families of mutually independent
variables over A, and let Als,t] be the ring of polynomials in these variables with
coefficients in A. Moreover, let (To)acs and (Yo)acr be two families of elements
in the A-module M, respectively N. Then we have in T™(M @4 N) ®4 Als, t] the
equation

> oun(hren (@) * Viren (1) ®a st
o1y | |+ v|=2n

- Z 7}5\4®AN($ ®ay) ®a (st)s, (7.2.1)
EENTXI |¢|=2n

where we have written
7§J®AN<$ R4 Y) Da (5)° = %0517 (T @4 Ys) @4 (Salg)s™?.

Let B be an A-algebra, and let z and 2" be elements in M ® o B. Then we have
that

(Phiv ®@aidB)((var)B(2) ®B (WN)B(2') = (Virg,n)B(2 ®a 2). (7.2.2)
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Proof. 1t follows from the equations (3.5)(iv) and (6.6.1) that

(7%®N)A[s,t}<zxa QA Sa+ Ya @4 ta)

a€El
= Y (Vwen) s Ta ®a sa) * (Viran) gD Yo ®a ta)
aecl

i+j=2n acl

DO D en@o@as)x (D> en®) @at?)
i+j=2n peNT |u|=1 veNT |v|=j

o Z 75\2@]\/(@ *Yron () ®a sty

pENTXD [l 4]v]=2n

Consequently we have that

(or1.8 @4 idafs,g) (Vafen) Al (D Ta @4 Sa + Yo ®a ta)
a€el

= > eunOlen@) en®) @a st (123)
v ENIXL ] +[v[=2n
On the other hand we have, via the isomorphism (7.1.1), that
(7}\14®AN)A[5,t}TA[s,t] (Z Ta DA Sa + Yo ®A toz)
acl
= (hroan) sl D Ta®ays ®asats) = > YVip.n(T®ay) ®a (st)E.
EENTXI (7.2.4.)

a,Bel
From (714) we have that YM,N XA idA[s,t} (’y%/?@N)A[S,ﬂ = (7}\14®AN)A[S,t}TA[S,t}'

Hence the first part of the Lemma follows from (7.2.3) and (7.2.4).
The calculations of the first part of the proof shows that

(N @aidap ) Y Viren) s 2a®asa)* (Vien) A (D va®ata))
i+7=2n ael acl

= (7}\1/[®AN)A[s,t]( Z Ta A Yp XA Satﬂ)7
a,Bel

and using the isomorphism (7.1.7) with ¢ = n = j we obtain the equation

(3N ®aidaie) (Vi) A Ta ® $a) @ afsg (V) as.1(O_ Yo D4 ta))
acl acl
= (Vh1oan) 4l (O Ta @4 5a) asg (O ya @ata)). (7.2.5)
acl a€el

We can clearly find a homomorphism M ®4 A[s,t] — M ®4 B that maps the
element Zael To P4 Sq t0 2z and the elements Zaé] Yo D4t to 2'. Consequently

the second part of the Lemma follows from (7.2.5).
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(7.3) Proposition. Let pi and v be in N and let

N, = {3, e N"*I 125@7 =pus forall B€I and
yel

Y &py=vy forall yel}. (7.3.1)
Berl

Then we have that

0 when |u| # v

deNﬂ,,V /ngw-@AN(x ®A y) when |M| = |V’.
(7.3.2)

W (v (2) @4 7K () = {

In particular we have for all x € M and y € N' that

Prrn (T (@) @A VK (1)) = *per Vg, n (T ®a Yu,)- (7.3.3)

Proof. When we compare the coefficient of the monomial s#t” on each side of the
expression (7.2.1) we obtain that

orN (Varon (1) * Viran W) = D Virg.n(@ ®ay). (7.3.4)
geNﬂ,V

We note that the set N, ,, is empty when |u| # |v| because we have the equalities
dper s = Dper&6y = D_yerVy- Using the isomorphism (7.1.6) we see that
the first part of the Proposition follows from (7.3.4).

The second part of the Proposition follows because when J = {a} consists of
one element, and p, = n, we have that N, , consists of the element (£, 3)gecx
with &, g = vg for all 8 € 1.

(7.4) Composition of maps. Let M, N and P be A-modules and let
u: MsN—P

be an A-module homomorphism. For every A-algebra B we obtain canonical B-
module homomorphisms

(I"(M)®a B)@p (I"(N)®a B) ==T"(M) @4 I'"(N) ®a B

Py ®id I (u)®4id
_

I'"'(M ®a N)®a B I'"(P)®a B. (7.4.1)
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(7.5) Lemma. Letz € M®4B andz’ € N®4sB. Then the image of (v})(2)®B
(Y&)B(2') by the homomorphism (7.4.1) is equal to (I"™ (u)®a1d)V}re , N (2@a2") =
(V8)B(2®a 2).

Proof. The Lemma follows from and the functoriality of I'"(u) in w.

(7.6) Divided powers for algebras. A not necessarily commutative ring !E!
with a fixed homomorphism of rings ¢ : A — F such that ¢(A) is in the center of E
is called a mot necessarily commutative A-algebra . A homomorphism x : £ — F
between not necessarily commutative A-algebras is a ring homomorphism such
that ¢ = x¢ where ¢y : A — F defines the algebra structure on F'.

Let !E! be a not necessarily commutative A-algebra, and let !G! be a left
A-module. The homomorphism!! ug : F ®4 G — G that defines the module
structure gives, as in (7.4) an A-module homomorphism!!

ve : T(E) @4 T™(G) — I'™(G) (7.6.1.)

We shall show that vg defines a product on I'’; (E) that makes I'; (E) into a not
necessarily commutative A-algebra, and that the homomorphism vg makes I'" (G)
into a I'""(E) module. First we observe that it follows from Proposition (7.3) that

va(Vh(@) @av6W) = Y ve(ay) (7.6.2)
EEN,

for all z in B and y in GU), and all g and v in NU) with |u| = |v| = n,
where we write !*g(xy) = Ha’ﬁelﬁygo"ﬁ(xayﬁ)!. It follows from (7.6.2) that the
multiplication of E defined by vg is associative, and that it is commutative when
E is commutative. Moreover it follows from (7.3.3) that

va(Vp(x) ®a V5 () = *pervy (xys)

for all z in E and y in E and n € N. In particular we have that v%(1) is a unit
for the multiplication, and it is clear that the homomorphism

A—T%(F)
that maps f to fy%(1) gives I'’; (E) a structure of an A-algebra. Similarly it follows

from (7.6.2) and the A-linearity of vg that I'"; (G) becomes a I'”; (F') module under
the multiplication map v¢.
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(7.7) Functoriality and the algebra structure. Let F be a not necessarily
commutative A-algebra and let G and H be left F-modules. It follows from the
definition of the I'; (E)-module structure of I'"; (G) and I'"; (H) given in (7.6) that
for every F-module homomorphism w : G — H the resulting map

[ (u) : TH(G) — T4 (H)

is a I'"} (E')-module homomorphism.
Let ¢ : E — F be a homomorphism of not necessarily commutative A-algebras.
It follows from the definiton of the product on I'} (E) and I'"} (F') of (7.6) that the
homomorphism
Ii(p) : TA(E) — T'A(F)

is a homomorphism of A-algebras. For every A-algebra B we obtain that the

homomorphism
FZ(E) ®X®a B — F%(E XA B)

of (3.11.1) is a B-algebra homomorphism.

(7.8) Definition. A map ¢ : E — F between two not necessarily commutative
A-algebras E and F' is called multiplicative if (1) =1 and if p(zz’) = p(x)p(z’)
for all z, 2’ in E. We say that a polynomial law U from E to F' is multiplicative
if the map

Up: EFE®sB— F®sB

is multiplicative for all A-algebras B.

(7.9) Example. Let E be a not necessarily commutative A-algebra. Then the
polynomial law 4" from E to I'"(F) is a homogeneous multiplicative law of degree
n for n =0,1,.... In fact, this is an immediate consequence of Lemma (7.5).

(7.10) Proposition. Let E and F be not necessarily commutative A-algebras,
and let U be a polynomial law from E to F. With the notation of (6.6.1) we write

Uag(O_ o @ata) = Y z(z)@at”

acl rveNU)

with z,(x) € F. Then U is multiplicative if and only if

(@2 ) = Y z(oy) (7.10.1)

EENL,w

for all x,y in EY) where N, ,, is defined in Proposition (7.3.1).
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Proof. With the same notation as in (7.1) we have the equations

Us.)(O_ %a @4 $a)Uis(D Yo ®a ta)
ael ael

= (Y a@eas)( Y a@oat)= Y z(@)nly) o st

pEND) vEN) preND (7.10.2)

and from (6.6.2) we have that

UA[s,t]((Z To XA Sa)(z Yo XA toz))

acl acl
= Uygjs,( Z Tays @A Salg) = Z ze(Tayp) @a (st). (7.10.3)
a,Bel ¢eFMD)

Comparing the coefficients of s#t” on the right hand sides of the equations (7.10.2)
and (7.10.3) we obtain the equation (7.10.2).

(7.11) Theorem. Let E and F be not necessarily commutative A-algebras. The
bijection

Homu(I'(E), F) — P"(E, F)
of (6.8.1) induces a bijection between A-algebra homomorphisms I'(E) — F and
homogeneous multiplicative polynomial laws of degree n from E to F.

Proof. Let ¢ : IT™(FE) — F be an A-algebra homomorphism. We saw in Example
(7.9) that the corresponding polynomial law ¢v™ from E to F, that is given by
(p7")B = (p®aid)(v},;) B for all A-algebras B, is multiplicative.

Conversely, assume that U is a homogeneous multiplicative polynomial law of
degree n from E to F, and let ¢ : I'""(E) — F be the corresponding A-modules
homomorphism such that U = ¢v"™. It follows from Example (7.9) and Proposition
(7.10) that for all z,y in E() and all 4 and v in NU) with |u| = |v| = n, we have
that v5(2) x 7E(Y) = D ee Nows ’yg(xy). Consequently it follows from Proposition
(6.10) that

(V@) * W) = D e(Vulay) = > z(zy), (7.11.1)

EENL,w EENL,w

where Uap(D per Za ®ata) = Y en 2v(x) @4 t7. Correspondingly it follows
from Proposition (6.10) that
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for all z and y in E() and all ¢ and v in N Since U = ¢4" is multiplicative
by assumption it follows from (7.10.2) that

(Y (x) *v5(Y)) = e(Ve(@)) (Ve (y))-

Since the elements v/ (z) for all x € EY) and p € N generate the A-module
['™(E) we have that ¢ is multiplicative, and consequently an A-algebra homomor-
phism.

(7.12) Example. let E be a not necessarily commutative A-algebra. For every
A-algebra B we have that T3 (E ® 4 B) is a not necessarily commutative B-algebra
under the multiplication

(Y1 QB Y2 @B - QB Yn)(21 OB 220 Op -+ ®p 2p) = Y121 OB Y222 QB - OB YnZn

and
9(21®B2®p - ®p2p) = 21022 QB @p2n = =210 QB Zn—10B Y2
for all elements y1,y2, ..., Yn, 21, 22,..., 2, in E ®4 B and all g in B.

Similarly we obtain a B-algebra structure on SE(E ®4 B).
We have that the canonical homomorphism

up : TE(E XA B) — TE(E) ®a B
of section (6.12) is a B-algebra homomorphism, and the map
ﬁB:E®AB—>Tg(E®AB)

from (6.12) is multiplicative and satisfies formula (6.12.1). Consequently the poly-
nomial law from E to T3 (E) given in section (6.12) also multiplicative, and the
canonical homomorphism

IA(E) — TH(E)
is an A-algebra homomorphism. Since each element of the group &,, acts on
T%(E) as an A-algebra homomorphism we have that T'S"; (E) is a sub A-algebra
of T} (E), and the induced map

I'"i(E) — TS (F)

is a homomorphism of not necessarily commutative A-algebras.
Similarly we obtain an A-algebra homomorphism

A (E) — SA(E).
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(8.1) Determinants. Let M and N be finitely generated free A-modules. For
every A-algebra B we have a natural isomorphism of B-modules

HOInA(M,N) ®AB—>H0mB(M®A B, N ®4 B). (8.1.1)
We obtain for every positive integer n a natural map
HomB(M ®a B, N ®4 B) — HOIIlB(/\n(M XA B),/\n(N XA B)) (8.1.2)

such that the image of u is A™u. The maps (8.1.1) and (8.1.2) together with the
isomorphisms (A"M)®4 B — AN"(M ®4 B) and (\"N)®4 B — A" (N ®4 B) give
a natural map

HOInA(M, N) Qa4 B — HomB((/\”)M ®a B, (/\n)N XA B).

The inverse of the map (8.1.1) for the A-modules A" M and A"N therefore gives
a natural map

Ug: HOInA(M,N) ®a B —>HOH1A(/\nM,/\nN) ®a B.

It is clear that for all A-algebra homomorphisms y : B — C' we have a commutative
diagram
Hom(M,N)®4 B s, Homa (A"M,\"N)®4 B

idgom 4 (M, N) ®Axl lidHomA(M,N) ®AX

HomA(M, N) R C —— HomA(/\”M, /\nN) ®a C.

Uc

Hence the maps Up for all A-algebras B define a polynomial law U on A-algebras
from Hom 4 (M, N) to Homu (A" M, A" N), and it is clear that U is homogeneous
of degree n.

The polynomial law U determines a unique A-module homomorphism!!

w7 (Homa (M, N)) — Homa (A" M, A" N))

such that
U= /\?J,NﬁyﬁomA(M,N)

where A%y NViiom , (v, ) 18 defined by

(AM N YHoma (v, 8)) B = (AN, N @4 1dB) (Viiom , (v,3)) B
\divpotensall.tex
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for all A-algebras B. In particular we have, for all A-module homomorphisms
u: M — N, that

AT]\L/[,N(VﬁomA(MN)>(u) - /\nu.

(8.2) Composite maps. Let L, M, N be A-modules. We have natural maps
Hom4 (L, M) ® 4 Homy (M, N) — Homa (L, N) (8.2.1)
and
t: Homy (AL, A" M) @4 Hom (A" M,AN"L) — Homa(A"L,A"N).  (8.2.2)
By (8.4) we obtain from (8.2.1) a homomorphism of A-modules
w: T (Homu (L, M)) @4 Ty (Homa (M, N)) — Iy (Homa (L, N)). (8.2.3)

(8.3) Lemma. Let L, M, N be free A-modules of finite rank. For every non-
negative integer n we have a commutative diagram

I (Hom (L, M)) @4 Iy (Homa (M, N)) —— T7%(Homa(L,N))
/\z,M®A/\?\L/1,Nl JAZ,N (831)

Hom (A"L,A"M) ® 4 Homa (A" M,AN"N) —— Homa(A"L, \"N)
t

where w is the homomorphism (8.2.3) and t is the natural map (8.2.2).

Proof. By extension of scalars to Alt] it suffices to show that for all A-module
homomorphisms v : L — M and v : M — N we have that the images of
VHom a (L M)(u) ®A Voma (M,N) (v) by the clockwise and counter clock wise maps

of diagram (8.3.1) are equal. However, we have that

AZ,N(’YﬁomA(L,M) (U) ®A VﬁomA(M,N) (U)) = A%,N(VﬁomA(L,N) (Uu)) = A" (UU)7

and

LA ®a A, n) Voma (2,00) (W) @A Viiom . (v, 3 (V)

= AM,NVHoma (M,N) (V) AL 0 Viioma (z,a1) (W) = A0 A™ w.

The lemma consequently follows from the well known formula A" (vu) = A™v A" u.
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(8.4) Notation. For every A-module M we write !End4 (M) = Homu (M, M)!
for the ring of A-endomorphisms of M. Assume that M is a free A-module of
rank n. Then A"M is a free A-module of rank 1 and End 4(A™M) is canonically
isomorphic to A. It follows from Lemma (8.3) with L = M = N that the map

Narar s TA(End 4 (M) — Enda (A" M)

is an A-algebra homomorphism. We consequently have a canonical A-algebra
homomorphism!!
o T (Enda(M)) — A

such that for all endomorphisms u : M — M we have that!!
A VEnd  (ar) (@) = deta(u : M).

where !ldet 4 (u : M) is the determinant of w.

Let B be an A-algebra and assume that M is an B-module in such a way that
the A-module structure on M is given via the A-algebra structure on B. We have
a canonical A-algebra homomorphism!!

our 2 B — Enda (M) (8.3.1)

that maps g € B to the endomorphism lu, : M — M! given by u,(z) = gz for all
x € M. By functoriality we have an A-algebra homomorphism I'" (o) I (B) —
I'i (End4(M)). Hence we obtain a canonical A-algebra homomorphism!!

normy; = Ay (I (o)) : TH(B) — A
such that for all ¢ € B we have that

oty (75 (9)) = Ay (iiwar (ar) (921 (9))) = deta(uy : M),

(8.5) Notation. Let
0—-M —-M-—M"—0 (8.5.1)

be an exact sequence of free A-modules M’, M, M" of ranks n’,n,n” respectively.
Moreover, let |E! be the A-algebra of elements u € End 4 (M) such that u(M’) C
M’  and let ! : E — End 4 (M) be the inclusion map. Then we have an A-module
homomorphism

v:E — Enda(M'") & Enda(M")
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that maps v € E to l(uv/,u")!, where v’ : M' — M’ and u” : M" — M’ are the
natural maps induced by u. We saw in (3.19.1) that we have a canonical A-module
homomorphism

w: T™(Enda(M') & Enda (M")) — I (Enda(M')) @4 I (Enda(M"))

such that / ,
w(y" (W' u") =" (W) @a " ().
From (8.5.2) and (8.5.3) we obtain an A-module homomorphism

I"(E) — I'™ (Ends (M) @4 T™ (End 4 (M")).

(8.6) Theorem. With the notation of (8.5) we have a commutative diagram of
A-algebras

mE) O Enda (M) @4 T (Enda(M”))
rm)l J(/\X/;/@A/\?X/Z/ (8.6.1)
I'"(Enda(M)) — A.
N

Proof. Extending the scalars to A[t] it suffices to prove that for all u € E the
images of v (u) in A by the clockwise and anti clockwise maps of diagram (8.6.1)
are equal. However we have that

(A ®a Nyp )wl™(v)(w)
= ATy (W) @4 Ny, (W) = deta(u : M) deta (v, M"),
and that deta I'"(0)(u) = AR VEna,ar)(w) = deta(u : M). The theorem hence

follows from the well known equality det(u', M')det s (v, M") = deta(u : M)
that is easily proven by choosing a splitting of the exact sequence (8.5.1).

(8.7) Remark. Let B be an A-algebra, and let M and N be B-modules. Then
there is a canonical surjective A-module homomorphism

QN (M @p @FN) — NI (M @5 N) (8.7.1)

that maps (®4)/%(2: @5 (®5)7-1Yij) to (Aa)i21(AB)j—1(zi®@pyi;) for all z; € M
and y;; € N wheret=1,2,...,mand j =1,2,...,n. The homomorphism (8.7.1)
factors via a canonical homomorphism of A-modules

'@% (M @p NpN) — N (M @p N)! (8.7.2)
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that maps (®4)/% (7i ®B (AB)j—1¥i;) to (Aa)i2i(AB)j—1(T: ®B yij), and (8.7.2)
factors via a canonical homomorphism of A-modules

UN . /\ZL(M Xp /\nN) — /\Z”L(M Xp N)

that maps (A4)i%q (2 @B (AB)}=1¥ij) to (Aa)ii(AB)}—1(7i ®p yij). It is clear
that for all B-module homomorphisms u : N — P we have that

UP(/\TAn(idM Xp /\% U)) = /\Zm(idM ®BU>UN (873)

Assume that M is a free A-module of rank m via the A-algebra structure on
B, and that N is a free B-module of rank n. We have that M ®p N is a free
A-module of rank mn because a B-module isomorphism N = 1B%"! to the sum
of B with itself n times gives A-module isomorphisms

M ®p N "5 M ®@p B®" % (M ®p B)®" = M®",

Let u € Endpg(N).

(8.8) Notation. We denote the determinant of u by !!detp(u : N), and the
determinant of the A-module endomorphism idy; ® pu on M ®g N we denote by
det o (idys ®pu : M ®@p N). Finally we let !det o(detg(u : N) : M)! be the determi-
nant of the A-module endomorphism of M given by multiplication by detg(u : N).

(8.9) Lemma. Let B be an A-algebra and let M and N be B-modules. Moreover,
let w: N — N be a B-module homomorphism. Assume that M is a free A-module
of rank m wvia the A-algebra structure on B, and that N is a free B-module of rank
n. Then

det4(idy ®@pu: M @p N) = deta(detp(u: N): M). (8.9.1)

Proof. Under the assumptions of the lemma we have that vy is an isomorphism.
Via this isomorphism the identity (8.7.3) can be written on the form (8.9.1).

(8.10) Notation. Let B be an A-algebra, and M a B-module that is free as
an A-module of rank m. Moreover let C' be a B-algebra, and N a C-module
that is free as a B-module of rank n. We denote by B’ the image of B by the
natural homomorphism ¢y; : B — Enda(M) of (8.3.1) and we let ¢+ : B" —
End4 (M) be the inclusion map. Then B’ is an A-algebra, the map ¢ is an A-
algebra homomorphism, and M is a B’-module via . We shall consider all B’-
algebras and B’-modules as B-algebras, respectively B-modules, via the surjection
l¢’yy : B — B’'! induced by .
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Let N' = N ®@p B’. Then N’ is a free B’-module of rank n. It follws from
Example (8.9) that we have a multiplicative homogeneous polynomial law of de-
gree n on B’-algebras, from Endp/(N') to I'}, (Endp/(N')), and a multiplicative
homogeneous polynomial law of degree m on A-algebras from I'; (Endp/ (N')) to
'Y (I"% (Endp/ (N')). By composition of polynomial laws we obtain a multiplica-
tive homogeneous polynomal law of degree mn on A-algebras from End g/ (N') to
(%, (Endp/ (N')). It follows from Theorem (8.11) that we have a canonical

A-algebra homomorphism!!
¢ : I} (Endp (N')) — IUT (Endp (N')),
and it is clear that for all u € Endp/(N') we have that
SO(WEmnTSB,(N/)(U)) = 717%,(End3,(N/)(VgndB,(N/)(U))~

Note that M @ N' =5 M ®p N is a free A-module of rank mn and that we
have a natural map of B’-algebras

¥ : Endg(N') — Enda(M ®p N')

that maps u' to idy @pru’.

(8.11) Proposition. With the notation and assumptions of (8.10) we have a
commutative diagram

LR (AR)

[AlE (Endp (N))  ———  TR(B)

4 JdetM (8.11.1)
I (Endp (N)) A.

Nt TR ()

Proof. By extension of scalars to A[t] it suffices to show that for all v’ € Endp/ (N')
the images of the element VEnd o ( N,)(u’ ) in A are equal by the clockwise map and

the bottom map of diagram (8.11.1). We have that

normar I'Y (AN (Yana,, vy (W)
= normps FZL(/\TXJ')”chng,(}andB,(N')VgndB,(N')(Ul>)
— normys Y5 (AR Y, vy () = norma 73 (et (' : N'))

= detA(“det(u’:N’) : M)v
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where Uqe , (v:n7) is the multiplication of detp/(u’ : N') on M. On the other
hand we have that

Niteop v TA™ ()i (v) (W) = Aife , v U™ (V) VEnay,, (v (1)

= AM& 1 N VEnd 4 (Mo 5 ) (idar @pru’) = deta((idy @pu') : M @p N').

The commutativity of diagram (8.11.1) consequently follows from Lemma (8.9).

(8.12) Corollary. Let B be an A-algebra, and let M be a B-module that is free as
an A-module of rank m. Moreover let C be a B-algebra, and let N be a C'-module
that is free as a B-module of rank n. We consider M @ N as a C'-module via the
action of C' on N. Then the diagram

T} (normy)

INANI(®) I"3(B)
qﬁ lnormM (8.12.1)
o) ——— A

normM®BN

18 commutative

Proof. Since N' = N ®p B’ there is a natural B-algebra homomorphism !x! :
Endp(N) — Endp/ (N') and we have from (8.3.1) a natural B-algebra homomor-
phism p¢o : C — Endg(N). It follows from (3.9.1) that we have a composite
homomorphism v given by

I, (id)

L5(ee), pmmnd g (N)) 2% 12 (End g (N')) —24— T, (End g (N')).

I'z(C)
It is clear that the diagrams

FXFZ%/[ (v)
ITE(C) LI (Endp (N))

wT Tsﬁ (8.12.2)

() po— " (End g (N')),
ren(v

and
F% (C) norm B

”l lWM (8.12.3)
g (Endp (N')) —— B/,

n
/\N,
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are commutative. From diagram (8.12.3) we obtain the commutative diagram

(O e L
3 | |z (8.12.4)
rorn (Endg (V') ——— T7(B)).
CR )

The commutativity of diagram (8.12.1) follows from the commutativity of the
diagrams (8.11.1), (8.12.2) and (8.12.4).
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