WEEK 1 CH.4.1 FROM AVNER FRIEDMAN FOUNDATIONS OF MORDERN ANALYSIS

Definition. X is called an *abelian group* with operation " + " if there is a mapping $X \times X \rightarrow X : (x, y) \rightarrow x + y$ such that for any $x, y, z \in X$

- x + (y + z) = (x + y) + z (associative)
- x + y = y + x (commutative)
- there exists 0 element such that x + 0 = x
- $\forall x \in X, \exists -x, \text{ such that } x + (-x) = 0.$

Definition. X is called a *linear vector space* if

• X is an abelian group

Let $\mathcal{F} = \mathbb{R}$ or \mathbb{C} . There is a mapping $\mathcal{F} \times X \to X : (\lambda, x) \to \lambda x$ such that for any $\lambda, \mu \in \mathcal{F}$

- $\lambda(\mu x) = (\lambda \mu) x$
- $(\lambda + \mu)x = \lambda x + \mu x$
- $\lambda(x + y) = \lambda x + \mu y$
- 1 x = x.

Example. $n \times m$ matrices with real or complex entries is a linear vector space.

Property.

If $\lambda x = 0$, $\lambda \neq 0$, then x = 0. Indeed

$$x = 1 x = \frac{1}{\lambda} \lambda x = \frac{1}{\lambda} 0 = 0.$$

Definition. Elements $x_1, x_2, ..., x_n \in X$ are called *linear independent* if $\lambda_1 x_1 + \lambda_2 x_2 + \cdots + \lambda_n x_n = 0$ implies $\lambda_1 = \lambda_2 = \cdots = \lambda_n = 0$.

Definition. If for any n there exist n linear independent elements $x_1, x_2, ..., x_n \in X$, then X is called *infinite dimensional*. Otherwise, X is called *finite dimensional* and maximal number of linear independent element is called dimension of X.

Definition. Let dimension X equals n. Any linear independent elements $e_1, e_2, \ldots, e_n \in X$ are said to form a basis of X.

For any $x \in X$ there are $\lambda_1, \lambda_2, \ldots, \lambda_n$ such that

$$x = \lambda_1 e_1 + \lambda_2 e_2 + \dots + \lambda_n e_n.$$

The constants λ_i are called the *coordinates* of x in the basis e_1, e_2, \ldots, e_n .

Notations. For any subsets A, B \subset X and $\lambda \in \mathcal{F}$ we denote

$$A + B = \{x + y : x \in A, y \in B\} \qquad \lambda A = \{\lambda x : x \in A\}.$$

Definition. A *normed linear space* is a linear vector space X such that there is a mapping $X \to \mathbb{R}_+ = [0, \infty) : x \to ||x||$ such that

• $\|x\| \ge 0 \& \|x\| = 0 \Leftrightarrow x = 0$ • $\|\lambda x\| = |\lambda| \|x\|$ • $\|x + y\| \le \|x\| + \|y\|.$

Definition. A *metric linear space* is a linear vector space X that is a metric space i.e. $\exists \rho : X \times X \rightarrow \mathbb{R}_+$ satisfying

- $\rho(\mathbf{x},\mathbf{y}) \ge 0$ & $\rho(\mathbf{x},\mathbf{y}) = 0 \Leftrightarrow \mathbf{x} = \mathbf{y}$
- $\rho(\mathbf{x},\mathbf{y}) = \rho(\mathbf{y},\mathbf{x})$

•
$$\rho(\mathbf{x}, \mathbf{z}) \leq \rho(\mathbf{x}, \mathbf{y}) + \rho(\mathbf{y}, \mathbf{z})$$

and also if $\lambda_n \to \lambda,\, \mu_n \to \mu,\, x_n \to x$ and $y_n \to y,$ then

• $\lambda_n x_n + \mu_n y_n \rightarrow \lambda x + \mu y$.

Remark. $x_n \rightarrow x$ if $\rho(x_n, x) \rightarrow 0$. We say that X is complete if any Cauchy sequence has a limit belonging to X.

Definition. A Fréchet space is a metric linear space X such that

- $\rho(\mathbf{x},\mathbf{y}) = \rho(\mathbf{x}-\mathbf{y},\mathbf{0})$
- X is complete.

Theorem 1.1. A normed linear space is a metric space such that $\rho(x, y) = ||x - y||$.

Proof. All standard properties are obvious. Moreover if $\lambda_n \to \lambda$, $\mu_n \to \mu$, $x_n \to x$ and $y_n \to y$, then

$$\begin{aligned} \|\lambda_{n}x_{n} + \mu_{n}y_{n} - (\lambda x + \mu y)\| \\ \leq |\lambda_{n} - \lambda| \|x_{n}\| + \lambda \|x_{n} - x\| + |\mu_{n} - \mu| \|y_{n}\| + |\mu| \|y_{n} - y\| \to 0 \end{aligned}$$

as $n \to \infty$.

Theorem 1.2. If X is a metric linear space whose metric satisfies

• $\rho(\mathbf{x},\mathbf{y}) = \rho(\mathbf{x}-\mathbf{y},\mathbf{0})$

• $\rho(\lambda x, \lambda y) = |\lambda| \rho(x, y),$

then X is a normed space whose norm could be defined as $||x|| = \rho(x, 0)$.

Theorem 1.3.

A normed linear space is a metric linear space, s.t. $\rho(x, y) = ||x - y||$.

$$\rho(\mathbf{x}, \mathbf{y}) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{|\xi_n - \eta_n|}{1 + |\xi_n - \eta_n|},$$

where $x = (\xi_1, \xi_2, \dots, \xi_n, \dots)$, $y = (\eta_1, \eta_2, \dots, \eta_n, \dots)$. Then ρ defines a metric in X but it cannot be identified with a norm.

Definition. A normed linear complete space is called a *Banach space*.

Home exercise.

We define Lorentz classes $L^{p,s}(\mathbb{R}^n), 1\leq p<\infty, 1\leq s<\infty$ as follows: Let

$$\mu_{f}(t) = \max\{x \in \mathbb{R}^{n} : |f(x)| > t\}.$$

Then if $1 \leq s < \infty$

$$f \in L^{p,s}(\mathbb{R}^n) \quad \iff \quad t \, \mu_f^{1/p}(t) \in L^s(\mathbb{R}_+, t^{-1}dt)$$

which means that

$$\left(\int_0^\infty t^{s-1}\mu_f^{s/p}(t)\,dt\right)^{1/s}<\infty.$$

Show that $L^{p,p}(\mathbb{R}^n) = L^p(\mathbb{R}^n)$, $1 \le p < \infty$.

If $s = \infty$, then we define

$$f \in L^{p,\infty}(\mathbb{R}^n) \qquad \Longleftrightarrow \qquad \sup_t \{t \, \mu_f^{1/p}(t)\} < \infty$$

Show that the function $f(x) = |x|^{-2} \in L^{n/2,\infty}(\mathbb{R}^n)$.