WEEK 1
 CH.4.1 FROM AVNER FRIEDMAN FOUNDATIONS OF MORDERN ANALYSIS

Definition. X is called an abelian group with operation " + " if there is a mapping $X \times X \rightarrow X:(x, y) \rightarrow x+y$ such that for any $x, y, z \in X$

- $x+(y+z)=(x+y)+z$ (associative)
- $x+y=y+x$ (commutative)
- there exists 0 element such that $x+0=x$
- $\forall x \in X, \exists-x$, such that $x+(-x)=0$.

Definition. X is called a linear vector space if

- X is an abelian group

Let $\mathcal{F}=\mathbb{R}$ or \mathbb{C}. There is a mapping $\mathcal{F} \times X \rightarrow X:(\lambda, x) \rightarrow \lambda x$ such that for any $\lambda, \mu \in \mathcal{F}$

- $\lambda(\mu x)=(\lambda \mu) x$
- $(\lambda+\mu) x=\lambda x+\mu x$
- $\lambda(x+y)=\lambda x+\mu y$
- $1 x=x$.

Example. $n \times m$ matrices with real or complex entries is a linear vector space.

Property.

If $\lambda x=0, \lambda \neq 0$, then $x=0$.
Indeed

$$
x=1 x=\frac{1}{\lambda} \lambda x=\frac{1}{\lambda} 0=0 .
$$

Definition. Elements $x_{1}, x_{2}, \ldots, x_{n} \in X$ are called linear independent if $\lambda_{1} x_{1}+\lambda_{2} x_{2}+\cdots+\lambda_{n} x_{n}=0$ implies $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{n}=0$.

Definition. If for any n there exist n linear independent elements $x_{1}, x_{2}, \ldots, x_{n} \in X$, then X is called infinite dimensional. Otherwise, X is called finite dimensional and maximal number of linear independent element is called dimension of X .

Definition. Let dimension X equals n. Any linear independent elements $e_{1}, e_{2}, \ldots, e_{n} \in X$ are said to form a basis of X.
For any $x \in X$ there are $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ such that

$$
x=\lambda_{1} e_{1}+\lambda_{2} e_{2}+\cdots+\lambda_{n} e_{n} .
$$

The constants λ_{j} are called the coordinates of x in the basis $e_{1}, e_{2}, \ldots, e_{n}$.
Notations. For any subsets $A, B \subset X$ and $\lambda \in \mathcal{F}$ we denote

$$
A+B=\{x+y: x \in A, y \in B\} \quad \lambda A=\{\lambda x: x \in A\} .
$$

Definition. A normed linear space is a linear vector space X such that there is a mapping $X \rightarrow \mathbb{R}_{+}=[0, \infty): x \rightarrow\|x\|$ such that

- $\|x\| \geq 0 \&\|x\|=0 \Leftrightarrow x=0$
- $\|\lambda x\|=|\lambda|\|x\|$
- $\|x+y\| \leq\|x\|+\|y\|$.

Definition. A metric linear space is a linear vector space X that is a metric space i.e. $\exists \rho: X \times X \rightarrow \mathbb{R}_{+}$satisfying

- $\rho(x, y) \geq 0 \& \rho(x, y)=0 \Leftrightarrow x=y$
- $\rho(x, y)=\rho(y, x)$
- $\rho(x, z) \leq \rho(x, y)+\rho(y, z)$
and also if $\lambda_{n} \rightarrow \lambda, \mu_{n} \rightarrow \mu, x_{n} \rightarrow x$ and $y_{n} \rightarrow y$, then
- $\lambda_{n} x_{n}+\mu_{n} y_{n} \rightarrow \lambda x+\mu y$.

Remark. $x_{n} \rightarrow x$ if $\rho\left(x_{n}, x\right) \rightarrow 0$. We say that X is complete if any Cauchy sequence has a limit belonging to X.

Definition. A Fréchet space is a metric linear space X such that

- $\rho(x, y)=\rho(x-y, 0)$
- X is complete.

Theorem 1.1. A normed linear space is a metric space such that $\rho(x, y)=$ $\|x-y\|$.

Proof. All standard properties are obvious. Moreover if $\lambda_{n} \rightarrow \lambda, \mu_{n} \rightarrow \mu$, $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$, then

$$
\begin{aligned}
& \left\|\lambda_{n} x_{n}+\mu_{n} y_{n}-(\lambda x+\mu y)\right\| \\
& \quad \leq\left|\lambda_{n}-\lambda\right|\left\|x_{n}\right\|+\lambda\left\|x_{n}-x\right\|+\left|\mu_{n}-\mu\right|\left\|y_{n}\right\|+|\mu|\left\|y_{n}-y\right\| \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$.
Theorem 1.2. If X is a metric linear space whose metric satisfies

- $\rho(x, y)=\rho(x-y, 0)$
- $\rho(\lambda x, \lambda y)=|\lambda| \rho(x, y)$,
then X is a normed space whose norm could be defined as $\|x\|=\rho(x, 0)$.

Theorem 1.3.

A normed linear space is a metric linear space, s.t. $\rho(x, y)=\|x-y\|$.

Example of a Fréchet space which is not a normed space. Let us consider the space of sequences $X=\left\{x=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}, \ldots\right)\right\}, \xi_{j} \in \mathbb{R}$ and define

$$
\rho(x, y)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \frac{\left|\xi_{n}-\eta_{n}\right|}{1+\left|\xi_{n}-\eta_{n}\right|},
$$

where $x=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}, \ldots\right), y=\left(\eta_{1}, \eta_{2}, \ldots, \eta_{n}, \ldots\right)$. Then ρ defines a metric in X but it cannot be identified with a norm.

Definition. A normed linear complete space is called a Banach space.

Home exercise.

We define Lorentz classes $\mathrm{L}^{\mathrm{p}, \mathrm{s}}\left(\mathbb{R}^{\mathrm{n}}\right), 1 \leq \mathrm{p}<\infty, 1 \leq \mathrm{s}<\infty$ as follows: Let

$$
\mu_{f}(t)=\operatorname{meas}\left\{x \in \mathbb{R}^{n}:|f(x)|>t\right\} .
$$

Then if $1 \leq s<\infty$

$$
\mathrm{f} \in \mathrm{~L}^{\mathrm{p}, \mathrm{~s}}\left(\mathbb{R}^{\mathrm{n}}\right) \quad \Longleftrightarrow \quad \mathrm{t} \mu_{\mathrm{f}}^{1 / \mathrm{p}}(\mathrm{t}) \in \mathrm{L}^{\mathrm{s}}\left(\mathbb{R}_{+}, \mathrm{t}^{-1} \mathrm{dt}\right)
$$

which means that

$$
\left(\int_{0}^{\infty} t^{s-1} \mu_{f}^{s / p}(t) d t\right)^{1 / s}<\infty
$$

Show that $L^{p, p}\left(\mathbb{R}^{n}\right)=L^{p}\left(\mathbb{R}^{\mathfrak{n}}\right), 1 \leq p<\infty$.
If $s=\infty$, then we define

$$
\mathrm{f} \in \mathrm{~L}^{\mathrm{p}, \infty}\left(\mathbb{R}^{\mathrm{n}}\right) \quad \Longleftrightarrow \quad \sup _{\mathrm{t}}\left\{\mathrm{t} \mu_{\mathrm{f}}^{1 / \mathfrak{p}}(\mathrm{t})\right\}<\infty
$$

Show that the function $f(x)=|x|^{-2} \in L^{n / 2, \infty}\left(\mathbb{R}^{n}\right)$.

