LECTURE 2
 CH.4.1-4.4 FROM AVNER FRIEDMAN FOUNDATIONS OF MORDERN ANALYSIS

Definition. Two norms $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ in X are equaivalent if there are constants $\beta \geq \alpha>0$ such that for any $x \in X$

$$
\alpha\|x\|_{1} \leq\|x\|_{2} \leq\|x\|_{1}
$$

Definition. A subset $K \subset X$ of a linear vector space is called convex if for any $x, y \in K$ and $0 \leq t \leq 1$ we have $t x+(1-t) y \in K$.

Definition. Linear subspace.
A subset Y of a liner vector space X is called a linear subspace if for any $\lambda, \mu \in \mathcal{F}$ and any $x, y \in Y$ we have $\lambda x+\mu y \in Y$.

Lemma 2.1. (AFr 4.3.1)
Let $Y \subset X$ be a closed linear subspace of a normed linear space X. Then for any $\varepsilon>0$ there exists $z \in X$ s.t. $\|z\|=1$ and $\|z-y\|>1-\varepsilon$, for any $y \in Y$.

Theorem 2.2. (AFr 4.3.2)
If Y is a finite-dimensional linear subspace of a normed linear space, then Y is closed.

Theorem 2.3. (AFr 4.3.3)
A normed linear space is of finite dimension iff every bounded subset is relatively compact.

Example. Let $X=L^{2}(0,2 \pi)$ and let $e_{k}(x)=e^{i k x} / \sqrt{2 \pi}, k=0, \pm 1, \ldots$ Then

$$
\int_{0}^{2 \pi}\left|e_{k}(x)\right|^{2} d x=1 \quad \text { and } \quad \int_{0}^{2 \pi}\left|e_{k}-e_{j}\right|^{2} d x=2
$$

The set $\left\{e_{k}\right\}_{k \in \mathbb{Z}}$ is not relatively compact (i.e every bounded sequence has a convergent subsequence).

Definition. Linear transformations (operators, mappings).

Let X, Y be two linear spaces, $D_{T} \subset X$ and let $T: D_{T} \rightarrow Y$ be a mapping s.t. for any $x \in D_{T}, \exists!y \in Y$ such that $y=T x$. Then D_{T} is called the domain of T and T.
If D_{T} is a linear subspace of X and if

$$
\mathrm{T}\left(\lambda_{1} \mathrm{x}_{1}+\lambda_{2} \mathrm{x}_{2}\right)=\lambda_{1} T \mathrm{x}_{1}+\lambda_{2} T x_{2}
$$

then T is called a linear transformation (operator).

Definition. Let X and Y be metric linear spaces, $D_{T}=X$ and $T: X \rightarrow Y$. Tis called continuous for any x_{n}, x such that $x_{n} \rightarrow x$ we have $T x_{n} \rightarrow T x$

Theorem 2.4. (AFr 4.4.1)
Let X and Y be normed linear spaces. A linear transformation $T: X \rightarrow Y$ is continuous iff T is continuous at one point.

Definition. Let X and Y be normed linear spaces, $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{Y}$ and let there exists a constant $K>0$ s.t.

$$
\|T x\| \leq K\|x\| \quad x \in X
$$

Then T is called a bounded linear map and

$$
\|T\|=\sup _{x \in X} \frac{\|T x\|}{\|x\|}
$$

is called the norm of T .
Theorem 2.5. (AFr 4.4.2)
Let X, Y be normed linear spaces. The operator $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{Y}$ is continuous iff T is bounded.

Home exercises.

1. Let X be a normed liner space. Show that $B=\{x \in X:\|x\|<1\}$ is convex.
2. Let X be a linear space and $K, F \subset X$ are convex. Show that $K+F$ is convex.
3. A norm $\|\cdot\|$ is called strictly convex if $\|x\|=\|y\|=1$ and $\|x+y\|=2$ implies $x=y$.
Show that $\mathrm{L}^{\mathrm{p}}\left(\mathbb{R}^{\mathfrak{n}}\right)$ is strictly convex if $1<\mathrm{p}<\infty$.
4. Prove that the max-norm in $C[a, b]$ is not equivalent to L^{p} norm if $1 \leq p<\infty$.
5. Find the norm of the operator A given by

$$
\operatorname{Af}(\mathrm{t})=\mathrm{tf}(\mathrm{t}), \quad 0 \leq \mathrm{t} \leq 1
$$

where a. $X=C[0,1]$, b. $X=L^{p}[0,1], 1 \leq p \leq \infty$.
6. Let \mathcal{L} be the Laplace transform defined by

$$
g(s)=\mathcal{L} f(s)=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

Show that $\mathcal{L}: \mathrm{L}^{2}\left(\mathbb{R}_{+}\right) \rightarrow \mathrm{L}^{2}\left(\mathbb{R}_{+}\right)$is bounded and

$$
\|\mathcal{L}\| \leq \sqrt{\pi}
$$

