WEEK 3

LINEAR TRANSFORMATIONS

CH. 4.4-4.6 FROM AVNER FRIEDMAN FOUNDATIONS OF MORDERN ANALYSIS

Definition. By $\mathcal{L}(X, Y)$ we denote the space of all linear transformations equipped with

- $T+S$ defined by $(T+S) x=T x+S x$.
- $\lambda \mathrm{T}$ defined by $\lambda \mathrm{T}(x)=\mathrm{T}(\lambda x)$.

By $\mathcal{B}(X, Y) \subset \mathcal{L}(X, Y)$ we denote the set of all bounded linear transformations $T: X \rightarrow Y$, where X and Y are normed spaces.

Theorem 3.1. (AFr 4.4.3)
Let X and Y be normed linear spaces. Then $\mathcal{B}(X, Y)$ is a normed linear space with the norm

$$
\|T\|=\sup _{x \in X} \frac{\|T x\|}{\|x\|}
$$

Definition. Let X and Y be normed linear spaces. The sequence $\left\{T_{n}\right\}_{n=1}^{\infty}$, $T_{n}: X \rightarrow Y$, of bounded operators is said to be uniformly convergent if there exists a bounded operator $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{Y}$ s.t. $\left\|\mathrm{T}_{\mathrm{n}}-\mathrm{T}\right\| \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$.

Theorem 3.2. (AFr 4.4.4)
If X is a normed linear space and Y is a Banach space then $\mathcal{B}(\mathrm{X}, \mathrm{Y})$ is a Banach space.

Theorem 3.3. (AFr 4.5.1) (Banach-Steinhaus theorem)
Let X be a Banach space and Y be a normed linear space. Let $\left\{T_{\alpha}\right\}$ be a family of bounded linear operators from X to Y. It for each $x \in X$ the set $\left\{T_{\alpha} \chi\right\}$ is bounded, then the set $\left\{\left\|T_{\alpha}\right\|\right\}$ is bounded.

Definition. Let X and Y be normed linear spaces and let $T_{n}: X \rightarrow Y$. The sequence $\left\{T_{n}\right\}_{n=1}^{\infty}$ is said to be strongly convergent if for any $x \in X$ the limit $\lim _{n \rightarrow \infty} T_{n} x$ exists for any $x \in X$.

If there exists a bounded T s.t. $\lim _{n \rightarrow \infty} T_{n} x=T x$ for any $x \in X$, then $\left\{T_{n}\right\}_{n=1}^{\infty}$ is called strongly convergent to $T\left(T_{n} \rightarrow T\right)$.

Theorem 3.4. (AFr 4.5.2)
Let X be a Banach space and Y be a normed linear space and let $\left\{T_{n}\right\}_{n=1}^{\infty}$ be the sequence of bounded operators. If the sequence $\left\{T_{n}\right\}_{n=1}^{\infty}$ strongly convergent, then there exists T s.t. $\mathrm{T}_{\mathrm{n}} \rightarrow \mathrm{T}$ strongly.

Theorem 3.5. (AFr 4.6.1) (Open-mapping theorem)
Let X and Y be Banach spaces and let $T: X \rightarrow Y$ be a mapping onto. Then T maps open sets of X onto open sets of Y.

Home exercises.

1. Let $K: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ such that

$$
K f(x)=\int_{-\infty}^{\infty} K(x, y) f(y) d y
$$

where

$$
\int_{-\infty}^{\infty}|K(x, y)| d y \leq A \quad \text { and } \quad \int_{-\infty}^{\infty}|K(x, y)| d x \leq B
$$

Prove that

$$
\|K\| \leq \sqrt{A} \sqrt{B} .
$$

2. Show that the operator $K: L^{2}(0,1) \rightarrow L^{2}(0,1)$ such that

$$
K f(x)=\int_{0}^{1} \frac{1}{x+y} f(y) d y
$$

is bounded.

