WEEK 3 LINEAR TRANSFORMATIONS CH. 4.4 - 4.6 FROM AVNER FRIEDMAN FOUNDATIONS OF MORDERN ANALYSIS

Definition. By $\mathcal{L}(X, Y)$ we denote the space of all linear transformations equipped with

- T + S defined by (T + S)x = Tx + Sx.
- λT defined by $\lambda T(x) = T(\lambda x)$.

By $\mathcal{B}(X, Y) \subset \mathcal{L}(X, Y)$ we denote the set of all bounded linear transformations $T : X \to Y$, where X and Y are normed spaces.

Theorem 3.1. (AFr 4.4.3)

Let X and Y be normed linear spaces. Then $\mathcal{B}(X, Y)$ is a normed linear space with the norm

$$\|\mathsf{T}\| = \sup_{\mathsf{x}\in\mathsf{X}} \frac{\|\mathsf{T}\mathsf{x}\|}{\|\mathsf{x}\|}.$$

Definition. Let X and Y be normed linear spaces. The sequence $\{T_n\}_{n=1}^{\infty}$, $T_n : X \to Y$, of bounded operators is said to be uniformly convergent if there exists a bounded operator $T : X \to Y$ s.t. $||T_n - T|| \to 0$ as $n \to \infty$.

Theorem 3.2. (AFr 4.4.4)

If X is a normed linear space and Y is a Banach space then $\mathcal{B}(X, Y)$ is a Banach space.

Theorem 3.3. (AFr 4.5.1) (Banach-Steinhaus theorem)

Let X be a Banach space and Y be a normed linear space. Let $\{T_{\alpha}\}$ be a family of bounded linear operators from X to Y. It for each $x \in X$ the set $\{T_{\alpha}x\}$ is bounded, then the set $\{\|T_{\alpha}\|\}$ is bounded.

Definition. Let X and Y be normed linear spaces and let $T_n : X \to Y$. The sequence $\{T_n\}_{n=1}^{\infty}$ is said to be strongly convergent if for any $x \in X$ the limit $\lim_{n\to\infty} T_n x$ exists for any $x \in X$.

If there exists a bounded T s.t. $\lim_{n\to\infty} T_n x = Tx$ for any $x \in X$, then $\{T_n\}_{n=1}^{\infty}$ is called strongly convergent to T $(T_n \to T)$.

Theorem 3.4. (AFr 4.5.2)

Let X be a Banach space and Y be a normed linear space and let $\{T_n\}_{n=1}^{\infty}$ be the sequence of bounded operators. If the sequence $\{T_n\}_{n=1}^{\infty}$ strongly convergent, then there exists T s.t. $T_n \to T$ strongly.

Theorem 3.5. (AFr 4.6.1) (Open-mapping theorem)

Let X and Y be Banach spaces and let $T : X \to Y$ be a mapping *onto*. Then T maps open sets of X onto open sets of Y.

Home exercises.

1. Let $K : L^2(\mathbb{R}) \to L^2(\mathbb{R})$ such that

$$Kf(x) = \int_{-\infty}^{\infty} K(x, y) f(y) \, dy,$$

where

$$\int_{-\infty}^{\infty} |K(x,y)| \, dy \leq A \quad \text{and} \quad \int_{-\infty}^{\infty} |K(x,y)| \, dx \leq B.$$

Prove that

$$\|\mathbf{K}\| \leq \sqrt{\mathbf{A}}\sqrt{\mathbf{B}}.$$

2. Show that the operator $K:\,L^2(0,1)\to L^2(0,1)$ such that

$$Kf(x) = \int_0^1 \frac{1}{x+y} f(y) \, dy$$

is bounded.