WEEK 4

LINEAR TRANSFORMATIONS

CH. 4.6-4.7 FROM AVNER FRIEDMAN FOUNDATIONS OF MORDERN ANALYSIS

Definition. Let T be a one-to-one linear operator $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{Y}$. Then the inverse operator T^{-1} is defined as

$$
\mathrm{T}^{-1} \mathrm{y}=\mathrm{x} \quad \text { iff } \quad \mathrm{T} x=y
$$

Note that domain T^{-1} is a linear subspace of Y .
Theorem 4.1. (AFr 4.6.2)
Let X and Y be a Banach spaces and let T be a one-to-one bounded linear map from X onto Y. Then T^{-1} is a bounded map.

Corollary 4.2. (AFr 4.6.3)

Let X be Banach spaces equipped with either $\|\cdot\|_{1}$ or $\|\cdot\|_{2}$. Suppose that there exists a constant K s.t.

$$
\|x\|_{1} \leq K\|x\|_{2} \quad \text { for all } \quad x \in X
$$

Then there exists a constant K^{\prime} s.t.

$$
\|x\|_{2} \leq K^{\prime}\|x\|_{1} \quad \text { for all } \quad x \in X
$$

Definition. Let X and Y be linear vector spaces and let $T: X \rightarrow Y$, where T is defined on D_{T}. Then

$$
\mathrm{G}_{\mathrm{T}}=\left\{(\mathrm{x}, \mathrm{~T} x): x \in \mathrm{D}_{\mathrm{T}}\right\} \subset \mathrm{X} \times \mathrm{Y}
$$

is called the graph of T .
If G_{T} is a closed set in $X \times Y$ then we say that T is a closed operator.
Note that T is closed iff

$$
x_{n} \in D_{T} \quad x_{n} \rightarrow x, \quad T x_{n} \rightarrow y \Longrightarrow x \in D_{T}, \quad T x=y
$$

Theorem 4.3. (AFr 4.6.4) (Closed graph theorem)
Let X and Y be Banach spaces and let $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{Y}$ be a linear operator with $\mathrm{D}_{\mathrm{T}}=\mathrm{X}$. If T is closed then T is continuous.

Definition. Let X and Y be linear vector spaces and let $T: X \rightarrow Y$ defined on D_{T}. A linear operator $S: X \rightarrow Y$ is called an extension of T if $D_{T} \subset D_{S}$ and $T x=S x$ for all $x \in D_{T}$.

Definition. Let X be a linear vector space and Y be a normed space. Let $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{Y}$ defined on D_{T}. Suppose that there exists S such that
(i) S is a closed linear operator
(ii) S is an extension of T
(iii) If S^{\prime} satisfies (i) and (ii), then S^{\prime} is an extension of S.

Then we say that S is a s closure of T. The closure of T is denoted by \bar{T}.
Theorem 4.4. (AFr 4.6.4) (Closed graph theorem)
Let X and Y be Banach spaces. T has a closure \bar{T} iff

$$
x_{n} \in D_{T} \quad x_{n} \rightarrow 0, \quad T x_{n} \rightarrow y \Longrightarrow y=0
$$

Example 1. Let $X=L^{2}(0,1)$ and let $T f(x)=f(0)$ with $D_{T}=C^{1}[0,1]$.
We show that T cannot be closed.
Indeed, let $f_{n}(x)=(1-x)^{n}$. Then $f_{n} \in D_{T},\left\|f_{n}\right\|_{L^{2}(0,1)} \rightarrow 0, t \rightarrow \infty$, but $T f_{n}=1$.
Note that in this case $G_{T}=\left\{(f, f(0)): f \in D_{T}\right\}$ and $\|(f, T f)\|=\|f\|_{L^{2}}+$ |f(0)|.

Example 2. Let $X=L^{2}(0,1), \operatorname{Tf}(x)=f^{\prime}(x)$ and $D_{T}=C^{1}[0,1]$.
We show that T can be closed.
The operator T is not closed as it is defined on $C^{1}[0,1]$ which is not a closed set in $L^{2}(0,1)$. In order to show that T can be closed if is enough to show that

$$
\mathrm{f}_{\mathrm{n}} \in \mathrm{D}_{\mathrm{T}}, \quad \mathrm{f}_{\mathrm{n}} \rightarrow 0, \quad \mathrm{Tf} \mathrm{f}_{\mathrm{n}} \rightarrow \mathrm{~g} \quad \Longrightarrow \mathrm{~g}=0 .
$$

Let $\left\|f_{n}\right\|_{L^{2}} \rightarrow 0, f_{n} \in C^{1}[0,1]$ and let

$$
\int_{0}^{1}\left|f_{n}^{\prime}(x)-g(x)\right|^{2} d x \rightarrow 0
$$

For any $\varphi \in C_{0}^{1}[0,1](\varphi(0)=\varphi(1)=0)$ we have

$$
\left|\int_{0}^{1}\left(f_{n}^{\prime}(x)-g(x)\right) \varphi(x) d x\right| \leq\left(\int_{0}^{1}\left|f_{n}^{\prime}(x)-g(x)\right|^{2} d x\right)^{1 / 2}\left(\int_{0}^{1}|\varphi(x)|^{2} d x\right)^{1 / 2} \rightarrow 0
$$

which implies

$$
\int_{0}^{1} f_{n}^{\prime}(x) \varphi(x) d x \rightarrow \int_{0}^{1} g(x) \varphi(x) d x
$$

On the other hand

$$
\begin{aligned}
& \left|\int_{0}^{1} f_{n}^{\prime}(x) \varphi(x) d x\right|=\left|\int_{0}^{1} f_{n}(x) \varphi^{\prime}(x) d x\right| \\
& \left.\quad \leq\left.\left(\int_{0}^{1} \mid f_{n}(x)\right)\right|^{2} d x\right)^{1 / 2}\left(\int_{0}^{1}\left|\varphi^{\prime}(x)\right|^{2} d x\right)^{1 / 2} \rightarrow 0, \quad n \rightarrow \infty .
\end{aligned}
$$

Thus

$$
\left|\int_{0}^{1} g(x) \varphi(x) d x\right|=0
$$

for any $\varphi \in \mathrm{C}_{0}^{1}[0,1]$ which means that $\mathrm{g}=0$ as an L^{2} function.

Linear Functionals.

Definition. Let X be a linear vector space and let $p: X \rightarrow \mathbb{R}(\mathbb{C})$ be a linear operator. Then p is called a real(complex) linear functional.

Examples.

- $p: f(x) \rightarrow f(0), f \in C(-1,1)$.
- Let $\left.f \in L^{(} 0,2 \pi\right)$ and let

$$
f(x)=\sum_{-\infty}^{\infty} a_{n} e^{-i n x} / \sqrt{2 \pi}
$$

be its Fourier series.
Then $p_{n}(f)=a_{n}$ is a complex linear functional on $L^{2}(0,2 \pi)$.

- Let $g \in L^{2}(0,1)$. We define $p=p_{g}$ such that

$$
p_{g}(f)=\int_{0}^{1} f(x) g(x) d x
$$

Definition. A partially ordered set S is a non-empty set with a relation " $\leq "$ satisfying the properties:

- $x \leq x$.
- $x \leq y, y \leq z \Longrightarrow x \leq z$.

If for any $x, y \in S$ either $x \leq y$ or $y \leq x$ then S is called totally ordered.
Definition. Let $T \subset S$, and S be partially ordered. The element $x \in S$ is called an upper bound if for any $y \in S$, we have $y \leq x$.

Definition. Let S be partially ordered. The element $x \in S$ is called maximal if for any $y \in S$ the relation $x \leq y$ implies $y \leq x$.

Theorem. (Zorn's lemma)
If S is a partially ordered set s.t. every totally ordered subset has an upper bound, then S has a maximal element.

Home exercises.

1. Let X be a Banach space. Show that if $T, S, T^{-1}, S^{-1} \in \mathcal{B}(X, X)$ then $(\mathrm{TS})^{-1} \in \mathcal{B}(\mathrm{X}, \mathrm{X})$ and $(\mathrm{TS})^{-1}=\mathrm{S}^{-1} \mathrm{~T}^{-1}$.
2. (ex. 4.6.2 from AFr)

Let X be a Banach space and let $A \in \mathcal{B}(X, X),\|A\|<1$. Show that $(I+A)^{-1}$ exists and

$$
(I+A)^{-1}=\sum_{n=0}^{\infty}(-1)^{n} A^{n}
$$

3. (ex. 4.6.3 from AFr)

Let X be a Banach space and let T and T^{-1} belong to $\mathcal{B}(X, X)$. Show that is $S \mathcal{B}(X, X)$ and $\|S-T\|<1 /\left\|\mathrm{T}^{-1}\right\|$, then S^{-1} exists and

$$
\left\|\mathrm{S}^{-1}-\mathrm{T}^{-1}\right\|<\frac{\left\|\mathrm{T}^{-1}\right\|}{1-\|\mathrm{S}-\mathrm{T}\|\left\|\mathrm{T}^{-1}\right\|}
$$

4. Let $X=L^{2}(0,2 \pi)$,

$$
\varphi_{n}=\left\{\frac{e^{i n x}}{\sqrt{2 \pi}}\right\}_{n=-\infty}^{\infty} .
$$

Let $\psi \in X$ be an element which is not a finite linear combination of φ_{n} and let D be a set of all finite linear conbinations of $\left\{\varphi_{n}\right\}$. Denote by T the operator

$$
\mathrm{T}\left(\mathrm{~b} \psi+\sum_{i=-M}^{N} c_{j} \varphi_{j}\right)=\mathrm{b} \psi
$$

defined on $D_{T}=\{\beta \psi+\alpha \varphi, \varphi \in D\}$. Show that \bar{G}_{T} is not a graph. (Namely, show that $(\psi, \psi) \in \overline{\mathrm{G}}_{\mathrm{T}}$ and $(\psi, 0) \in \overline{\mathrm{G}}_{\mathrm{T}}$.)

