
WEEK 6
CH. 6.2-6.3 FROM A. FRIEDMAN

Hilbert Spaces

Definition.
H is called a Hilbert space if H is a complex linear space supplied with
(·, ·) : H×H→ C s.t.
• (x, x) ≥ 0, & (x, x) = 0⇔ x = 0.
• (x+ y, z) = (x, z) + (y, z), ∀x, y, z ∈ H.
• (λx, y) = λ(x, y), ∀x, y ∈ H, λ ∈ C.
• (x, y) = (y, x), ∀x, y ∈ H.
• If {xn} is a Cauchy sequence and limn,m→∞(xn − xm, xn − xm) = 0,

then there exists x ∈ H, s.t. limn→∞(xn − x, xn − x) = 0.

(·, ·) is called scalar product.

‖x‖ =
√

(x, x) is called the norm of x.

Theorem. (AFr 6.1.1) (Schwartz inequality)
Let H be a Hilbert space, x, y ∈ H. Then

|(x, y)| ≤ ‖x‖‖y‖.

Theorem. (AFr 6.1.2)
Any Hilbert space is a Banach space whose norm is equal to ‖ · ‖ =

√
(·, ·).

Corollary. (AFr 6.1.3)
The norm in a Hilbert space is strictly convex, namely

‖x‖ = ‖y‖ = 1, ‖x+ y‖ = 2 ⇒ x = y.

Theorem. (AFr 6.1.4)
Let H be a Hilbert space. Then its norm satisfies the identity

2
(
‖x‖2 + ‖y‖2

)
= ‖x+ y‖2 + ‖x− y‖2.

Theorem. (AFr 6.1.5)
If H is a Banach space with norm satisfying Th 6.1.4 then H is a Hilbert
space.
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Definition.
Let H be a Hilbert space, x, y ∈ H. We say that x is orthogonal to y if
(x, y) = 0.
LetM ⊂ H. We say that x is orthogonal toM if (x, y) = 0, ∀y ∈M.
Let N,M ⊂ H. We say that N is orthogonal to M if (x, y) = 0, x ∈ N,
y ∈M.

Lemma. (AFr 6.2.1)
Let H be a Hilbert space and let M ⊂ H be a closed convex subset. Then
for any x0 there exists unique element y0 ∈M s.t.

‖x0 − y0‖ = inf
y∈M
‖x0 − y‖.

Theorem. (AFr 6.2.2)
Let M be a closed subspace of a Hilbert space H. Then for any x0 ∈ H
there are elements y0 ∈M and z0 orthogonal toM s.t.

x0 = y0 + z0

and this decomposition is unique.

Theorem. (AFr 6.2.4.) (Riesz theorem)
Let H be a Hilbert space. For any bounded linear fuctional x∗ : H → C,
there exists z ∈ H s.t.

• x∗(x) = (x, z), x ∈ H.
• ‖x∗‖ = ‖z‖.

Projections.

Definition.
Let H be a Hilbert space and let M ⊂ H be a closed linear subspace.
Then according to Theorem 6.2.2 for any x ∈ H there exist unique vectors
y, z ∈ H such that

x = y+ z, y ∈M, z orthogonal to M.

We say then that y is the projection of x onM and define the linear operator
P : H→M such that Px = y. P is called the projection operator onM.
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Definition.
Let T be a bounded linear operator T : H → H. The adjoint T ∗ of T is
defined by the equality

(Tx, y) = (x, T ∗y), ∀x, y ∈ H.
If T = T ∗ then T is called self-adjoint.

Remark. If T is self-adjoint then the scalar product (Tx, y) is real.

Theorem. (AFr 6.3.1.)
Let P be a projection. Then

• P is a self-adjoint linear operator.
• P2 = P.
• ‖P‖ = 1 if P 6= 0.

Home exercises.

1. Let a linear operator P satisfies the properties P∗ = P and P2 is a projec-
tion. Is P a projection?

2. Confider the operator Qf(t) = a(t)f(t)in L2(0, 1), where a(t) is a
scalar function. Find necessary and sufficient conditions on a(t) for Q to
be a projection.

3. Let H = L2(−∞,∞) and let

χ(x) =

{
1, |x| < 1,

0, |x| ≥ 1
.

Show that

• the operator Pf(x) = χ(x)f(x) is a projection.
• Let F be the Fourier transform

Ff(ξ) =

∫∞
−∞ f(x)e

−ixξ dx.

Show that the operator Q defined by

Qf = F−1χF f
is a projection.
• Is PQP a projection?


