WEEK 6 CH. 6.2-6.3 FROM A. FRIEDMAN

Hilbert Spaces

Definition.

H is called a Hilbert space if H is a complex linear space supplied with (\cdot, \cdot) : $H \times H \to \mathbb{C}$ s.t.

- $(x, x) \ge 0$, & $(x, x) = 0 \Leftrightarrow x = 0$.
- $(\mathbf{x} + \mathbf{y}, z) = (\mathbf{x}, z) + (\mathbf{y}, z), \forall \mathbf{x}, \mathbf{y}, z \in \mathbf{H}.$
- $(\lambda x, y) = \lambda(x, y), \forall x, y \in H, \lambda \in \mathbb{C}.$
- $(x, y) = (y, x), \forall x, y \in H.$
- If $\{x_n\}$ is a Cauchy sequence and $\lim_{n,m\to\infty}(x_n x_m, x_n x_m) = 0$, then there exists $x \in H$, s.t. $\lim_{n\to\infty}(x_n - x, x_n - x) = 0$.

 (\cdot, \cdot) is called scalar product.

 $||\mathbf{x}|| = \sqrt{(\mathbf{x}, \mathbf{x})}$ is called the norm of \mathbf{x} .

Theorem. (AFr 6.1.1) (Schwartz inequality) Let H be a Hilbert space, $x, y \in H$. Then

$$|(x,y)| \le ||x|| ||y||.$$

Theorem. (AFr 6.1.2)

Any Hilbert space is a Banach space whose norm is equal to $\|\cdot\| = \sqrt{(\cdot, \cdot)}$.

Corollary. (AFr 6.1.3)

The norm in a Hilbert space is strictly convex, namely

$$\|\mathbf{x}\| = \|\mathbf{y}\| = 1, \quad \|\mathbf{x} + \mathbf{y}\| = 2 \quad \Rightarrow \quad \mathbf{x} = \mathbf{y}.$$

Theorem. (AFr 6.1.4)

Let H be a Hilbert space. Then its norm satisfies the identity

$$2(\|\mathbf{x}\|^{2} + \|\mathbf{y}\|^{2}) = \|\mathbf{x} + \mathbf{y}\|^{2} + \|\mathbf{x} - \mathbf{y}\|^{2}.$$

Theorem. (AFr 6.1.5)

If H is a Banach space with norm satisfying Th 6.1.4 then H is a Hilbert space.

Definition.

Let H be a Hilbert space, $x, y \in H$. We say that x is orthogonal to y if (x, y) = 0.

Let $M \subset H$. We say that x is orthogonal to M if $(x, y) = 0, \forall y \in M$. Let $N, M \subset H$. We say that N is orthogonal to M if $(x, y) = 0, x \in N$, $y \in M$.

Lemma. (AFr 6.2.1)

Let H be a Hilbert space and let $M \subset H$ be a closed convex subset. Then for any x_0 there exists unique element $y_0 \in M$ s.t.

$$||x_0 - y_0|| = \inf_{y \in \mathcal{M}} ||x_0 - y||.$$

Theorem. (AFr 6.2.2)

Let M be a closed subspace of a Hilbert space H. Then for any $x_0 \in H$ there are elements $y_0 \in M$ and z_0 orthogonal to M s.t.

$$\mathbf{x}_0 = \mathbf{y}_0 + \mathbf{z}_0$$

and this decomposition is unique.

Theorem. (AFr 6.2.4.) (Riesz theorem)

Let H be a Hilbert space. For any bounded linear fuctional x^* : $H \to \mathbb{C}$, there exists $z \in H$ s.t.

•
$$x^*(x) = (x, z), \quad x \in H.$$

• $||x^*|| = ||z||.$

Projections.

Definition.

Let H be a Hilbert space and let $M \subset H$ be a closed linear subspace. Then according to Theorem 6.2.2 for any $x \in H$ there exist unique vectors $y, z \in H$ such that

x = y + z, $y \in M$, z orthogonal to M.

We say then that y is the projection of x on M and define the linear operator $P: H \rightarrow M$ such that Px = y. P is called the projection operator on M.

2

Definition.

Let T be a bounded linear operator T : $H \rightarrow H$. The adjoint T^{*} of T is defined by the equality

$$(\mathsf{T}\mathbf{x},\mathbf{y}) = (\mathbf{x},\mathsf{T}^*\mathbf{y}), \qquad \forall \mathbf{x},\mathbf{y} \in \mathsf{H}.$$

If $T = T^*$ then T is called self-adjoint.

Remark. If T is self-adjoint then the scalar product (Tx, y) is real.

Theorem. (AFr 6.3.1.) Let P be a projection. Then

• P is a self-adjoint linear operator.

•
$$P^2 = P$$
.

• ||P|| = 1 if $P \neq 0$.

Home exercises.

1. Let a linear operator P satisfies the properties $P^* = P$ and P^2 is a projection. Is P a projection?

2. Confider the operator Qf(t) = a(t)f(t) in $L^2(0, 1)$, where a(t) is a scalar function. Find necessary and sufficient conditions on a(t) for Q to be a projection.

3. Let $H = L^2(-\infty, \infty)$ and let

$$\chi(\mathbf{x}) = egin{cases} 1, & |\mathbf{x}| < 1, \ 0, & |\mathbf{x}| \geq 1 \end{cases}.$$

Show that

- the operator $Pf(x) = \chi(x)f(x)$ is a projection.
- Let \mathcal{F} be the Fourier transform

$$\mathcal{F}f(\xi) = \int_{-\infty}^{\infty} f(x)e^{-ix\xi} dx.$$

Show that the operator Q defined by

$$Q f = \mathcal{F}^{-1} \chi \mathcal{F} f$$

is a projection.

• Is PQP a projection?