WEEK 6

CH. 6.2-6.3 FROM A. FRIEDMAN

Hilbert Spaces

Definition.

H is called a Hilbert space if H is a complex linear space supplied with $(\cdot, \cdot): \mathrm{H} \times \mathrm{H} \rightarrow \mathbb{C}$ s.t.

- $(x, x) \geq 0, \&(x, x)=0 \Leftrightarrow x=0$.
- $(x+y, z)=(x, z)+(y, z), \forall x, y, z \in H$.
- $(\lambda x, y)=\lambda(x, y), \forall x, y \in H, \lambda \in \mathbb{C}$.
- $(x, y)=\overline{(y, x)}, \forall x, y \in H$.
- If $\left\{x_{n}\right\}$ is a Cauchy sequence and $\lim _{n, m \rightarrow \infty}\left(x_{n}-x_{m}, x_{n}-x_{m}\right)=0$, then there exists $x \in H$, s.t. $\lim _{n \rightarrow \infty}\left(x_{n}-x, x_{n}-x\right)=0$.
(\cdot, \cdot) is called scalar product.
$\|x\|=\sqrt{(x, x)}$ is called the norm of x.
Theorem. (AFr 6.1.1) (Schwartz inequality)
Let H be a Hilbert space, $x, y \in H$. Then

$$
|(x, y)| \leq\|x\|\|y\| .
$$

Theorem. (AFr 6.1.2)
Any Hilbert space is a Banach space whose norm is equal to $\|\cdot\|=\sqrt{(\cdot, \cdot)}$.
Corollary. (AFr 6.1.3)
The norm in a Hilbert space is strictly convex, namely

$$
\|x\|=\|y\|=1, \quad\|x+y\|=2 \quad \Rightarrow \quad x=y
$$

Theorem. (AFr 6.1.4)
Let H be a Hilbert space. Then its norm satisfies the identity

$$
2\left(\|x\|^{2}+\|y\|^{2}\right)=\|x+y\|^{2}+\|x-y\|^{2}
$$

Theorem. (AFr 6.1.5)
If H is a Banach space with norm satisfying Th 6.1.4 then H is a Hilbert space.

Definition.

Let H be a Hilbert space, $x, y \in H$. We say that x is orthogonal to y if $(x, y)=0$.
Let $M \subset H$. We say that x is orthogonal to M if $(x, y)=0, \forall y \in M$.
Let $N, M \subset H$. We say that N is orthogonal to M if $(x, y)=0, x \in N$, $y \in M$.

Lemma. (AFr 6.2.1)
Let H be a Hilbert space and let $\mathrm{M} \subset \mathrm{H}$ be a closed convex subset. Then for any x_{0} there exists unique element $y_{0} \in M$ s.t.

$$
\left\|x_{0}-y_{0}\right\|=\inf _{y \in M}\left\|x_{0}-y\right\| .
$$

Theorem. (AFr 6.2.2)
Let M be a closed subspace of a Hilbert space H. Then for any $x_{0} \in H$ there are elements $y_{0} \in M$ and z_{0} orthogonal to M s.t.

$$
x_{0}=y_{0}+z_{0}
$$

and this decomposition is unique.

Theorem. (AFr 6.2.4.) (Riesz theorem)
Let H be a Hilbert space. For any bounded linear fuctional $x^{*}: H \rightarrow \mathbb{C}$, there exists $z \in \mathrm{H}$ s.t.

- $x^{*}(x)=(x, z), \quad x \in H$.
- $\left\|x^{*}\right\|=\|z\|$.

Projections.

Definition.

Let H be a Hilbert space and let $\mathrm{M} \subset \mathrm{H}$ be a closed linear subspace. Then according to Theorem 6.2.2 for any $x \in H$ there exist unique vectors $y, z \in H$ such that

$$
x=y+z, \quad y \in M, \quad z \text { orthogonal to } M .
$$

We say then that y is the projection of x on M and define the linear operator $P: H \rightarrow M$ such that $P x=y . P$ is called the projection operator on M.

Definition.

Let T be a bounded linear operator $\mathrm{T}: \mathrm{H} \rightarrow \mathrm{H}$. The adjoint T^{*} of T is defined by the equality

$$
(T x, y)=\left(x, T^{*} y\right), \quad \forall x, y \in H
$$

If $T=T^{*}$ then T is called self-adjoint.
Remark. If T is self-adjoint then the scalar product $(T x, y)$ is real.
Theorem. (AFr 6.3.1.)
Let P be a projection. Then

- P is a self-adjoint linear operator.
- $P^{2}=P$.
- $\|P\|=1$ if $P \neq 0$.

Home exercises.

1. Let a linear operator P satisfies the properties $P^{*}=P$ and P^{2} is a projection. Is P a projection?
2. Confider the operator $Q f(t)=a(t) f(t)$ in $L^{2}(0,1)$, where $a(t)$ is a scalar function. Find necessary and sufficient conditions on $a(t)$ for Q to be a projection.
3. Let $\mathrm{H}=\mathrm{L}^{2}(-\infty, \infty)$ and let

$$
x(x)= \begin{cases}1, & |x|<1 \\ 0, & |x| \geq 1\end{cases}
$$

Show that

- the operator $\operatorname{Pf}(x)=\chi(x) f(x)$ is a projection.
- Let \mathcal{F} be the Fourier transform

$$
\mathcal{F} f(\xi)=\int_{-\infty}^{\infty} f(x) e^{-i x \xi} d x
$$

Show that the operator Q defined by

$$
\mathrm{Qf}=\mathcal{F}^{-1} \chi \mathcal{F} \mathrm{f}
$$

is a projection.

- Is PQP a projection?

