WEEK 8

Theorem.

The set $\left\{x_{n}\right\}$ is an orthonormal basis in a separable Hilbert space H iff

$$
\|x\|^{2}=\sum_{n=1}^{\infty}\left|\left(x, x_{n}\right)\right|^{2}
$$

for any $x \in H$.
Lemma. (AFr 6.4.8.)
Any two infinite dimensional separable Hilbert spaces are isometrical isomorphic.

Corollary. (AFr 6.4.9.)

Any infinite dimensional separable Hilbert space is isometrical isomorphic to $L^{2}(0,1)$.

Examples.

1. $H=L^{2}(-\pi, \pi)$ with an orthonormal basis $u_{n}(t)=e^{\text {int }} / \sqrt{2 \pi}, n \in \mathbb{Z}$.
2. $\mathrm{H}=\mathrm{H}^{1}(-\pi, \pi)-$ Sobolev space with the scalar product:

$$
(u, v)=\int_{-\pi}^{\pi}\left(u^{\prime}(\mathrm{t}) \overline{v^{\prime}(\mathrm{t})}+u(\mathrm{t}) \overline{v(\mathrm{t})}\right) d \mathrm{t} .
$$

The set of functions $u_{n}(t)=e^{i n t} / \sqrt{2 \pi}$ is orthogonal set but not normal in $\mathrm{H}^{1}(-\pi, \pi)$.
Question: Is the set $\left\{\mathrm{u}_{n}\right\}$ basis in the Hilbert space $\mathrm{H}^{1}(-\pi, \pi)$?
3. Let \mathbb{D} be a unit ball in the complex plane

$$
\mathbb{D}=\{z=x+i y:|z|<1\} .
$$

Let $A^{2}(\mathbb{D})$ be the set of $L^{2}(\mathbb{D})$ analytic functions in \mathbb{D}. The space A^{2} is a Hillbert space with an orthonormal basis

$$
u_{k}(z)=\pi^{-1 / 2}(k+1)^{1 / 2} z^{k}, \quad k=0, \pm 1, \pm 2, \ldots
$$

Indeed, let $z=r e^{i t}$. Then

$$
\left(u_{k}, u_{l}\right)=\pi^{-1}(k+1)^{1 / 2}(l+1)^{1 / 2} \int_{0}^{2 \pi} \int_{0}^{1} e^{i(k-l) t} r^{k+l+1} d r d t=\delta_{k l}
$$

4. $H=F^{2}$ - the Fock space, the space of entire function s.t.

$$
\|f\|^{2}=\int_{\mathbb{C}}|f(z)|^{2} e^{-|z|^{2}} d x d y<\infty
$$

The set $\left\{\psi_{k}\right\}$

$$
\psi_{k}(z)=\pi^{-1 / 2}(k!)^{-1 / 2} z^{k}, \quad k=0, \pm 1, \pm 2, \ldots
$$

is an orthonormal basis.

Definition.

Let H be a Hilbert space, $x_{n}, x \in H$.
We say that $x_{n} \rightarrow x$ weakly $\left[x=w\right.$ - $\left.\lim _{n \rightarrow \infty} x_{n}\right]$ if for any $h \in H$ we have $\left(x_{n}, h\right) \rightarrow(x, h)$.

Remark 1. If $\left\|x_{n}-x\right\| \rightarrow 0$ then $x=w-\lim _{n \rightarrow \infty} x_{n}$.

Example. Let $\left\{u_{n}\right\}$ be an orthonormal system. Then $w-\lim _{n \rightarrow \infty} u_{n}=0$. Indeed, for any $x \in H, x_{n}=\left(x, u_{n}\right)$ are its Fourier coefficients converging to zero.

Lemma 1. Let $\left\{x_{n}\right\}$ be a weakly convergent sequence. Then $\left\{x_{n}\right\}$ is bounded.

Proof. For any $y \in H$ we have $\left(x_{n}, y\right) \rightarrow(x, y), x \in H$. Therefore the sequence $\left\{\left(x_{n}, y\right)\right\}$ is bounded. Now the lemma follows from the principle of uniform boundedness Th . 4.5.1 (AvFr).

Lemma 2. If $y_{n} \rightarrow y$ and $w-\lim _{n \rightarrow \infty} x_{n}=x$, then $\left(x_{n}, y_{n}\right) \rightarrow(x, y)$.
Proof.

$$
\left|\left(x_{n}, y_{n}\right)-(x, y)\right| \leq\left\|x_{n}\right\|\left\|y_{n}-y\right\|+\left|\left(x_{n}, y\right)-(x, y)\right| \rightarrow 0 .
$$

Definition. A functional $\Phi: \mathrm{H} \times \mathrm{H} \rightarrow \mathbb{C}$ is called sesqui-linear form if $\Phi(x, y)$ it is linear w.r.t. x, anti-linear w.r.t. y and

$$
\|\Phi\|:=\sup _{\|x\|=\|y\|=1}|\Phi(x, y)|<\infty
$$

Remark 2. Clearly $|\Phi(x, y)| \leq\|\Phi\|\|x\|\|y\|$.

Examples. Let T and S be bounded operators in H. Then $\Phi(x, y)=(T x, y)$ and $\Phi(x, y)=(x, S y)$ are sesqui-linear forms.

Definition. $\Phi(x)=\Phi(x, x)$ is called a quadratic form.
Remark 3. By using the same argument as in Th. 6.1.5.(Av.Fr) we find

$$
\begin{equation*}
4 \Phi(x, y)=\Phi(x+y)-\Phi(x-y)+\mathfrak{i} \Phi(x+i y)-i \Phi(x-i y) \tag{1}
\end{equation*}
$$

Definition. A form Φ is called Hermitian if

$$
\Phi(y, x)=\overline{\Phi(x, y)}
$$

Theorem 1. The form $\Phi(x, y)$ is Hermitian iff the quadratic form $\Phi(x)$ is real.
Proof. $\Phi(y, x)=\overline{\Phi(x, y)}$ implies $\Phi(x, x)=\overline{\Phi(x, x)}$. If $\Phi(x)$ is real then by using (??) we obtain that $\Phi(x, y)$ is Hermitian.
Theorem 2. If $\Phi(x, y)=(T x, y)=(x, S y)$, then $\|\Phi\|=\|T\|=\|S\|$.
Proof. Since $|\Phi(x, y)| \leq\|\Phi\|\|x\|\|y\|$ the functional $\Phi(\cdot, y)$ is continuous. Then by Riesz theorem (Th. 6.2.4) there exists $h \in H$ s.t. $\Phi(x, y)=(x, h)$, $\forall x \in H$. Define now $S: y \rightarrow h$. The operator S is linear. Indeed

$$
\begin{aligned}
& \left(\cdot, S\left(\alpha_{1} y_{1}+\alpha_{2} y_{2}\right)\right)=\Phi\left(\cdot, \alpha_{1} y_{1}+\alpha_{2} y_{2}\right) \\
& \quad=\bar{\alpha}_{1} \Phi\left(\cdot, y_{1}\right)+\bar{\alpha}_{2} \Phi\left(\cdot, y_{2}\right)=\bar{\alpha}_{1}\left(\cdot, S y_{1}\right)+\bar{\alpha}_{2}\left(\cdot, S y_{2}\right) \\
& \quad=\left(\cdot, \alpha_{1} S y_{1}+\alpha_{2} S y_{2}\right)
\end{aligned}
$$

This implies $\|\mathrm{Sy}\|=\|\mathrm{h}\| \leq\|\Phi\|\|y\|$ and thus $\|\mathrm{S}\| \leq\|\Phi\|$.
On the other hand $|\Phi(x, y)| \leq\|x\|\|S y\| \leq\|S\|\|x\|\|y\|$ which gives us $\|\Phi\| \leq\|S\|$.
Corollary 1. For any bounded operator T in a Hilbert space $\mathrm{H}\|\mathrm{T}\|=$ $\left\|\mathrm{T}^{*}\right\|$.

Theorem 3. A linear bounded operator T in H is defined by its quadratic form (Tx, x).

Proof. Suppose that $\left(T_{1} x, x\right)=\left(T_{2} x, x\right)$. Then by using (??) we find that $\left(T_{1} x, y\right)=\left(T_{2} x, y\right), \forall x, y \in H$. Hence $T_{1}=T_{2}$.
Definition. Let $\left\{T_{n}\right\}$ be a sequence of bonded operators in H

- $T_{n} \rightarrow T$ uniformly if $\left\|T_{n}-T\right\| \rightarrow 0$, as $n \rightarrow \infty$.
- $T_{n} \rightarrow T$ strongly if $\left\|T_{n} x-T x\right\| \rightarrow 0$, as $n \rightarrow \infty, \forall x \in H$.
- $\mathrm{T}_{\mathrm{n}} \rightarrow \mathrm{T}$ weakly if $\left(\mathrm{T}_{\mathrm{n}} x, y\right) \rightarrow(\mathrm{Tx}, \mathrm{y})$, as $\mathrm{n} \rightarrow \infty, \forall x, y \in H$.

Theorem 4. If $w-\lim \mathrm{T}_{\mathrm{n}}=\mathrm{T}$, then $w-\lim \mathrm{T}_{\mathrm{n}}^{*}=\mathrm{T}^{*}$.

Proof.

$$
\begin{aligned}
\left(\left(T_{n}-T\right) x, y\right) \rightarrow 0 \Longrightarrow \quad\left(\left(T_{n}^{*}-T^{*}\right) x, y\right) & =\overline{\left(x,\left(T_{n}-T\right) y\right)} \\
& =\overline{\left(\left(T_{n}-T\right) y, x\right)} \rightarrow 0
\end{aligned}
$$

Remark 4. s - $\lim \mathrm{T}_{\mathrm{n}}=\mathrm{T}$ does not imply s - $\lim \mathrm{T}_{\mathrm{n}}^{*}=\mathrm{T}^{*}$.
Indeed, let $h \in H,\|h\|=1$ and let $\left\{u_{n}\right\}$ be an orthonormal system in H. Define $\mathrm{T}=\left(\cdot, \mathrm{u}_{\mathrm{n}}\right) \mathrm{h}$. Then

$$
\left(T_{n} x, y\right)=\left(\left(x, u_{n}\right) h, y\right)=\left(x,(y, h) u_{n}\right) \quad \Longrightarrow \quad T^{*}=(\cdot, h) u_{n}
$$

Since $\left\|T_{n} x\right\|=\left|\left(x, u_{n}\right)\right| \rightarrow 0$ we have $s-\lim _{n \rightarrow \infty} T_{n}=0$. However, $\left\|\mathrm{T}_{n}^{*} h\right\|=\left\|u_{n}\right\|=1 \nrightarrow 0$.

Definition. (Compact Operators) A bounded operator T: H $\rightarrow \mathrm{H}$ is called compact if it maps bounded sets onto relatively compact. We shall denote the class of compact operators by S_{∞}.

Theorem 5 (AFr Th. 5.1.1.). If $\mathrm{T} \in \mathrm{S}_{\infty}$ then it maps weakly convergent sequences into convergent sequences.

