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Theorem.
The set {xn} is an orthonormal basis in a separable Hilbert space H iff

‖x‖2 =

∞∑
n=1

|(x, xn)|
2

for any x ∈ H.

Lemma. (AFr 6.4.8.)
Any two infinite dimensional separable Hilbert spaces are isometrical iso-
morphic.

Corollary. (AFr 6.4.9.)
Any infinite dimensional separable Hilbert space is isometrical isomorphic
to L2(0, 1).

Examples.

1. H = L2(−π, π) with an orthonormal basis un(t) = eint/
√
2π, n ∈ Z.

2. H = H1(−π, π) - Sobolev space with the scalar product:

(u, v) =

∫π
−π

(
u ′(t)v ′(t) + u(t)v(t)

)
dt.

The set of functions un(t) = eint/
√
2π is orthogonal set but not normal in

H1(−π, π).
Question: Is the set {un} basis in the Hilbert space H1(−π, π)?

3. Let D be a unit ball in the complex plane

D = {z = x+ iy : |z| < 1}.

Let A2(D) be the set of L2(D) analytic functions in D. The space A2 is a
Hillbert space with an orthonormal basis

uk(z) = π−1/2(k+ 1)1/2 zk, k = 0,±1,±2, . . . .

Indeed, let z = reit. Then

(uk, ul) = π−1(k+ 1)1/2(l+ 1)1/2
∫ 2π
0

∫ 1
0

ei(k−l)trk+l+1drdt = δkl.
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4. H = F2 - the Fock space, the space of entire function s.t.

‖f‖2 =

∫
C

|f(z)|2e−|z|2dxdy < ∞.
The set {ψk}

ψk(z) = π−1/2(k!)−1/2zk, k = 0,±1,±2, . . .

is an orthonormal basis.

Definition.
Let H be a Hilbert space, xn, x ∈ H.
We say that xn → x weakly

[
x = w-limn→∞ xn

]
if for any h ∈ H we have

(xn, h) → (x, h).

Remark 1. If ‖xn − x‖→ 0 then x = w-limn→∞ xn.

Example. Let {un} be an orthonormal system. Then w− limn→∞ un = 0.
Indeed, for any x ∈ H, xn = (x, un) are its Fourier coefficients converging
to zero.

Lemma 1. Let {xn} be a weakly convergent sequence. Then {xn} is
bounded.

Proof. For any y ∈ H we have (xn, y) → (x, y), x ∈ H. Therefore the
sequence {(xn, y)} is bounded. Now the lemma follows from the principle
of uniform boundedness Th. 4.5.1 (AvFr). �

Lemma 2. If yn → y and w-limn→∞ xn = x, then (xn, yn) → (x, y).

Proof.

|(xn, yn) − (x, y)| ≤ ‖xn‖‖yn − y‖+ |(xn, y) − (x, y)| → 0.

�

Definition. A functional Φ : H × H → C is called sesqui-linear form if
Φ(x, y) it is linear w.r.t. x, anti-linear w.r.t. y and

‖Φ‖ := sup
‖x‖=‖y‖=1

|Φ(x, y)| < ∞.
Remark 2. Clearly |Φ(x, y)| ≤ ‖Φ‖‖x‖‖y‖.
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Examples. Let T and S be bounded operators inH. ThenΦ(x, y) = (Tx, y)
and Φ(x, y) = (x, Sy) are sesqui-linear forms.

Definition. Φ(x) = Φ(x, x) is called a quadratic form.

Remark 3. By using the same argument as in Th. 6.1.5.(Av.Fr) we find

(1) 4Φ(x, y) = Φ(x+ y) −Φ(x− y) + iΦ(x+ iy) − iΦ(x− iy).

Definition. A form Φ is called Hermitian if

Φ(y, x) = Φ(x, y).

Theorem 1. The form Φ(x, y) is Hermitian iff the quadratic form Φ(x) is
real.

Proof. Φ(y, x) = Φ(x, y) implies Φ(x, x) = Φ(x, x). If Φ(x) is real then
by using (??) we obtain thatΦ(x, y) is Hermitian. �

Theorem 2. If Φ(x, y) = (Tx, y) = (x, Sy), then ‖Φ‖ = ‖T‖ = ‖S‖.

Proof. Since |Φ(x, y)| ≤ ‖Φ‖‖x‖‖y‖ the functionalΦ(·, y) is continuous.
Then by Riesz theorem (Th. 6.2.4) there exists h ∈ H s.t. Φ(x, y) = (x, h),
∀x ∈ H. Define now S : y → h. The operator S is linear. Indeed

(·, S(α1y1 + α2y2)) = Φ(·, α1y1 + α2y2)

= ᾱ1Φ(·, y1) + ᾱ2Φ(·, y2) = ᾱ1(·, Sy1) + ᾱ2(·, Sy2)
= (·, α1Sy1 + α2Sy2).

This implies ‖Sy‖ = ‖h‖ ≤ ‖Φ‖‖y‖ and thus ‖S‖ ≤ ‖Φ‖.
On the other hand |Φ(x, y)| ≤ ‖x‖‖Sy‖ ≤ ‖S‖‖x‖‖y‖ which gives us
‖Φ‖ ≤ ‖S‖. �

Corollary 1. For any bounded operator T in a Hilbert space H ‖T‖ =
‖T ∗‖.

Theorem 3. A linear bounded operator T in H is defined by its quadratic
form (Tx, x).

Proof. Suppose that (T1x, x) = (T2x, x). Then by using (??) we find that
(T1x, y) = (T2x, y), ∀x, y ∈ H. Hence T1 = T2. �

Definition. Let {Tn} be a sequence of bonded operators in H
• Tn → T uniformly if ‖Tn − T‖→ 0, as n → ∞.
• Tn → T strongly if ‖Tnx− Tx‖→ 0, as n → ∞, ∀x ∈ H.
• Tn → T weakly if (Tnx, y) → (Tx, y), as n → ∞, ∀x, y ∈ H.

Theorem 4. If w-lim Tn = T , then w-lim T ∗n = T ∗.
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Proof.(
(Tn − T)x, y

)→ 0 =⇒ (
(T ∗n − T ∗)x, y

)
=
(
x, (Tn − T)y

)
=
(
(Tn − T)y, x

)→ 0.

�

Remark 4. s-lim Tn = T does not imply s-lim T ∗n = T ∗.
Indeed, let h ∈ H, ‖h‖ = 1 and let {un} be an orthonormal system in H.
Define T = (·, un)h. Then

(Tnx, y) = ((x, un)h, y) = (x, (y, h)un) =⇒ T ∗ = (·, h)un.

Since ‖Tnx‖ = |(x, un)| → 0 we have s-limn→∞ Tn = 0. However,
‖T ∗nh‖ = ‖un‖ = 1 6→ 0.

Definition. (Compact Operators) A bounded operator T : H → H is called
compact if it maps bounded sets onto relatively compact. We shall denote
the class of compact operators by S∞.

Theorem 5 (AFr Th. 5.1.1.). If T ∈ S∞ then it maps weakly convergent
sequences into convergent sequences.


