WEEK 8

Theorem.

The set $\{x_n\}$ is an orthonormal basis in a separable Hilbert space H *iff*

$$\|x\|^2 = \sum_{n=1}^{\infty} |(x, x_n)|^2$$

for any $x \in H$.

Lemma. (AFr 6.4.8.)

Any two infinite dimensional separable Hilbert spaces are isometrical isomorphic.

Corollary. (AFr 6.4.9.)

Any infinite dimensional separable Hilbert space is isometrical isomorphic to $L^2(0, 1)$.

Examples.

1. $H = L^2(-\pi, \pi)$ with an orthonormal basis $u_n(t) = e^{int}/\sqrt{2\pi}$, $n \in \mathbb{Z}$.

2. $H = H^1(-\pi, \pi)$ - Sobolev space with the scalar product:

$$(\mathfrak{u},\mathfrak{v}) = \int_{-\pi}^{\pi} \left(\mathfrak{u}'(t)\overline{\mathfrak{v}'(t)} + \mathfrak{u}(t)\overline{\mathfrak{v}(t)}\right) \mathrm{d}t.$$

The set of functions $u_n(t) = e^{int}/\sqrt{2\pi}$ is orthogonal set but not normal in $H^1(-\pi,\pi)$.

Question: Is the set $\{u_n\}$ basis in the Hilbert space $H^1(-\pi, \pi)$?

3. Let \mathbb{D} be a unit ball in the complex plane

$$\mathbb{D} = \{ z = x + iy : |z| < 1 \}.$$

Let $A^2(\mathbb{D})$ be the set of $L^2(\mathbb{D})$ analytic functions in \mathbb{D} . The space A^2 is a Hillbert space with an orthonormal basis

$$u_k(z) = \pi^{-1/2} (k+1)^{1/2} z^k, \qquad k = 0, \pm 1, \pm 2, \dots$$

Indeed, let $z = re^{it}$. Then

$$(u_{k}, u_{l}) = \pi^{-1}(k+1)^{1/2} (l+1)^{1/2} \int_{0}^{2\pi} \int_{0}^{1} e^{i(k-l)t} r^{k+l+1} dr dt = \delta_{kl}.$$

4. $H = F^2$ - the Fock space, the space of entire function s.t.

$$\|\mathbf{f}\|^2 = \int_{\mathbb{C}} |\mathbf{f}(z)|^2 e^{-|z|^2} dx dy < \infty.$$

The set $\{\psi_k\}$

$$\psi_k(z) = \pi^{-1/2} (k!)^{-1/2} z^k, \qquad k = 0, \pm 1, \pm 2, \dots$$

is an orthonormal basis.

Definition.

Let H be a Hilbert space, $x_n, x \in H$. We say that $x_n \to x$ weakly $\left[x = w \text{-lim}_{n \to \infty} x_n\right]$ if for any $h \in H$ we have $(x_n, h) \to (x, h)$.

Remark 1. If $||x_n - x|| \to 0$ then x = w-lim $_{n \to \infty} x_n$.

Example. Let $\{u_n\}$ be an orthonormal system. Then $w - \lim_{n \to \infty} u_n = 0$. Indeed, for any $x \in H$, $x_n = (x, u_n)$ are its Fourier coefficients converging to zero.

Lemma 1. Let $\{x_n\}$ be a weakly convergent sequence. Then $\{x_n\}$ is bounded.

Proof. For any $y \in H$ we have $(x_n, y) \to (x, y), x \in H$. Therefore the sequence $\{(x_n, y)\}$ is bounded. Now the lemma follows from the principle of uniform boundedness Th. 4.5.1 (AvFr).

Lemma 2. If $y_n \to y$ and w-lim $_{n\to\infty} x_n = x$, then $(x_n, y_n) \to (x, y)$.

Proof.

$$|(x_n, y_n) - (x, y)| \le ||x_n|| ||y_n - y|| + |(x_n, y) - (x, y)| \to 0.$$

Definition. A functional $\Phi : H \times H \to \mathbb{C}$ is called sesqui-linear form if $\Phi(x, y)$ it is linear w.r.t. x, anti-linear w.r.t. y and

$$\|\Phi\| := \sup_{\|x\|=\|y\|=1} |\Phi(x,y)| < \infty.$$

Remark 2. Clearly $|\Phi(x, y)| \le ||\Phi|| ||x|| ||y||$.

Examples. Let T and S be bounded operators in H. Then $\Phi(x, y) = (Tx, y)$ and $\Phi(x, y) = (x, Sy)$ are sesqui-linear forms.

Definition. $\Phi(x) = \Phi(x, x)$ is called a quadratic form.

Remark 3. By using the same argument as in Th. 6.1.5.(Av.Fr) we find

(1)
$$4\Phi(\mathbf{x},\mathbf{y}) = \Phi(\mathbf{x}+\mathbf{y}) - \Phi(\mathbf{x}-\mathbf{y}) + i\Phi(\mathbf{x}+i\mathbf{y}) - i\Phi(\mathbf{x}-i\mathbf{y})$$

Definition. A form Φ is called Hermitian if

$$\Phi(\mathbf{y},\mathbf{x})=\overline{\Phi(\mathbf{x},\mathbf{y})}.$$

Theorem 1. The form $\Phi(x, y)$ is Hermitian iff the quadratic form $\Phi(x)$ is real.

Proof. $\Phi(y, x) = \Phi(x, y)$ implies $\Phi(x, x) = \Phi(x, x)$. If $\Phi(x)$ is real then by using (??) we obtain that $\Phi(x, y)$ is Hermitian.

Theorem 2. If $\Phi(x, y) = (Tx, y) = (x, Sy)$, then $\|\Phi\| = \|T\| = \|S\|$.

Proof. Since $|\Phi(x, y)| \le ||\Phi|| ||x|| ||y||$ the functional $\Phi(\cdot, y)$ is continuous. Then by Riesz theorem (Th. 6.2.4) there exists $h \in H$ s.t. $\Phi(x, y) = (x, h)$, $\forall x \in H$. Define now S : $y \to h$. The operator S is linear. Indeed

$$\begin{aligned} (\cdot, S(\alpha_1 y_1 + \alpha_2 y_2)) &= \Phi(\cdot, \alpha_1 y_1 + \alpha_2 y_2) \\ &= \bar{\alpha}_1 \Phi(\cdot, y_1) + \bar{\alpha}_2 \Phi(\cdot, y_2) = \bar{\alpha}_1(\cdot, Sy_1) + \bar{\alpha}_2(\cdot, Sy_2) \\ &= (\cdot, \alpha_1 Sy_1 + \alpha_2 Sy_2). \end{aligned}$$

This implies $||Sy|| = ||h|| \le ||\Phi|| ||y||$ and thus $||S|| \le ||\Phi||$.

On the other hand $|\Phi(x, y)| \le ||x|| ||Sy|| \le ||S|| ||x|| ||y||$ which gives us $||\Phi|| \le ||S||$.

Corollary 1. For any bounded operator T in a Hilbert space $H ||T|| = ||T^*||$.

Theorem 3. A linear bounded operator T in H is defined by its quadratic form (Tx, x).

Proof. Suppose that $(T_1x, x) = (T_2x, x)$. Then by using (??) we find that $(T_1x, y) = (T_2x, y), \forall x, y \in H$. Hence $T_1 = T_2$.

Definition. Let $\{T_n\}$ be a sequence of bonded operators in H

- $T_n \to T$ uniformly if $||T_n T|| \to 0$, as $n \to \infty$.
- $T_n \to T$ strongly if $||T_n x Tx|| \to 0$, as $n \to \infty$, $\forall x \in H$.
- $T_n \to T$ weakly if $(T_n x, y) \to (Tx, y)$, as $n \to \infty, \forall x, y \in H$.

Theorem 4. If w-lim $T_n = T$, then w-lim $T_n^* = T^*$.

Proof.

4

$$\begin{split} \left((T_n-T)x,y\right) \to 0 & \Longrightarrow \quad \left((T_n^*-T^*)x,y\right) = \begin{pmatrix} x,(T_n-T)y \end{pmatrix} \\ &= \overline{\left((T_n-T)y,x\right)} \to 0. \end{split}$$

Remark 4. s-lim $T_n = T$ does not imply s-lim $T_n^* = T^*$. Indeed, let $h \in H$, ||h|| = 1 and let $\{u_n\}$ be an orthonormal system in H. Define $T = (\cdot, u_n)h$. Then

$$\begin{aligned} (T_n x, y) &= ((x, u_n)h, y) = (x, (y, h)u_n) & \Longrightarrow \quad T^* = (\cdot, h)u_n. \\ \text{Since } \|T_n x\| &= |(x, u_n)| \ \to \ 0 \ \text{we have s-lim}_{n \to \infty} \ T_n \ = \ 0. \ \text{However,} \\ \|T_n^*h\| &= \|u_n\| = 1 \not\to 0. \end{aligned}$$

Definition. (Compact Operators) A bounded operator $T: H \to H$ is called compact if it maps bounded sets onto relatively compact. We shall denote the class of compact operators by S_∞ .

Theorem 5 (AFr Th. 5.1.1.). If $T \in S_{\infty}$ then it maps weakly convergent sequences into convergent sequences.