WEEK 9

Theorem 1 (AFr Th. 5.1.2.). Let $\mathrm{T}_{\mathrm{n}}: \mathrm{H} \rightarrow \mathrm{H}$ be sequence of compact operators uniformly convergent to T . Then T is also compact.

Theorem 2. $\mathrm{T} \in \mathrm{S}_{\infty}$ iff $\mathrm{T}^{*} \mathrm{~T} \in \mathrm{~S}_{\infty}$.
Proof. If $\mathrm{T} \in \mathrm{S}_{\infty}$ then T^{*} is bounded and therefore $\mathrm{T}^{*} \mathrm{~T} \in \mathrm{~S}_{\infty}$. If $\mathrm{T}^{*} \mathrm{~T} \in \mathrm{~S}_{\infty}$ and $w-\lim x_{n}=0$, then $s-\lim T^{*} T x_{n}=0$. Then we obtain $\left(x_{n}, T * T x_{n}\right)=$ $\left\|T x_{n}\right\|^{2} \rightarrow 0$.
Theorem 3. $\mathrm{T} \in \mathrm{S}_{\infty}$ iff $\mathrm{T}^{*} \in \mathrm{~S}_{\infty}$.
Proof. $\mathrm{T}^{*} \in \mathrm{~S}_{\infty}$ implies $\mathrm{T}^{*} \mathrm{~T} \in \mathrm{~S}_{\infty}$ and thus $\mathrm{T} \in \mathrm{S}_{\infty}$.

Finite rank operators

Definition. T is said to be of rank $r(r<\infty)$ if $\operatorname{dim} T(H)=r$. The class of operators of rank r is denoted by K_{r} and $K:=\cup_{r} K_{r}$.

Theorem 4. $\mathrm{T} \in \mathrm{K}_{\mathrm{r}}$ iff $\mathrm{T}^{*} \in \mathrm{~K}_{\mathrm{r}}$.
Proof. Let $\mathrm{T} \in \mathrm{K}_{\mathrm{r}}$ and let $\mathrm{u}_{1}, \mathfrak{u}_{2}, \ldots, \mathrm{u}_{\mathrm{r}}$ be an orthonormal basis in $\mathrm{T}(\mathrm{H})$. Then for any $x \in H$ we have

$$
T x=\sum_{k=1}^{r}\left(T x, u_{k}\right) u_{k}=\sum_{k=1}^{r}\left(x, T^{*} u_{k}\right) u_{k} .
$$

Denote $v_{k}=T^{*} \mathfrak{u}_{k}$, then $\mathrm{T}=\sum_{k=1}^{r}\left(\cdot, v_{k}\right) \mathfrak{u}_{k}$. Moreover

$$
(T x, y)=\sum_{k=1}^{r}\left(\left(x, v_{k}\right) u_{k}, y\right)=\sum_{k=1}^{r}\left(x,\left(y, u_{k}\right) v_{k}\right)=\left(x, T^{*} y\right) .
$$

Therefore $\mathrm{T}=\sum_{k=1}^{r}\left(\cdot, \mathfrak{u}_{\mathrm{k}}\right) v_{\mathrm{k}}$ and thus $\mathrm{T}^{*} \in \mathrm{~K}_{\mathrm{r}}$.
Theorem 5. The uniform closure of the class of finite rank operators K coincides with S_{∞}.
Proof. Let $\mathrm{T} \in \mathrm{S}_{\infty}$. Then T maps the set $\mathrm{B}=\{\mathrm{x}:\|\mathrm{x}\| \leq 1\}$ onto a relatively compact set. For any $\varepsilon>0$ there exists a finite set of elements $\left\{y_{k}\right\}_{k=1}^{r}$ such that for any $y \in T(B)$ we have $\min \left\|y-y_{k}\right\| \leq \varepsilon$. Let P be the projection on the subspace spanned by y_{k}. Clearly rank $\mathrm{P} \leq \mathrm{r}$. Thus for any x s.t. $\|x\| \leq 1$ we obtain

$$
\|\mathrm{T} x-\mathrm{PT}\|\left\|\leq \min _{\mathrm{k}}^{1}\right\| \mathrm{T} x-\mathrm{y}_{\mathrm{k}} \| \leq \varepsilon
$$

Remark 1. Uniform closure cannot be replaced by the strong closure.
Theorem 6. The strong closure of $\mathrm{K}(\mathrm{H})$ coincides with the class of all bounded operators.

Proof. Let $\left\{\mathcal{u}_{k}\right\}_{k=1}^{\infty}$ be an orthonormal basis in H and let P_{n} be the projectors on the subspaces spanned by $\left\{u_{k}\right\}_{k=1}^{n}$. Then for any $x \in H,\left\|P_{n} x-x\right\| \rightarrow 0$ which means that $s-\lim P_{n}=I$. Thus $s-\lim P_{n} T=T$ for any bounded operator T .

Integral Operators

Theorem 7. Let $\mathrm{K}: \mathrm{L}^{2}(\Omega) \rightarrow \mathrm{L}^{2}(\Omega), \Omega \in \mathbb{R}$, be an integral operator

$$
K f(x)=\int_{\Omega} K(x, y) f(y) d y
$$

such that

$$
\int_{\Omega} \int_{\Omega}|K(x, y)|^{2} d x d y<\infty
$$

Then K is compact.
Proof. Let $\left\{\mathrm{u}_{\mathrm{j}}\right\}_{j=1}^{\infty}$ be an orthonormal basis in $\mathrm{L}^{2}(\Omega)$. Then

$$
K(x, y)=\sum_{j=1}^{\infty} K_{j}(y) u_{j}(x), \quad \text { where } \quad K_{j}(y)=\int_{\Omega} K(x, y) \overline{u_{j}(x)} d x
$$

for almost all y. Due to the Parseval identity we have for almost all y

$$
\int_{\Omega}|K(x, y)|^{2} d x=\sum_{j=1}^{\infty}\left|K_{j}(y)\right|^{2}
$$

and

$$
\begin{equation*}
\int_{\Omega} \int_{\Omega}|K(x, y)|^{2} d x d y=\sum_{j=1}^{\infty} \int_{\Omega}\left|K_{j}(y)\right|^{2} d y \tag{1}
\end{equation*}
$$

We now define the following operator of rank N

$$
K_{N} f(x)=\int_{\Omega} K_{N}(x, y) f(y) d y
$$

where $K_{N}(x, y)=\sum_{j=1}^{N} K_{j}(y) u_{j}(x)$. By Cauchy-Schwartz inequality we obtain

$$
\begin{aligned}
&\left\|\left(K-K_{N}\right) f\right\|^{2}=\int_{\Omega}\left|\int_{\Omega}\left(K(x, y)-K_{N}(x, y)\right) f(y) d y\right|^{2} d x \\
& \leq \int_{\Omega} \int_{\Omega}\left|K(x, y)-K_{N}(x, y)\right|^{2} d x d y\|f\|^{2}
\end{aligned}
$$

Thus by using that the right hand side in (??) is absolutely convergent, we find

$$
\begin{aligned}
\|(K & \left.-K_{N}\right) \|^{2} \leq \int_{\Omega} \int_{\Omega}\left|K(x, y)-K_{N}(x, y)\right|^{2} d x d y \\
= & \int_{\Omega} \int_{\Omega}|K(x, y)|^{2} d x d y-\int_{\Omega} \int_{\Omega} K(x, y) \sum_{j=1}^{N} \overline{K_{j}(y) u_{j}(x)} d x d y \\
& \quad-\int_{\Omega} \int_{\Omega} \overline{K(x, y)} \sum_{j=1}^{N} K_{j}(y) u_{j}(x) d x d y+\sum_{j=1}^{N} \int_{\Omega}\left|K_{j}(y)\right|^{2} d y \\
= & \int_{\Omega} \int_{\Omega}|K(x, y)|^{2} d x d y-\sum_{j=1}^{N} \int_{\Omega}\left|K_{j}(y)\right|^{2} d y \rightarrow 0, \quad \text { as } \quad N \rightarrow \infty .
\end{aligned}
$$

Bounded Self-adjoint Operators

Definition. A bounded operator $\mathrm{T}: \mathrm{H} \rightarrow \mathrm{H}$ is said to be self-adjoint if $\forall x, y \in H$

$$
(T x, y)=(x, T y), \quad\left(A=A^{*}\right)
$$

Theorem 8 (Av.Fr. 6.5.1). Let T : be a bounded self-adjoint operator in a Hilbert space H. Then

$$
\|T\|=\sup _{\|x\|=1}|(T x, x)| .
$$

Proof. Clearly if $\|x\|=1$, then

$$
|(T x, x)| \leq\|T x\|\|x\|=\|T x\| \leq\|T\|
$$

and therefore $\sup _{\|x\|=1}|(T x, x)| \leq\|T\|$.
In order to proof the inverse inequality we consider $z \in \mathrm{H},\|z\|=1$, $T z \neq 0$ and $u=T z / \lambda$, where $\lambda=\|T z\|^{1 / 2}$. If we denote by $\alpha:=$
$\sup _{\|x\|=1}|(T x, x)|$, then

$$
\begin{aligned}
&\|T z\|^{2}=(\mathrm{T}(\lambda z), u)=\frac{1}{4}[(\mathrm{~T}(\lambda z+u), \lambda z+u)-(\mathrm{T}(\lambda z-u), \lambda z-u)] \\
& \leq \frac{\alpha}{4}\left[\|\lambda z+u\|^{2}+\|\lambda z-u\|^{2}\right]= \\
& \frac{\alpha}{2}\left[\|\lambda z\|^{2}+\|u\|^{2}\right] \\
& \frac{\alpha}{2}\left[\|\lambda\|^{2}+\|T z\|\right]=\alpha\|T z\|
\end{aligned}
$$

This implies that for any $z \in H,\|z\|=1$ we have $\|T z\| \leq \alpha$ and hence $\|T\| \leq \alpha=\sup _{\|x\|=1}|(T x, x)|$.

