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Theorem 1 (AFr Th. 5.1.2.). Let Tn : H → H be sequence of compact
operators uniformly convergent to T . Then T is also compact.

Theorem 2. T ∈ S∞ iff T ∗T ∈ S∞.

Proof. If T ∈ S∞ then T ∗ is bounded and therefore T ∗T ∈ S∞. If T ∗T ∈ S∞
and w-lim xn = 0, then s-lim T ∗Txn = 0. Then we obtain (xn, T

∗Txn) =
‖Txn‖2 → 0. �

Theorem 3. T ∈ S∞ iff T ∗ ∈ S∞.

Proof. T ∗ ∈ S∞ implies T ∗T ∈ S∞ and thus T ∈ S∞. �

Finite rank operators

Definition. T is said to be of rank r (r < ∞) if dim T(H) = r. The class of
operators of rank r is denoted by Kr and K := ∪rKr.
Theorem 4. T ∈ Kr iff T ∗ ∈ Kr.
Proof. Let T ∈ Kr and let u1, u2, . . . , ur be an orthonormal basis in T(H).
Then for any x ∈ H we have

Tx =

r∑
k=1

(Tx, uk)uk =

r∑
k=1

(x, T ∗uk)uk.

Denote vk = T ∗uk, then T =
∑r
k=1(·, vk)uk. Moreover

(Tx, y) =

r∑
k=1

((x, vk)uk, y) =

r∑
k=1

(x, (y, uk)vk) = (x, T ∗y).

Therefore T =
∑r
k=1(·, uk)vk and thus T ∗ ∈ Kr. �

Theorem 5. The uniform closure of the class of finite rank operators K
coincides with S∞.

Proof. Let T ∈ S∞. Then T maps the set B = {x : ‖x‖ ≤ 1} onto a
relatively compact set. For any ε > 0 there exists a finite set of elements
{yk}

r
k=1 such that for any y ∈ T(B) we have min ‖y − yk‖ ≤ ε. Let P be

the projection on the subspace spanned by yk. Clearly rankP ≤ r. Thus for
any x s.t. ‖x‖ ≤ 1 we obtain

‖Tx− PTx‖ ≤ min
k
‖Tx− yk‖ ≤ ε.
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Remark 1. Uniform closure cannot be replaced by the strong closure.

Theorem 6. The strong closure of K(H) coincides with the class of all
bounded operators.

Proof. Let {uk}
∞
k=1 be an orthonormal basis inH and let Pn be the projectors

on the subspaces spanned by {uk}
n
k=1. Then for any x ∈ H, ‖Pnx− x‖→ 0

which means that s-limPn = I. Thus s-limPnT = T for any bounded
operator T . �

Integral Operators

Theorem 7. Let K : L2(Ω) → L2(Ω),Ω ∈ R, be an integral operator

Kf(x) =

∫
Ω

K(x, y)f(y)dy,

such that ∫
Ω

∫
Ω

|K(x, y)|2 dxdy < ∞.
Then K is compact.

Proof. Let {uj}
∞
j=1 be an orthonormal basis in L2(Ω). Then

K(x, y) =

∞∑
j=1

Kj(y)uj(x), where Kj(y) =

∫
Ω

K(x, y)uj(x)dx

for almost all y. Due to the Parseval identity we have for almost all y∫
Ω

|K(x, y)|2 dx =

∞∑
j=1

|Kj(y)|
2

and

(1)
∫
Ω

∫
Ω

|K(x, y)|2 dxdy =

∞∑
j=1

∫
Ω

|Kj(y)|
2 dy.

We now define the following operator of rank N

KNf(x) =

∫
Ω

KN(x, y)f(y)dy,
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where KN(x, y) =
∑N
j=1 Kj(y)uj(x). By Cauchy-Schwartz inequality we

obtain

‖(K− KN)f‖2 =

∫
Ω

∣∣∣ ∫
Ω

(
K(x, y) − KN(x, y)

)
f(y)dy

∣∣∣2dx
≤

∫
Ω

∫
Ω

|K(x, y) − KN(x, y)|2 dxdy ‖f‖2

Thus by using that the right hand side in (??) is absolutely convergent, we
find

‖(K− KN)‖2 ≤
∫
Ω

∫
Ω

|K(x, y) − KN(x, y)|2 dxdy

=

∫
Ω

∫
Ω

|K(x, y)|2 dxdy−

∫
Ω

∫
Ω

K(x, y)

N∑
j=1

Kj(y)uj(x)dxdy

−

∫
Ω

∫
Ω

K(x, y)

N∑
j=1

Kj(y)uj(x)dxdy+

N∑
j=1

∫
Ω

|Kj(y)|
2 dy

=

∫
Ω

∫
Ω

|K(x, y)|2 dxdy−

N∑
j=1

∫
Ω

|Kj(y)|
2 dy → 0, as N → ∞.

�

Bounded Self-adjoint Operators

Definition. A bounded operator T : H → H is said to be self-adjoint if
∀x, y ∈ H

(Tx, y) = (x, Ty), (A = A∗).

Theorem 8 (Av.Fr. 6.5.1). Let T : be a bounded self-adjoint operator in a
Hilbert space H. Then

‖T‖ = sup
‖x‖=1

|(Tx, x)|.

Proof. Clearly if ‖x‖ = 1, then

|(Tx, x)| ≤ ‖Tx‖‖x‖ = ‖Tx‖ ≤ ‖T‖

and therefore sup‖x‖=1 |(Tx, x)| ≤ ‖T‖.
In order to proof the inverse inequality we consider z ∈ H, ‖z‖ = 1,

Tz 6= 0 and u = Tz/λ, where λ = ‖Tz‖1/2. If we denote by α :=
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sup‖x‖=1 |(Tx, x)|, then

‖Tz‖2 =
(
T(λz), u

)
=
1

4

[(
T(λz+u), λz+u

)
−
(
T(λz−u), λz−u

)]
≤ α
4

[
‖λz+ u‖2 + ‖λz− u‖2

]
=
α

2

[
‖λz‖2 + ‖u‖2

]
α

2

[
‖λ‖2 + ‖Tz‖

]
= α‖Tz‖.

This implies that for any z ∈ H, ‖z‖ = 1 we have ‖Tz‖ ≤ α and hence
‖T‖ ≤ α = sup‖x‖=1 |(Tx, x)|. �


