WEEK 9

Theorem 1 (AFr Th. 5.1.2.). Let $T_n : H \to H$ be sequence of compact operators uniformly convergent to T. Then T is also compact.

Theorem 2. $T \in S_{\infty}$ *iff* $T^*T \in S_{\infty}$.

Proof. If $T \in S_{\infty}$ then T^* is bounded and therefore $T^*T \in S_{\infty}$. If $T^*T \in S_{\infty}$ and w-lim $x_n = 0$, then s-lim $T^*Tx_n = 0$. Then we obtain $(x_n, T^*Tx_n) = ||Tx_n||^2 \to 0$.

Theorem 3. $T \in S_{\infty}$ *iff* $T^* \in S_{\infty}$.

Proof. $T^* \in S_{\infty}$ implies $T^*T \in S_{\infty}$ and thus $T \in S_{\infty}$.

Finite rank operators

Definition. T is said to be of rank r ($r < \infty$) if dim T(H) = r. The class of operators of rank r is denoted by K_r and K := $\cup_r K_r$.

Theorem 4. $T \in K_r$ *iff* $T^* \in K_r$.

Proof. Let $T \in K_r$ and let $u_1, u_2, ..., u_r$ be an orthonormal basis in T(H). Then for any $x \in H$ we have

$$\mathsf{T} \mathsf{x} = \sum_{k=1}^{r} (\mathsf{T} \mathsf{x}, \mathfrak{u}_k) \mathfrak{u}_k = \sum_{k=1}^{r} (\mathsf{x}, \mathsf{T}^* \mathfrak{u}_k) \mathfrak{u}_k.$$

Denote $v_k = T^* u_k$, then $T = \sum_{k=1}^r (\cdot, v_k) u_k$. Moreover

$$(\mathsf{T} x, y) = \sum_{k=1}^{r} ((x, \nu_k) u_k, y) = \sum_{k=1}^{r} (x, (y, u_k) \nu_k) = (x, \mathsf{T}^* y).$$

Therefore $T = \sum_{k=1}^{r} (\cdot, u_k) v_k$ and thus $T^* \in K_r$.

Theorem 5. The uniform closure of the class of finite rank operators K coincides with S_{∞} .

Proof. Let $T \in S_{\infty}$. Then T maps the set $B = \{x : ||x|| \le 1\}$ onto a relatively compact set. For any $\varepsilon > 0$ there exists a finite set of elements $\{y_k\}_{k=1}^r$ such that for any $y \in T(B)$ we have min $||y - y_k|| \le \varepsilon$. Let P be the projection on the subspace spanned by y_k . Clearly rank $P \le r$. Thus for any x s.t. $||x|| \le 1$ we obtain

$$\|\mathsf{T} x - \mathsf{P} \mathsf{T} x\| \le \min_{k} \|\mathsf{T} x - y_{k}\| \le \varepsilon.$$

Remark 1. Uniform closure cannot be replaced by the strong closure.

Theorem 6. The strong closure of K(H) coincides with the class of all bounded operators.

Proof. Let $\{u_k\}_{k=1}^{\infty}$ be an orthonormal basis in H and let P_n be the projectors on the subspaces spanned by $\{u_k\}_{k=1}^n$. Then for any $x \in H$, $||P_n x - x|| \to 0$ which means that s-lim $P_n = I$. Thus s-lim $P_n T = T$ for any bounded operator T.

Integral Operators

Theorem 7. Let $K : L^2(\Omega) \to L^2(\Omega)$, $\Omega \in \mathbb{R}$, be an integral operator

$$Kf(x) = \int_{\Omega} K(x, y) f(y) \, dy,$$

such that

$$\int_{\Omega}\int_{\Omega}|K(x,y)|^{2}\,dxdy<\infty.$$

Then K is compact.

Proof. Let $\{u_j\}_{j=1}^{\infty}$ be an orthonormal basis in $L^2(\Omega)$. Then

$$K(x,y) = \sum_{j=1}^{\infty} K_j(y) u_j(x), \text{ where } K_j(y) = \int_{\Omega} K(x,y) \overline{u_j(x)} \, dx$$

for almost all y. Due to the Parseval identity we have for almost all y

$$\int_{\Omega} |K(x,y)|^2 dx = \sum_{j=1}^{\infty} |K_j(y)|^2$$

and

(1)
$$\int_{\Omega} \int_{\Omega} |K(x,y)|^2 dx dy = \sum_{j=1}^{\infty} \int_{\Omega} |K_j(y)|^2 dy.$$

We now define the following operator of rank N

$$K_{N}f(x) = \int_{\Omega} K_{N}(x, y)f(y) \, dy,$$

where $K_N(x,y) = \sum_{j=1}^N K_j(y) u_j(x).$ By Cauchy-Schwartz inequality we obtain

$$\begin{split} \|(K - K_N)f\|^2 &= \int_{\Omega} \Big| \int_{\Omega} \Big(K(x, y) - K_N(x, y) \Big) f(y) \, dy \Big|^2 dx \\ &\leq \int_{\Omega} \int_{\Omega} |K(x, y) - K_N(x, y)|^2 \, dx dy \, \|f\|^2 \end{split}$$

Thus by using that the right hand side in (??) is absolutely convergent, we find

$$\begin{split} \|(K - K_N)\|^2 &\leq \int_{\Omega} \int_{\Omega} |K(x, y) - K_N(x, y)|^2 \, dx \, dy \\ &= \int_{\Omega} \int_{\Omega} |K(x, y)|^2 \, dx \, dy - \int_{\Omega} \int_{\Omega} K(x, y) \sum_{j=1}^N \overline{K_j(y) u_j(x)} \, dx \, dy \\ &- \int_{\Omega} \int_{\Omega} \overline{K(x, y)} \sum_{j=1}^N K_j(y) u_j(x) \, dx \, dy + \sum_{j=1}^N \int_{\Omega} |K_j(y)|^2 \, dy \\ &= \int_{\Omega} \int_{\Omega} |K(x, y)|^2 \, dx \, dy - \sum_{j=1}^N \int_{\Omega} |K_j(y)|^2 \, dy \to 0, \quad \text{as} \quad N \to \infty. \end{split}$$

Bounded Self-adjoint Operators

Definition. A bounded operator $T : H \rightarrow H$ is said to be self-adjoint if $\forall x, y \in H$

$$(Tx, y) = (x, Ty),$$
 $(A = A^*).$

Theorem 8 (Av.Fr. 6.5.1). Let T : be a bounded self-adjoint operator in a Hilbert space H. Then

$$\|\mathsf{T}\| = \sup_{\|\mathbf{x}\|=1} |(\mathsf{T}\mathbf{x},\mathbf{x})|.$$

Proof. Clearly if $||\mathbf{x}|| = 1$, then

$$|(Tx, x)| \le ||Tx|| ||x|| = ||Tx|| \le ||T||$$

and therefore $\sup_{\|x\|=1} |(Tx, x)| \le \|T\|$. In order to proof the inverse inequality we consider $z \in H$, $\|z\| = 1$, $Tz \ne 0$ and $u = Tz/\lambda$, where $\lambda = \|Tz\|^{1/2}$. If we denote by $\alpha :=$

 $\sup_{\|x\|=1} |(Tx,x)|$, then

This implies that for any $z \in H$, ||z|| = 1 we have $||Tz|| \le \alpha$ and hence $||T|| \le \alpha = \sup_{||x||=1} |(Tx, x)|$.