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Abstract
Following Eden and Foias we obtain a matrix version of a gener-

alised Sobolev inequality in one-dimension. This allows us to improve
on the known estimates of best constants in Lieb-Thirring inequal-
ities for the sum of the negative eigenvalues for multi-dimensional
Schrödinger operators.
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1 Introduction

Let H be a Schrödinger operator in L2(Rd)

H = −∆− V (1)

For a real-valued potential V we consider Lieb-Thirring inequalities for the
negative eigenvalues {λn} of the operator H∑

|λn|γ ≤ Ld,γ

∫
Rd

V
d/2+γ
+ (x) dx , (2)

where V+ = (|V |+ V )/2 is the positive part of V .
Eden and Foias have obtained in [3] a version of a one-dimensional

generalised Sobolev inequality which gives best known estimates for the
constants in the inequality (2) for 1 ≤ γ < 3/2. The aim of this short article
is to extend the method from [3] to a class of matrix-valued potentials. By
using ideas from [6] this automatically improves on the known estimates of
best constants in (2) for multidimensional Schrödinger operators.

Lieb-Thirring inequalities for matrix-valued potentials for the value γ =
3/2 were obtained in [6] and also in [2]. Here we state a result corresponding
to γ = 1.

Theorem 1. Let V ≥ 0 be a Hermitian m × m matrix-function defined
on R and let λn be all negative eigenvalues of the operator (1). Then∑

|λn| ≤
2

3
√

3

∫
R

Tr
[
V 3/2(x)

]
dx . (3)



Remark 1. The constant 2
3
√

3
should be compared with the Lieb-Thirring

constant found in [7] for a class of single eigenvalue potentials and with the
constant obtained in [5] which is twice as large as the semi-classical one

4
3
√

3 π
<

2
3
√

3
< 2× 2

3π
= 2× 1

2π

∫
R
(1− ξ2)+ dξ .

This is about 0, 2450 · · · < 0, 3849 · · · < 0, 4244 . . . .

Remark 2. Note that the values of the best constants for the range 1/2 <
γ < 3/2 remain unknown.

Let A(x) = (a1(x), . . . , ad(x)) be a magnetic vector potential with real
valued entries ak ∈ L2

loc(Rd) and let

H(A) = (i∇+A)2 − V ,

where V ≥ 0 is a real-valued function.
Denote the ratio of 2/3

√
3 and the semi-classical constant by

R :=
2

3
√

3
×

(
2
3π

)−1

= 1.8138 . . . .

By using the Aizenmann-Lieb argument [1], a “lifting” with respect to
dimension [6], [5], and Theorem 1 we obtain the following result:

Theorem 2. For any γ ≥ 1 and any dimension d ≥ 1, the negative eigen-
values of the operator H(A) satisfy inequalities∑

|λn|γ ≤ Ld,γ

∫
Rd

V d/2+γ(x) dx ,

where
Ld,γ ≤ R× Lcl

d,γ = R× 1
(2π)d

∫
Rd

(1− |ξ|)γ
+ dξ .

Remark 3. Theorem 2 allows us to improve on the estimates of best con-
stants in Lieb-Thirring inequalities for Schrödinger operators with complex-
valued potentials recently obtained in [4].

2 One-dimensional generalised Sobolev inequal-
ity for matrices

Let {φn}N
n=0 be an ortho-normal system of vector-functions in L2(R, CM ),

M ∈ N,

(φn, φm) = (φn, φm)L2(R,CM ) =
M∑

j=1

∫
R

φn(x, j) φm(x, j) dx = δnm ,
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where δnm is the Kronecker symbol. Let us introduce an M ×M matrix U
with entries

uj,k(x, y) =
N∑

n=0

φn(x, j) φn(y, k) .

Clearly
U∗(x, y) = U(y, x) . (4)

The fact that the functions φn are orthonormal can be written in a compact
form ∫

R
U(x, y) U(y, z) dy = U(x, z) . (5)

The latter two properties (4) and (5) prove that U(x, y) is the Schwartz
kernel of an orthogonal projection P in L2(R, CM ) whose image is the
subspace of vector-functions spanned by {φn}N

n=1.

Theorem 3. Let us assume that the vector-function φn, n = 1, 2, . . . N,
are from the Sobolev class H1(R, CM ). Then∫

R
Tr

[
U(x, x)3

]
dx ≤

N∑
n=1

M∑
j=1

∫
R
|φ′n(x, j)|2 dx .

Proof.

d

dy
Tr

[
U(x, y) U(y, x) U(x, x)

]
= Tr

[( d

dy
U(x, y)

)
U(y, x) U(x, x)

]
+Tr

[
U(x, y)

( d

dy
U(y, x)

)
U(x, x)

]
(6)

By integrating (6) and taking absolute values one obtains

1
2

Tr
[
U(x, z) U(z, x) U(x, x)

]
≤ 1

2

∫ z

−∞

∣∣∣ Tr
[( d

dy
U(x, y)

)
U(y, x) U(x, x)

]
+ Tr

[
U(x, y)

( d

dy
U(y, x)

)
U(x, x)

]∣∣∣ dy
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and

1
2

Tr
[
U(x, z) U(z, x) U(x, x)

]
≤ 1

2

∫ ∞

z

∣∣∣ Tr
[( d

dy
U(x, y)

)
U(y, x) U(x, x)

]
+ Tr

[
U(x, y)

( d

dy
U(y, x)

)
U(x, x)

]∣∣∣ dy .

Taking absolute values and adding the two inequalities yields for any z ∈ R∣∣∣ Tr
[
U(x, z) U(z, x) U(x, x)

]∣∣∣
≤ 1

2

∫
R

∣∣∣∣ Tr
[(

d

dy
U(x, y)

)
U(y, x) U(x, x)

]∣∣∣∣ dy

+
1
2

∫
R

∣∣∣∣ Tr
[
U(x, y)

(
d

dy
U(y, x)

)
U(x, x)

]∣∣∣∣ dy . (7)

Note that we have reproved the inequality

|f(x)|2 ≤
∫

R
|f(y) f ′(y)| dy

for traces of matrices. By using properties of traces, the Cauchy-Schwarz
inequality for matrix-functions and also properties (4) and (5), we find that
for all z ∈ R(∫

R

∣∣∣∣ Tr
[(

d

dy
U(x, y)

)
U(y, x) U(x, x)

]∣∣∣∣ dy

)2

≤
∫

R
Tr

[
d

dy
U(x, y)∗

d

dy
U(x, y)

]
dy

∫
R

Tr
[
U(x, y)∗ U2(x, x) U(x, y)

]
dy

=
∫

R
Tr

[
d

dy
U(y, x)

d

dy
U(x, y)

]
dy

∫
R

Tr
[
U2(x, x) U(x, y) U(y, x)

]
dy

=
∫

R
Tr

[
d

dy
U(x, y)

d

dy
U(y, x)

]
dy Tr

[
U(x, x)3

]
,

and similarly(∫
R

∣∣∣∣ Tr
[
U(x, y)

d

dy
U(y, x) U(x, x)

]∣∣∣∣ dy

)2

≤
∫

R
Tr

[
d

dy
U(x, y)

d

dy
U(y, x)

]
dy Tr

[
U(x, x)3

]
.
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Thus, using this, and setting x = z in (7), we arrive at∣∣∣ Tr
[
U(x, x)3

]∣∣∣ ≤ ∫
R

Tr
[

d

dy
U(x, y)

d

dy
U(y, x)

]
dy .

Integrating with respect to x we finally obtain∫
R

∣∣∣ Tr
[
U(x, x)3

]∣∣∣ dx

≤
N∑

n,k=1

M∑
i,j=1

∫
R

∫
R

φn(x, i)φ′n(y, j) φ′k(y, j) φk(x, i) dx dy

=
N∑

n=1

M∑
j=1

∫
R
|φ′n(x, j)|2 dx ,

which completes the proof.

3 Lieb-Thirring inequalities for Schrödinger op-
erators with matrix-valued potentials

Let us assume that V ∈ C∞
0 (R), V ≥ 0, be a M × M Hermitian matrix-

valued potential with entries {vij}M
i,j=1. Then the negative spectrum of

the Schrödinger operator H = − d2

dx2 − V in L2(R) is finite. For general
potentials the result is obtained by an approximation argument.

Denote by {φn} the ortho-normal system of eigen-vector functions cor-
responding to the eigenvalues {λn}N

n=1

− d2

dx2
φn − V φn = λn φn .

Clearly, ∑
n

λn =
∑
n,j

∫
R
|φ′n(x, j)|2 dx− Tr

[∫
R

V (x) U(x, x) dx

]
and by Hölder’s inequality for traces,∫

R
Tr [V (x) U(x, x)] dx ≤

(∫
R

Tr
[
V 3/2(x)

]
dx

) 2
3
(∫

R
Tr

[
U(x, x)3

]
dx

) 1
3

,

so that using Theorem 3∑
n

λn ≥ X −
(∫

R
Tr

[
V 3/2(x)

]
dx

) 2
3

X
1
3
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with X :=
∫

R Tr
[
U(x, x)3

]
dx. Minimising the right hand side with respect

to X we finally complete the proof of Theorem 1∑
n

λn ≥ − 2
3
√

3

∫
R

Tr
[
V 3/2(x)

]
dx .

Acknowledgements. The authors are grateful to the organisers of the meeting
“Functional Inequalities: Probability and PDE’s”, Université Paris-X, June 4-6,
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