RING-EXTENSIONS AND UNIVERSAL BIMODULES

HELGE MAAKESTAD

ABSTRACT. We consider A. Grothendiecks construction of the functors $\operatorname{Exan}_A(B,L)$ from from [2], prove existence, and elementary properties. As a special case we consider the module of differentials Ω^1_A and prove various general properties.

Contents

Int	troduction]
1.	Extensions of rings by bimodules]
2.	Derivations and differentials	,
References		10

Introduction

In the paper [2] the functors $\operatorname{Exan}_A(B,L)$ are introduced, parametrizing ringextensions of an arbitrary rinng B with a bimodule L. These functors are representable by a universal bimodule $\mathfrak{I}/\mathfrak{I}^2$, generalizing to the case for an arbitrary ring the fact that the module of differentials represents the functor of derivations $\operatorname{Der}_k(A,-)$. In this note we prove following [2] basic properties of the $\operatorname{Exan}_A(-,-)$ construction, and relate it to the module of differentials.

1. Extensions of rings by bimodules

Let in the following A denote an arbitrary ring, not necessarily commutative or with unit. We are interested in the category of A-algebras, ie the category of ring-homomorphisms $a:A\to B$ where B is an arbitrary ring, i.e B is an A-algebra. Morphisms in this category are morphisms of A-algebras, i.e morphisms commuting with the structure-morphism from A. Let $u:B\to C$ be a map of A-algebras, then the kernel $\mathfrak I$ is a 2-sided ideal of B. It is by definition an A-algebra, since we dont consider rings with unit. Beacuse $\mathfrak I$ is an ideal in B, it is a B-bimodule hence also an A-bimodule.

Let $f: E \to B$ be a surjective map of A-algebras, and let \Im be the kernel of f. It follows that \Im is an E-bimodule, and we have an exact sequence of rings

$$0 \to \mathfrak{I} \to E \to B \to 0$$

where we let $j: \mathfrak{I} \to E$ denote the inclusion-map. Note that the condition $j(\mathfrak{I})^2 = 0$ is equivalent to the following: \mathfrak{I} is a B-bimodule and for all $x \in E$, $z \in \mathfrak{I}$ we have

Date: march 2003.

 $Key\ words\ and\ phrases.$ Non-unital rings, bimodules, extensions, non-comutative jets, representable functors.

that xj(z) = j(f(x)z) and j(z)x = j(z(f(x))). This is the same as saying \Im is a B-bimodule and the map j is a map of E-bimodules.

Definition 1.1. An A-extension of an A-algebra B with a B-bimodule \Im is an exact sequence of A-bimodules

$$0 \rightarrow \Im \rightarrow E \rightarrow B \rightarrow 0$$

where the map $f: E \to B$ is a surjective map of A-algebras, and the inclusion map $j: \mathcal{I} \to E$ is a map of E-bimodules, i.e $j(\mathcal{I})^2 = 0$. The set of all extensions of this form is denoted $\operatorname{exan}_A(B, L)$.

Given two extensions

$$0 \to \mathfrak{I} \to E \to B \to 0$$

and

$$0 \rightarrow \mathfrak{I}' \rightarrow E' \rightarrow B' \rightarrow 0$$

a map of extensions is a triple (w, u, v) giving commutative diagrams

$$0 \longrightarrow \mathfrak{I} \xrightarrow{j} E \xrightarrow{f} B \longrightarrow 0$$

$$\downarrow w \qquad \downarrow u \qquad \downarrow v$$

$$0 \longrightarrow \mathfrak{I}' \xrightarrow{j'} E' \xrightarrow{f'} B' \longrightarrow 0$$

where u, v are maps of A-algebras and w is a di-homomorphism, ie for all b in B and z in \Im the following holds: w(bz) = v(b)w(z) and w(zb) = w(z)v(b). It follows that composition of maps of extensions is a map of extensions, hence we have a nice category of extensions.

Let \underline{K} be the category of triples (A,B,L) where A is a ring, B is an A-algebra and L a B-bimodule. Morphisms from (A,B,L) to (A',B',L') in this category are triples of maps (w,u,v) where we get a commutative diagram

$$\begin{array}{ccc}
A \longrightarrow B & L \\
\downarrow u & \downarrow w \\
A' \longrightarrow B' & L'
\end{array}$$

and where $w: L \to L'$ is a di-homomorphism, ie w(v(b')z) = b'w(z) and w(zv(b')) = w(z)b'. Any morphism in \underline{K} , $(w, u, v)_*$ can be factored as

$$(w, u, v)_* = (w, 1, 1)_* \circ (1, u, 1)_* \circ (1, 1, v)_*.$$

We want to define operations on extensions, pull-back with respect to A-algebra homomorphisms v, push-forward with respect to maps w of bimodules and change of ring-maps with respect to v. Let

$$0 \to \mathfrak{I}' \to^{j'} E' \to^{f'} B' \to 0$$

be an extension, and let $v: B \to B'$ be a map of A-algebras. Define $E' \times_{B'} B$ to be the set of all elements (x,y) in $E' \times B$ with f'(x) = v(y). There exists a natural map $p_2: E' \times_{B'} B \to B$ of sets which is surjective, since v is surjective. The set $E' \times_{B'} B$ has a product making it into a subring of the product ring $E' \times B$, and it is in a natural way an A-algebra, and the map p_2 is a map of A-algebras. There exists a map $\mathfrak{I}' \to E' \times_{B'} B$ sending z to (j'(z),0) and one easily sees that this defines an extension

$$0 \to \mathfrak{I}' \to E' \times_{B'} B \to B \to 0$$

giving an element of the set $\exp(B, \mathfrak{I}')$, hence we get for each map v of A-algebras a map of sets $(v)_* : \exp(A, \mathfrak{I}') \to \exp(B, \mathfrak{I}')$. One shows that $(u \circ v)_* = (v)_* \circ (u)_*$ hence the exan-functor is contravariant with respect to A-algebra homomorphisms v.

Assume we have an extension

$$0 \to \mathfrak{I} \to^{j} E \to^{f} B \to 0$$

and let $w: \mathfrak{I} \to \mathfrak{I}'$ be a map of B-bimodules. We get a map $\theta: \mathfrak{I} \to E \times \mathfrak{I}'$ given by $\theta(z) = (j(z), -w(z))$. Define on $E \times \mathfrak{I}'$ the following product: (x, s)(y, t) = (xy, xt + sy). It follows that $E \times \mathfrak{I}'$ is an A-algebra, and the natural map $E \times \mathfrak{I}' \to E$ is a map of A-algebras. The image $\theta(\mathfrak{I})$ is verified to be a 2-sided ideal in $E \times \mathfrak{I}'$, hence we get a well-defined ring $E \oplus_{\mathfrak{I}} \mathfrak{I}' = E \times_{\mathfrak{I}} \mathfrak{I}'/\theta(\mathfrak{I})$ with a natural map of rings $E \oplus_{\mathfrak{I}} \mathfrak{I}' \to B$, which is easily seen to be a map of A-algebras. There exists a natural map $\mathfrak{I}' \to E \oplus_{\mathfrak{I}} \mathfrak{I}'$, and we get an exact sequence of A-bimodules

$$0 \to \mathfrak{I}' \to^{j'} E \oplus_{\mathfrak{I}} \mathfrak{I}' \to B \to 0.$$

One verifies that $j'(\mathfrak{I}')^2 = 0$, hence the sequence is an element of $\operatorname{exan}_A(B,\mathfrak{I}')$, hence we have a natural map of sets $(w)_* : \operatorname{exan}_A(B,\mathfrak{I}) \to \operatorname{exan}_A(B,\mathfrak{I}')$. We verify that $(w \circ w')_* = (w)_* \circ (w')_*$ hence the functor exan is covariant with respect to maps of B-bimodules.

Summing up we have defined the following: Given any extension of the A-algebra B' by a B'-bimodule \mathfrak{I}'

$$0 \rightarrow \mathfrak{I}' \rightarrow E' \rightarrow B' \rightarrow 0$$

and a map of A-algebras $u: B \to B',$ we get a commutative diagram of exact sequences

$$0 \longrightarrow \mathfrak{I}' \longrightarrow E' \times_{B'} B \longrightarrow B \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow v$$

$$0 \longrightarrow \mathfrak{I}' \longrightarrow E' \longrightarrow B' \longrightarrow 0$$

where the exact sequence

$$0 \to \mathfrak{I}' \to E' \times_{B'} B \to B \to 0$$

is an extension of B by the B-bimodule (via u) \mathfrak{I}' . We have also defined for any extension

$$0 \to \mathfrak{I} \to E \to B \to 0$$

of the A-algebra B by the B-bimodule \Im , and any map of B-bimodules $w:\Im\to \Im'$ a commutative diagram of exact sequences

$$0 \longrightarrow \mathfrak{I} \longrightarrow E \longrightarrow B \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow =$$

$$0 \longrightarrow \mathfrak{I}' \longrightarrow E \oplus_{\mathfrak{I}} \mathfrak{I}' \longrightarrow B \longrightarrow 0$$

where the sequence

$$0 \to \mathfrak{I}' \to E \oplus_{\mathfrak{I}} \mathfrak{I}' \to B \to 0$$

is an extension of B by the B-bimodule $\mathfrak{I}'.$

Also given any map of rings $u: A' \to A$ and any extension

$$(*)0 \rightarrow L \rightarrow E \rightarrow B \rightarrow 0$$

of A-bimodules, the sequence (*) is in particular an extension of A'-bimodules, hence we get a natural map $(u)_*: \exp(B, L) \to \exp(B, L)$ of sets. One verifies that $(v \circ v')_* = (v)_* \circ (v')_*$ hence this construction is functorial. It follows that we have for any morphism $(w, u, v)_*$ defined a map of sets

$$(w, u, v)_* : \operatorname{exan}_A(B, L) \to \operatorname{exan}_{A'}(B', L'),$$

hence exan is a functor from \underline{K} to the category of sets, contravariant with respect to A-algebra homomorphisms, covariant with respect to B-bimodule homomorphisms. Let $A \to B$ be an A-algebra and L a B-bimodule, and consider a diagram

$$0 \longrightarrow L \longrightarrow E \longrightarrow B \longrightarrow 0$$

$$\downarrow = \qquad \downarrow f \qquad \downarrow = \qquad .$$

$$0 \longrightarrow L \longrightarrow F \longrightarrow B \longrightarrow 0$$

We say that the two extensions are *equivalent* if the diagrams commute and the map f is an isomorphism of A-algebras. One verifies that this construction defines an equivalence-relation \sim on the set $\operatorname{exan}_A(B, L)$.

Definition 1.2. Let $\operatorname{Exan}_A(B,L)$ be the quotient of $\operatorname{exan}_A(B,L)$ by \backsim .

We have to prove that morphisms in \underline{K} respects the equivalence-relation \backsim in order to get a well-defined functor Exan : $\underline{K} \to \underline{Sets}$. Assume we have a map of A-algebras $v: B' \to B$ and two equivalent extensions

$$0 \longrightarrow L \longrightarrow E \longrightarrow B \longrightarrow 0$$

$$\downarrow = \qquad \downarrow f \qquad \downarrow = \qquad ,$$

$$0 \longrightarrow L \longrightarrow F \longrightarrow B \longrightarrow 0$$

i.e the diagrams commute and f is an isomorphism of A-algebras. We get a commutative diagram

$$0 \longrightarrow L \longrightarrow E \times_B B' \longrightarrow B' \longrightarrow 0$$

$$\downarrow = \qquad \qquad \downarrow f \times 1 \qquad \qquad \downarrow = \qquad .$$

$$0 \longrightarrow L \longrightarrow F \times_B B' \longrightarrow B' \longrightarrow 0$$

where $f \times 1$ is an isomorphism og A-algebras, hence the pull-back of two equivalent extensions via an A-algebra homomorphism v are equivalent, and we get a well-defined map of sets

$$(v)_* : \operatorname{Exan}_A(B, L) \to \operatorname{Exan}_A(B'.L).$$

Assume $w:L\to L'$ is a map of B-bimodules and consider the two equivalent extensions

$$0 \longrightarrow L \longrightarrow E \longrightarrow B \longrightarrow 0$$

$$\downarrow = \qquad \downarrow f \qquad \downarrow = \qquad .$$

$$0 \longrightarrow L \longrightarrow F \longrightarrow B \longrightarrow 0$$

Pushing forward with respect to w we get a commutative diagram of exact sequences

$$0 \longrightarrow L' \longrightarrow E \oplus_L L' \longrightarrow B \longrightarrow 0$$

$$\downarrow = \qquad \qquad \downarrow f \oplus 1 \qquad \qquad \downarrow = \qquad ,$$

$$0 \longrightarrow L' \longrightarrow F \oplus_L L' \longrightarrow B \longrightarrow 0$$

and the map $f \oplus 1$ is an ismorphism, hence we get a well-defined map of sets

$$(w)_* : \operatorname{Exan}_A(B, L \to \operatorname{Exan}_A(B, L'))$$

. Clearly changing basering from A to A' via a map of rings $u:A'\to A$ respects the equivalence-relation, hence we get a functor

Exan :
$$\underline{K} \to \underline{Sets}$$

sending a triple (A, B, L) to $\operatorname{Exan}_A(B, L)$ as claimed.

Furthermore we want to prove that for all triples (A,B,L) in \underline{K} there exists a structure of abelian group on $\operatorname{Exan}_A(B,L)$ induced by the struture of abelian group on L. Let for now T(L) denote $\operatorname{Exan}_A(B,L)$. The structure of abelian group on L may be formulated in terms of a distinguished element $0 \in L$, maps $s:L\times L\to L$ - addition - and $t:L\to L$ - inversion - satisfying certain commutative diagrams. There exists a canonical isomorphism $T(L\times L)\cong T(L)\times T(L)$, hence we get natural maps $T(s):T(L)\times T(L)\to T(L)$ and $T(t):T(L)\to T(L)$, and commutative diagrams are transformed into commutative diagrams via T, hence we have indeed a structure of abelian group on $T(L)=\operatorname{Exan}_A(B,L)$ for all objects (A,B,L) in K. One may check that given any morphism (w,u,v) in K the induced map

$$(w, u, v)_* : \operatorname{Exan}_A(B, L) \to \operatorname{Exan}_{A'}(B', L')$$

is a homomorphism of groups hence we have in fact defined a functor

Exan :
$$\underline{K} \to Groups$$
.

Note also that any element z in the centre of B defines a homothety h_Z of L, hence the map $(h_z)_*$ defines a homothety of the abliean group $\operatorname{Exan}_A(B,L)$. This shows that the abelian group $\operatorname{Exan}_A(B,L)$ is a module on the centre Z(B) of B, hence in particular if B is commutative, $\operatorname{Exan}_A(B,L)$ is a B-module.

Let B be an arbitrary ring and let \Im in B be a 2-sided ideal. Let $C = B/\Im$ be the quotient ring, and consider the exact sequence of rings

$$0 \to \mathfrak{I}/\mathfrak{I}^2 \to B/\mathfrak{I}^2 \to C \to 0.$$

It follows that $\mathfrak{I}/\mathfrak{I}^2$ is a C-bimodule and that the sequence defined above is a sequence of B-bimodules, hence it is an element of $\operatorname{Exan}_B(C,\mathfrak{I}/\mathfrak{I}^2)$. It has a certain universal property that we will describe below.

Theorem 1.3. Let L be a C-bimodule. There exists an isomorphism of abelian groups

$$\eta: \operatorname{Hom}_C(\mathfrak{I}/\mathfrak{I}^2, L) \cong \operatorname{Exan}_B(C, L).$$

Proof. We will prove this explicitly by giving an explicit isomorphism. Given a map $w: \mathcal{I}/\mathcal{I}^2 \to L$ of C-bimodules we get by the theory in this section an extension

$$0 \to L \to B/\mathfrak{I}^2 \oplus_{\mathfrak{I}/\mathfrak{I}^2} L \to C \to 0$$

denoted $\eta(w)$. We will prove that η has the required properties.

Surjectivity: Assume

$$0 \to L \to^j E \to^f C \to 0$$

is an element of $\operatorname{Exan}_B(C,L)$. Hence there exists a map of A-algebras $f:B\to E$ commuting with the natural map $B\to C$. It follows that the map f sends \mathfrak{I}^2 to zero, hence we get a well-defined map of A-algebras $B/\mathfrak{I}^2\to E$ making a commutative diagram of exact sequences

$$0 \longrightarrow \Im/\Im^2 \longrightarrow B/\Im^2 \longrightarrow C \longrightarrow 0$$

$$\downarrow w \qquad \qquad \downarrow u \qquad \qquad \downarrow 1 \qquad ,$$

$$0 \longrightarrow L \longrightarrow E \longrightarrow C \longrightarrow 0$$

hence we have a map of extensions $(w, u, 1)_*$. The map (w, u, 1) gives rise to a map of extensions

$$0 \longrightarrow L \longrightarrow B/\mathfrak{I}^2 \oplus_{\mathfrak{I}/\mathfrak{I}^2} L \longrightarrow C \longrightarrow 0$$

$$\downarrow 1 \qquad \qquad \downarrow f \qquad \qquad \downarrow 1 \qquad ,$$

$$0 \longrightarrow L \longrightarrow E \longrightarrow C \longrightarrow 0$$

which we claim is an equivalence of extensions. Consider the map of B-algebras

$$f: B/\mathfrak{I}^2 \oplus_{\mathfrak{I}/\mathfrak{I}^2} L \to E.$$

Given an element x in E there exists an element y in B with $\overline{y}=p(x)$, hence f(x)-x=j(z) for some z in L, hence x=f(x)-j(z). It follows that the element (x,-z) maps to x in E, hence the map is surjective. Injetivity: Pick an element (x,z) in $B/\mathfrak{I}^2\oplus_{\mathfrak{I}/\mathfrak{I}^2}L$ mapping to zero, ie f(x,z)=u(x)+j(z)=0. This means pu(x)=0 ie x is an element of $\mathfrak{I}/\mathfrak{I}^2$, hence (x,z) is equivalent to (0,z+w(x)) in $B/\mathfrak{I}^2\oplus_{\mathfrak{I}/\mathfrak{I}^2}L$. Since w is a map of C-bimodules, it follows that z+w(x)=0, hence f is indeed injective, and it follows that the two extensions are equivalent, hence the map η is a surjective map of sets. We proceed to prove that η is a group-homomorphism. Consider the addition map $s:L\times L\to L$, which is a map of C-bimodules. We get a commutative diagram

$$\begin{array}{c} \operatorname{Hom}_{C}(\Im/\Im^{2},L\times L) \xrightarrow{\eta_{L}\times L} \operatorname{Exan}_{B}(C,L\times L) \\ & \downarrow^{\operatorname{Hom}(1,s)} & \downarrow^{(h)_{*}} \\ \operatorname{Hom}_{C}(\Im/\Im^{2},L) \xrightarrow{\eta_{L}} \operatorname{Exan}_{B}(C,L) \end{array}$$

proving that η_L is a map of abelian groups. Finally we want to prove that η_L is injective. We prove that $ker(\eta_L) = 0$: Assume $w : \Im/\Im^2 \to L$ is C-bimodule homomorphism and consider the associated extension $\eta_L(w)$, which is equivalent to the trivial extension by hypothesis, ie we get an equivalence of extensions

$$0 \longrightarrow L \longrightarrow B/\Im^2 \oplus_{\Im/\Im^2} L \longrightarrow C \longrightarrow 0$$

$$\downarrow = \qquad \qquad \downarrow \phi \qquad \qquad \downarrow = \qquad .$$

$$0 \longrightarrow L \longrightarrow B/\Im \times L \longrightarrow C \longrightarrow 0$$

A straight forwar verifiation shows that this implies that the map w has to be the zero-map. From this it follows that $ker(\eta_L) = 0$, and we have an isomorphism of abelian groups as claimed.

2. Derivations and differentials

We define differentials and derivations for left modules on commutative rings and prove elementary properties on functoriality etc. following [1]. Let in the following section all rings be commutative with unit, and consider only unital maps of rings. All modules are left modules. Let $A \to B$ be a map of commutative rings, and let W be a B-module.

Definition 2.1. A map $w: B \to W$ of A-modules is a B-derivation if

$$w(xy) = xw(y) + yw(x)$$

for all x, y in B. Denote by $Der_A(B, W)$ the set of all B-derivations.

Note that $\operatorname{Der}_A(B,W)$ is a left sub-B-module of $\operatorname{Hom}_A(B,W)$. Assume $f:W\to W'$ is a map of B-modules and let w be a derivation in $\operatorname{Der}_A(B,W)$. then $f_*(w)=f\circ w$ is an element of $\operatorname{Der}_A(B,W')$, and we get a map of B-modules

$$f_*: \operatorname{Der}_A(B, W) \to \operatorname{Der}_A(B, W'),$$

hence $\operatorname{Der}_A(B,-)$ is a covariant functor with respect to maps of B-modules. Consider the multiplication map $m:B\otimes_A B\to B$ defined by $m(x\otimes y)=xy$ and let $I=\ker(m)$ be the kernel of m. It is an ideal in $B\otimes_A B$, hence a $B\otimes_A B$ -module. The ideal I^2 is a sub-module of I.

Definition 2.2. Let $\Omega^1_{B/A} = I/I^2$ be the module of differentials of B over A.

Note that $\Omega^1_{B/A}$ is a $B\otimes_A B$ -module hence a B-module from the left and right. The ring B is isomorphic to $B\otimes_A B/I$ and $I(\Omega^1_{B/A})=0$, hence $\Omega^1_{B/A}$ is canonically a B-module, and from this it follows that the left and right B-module structures on $\Omega^1_{B/A}$ coincide. Define a map $d:B\to\Omega^1_{B/A}$ as follows: $d(x)=x\otimes 1-1\otimes x$. The map d is clearly A-linear. We see that

$$d(xy) = xy \otimes 1 - 1 \otimes xy = xy \otimes 1 - x \otimes y + x \otimes x - 1 \otimes xy =$$
$$xd(y) + d(x)y = xd(y) + yd(x),$$

hence it follows that d is an A-derivation, called the universal derivation. One trivially verifies that $\Omega^1_{B/A}$ is generated by the set $\{d(x)\}_{x\in B}$ as a B-module. The pair $\{d,\Omega^1_{B/A}\}$ has a universal property which we will now describe: Consider a map of B-modules $f:\Omega^1_{B/A}\to W$ where W is a B-module. It follows that $d_*(f)=f\circ d$ is a derivation from B to W, hence we get a map of B-modules

$$d_*: \operatorname{Hom}_B(\Omega^1_{B/A}, W) \to \operatorname{Der}_A(B, W).$$

Proposition 2.3. The map

$$d_*: \operatorname{Hom}_B(\Omega^1_{B/A}, W) \to \operatorname{Der}_A(B, W)$$

is an isomorphism of B-modules.

Definition 2.4. Let W be a left B-module and put $\Omega^1_{B/A}(W) = \Omega^1_{B/A} \otimes_B W$.

Consider a commutative diagram of ring-homomorphisms

$$A' \longrightarrow B'$$

$$\downarrow u \qquad \qquad \downarrow v$$

$$A \longrightarrow B \longrightarrow C$$

and a map $w:W'\to W$ of C-modules. The maps of rings v and u induce a commutative diagram of maps of rings

$$B' \otimes_{A'} B' \xrightarrow{v \otimes v} B \otimes_A B$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$B' \xrightarrow{v} B$$

proving the existence of a map of abelian groups $\Omega^1_{B'/A'} \to \Omega^1_{B/A}$ which is in fact a map of B'-modules. It induces a map of C-modules

$$\Omega(u, v, w) : \Omega^1_{B'/A'}(W') \to \Omega^1_{B/A}(W).$$

The map $\{u, v, w\}$ induces a map

$$\operatorname{Der}(u, v, w) : \operatorname{Der}_A(B, W') \to \operatorname{Der}_{A'}(B', W)$$

in the following way: A derivation $\delta: B \to W$ is mapped to $w \circ \delta \circ v$ which is easily seen to be a derivation. Hence the functor Der is covariant with respect to triples of maps $\{u, v, w\}$.

Lemma 2.5. Let $A \to B \to C$ be maps of rings, and let $\{W_k\}_{k \in K}$ be a family of C-modules. There exists a tural isomorphism

$$\operatorname{Der}_A(B, \prod W_k) \cong \prod \operatorname{Der}_A(B, W_k).$$

Proof. Trivial.

Lemma 2.6. Let B and C be A-algebras and let W be a $B \otimes_A C$ -module. There exists isomorphisms

$$\Omega^1_{B/A}(W) \cong \Omega^1_{B\otimes_A C/C}(W)$$

and

$$\operatorname{Der}_A(B,W) \cong \operatorname{Der}_C(B \otimes_A C,W)$$

of $B \otimes_A C$ -modules.

Proof. We first prove the existence of an isomorphism

$$\operatorname{Hom}_C(B \otimes_A C, W) \cong \operatorname{Hom}_A(B, W).$$

Let $f: B \to W$ be an A-linear map. There exists a canonical map $p: B \to B \otimes_A C$ defining a map

$$p_*: \operatorname{Hom}_C(B \otimes_A C, W) \cong \operatorname{Hom}_A(B, W)$$

as follows: $p_*(f) = f \circ p$. It is trivial that $p_*(f)$ is A-linear, and injective. We prove it is surjective: Assume $g: B \to W$ is an A-linear map. Define a map $1 \otimes g: C \otimes_A B \to W$ in the obvious way. It is clear that $1 \otimes g$ is C-linear and also $p_*(1 \otimes g) = g$, hence p_* is surjective, and we have proved p_* is an isomorphism. We claim that the map p_* induces an isomorphism

$$p_*: \operatorname{Der}_C(B \otimes_A B, W) \to \operatorname{Der}_A(B, W):$$

If $w: C \otimes_A B \to W$ is a C-derivation, it is clear that the map $p_*(w)$ is an A-derivation since p is a ring-homomorphism, hence the image of p_* is in $\mathrm{Der}_A(B,W)$. Assume $w: B \to W$ is an A-derivation. Then is it easy to show that the induced map $1 \otimes w: C \otimes_A B \to W$ is a C-derivation, and we have proved the claim. \square

In particular we see that if S in A is a multiplicatively closed subset and W an $S^{-1}B$ -module, we obtain a commutative diagram

$$A \longrightarrow B$$

$$\downarrow \qquad \qquad \downarrow$$

$$S^{-1}A \longrightarrow S^{-1}B$$

of ring-homomorphisms, inducing an isomorphism

$$\operatorname{Der}_{S^{-1}A}(S^{-1}B,W) \cong \operatorname{Der}_A(B,W)$$

of B-modules.

Lemma 2.7. Let B and C be A-algebras, W be a $C \otimes_A B$ -module and N a B-module. There exists isomorphisms

$$\operatorname{Hom}_B(N,W) \cong \operatorname{Hom}_{C \otimes_A B}(C \otimes_A N, W),$$

$$(C \otimes_A N) \otimes_{C \otimes_A R} W \cong N \otimes_R W$$

of $C \otimes_A B$ -modules.

Proof. We define a canonical map

$$p_*: \operatorname{Hom}_{C \otimes_A B}(N \otimes_A C, W) \to \operatorname{Hom}_B(N, W)$$

as follows: $p_*(f)(n) = f(n \otimes 1)$ where $1 \in C$ is the unit for the multiplication. Then it is an easy verification to check that p_* induces the desired isomorphism. We prove the isomorphism

$$(C \otimes_A N) \otimes_{C \otimes_A B} W \cong N \otimes_B W :$$

Assume $f: N \times W \to \text{is a } B$ -bilinear map, where P is any B-module. Then we get a $C \otimes_A B$ -bilinear map $\tilde{f}: C \otimes_A N \times W \to C \otimes_A P = \tilde{P}$ in the obvious way, and this sets up a 1-1 correspondence between B-bilinear maps from $N \times W$ to P, and $C \otimes_A B$ -bilinear maps from $C \otimes_A N \times W$ to \tilde{P} proving the desired isomorphism

$$(C \otimes_A N) \otimes_{C \otimes_A B} W \cong N \otimes_B W.$$

In a similar fashion we get an isomorphism $C\otimes_A\Omega^1_{B/A}\cong\Omega^1_{C\otimes_A B/C}$: We know that

$$\operatorname{Hom}_{C\otimes_A B}(C\otimes\Omega^1_{B/A},W)\cong\operatorname{Hom}_B(\Omega^1_{B/A},W)\cong\operatorname{Der}_A(B,W)\cong \operatorname{Der}_C(C\otimes_A B,W)\cong\operatorname{Hom}_{C\otimes_A}(\Omega^1_{C\otimes_A B/C},W),$$

hence by the universal property of the construction of the module of differentials it follows that there is an isomorphism

$$C \otimes_A \Omega^1_{B/A} \cong \Omega^1_{C \otimes_A B/C}.$$

Lemma 2.8. There exists an isomorphism

$$\Omega^1_{B/A} \otimes_B W \cong \Omega^1_{C \otimes_A B/C} \otimes_{C \otimes_A B} W.$$

Proof. By arguments above there exists isomorphisms

$$\Omega^1_{B/A} \otimes_B W \cong C \otimes_A \Omega^1_{B/A} \otimes_{C \otimes_A B} W \cong \Omega^1_{C \otimes_A B/C} \otimes_{C \otimes_A B} W,$$

and the lemma follows.

Lemma 2.9. Let B and C be A-algebras and let W be a $B \otimes_A C$ -module. There exists isomorphisms

$$\Omega^1_{B\otimes_A C/A}(W)\cong\Omega^1_{B/A}(W)\oplus\Omega^1_{C/A}(W)$$

and

$$\operatorname{Der}_A(B \otimes_A C, W) \cong \operatorname{Der}_A(B, W) \oplus \operatorname{Der}_A(C, W).$$

Proof. Trivial.

References

- [1] M. André, Homologie des algébres commutatives, Grundlehren Math. W., no. 206 (1974)
- [2] A. Grothendieck, EGA IV, Etude locale des schemas et des morphismes de schemas (première partie), Publ. Math. IHES, no.20 (1964)

ROYAL INSTITUTE, STOCKHOLM

 $E ext{-}mail\ address: makestad@math.kth.se}$