RING-EXTENSIONS AND UNIVERSAL BIMODULES

HELGE MAAKESTAD

ABSTRACT. We consider A. Grothendiecks construction of the functors Exan 4(B, L)
from from [2], prove existence, and elementary properties. As a special case we
consider the module of differentials 9}4 and prove various general properties.
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INTRODUCTION

In the paper [2] the functors Exany(B, L) are introduced, parametrizing ring-
extensions of an arbitrary rinng B with a bimodule L. These functors are repre-
sentable by a universal bimodule J/J2, generalizing to the case for an arbitrary
ring the fact that the module of differentials represents the functor of derivations
Der (A, —). In this note we prove following [2] basic properties of the Exan 4 (—, —)-
construction, and relate it to the module of differentials.

1. EXTENSIONS OF RINGS BY BIMODULES

Let in the following A denote an arbitrary ring, not necessarily commutative
or with unit. We are interested in the cateogry of A-algebras, ie the category of
ring-homomorphisms a : A — B where B is an arbitrary ring, i.e B is an A-algebra.
Morphisms in this category are morphisms of A-algebras, i.e morphisms commuting
with the structure-morphism from A. Let u : B — C be a map of A-algebras, then
the kernel J is a 2-sided ideal of B. It is by definition an A-algebra, since we dont
consider rings with unit. Beacuse J is an ideal in B, it is a B-bimodule hence also
an A-bimodule.

Let f : E — B be a surjective map of A-algebras, and let J be the kernel of f.
It follows that J is an E-bimodule, and we have an exact sequence of rings

0-3—>FE—-B—0

where we let j : 3 — E denote the inclusion-map. Note that the condition j(J)% = 0
is equivalent to the following: J is a B-bimodule and for all x € E, z € J we have
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that zj(2) = j(f(z)z) and j(2)x = j(2(f(x)). This is the same as saying J is a
B-bimodule and the map j is a map of E-bimodules.

Definition 1.1. An A-extension of an A-algebra B with a B-bimodule J is an
exact sequence of A-bimodules

0-3—>FE—-B—>0

where the map f : E — B is a surjective map of A-algebras, and the inclusion map
j:J — E is a map of E-bimodules, i.e j(J)? = 0. The set of all extensions of this
form is denoted exany4 (B, L).

Given two extensions
0>3J—->FE—->B—0
and
03 >E 5B -0
a map of extensions is a triple (w, u,v) giving commutative diagrams

0 i .p-Tt.p 0
ool
0 ytepg - Lop 0

where u,v are maps of A-algebras and w is a di-homomorphism, ie for all b in B
and z in J the following holds: w(bz) = v(b)w(z) and w(zb) = w(z)v(b). It follows
that composition of maps of extensions is a map of extensions, hence we have a
nice category of extensions.

Let K be the category of triples (A, B, L) where A is a ring, B is an A-algebra
and L a B-bimodule. Morphisms from (A4, B, L) to (A’, B', L") in this category are
triples of maps (w,u,v) where we get a commutative diagram

A——B L

and where w : L — L' is a di-homomorphism, ie w(v(b')z) = b'w(z) and w(zv(b')) =
w(z)b'. Any morphism in K, (w,u,v)« can be factored as

(wauav)* = (wa 1, ]-)* o (1>u7 1)* o (17 171})*'

We want to define operations on extensions, pull-back with respect to A-algebra
homomorphisms v, push-forward with respect to maps w of bimodules and change
of ring-maps with respect to v. Let

053 =7 E -7 B 50
be an extension, and let v : B — B’ be a map of A-algebras. Define E' xpg B to
be the set of all elements (z,y) in E' x B with f'(z) = v(y). There exists a natural
map py : B' X B — B of sets which is surjective, since v is surjective. The set
E' xp' B has a product making it into a subring of the product ring E' x B, and
it is in a natural way an A-algebra, and the map p- is a map of A-algebras. There
exists a map J' — E' xp B sending z to (j'(2),0) and one easily sees that this

defines an extension
07 +E' xgp B—+B—=0
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giving an element of the set exana(B,J'), hence we get for each map v of A-
algebras a map of sets (v)« : exana(B',J') — exana(B,J'). One shows that (u o
v)x = (V)4 o (u)« hence the exan-functor is contravariant with respect to A-algebra
homomorphisms v.

Assume we have an extension

023" E=fB=0

and let w : J — J' be a map of B-bimodules. We get a map 6 : 3 — E x J' given
by 6(z) = (j(z),—w(z)). Define on E x J' the following product: (z,s)(y,t) =
(zy, zt+sy). It follows that £ xJ' is an A-algebra, and the natural map ExJ' — E
is a map of A-algebras. The image 0(3J) is verified to be a 2-sided ideal in E x 7',
hence we get a well-defined ring E &3 J' = E x5 J'/0(J) with a natural map of
rings E @5 J' — B, which is easily seen to be a map of A-algebras. There exists a
natural map J' — E &5 7', and we get an exact sequence of A-bimodules

03 =" Eay3 — B—0.

One verifies that j'(3')? = 0, hence the sequence is an element of exana(B,J'),
hence we have a natural map of sets (w)x : exana(B,J) — exana (B, 7). We verify
that (w o w')x = (w)« o (w')« hence the functor exan is covariant with respect to
maps of B-bimodules.

Summing up we have defined the following: Given any extension of the A-algebra
B’ by a B'-bimodule J'

027 >E —-B -0

and a map of A-algebras v : B — B', we get a commutative diagram of exact
sequences

0——3 —E xgp B——=B——0

L

0 7 E' B’ 0
where the exact sequence

0—):‘1—)EIXBIB—)B—)O

is an extension of B by the B-bimodule (via u) 3. We have also defined for any
extension

0=-3J=2+E—-+B-=0
of the A-algebra B by the B-bimodule J, and any map of B-bimodules w:J — 7'
a commutative diagram of exact sequences

0 J E B 0

Lk

0—=3—>E®; ) —=B——0

where the sequence
023 3sEe;3 =-B—=0
is an extension of B by the B-bimodule J'.
Also given any map of rings u : A’ = A and any extension

#*)0=L—-E—>B—0
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of A-bimodules, the sequence (x) is in particular an extension of A’-bimodules,
hence we get a natural map (u), : exana(B,L) — exana/(B,L) of sets. One
verifies that (v ov'). = (v)« o (v'). hence this construction is functorial. It follows
that we have for any morphism (w,u,v). defined a map of sets

(w,u,v)y : exana (B, L) — exana:(B', L),

hence exan is a functor from K to the category of sets, contravariant with respect to
A-algebra homomorphisms, covariant with respect to B-bimodule homomorphisms.
Let A — B be an A-algebra and L a B-bimodule, and consider a diagram

0 L E B 0
- vk
0 L F B 0

We say that the two extensions are equivalent if the diagrams commute and the
map f is an isomorphism of A-algebras. One verifies that this construction defines
an equivalence-relation « on the set exany (B, L).

Definition 1.2. Let Exany (B, L) be the quotient of exana (B, L) by «.

We have to prove that morphisms in K respects the equivalence-relation « in
order to get a well-defined functor Exan : K — Sets. Assume we have a map of
A-algebras v : B' — B and two equivalent extensions

0 L E B 0
RN
0 L F B 0

i.e the diagrams commute and f is an isomorphism of A-algebras. We get a com-
mutative diagram

00— L——ExgpB ——B' ——0
bk
0——=L——FxgpB —— B ——0

where f x 1 is an isomorphism og A-algebras, hence the pull-back of two equivalent
extensions via an A-algebra homomorphism v are equivalent, and we get a well-
defined map of sets

(v)« : Exang (B, L) — Exang(B'.L).

Assume w : L — L' is a map of B-bimodules and consider the two equivalent
extensions

0 L E B 0
vk
0 L F B 0
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Pushing forward with respect to w we get a commutative diagram of exact sequences

0—>L’—>E@LL’—>B—>O

N

0——=L—>F&,L —=B—>0
and the map f @ 1 is an ismorphism, hence we get a well-defined map of sets
(w)« : Exana (B, L — Exany (B, L")

. Clearly changing basering from A to A’ via a map of rings u : A’ — A respects
the equivalence-relation, hence we get a functor

Exan : K — Sets

sending a triple (A, B, L) to Exana(B, L) as claimed.

Furthermore we want to prove that for all triples (A, B,L) in K there exists
a structure of abelian group on Exan4(B, L) induced by the struture of abelian
group on L. Let for now T(L) denote Exans(B,L). The structure of abelian
group on L may be formulated in terms of a distinguished element 0 € L, maps
s: LxL — L - addition - and ¢t : L — L - inversion - satisfying certain commutative
diagrams. There exists a canonical isomorphism T'(L x L) = T'(L) x T'(L), hence
we get natural maps T'(s) : T(L) x T(L) — T(L) and T'(¢t) : T(L) — T(L), and
commutative diagrams are transformed into commutative diagrams via T, hence
we have indeed a structure of abelian group on T'(L) = Exan4(B, L) for all objects
(A, B, L) in K. One may check that given any morphism (w,u,v) in K the induced
map

(w,u,v), : Exang(B, L) — Exany (B, L")
is a homomorphism of groups hence we have in fact defined a functor
Exan : K — Groups.

Note also that any element z in the centre of B defines a homothety hz of L, hence
the map (h,). defines a homothety of the abliean group Exany4 (B, L). This shows
that the abelian group Exany (B, L) is a module on the centre Z(B) of B, hence in
particular if B is commutative, Exany4 (B, L) is a B-module.

Let B be an arbitrary ring and let J in B be a 2-sided ideal. Let C' = B/J be
the quotient ring, and consider the exact sequence of rings

0—73/3° - B/3* = C —0.

It follows that J/J3% is a C-bimodule and that the sequence defined above is a
sequence of B-bimodules, hence it is an element of Exang(C,J/J?%). It has a certain
universal property that we will describe below.

Theorem 1.3. Let L be a C-bimodule. There exists an isomorphism of abelian
groups
n : Homg(3/3%, L) = Exang(C, L).

Proof. We will prove this explicitly by giving an explicit isomorphism. Given a map
w:J/F?* = L of C-bimodules we get by the theory in this section an extension

0> L—B/F®yyL—C—0
denoted n(w). We will prove that n has the required properties.
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Surjectivity: Assume
0L E=fC—>0

is an element of Exang(C,L). Hence there exists a map of A-algebras f: B — E
commuting with the natural map B — C. It follows that the map f sends J? to zero,
hence we get a well-defined map of A-algebras B/J? — E making a commutative
diagram of exact sequences

0 3/32 B/3? C 0
lw lu ll )
0 L E C 0

hence we have a map of extensions (w, u, 1).. The map (w, u, 1) gives rise to a map
of extensions

0—>L—>B/32@3/32L—>C—>0

T

0 L E C 0

which we claim is an equivalence of extensions. Consider the map of B-algebras
f : B/j2 @3/32 L — FE.

Given an element z in E there exists an element y in B with § = p(z), hence
f(z) —x = j(z) for some z in L, hence x = f(z) — j(z). It follows that the element
(z,—z) maps to z in E, hence the map is surjective. Injetivity: Pick an element
(z,2) in B/J3* ®3/52 L mapping to zero, ie f(z,z) = u(x) + j(z) = 0. This means
pu(x) = 0 ie x is an element of J/J2, hence (z,2) is equivalent to (0,z + w(z))
in B/3* ®3/52 L. Since w is a map of C-bimodules, it follows that z + w(z) = 0,
hence f is indeed injective, and it follows that the two extensions are equivalent,
hence the map 7 is a surjective map of sets. We proceed to prove that 7 is a
group-homomorphism. Consider the addition map s : L x L — L, which is a map
of C-bimodules. We get a commutative diagram

Home (3/32, L x L) 25 Exanp(C, L x L)

lHom(l,s) l(h)*

Hom¢(3/32, L) — = Exang(C, L)
proving that 7z is a map of abelian groups. Finally we want to prove that 7
is injective. We prove that ker(ny) = 0: Assume w : J/J3? — L is C-bimodule
homomorphism and consider the associated extension 1z (w), which is equivalent
to the trivial extension by hypothesis, ie we get an equivalence of extensions

0—>L—>B/32@3/32L—>C—>0

T

0—— 1T, B/3x L C 0
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A straight forwar verifiation shows that this implies that the map w has to be the
zero-map. From this it follows that ker(nr) = 0, and we have an isomorphism of
abelian groups as claimed. |

2. DERIVATIONS AND DIFFERENTIALS

We define differentials and derivations for left modules on commutative rings and
prove elementary properties on functoriality etc. following [1]. Let in the following
section all rings be commutative with unit, and consider only unital maps of rings.
All modules are left modules. Let A — B be a map of commutative rings, and let
W be a B-module.

Definition 2.1. A map w : B — W of A-modules is a B-derivation if

w(zy) = zw(y) + yw(z)
for all z,y in B. Denote by Der4(B,W) the set of all B-derivations.

Note that Dera(B,W) is a left sub-B-module of Hom4(B,W). Assume f :
W — W' is a map of B-modules and let w be a derivation in Der 4 (B, W). then
fe(w) = f ow is an element of Dery (B, W'), and we get a map of B-modules

f+ : Dera(B, W) — Der (B, W),

hence Der4(B, —) is a covariant functor with respect to maps of B-modules. Con-
sider the multiplication map m : B ®4 B — B defined by m(z ® y) = zy and let
I = ker(m) be the kernel of m. It is an ideal in B ® 4 B, hence a B ® 4 B-module.
The ideal I? is a sub-module of I.

Definition 2.2. Let Q}B/A = I/I? be the module of differentials of B over A.

Note that Q}B /A is a B ® 4 B-module hence a B-module from the left and right.
The ring B is isomorphic to B®4 B/I and I(2,,) = 0, hence Qp , is canonically
a B-module, and from this it follows that the left and right B-module structures
on Q}B/A coincide. Define a map d : B — Q}B/A as follows: d(z) =z®1-1Q®z.
The map d is clearly A-linear. We see that

dlzy) =2y®1-1Q@zy=2y®@1l—-2Qy+rQ@x—1Quzy =

zd(y) + d(z)y = zd(y) + yd(z),
hence it follows that d is an A-derivation, called the universal derivation. One
trivially verifies that Q% / 18 generated by the set {d(z)}scp as a B-module. The

pair {d, 0} / 4} has a universal property which we will now describe: Consider a map
of B-modules f : 9}3/,4 — W where W is a B-module. It follows that d.(f) = fod
is a derivation from B to W, hence we get a map of B-modules

d. : Homp(Qp 4, W) = Dera (B, W).
Proposition 2.3. The map
dy : HomB(QlB/A,W) — Dery (B, W)
is an isomorphism of B-modules.
Proof. Trivial. O
Definition 2.4. Let W be a left B-module and put Qp,,(W) = Qp 4, ®5 W.
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Consider a commutative diagram of ring-homomorphisms
AI . BI
)
A——B——C
and a map w : W' — W of C-modules. The maps of rings v and u induce a

commutative diagram of maps of rings

B oy B 2~ Be,B

L

B - B
proving the existence of a map of abelian groups %, Ja = Q5 /A which is in fact a
map og B'-modules. It induces a map of C-modules
Qu, v, w) : 9}3,/14, (W' — QIB/A(W).

The map {u, v, w} induces a map
Der(u,v,w) : Der4(B,W') — Der 4/ (B', W)

in the following way: A derivation d : B — W is mapped to w o § ov which is easily
seen to be a derivation. Hence the functor Der is covariant with respect to triples
of maps {u,v,w}.

Lemma 2.5. Let A — B — C be maps of rings, and let {Wy}rek be a family of
C-modules. There exists a tural isomorphism

Ders(B, [[ W) = [ [ Dera(B, Ws).
Proof. Trivial. O

Lemma 2.6. Let B and C' be A-algebras and let W be a B ® 4 C-module. There
exists isomorphisms
Vg a(W) = Qpg,c/c(W)
and
Dera(B,W) = Derc(B ®4 C,W)
of B ® 4 C-modules.

Proof. We first prove the existence of an isomorphism
Home (B ®4 C,W) = Homu (B, W).

Let f : B — W be an A-linear map. There exists a canonical map p: B - B®4 C
defining a map
pi : Homg(B®4 C,W) = Homu (B, W)

as follows: p.(f) = fop. It is trivial that p,.(f) is A-linear, and injective. We
prove it is surjective: Assume g : B — W is an A-linear map. Define a map
1®g:C®4 B — W in the obvious way. It is clear that 1 ® g is C-linear and also
p«(1® g) = g, hence p, is surjective, and we have proved p, is an isomorphism. We
claim that the map p, induces an isomorphism

P« : Derg(B®4 B,W) — Dera(B,W) :
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It w: C®aB — W is a C-derivation, it is clear that the map p.(w) is an A-
derivation since p is a ring-homomorphism, hence the image of p, is in Der 4 (B, W).
Assume w : B — W is an A-derivation. Then is it easy to show that the induced
map 1w : C ®4 B — W is a C-derivation, and we have proved the claim. a

In particular we see that if S in A is a multiplicatively closed subset and W an
S~1B-module, we obtain a commutative diagram

A—B

L

S1A——S-'B
of ring-homomorphisms, inducing an isomorphism
Derg-14(S™'B,W) = Der(B,W)
of B-modules.

Lemma 2.7. Let B and C be A-algebras, W be a C ® 4 B-module and N a B-
module. There exists isomophisms

Homp(N,W) = Homeg ,B(C ®4 N, W),

(C®AN)®co,BW=NgW
of C ® o4 B-modules.
Proof. We define a canonical map
p« : Homeg ,B(N ®4 C,W) - Homp (N, W)

as follows: p.(f)(n) = f(n ® 1) where 1 € C is the unit for the multiplication.
Then it is an easy verifiacation to check that p, induces the desired isomorphism.
We prove the isomorphism

(C®AN)Rcg,sWENQpW:

Assume f: N x W — is a B-bilinear map, where P is any B-module. Then we get
a C ®4 B-bilinear map f: C ®4 N x W — C ®4 P = P in the obvious way, and
this sets up a 1-1 correspondence between B-bilinear maps from N x W to P, and
C ® 4 B-bilinear maps from C ® 4 N x W to P proving the desired isomorphism

(C®aN)®cg,W=NepW.
O

In a similar fashion we get an isomorphism C' ® 4 QlB /A= Q}J@)A B/C" We know
that

Homeg,5(C ® Qg 4, W) = Homp(Qp /4, W) = Derg (B, W) =
Derc(C ®4 B,W) = Homgg, (Qlo®AB/C, W),

hence by the universal property of the construction of the module of differentials it
follows that there is an isomorphism

Lemma 2.8. There exists an isomorphism

QlB/A ®pW = QIC®AB/C Qce. W.
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Proof. By arguments above there exists isomorphisms
Vp/a @B W =C Q4054 ®ces W =g, /o @coin W,
and the lemma, follows. |

Lemma 2.9. Let B and C be A-algebras and let W be a B ® 4 C-module. There
exists isomorphisms

Qpgac/aW) = Qp s (W) ® Qg 4 (W)

and
Dera(B®a C,W) = Dera(B,W) @ Dera (C,W).

Proof. Trivial. O
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