
Manuscript submitted to Website: http://AIMsciences.org
AIMS’ Journals
Volume X, Number 0X, XX 200X pp. X–XX

GENERIC 3-DIMENSIONAL VOLUME-PRESERVING

DIFFEOMORPHISMS WITH SUPEREXPONENTIAL GROWTH

OF NUMBER OF PERIODIC ORBITS

Vadim Kaloshin

Mathematics 253-37
California Institute of Technology

Pasadena, CA, 91106, USA

Maria Saprykina

Department of Mathematics
University of Toronto

Toronto, Ontario, M5S 2E4, Canada

(Communicated by Aim Sciences)

Abstract. Let M be a compact manifold of dimension three with a non-
degenerate volume form Ω and Diffr

Ω(M) be the space of Cr-smooth (Ω-)
volume-preserving diffeomorphisms of M with 2 ≤ r < ∞. In this paper we
prove two results. One of them provides the existence of a Newhouse domain
N in Diffr

Ω(M). The proof is based on the theory of normal forms [13], con-
struction of certain renormalization limits, and results from [23, 26, 28, 32]. To
formulate the second one, associate to each diffeomorphism a sequence Pn(f)
which gives for each n the number of isolated periodic points of f of period n.
The main result of this paper states that for a Baire generic diffeomorphism f

in N , the number of periodic points Pn(f) grows with n faster than any pre-
scribed sequence of numbers {an}n∈Z+

along a subsequence, i.e., Pni
(f) > ani

for some ni → ∞ with i → ∞. The strategy of the proof is similar to the one of
the corresponding 2-dimensional non volume-preserving result [16]. The latter
one is, in its turn, based on the Gonchenko-Shilnikov-Turaev Theorem [8, 9].

To Vitusia and Matyusha who
helped so much writing this paper

1. Introduction.

1.1. Newhouse domains. Let (M, Ω) be a C∞ smooth compact manifold of di-
mension 3 equipped with a C∞ smooth non-degenerate volume form Ω. Denote
by Diffr

Ω(M) the space of Cr smooth (Ω-) volume-preserving diffeomorphisms with
the uniform Cr topology, and by Diffr(M) the space of Cr smooth diffeomorphisms
with the same topology. There are two main results in this paper. The first one
establishes the existence of Newhouse domains in Diffr

Ω(M). The second result as-
serts genericity of diffeomorphisms with the arbitrarily fast growth of the number

2000 Mathematics Subject Classification. Primary: 37C35; Secondary: 34C25, 37C25, 28D05,
34C37.

Key words and phrases. Orbit growth, periodic points, measure-preserving transformations,
homoclinic tangency.

1



2 VADIM KALOSHIN, MARIA SAPRYKINA

of periodic points in the Newhouse domains. We start with a brief overview of the
known facts concerning homoclinic tangencies and Newhouse domains.

We say that a diffeomorphism f exhibits a homoclinic tangency if for a saddle
periodic point p = fk(p) of some period k ≥ 1 its stable and unstable manifolds,
W s(p) and Wu(p), respectively, have a point of tangency. Call an open set N ⊂
Diffr(M) a Newhouse domain if it contains a Cr-dense set of diffeomorphisms ex-
hibiting a homoclinic tangency. In the 70s Newhouse [23] proved existence of such
domains in the space of Cr surface diffeomorphisms Diffr(M2) for any 2 ≤ r ≤ ∞.
Moreover, he showed that in any neighborhood of a diffeomorphism exhibiting a
homoclinic tangency there is a Newhouse domain. Later Palis-Viana [28] proved
existence of multidimensional Newhouse domains in Diffr(M) arbitrarily close to
a diffeomorphism with a homoclinic tangency, associated to a codimension 1 sec-
tionally dissipative saddle1. Finally, Romero [32] removed the codimension one
condition and sectional dissipativity. Using different ideas Bonatti-Diaz [5] proved
that Newhouse phenomenon of coexistence of infinitely many sinks does occur for
C1-generic 3-dimensional diffeomorphisms inside of an open set in Diff1(M3).

Newhouse domains are a source of many fascinating phenomena: cascade of pe-
riod doubling bifurcations [36], generic coexistence of infinitely many sinks [23, 28],
density of homoclinic tangencies of arbitrarily high orders [8, 9], superexponen-
tial growth of the number of periodic points [16], abundance of strange attractors
[3, 6, 22, 37], prevalence of hyperbolicity [26, 29, 30], prevalence of absence of in-
finitely many coexisting sinks of finite complexity [11], etc (see [11, 26, 28, 32, 37]
for further discussion). Newhouse domains of symplectic diffeomorphisms have also
been extensively studied (see, e.g., [10, 24, 35] and references therein). In the present
paper we investigate Newhouse domains for volume-preserving diffeomorphisms.

As the reader will see, there is an essential difference in proving existence of
Newhouse domains in the space of non-conservative diffeomorphisms Diffr(M) and
in the space of volume-preserving diffeomorphisms Diffr

Ω(M). In this paper we
restrict ourselves to 3-dimensional diffeomorphisms. It seems that the method might
work in the higher dimensional case as well. The first result of this paper is the
following

Theorem 1. Let 2 ≤ r < ∞, dimM = 3, and f ∈ Diffr
Ω(M) be a diffeomorphism

exhibiting a homoclinic tangency of a saddle periodic point with real eigenvalues.
Then arbitrarily Cr-close to f there is an open set N ⊂ Diffr

Ω(M) with persistent
homoclinic tangencies. In other words, there is a Newhouse domain N which is
Cr-near f .

Romero [32], relying on [28], proved the above theorem in the space of Cr smooth
diffeomorphisms without restrictions on volume-preservation and the corresponding
saddle to have real eigenvalues. Consider a diffeomorphism f exhibiting a homo-
clinic tangency, corresponding to a saddle periodic point p. By our assumption,
eigenvalues are real. The key difference with the non-volume-preserving case is that
if f is in Diffr(M) and has a saddle periodic point p, then generically one can apply
Sternberg’s theorem [1]. Namely, generically, the eigenvalues of the linearization
dfk(p) of p have no multiplicative resonances (see sect. 3 for the definition) and,
therefore, in a neighborhood of p there are Cr-smooth normal coordinates, in which

1A saddle is called (codimension one) sectionally dissipative if it has just one expanding eigen-
value (positive Lyapunov exponent) and the product of any two eigenvalues has absolute value
smaller than 1, i.e., any contracting eigenvalue is larger than the expanding one.
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Figure 1. Homoclinic tangency.

the map f is linear. In the case when f is volume-preserving, i.e., in Diffr
Ω(M),

the eigenvalues of df(p) have the obvious resonance: the product of all of them
equals 1. Absence of linearizing coordinates forces us to use another normal form:
the one locally describing a saddle with essentially one resonance relation (multi-
plicatively single-resonant saddle, see sect. 3). The difference between the linear
and the multiplicatively single-resonant normal form consists in the presence of a
“small resonant” nonlinear term. We follow the strategy of the “standard” proof
of existence of Newhouse domains (see, e.g., [26], ch. 6) and verify that the impact
of the resonant nonlinear term is small enough, so that the proof goes through (see
sect. 3 and 4 for details).

1.2. Growth of the number of periodic points. Now we turn to the problem
of growth of the number of periodic points. For a diffeomorphism f consider the
number of isolated periodic points of period n (i.e., the number of isolated fixed
points of fn)

Pn(f) = #{isolated p ∈ M : p = fn(p)}. (1)

Call a diffeomorphism Artin-Mazur or AM if Pn(f) grows at most exponentially
fast. In 1965 Artin-Mazur [2] proved density of AM diffeomorphisms in Diffr(M)
for any 0 ≤ r ≤ ∞. Notice that an AM mapping f could have a curve of periodic
points γ, i.e., ∀x ∈ γ, fn(p) = p for some n ∈ Z+, because in this case γ consists
of non-isolated periodic points. Artin-Mazur could not rule out such a seemingly
rare phenomenon. In [15] there is a simple proof of density of AM diffeomorphisms
with hyperbolic periodic points only, which solves the problem of existence of non
isolated periodic points. In [16], using [9], it is shown that diffeomorphisms having
a curve of non-isolated periodic points are dense in a Newhouse domain. To the
best of our knowledge, density of AM diffeomorphisms in Diffr

Ω(M) and AM flows
in the space of Cr smooth vector fields on a compact manifold M of dimension at
least three are open problems.
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The next natural question is whether AM diffeomorphisms form a Baire generic
set. The answer is negative, see [16]2. Moreover, in a Newhouse domain for sur-
face diffeomorphisms, those exhibiting superexponential growth of the number of
periodic points are Baire generic3.

1.2.1. Superexponential growth for surface diffeomorphisms. According to a Palis’
conjecture for surface diffeomorphisms [25], Diffr(M) is a Cr-closure of hyperbolic
ones and those exhibiting homoclinic tangency. Pujals-Sambarino [31] proved this
conjecture for C1-closure. It implies that diffeomorphisms with superexponential
growth of the number of periodic points form a countable intersection of C1-dense
Cr-open sets outside of the open set of hyperbolic diffeomorphisms. If Palis’ con-
jecture is true, then diffeomorphisms with superexponential growth of the number
of periodic points form a Cr-Baire generic set outside of the open set of hyperbolic
diffeomorphisms.

1.2.2. Superexponential growth for multidimensional diffeomorphisms. It looks at-
tractive to prove Cr-Baire genericity of the set of diffeomorphisms with superexpo-
nential growth of the number of periodic points outside of the open set of hyperbolic
diffeomorphisms in Diffr(Md) for d > 2. In this case Newhouse domains and hyper-
bolic diffeomorphisms do not form a dense set. There is another open set discovered
by L. Diaz [7] (see also [4]). It is an open set BD ⊂ Diffr(M) of diffeomorphisms with
a Cr dense subset of those having a heterodimensional heteroclinic cycle. In [20]
we prove genericity of superexponential growth of the number of periodic points
in the domain BD of 3-dimensional diffeomorphisms. The latter work is a step
toward proving genericity of superexponential growth of the number of periodic
points outside of hyperbolic diffeomorphisms. Indeed, one of Palis’ conjectures [25]
states that the set consisting of all hyperbolic diffeomorphisms, those exhibiting
homoclinic tangency, and those having a heterodimensional cycle, is Cr-dense in
the space of diffeomorphisms Diffr(M) (see [17] for further discussion).

1.2.3. Superexponential growth of the number of periodic points for 3-dimensional
volume-preserving diffeomorphisms. The second main result of this paper is the
following.

Theorem 2. Let 2 ≤ r < ∞, and M be a compact 3-dimensional manifold. Let
N ⊂ Diffr

Ω(M) be a Newhouse domain. Then for an arbitrary sequence of posi-
tive integers α = {an}∞n=1 there exists a residual set Rα ⊂ N , depending on this
sequence, with the property that f ∈ Rα implies that

lim sup
n→∞

Pn(f)

an
= ∞. (2)

This is an extension of the main result from [16] to the volume-preserving setting.

2. Strategy of the proofs.

2To the best of our knowledge, the first example of superexponential growth of the number of
periodic points is constructed in [33].

3Growth of the number of periodic points for area-preserving diffeomorphisms of a surface is
a superficial problem, as the following arguments show. Existence of elliptic periodic points is
an open phenomenon. By the Birkhoff Normal Form Theorem (see, e.g., [21]), a diffeomorphism
with an elliptic periodic point after a Cr-small perturbation can have an integrable elliptic point.
A Cr-perturbation of an integrable elliptic point can produce the supergrowth of the number of
periodic points.
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2.1. Plan of the proof of Theorem 1. Let f ∈ Diffr
Ω(M), 2 ≤ r ≤ ∞ be a

diffeomorphism with a hyperbolic saddle point whose eigenvalues are real, and whose
1-dimensional stable manifold and 2-dimensional unstable manifold have a tangency
at some point q ∈ M . Consider a generic 1-parameter unfolding {fε}ε∈I , f0 = f
of the homoclinic tangency at q. It turns out that there is the following scaling
limit. Fix a real number K and a sufficiently large positive n0. Then for n > n0

there are sequences of parameters εn(K) near zero, and of open sets Un near q,
such that the return map fn+N

εn
: Un → U is well-defined. Moreover, there is a

sequence of renormalizations of the initial map, Φ2
εn,n = R−1

n ◦ fn+N
εn

◦ Rn, with

Rn : [−1, 1]3 → Un such that the following holds.
• Each fn+N

εn
: Un → U (resp., Φ2

εn,n : [−2, 2]3 → [−2, 2] × R
2) has a sufficiently

smooth locally invariant 2-dimensional surface Sεn,n (resp., R−1
n (Sεn,n));

• R−1
n (Sεn,n) converges to a plane parallel to the XY -plane, and the restriction

Φ2
εn,n|R−1

n (Sεn,n) converges to the Henon family (x, y) 7→ (y, y2 + K).

Existence of a homoclinic tangency of the restriction Φ2
εn,n|R−1

n (Sεn,n) implies

existence of a homoclinic tangency for the map fεn
itself. At this point we can

reduce our 3-dimensional problem to the standard 2-dimensional problem. The
2-dimensional one is well-understood (see, e.g., [26] ch. 6). We work out this con-
struction in Section 4.

2.2. Plan of the proof of Theorem 2: We start with a few definitions.

Definition 1. A periodic point p = fn(p) of some period k is called a saddlenode
if the linearization dfn(p) has all eigenvalues but one away from the unit circle.

In the 3-dimensional volume-preserving case it implies that the eigenvalues of
dfn(p), denoted by λ, µ, ν, are real and satisfy |λ| < 1 = |µ| < |ν|. Taking f2n(p)
if necessary, we can assume that µ = 1. Let f be Cr–smooth for some positive in-
teger r and p = fn(p) be a saddlenode. Then the theorem on the invariant central
manifold [34] Thm. III.2. implies that p has 1-dimensional stable, unstable, and
central manifolds, denoted by W s(p), Wu(p), and W c(p), respectively, of smooth-
ness Cr , Cr, and Cr−1, respectively. Introduce Cr−1-smooth coordinates on W c(p),
denoted by yc, so that yc = 0 corresponds to the point p.

Definition 2. Let f be a Cr diffeomorphism, and p = fn(p) be its periodic point
of saddlenode type. The point p is called m-saddlenode 4 for m ≤ r − 1 if all the
derivatives of the restriction φ(yc) = fn|W c(p)(yc) to the central manifold of orders

2, . . . , m equal zero, i.e., φ(s)(0) = 0 for 2 ≤ s ≤ m.

Fix any r, and suppose that f ∈ C∞ has an m-saddlenode p = fn(p) for some
m ≥ r. Then for any positive integer k by a Cr-perturbation of p one can create k
distinct periodic points of the same period n, located in a small neighborhood of p.

Let p be a periodic saddle of a C∞-smooth volume-preserving diffeomorphism
f with the eigenvalues of the linearization satisfying λ < 1 < µ < ν, whose 2-
dimensional unstable and 1-dimensional stable manifolds exhibit a homoclinic tan-
gency. By volume-preservation λµν = 1.

Definition 3. A saddle is called k-unstable if the eigenvalues of its linearization
satisfy λ < 1 < µ < µk < ν.

4Sometimes it is also called either a Cm-neutral periodic point or a saddlenode of order m.
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Note that, due to volume-preservation, this condition is equivalent to λµk+1 < 1.
It resembles the corresponding definition of a k-shrinking saddle in [16], and serves
two different purposes, one of which is similar to the one for k-shrinking saddle
there.

The proof of Theorem 2, presented here, follows along the lines of the proof of the
corresponding result in [16], which, in its turn, follows closely [8]. We reproduce the
plan of the proof given there, and explain the modification at each step. Additional
difficulties are caused by the increase of dimension and absence of linear normal
coordinates due to the preservation of volume . Since the diffeomorphisms under
consideration are volume-preserving, in general they have no linear normal form in a
neighborhood of the saddle point, which is essential for the constructions in [16]. We
assume instead that the only resonance relation is the one due to the preservation
of volume, which can be achieved by a small perturbation of our system. This
enables us to use a multiplicatively single-resonant normal form, see the definition
in Sect. 3, and [13] for more details. Recall that Diffr

Ω(M) denotes the space of Cr

diffeomorphisms preserving a smooth volume form Ω.

Definition 4. Let a diffeomorphism f ∈Diffr
Ω(M) have a periodic saddle p = fk(p)

with real eigenvalues λ < 1 < µ < ν, and let W cs(p) be the invariant manifold of p
corresponding to the eigenvalues λ and µ. We say that f has a reduced homoclinic
tangency if there is a Cr–smooth 2-dimensional fk-locally invariant surface S inside
W cs(p) such that the restriction fk|S has a homoclinic tangency associated to p.

Notice that if f has a reduced homoclinic tangency, then it has a homoclinic
tangency.

Now we are ready to outline the proof of Theorem 2. We start with f in a
Newhouse domain N ⊂ Diffr

Ω(M) from Theorem 1. Since C∞ diffeomorphisms are

Cr-dense in Diffr
Ω(M), we can always start with a C∞ diffeomorphism f̃ which

is Cr-near the starting Cr diffeomorphism f . In the proof we shall always make
Cr-small C∞-perturbations.

By a Cr-small C∞-perturbation of f̃ we shall construct a diffeomorphism with
an m-saddlenode of a large period. As we explained above, by a Cr-small C∞-
perturbation of the latter, one can create an arbitrary large number of periodic
points of the same period.

Below we briefly describe the deformations leading to an m-saddlenode. Let f ∈
Diff∞

Ω (M) be a diffeomorphism with a hyperbolic saddle point whose eigenvalues
are real, and the corresponding 1-dimensional stable, and 2-dimensional unstable
manifold have a tangency. Fix 2 ≤ r < ∞. In the following plan, by a “pertur-
bation”, if not specified, we shall always mean “a Cr-small C∞-perturbation in
Diffr

Ω(M)”. Let r ≤ m ≤ 2r.
First Step. For an arbitrary r we construct a diffeomorphism with a reduced

homoclinic tangency, associated to a 2r-unstable saddle, Cr-close to f . The proof
is close to the argument in sect. 2 [32] with the only difference that in our case f
has no linear normal form in the neighborhood of p.

Second Step. By a small perturbation of a diffeomorphism with a reduced ho-
moclinic tangency of a 2r-unstable saddle, we create one with an m-floor tower (a
heteroclinic contour). This is done in the same way as in [16]. Additional difficulties
are caused by the 3-dimensionality and the preservation of volume.
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Third Step. Using a normal form for a multiplicatively single-resonant saddle
from [13] (see next section), we make a small perturbation of a diffeomorphism
with an m-floor tower to obtain one with an m-th order homoclinic tangency.

Fourth Step. By a small perturbation of the diffeomorphism with an m-th order
homoclinic tangency we construct one with a periodic m-saddlenode.

As we mentioned above, a periodic m-saddlenode can be “split” into any ahead
given number of non-degenerate periodic points of the same period by a volume-
preserving Cr-small C∞-perturbation. By iterating the above procedure we achieve
the result of Theorem 2 (see Sect. 2.7 [16]).

The paper is organized as follows. We start with a diffeomorphism f ∈ Diffr
Ω(M)

having a generic saddle periodic point p with a homoclinic tangency. In section 3 we
define the single-resonant normal form and analyze its iterates near p. In Section
4 we prove Theorem 1 and justify Step 1 of the proof of Theorem 2 on the way.
This section also contains Theorem 4 which is an improvement of Theorem 1 and is
of independent interest. In Section 5 we compute a return map near a homoclinic
tangency. The rest of the paper is devoted to completing of the proof of Theorem 2:
Step 2 is done in section 6, Step 3 — in Section 7, and finally, Step 4 — in Section
8. This suffices to complete the proof of Theorem 2.

3. Normal form and estimates of nonlinear term. We start with a C∞

smooth volume-preserving diffeomorphism f : M3 → M3 having a periodic point
p of saddle type, as described in the Introduction. If p has period k, we replace f
by fk, and assume that p is a fixed point of f . Since f preserves the volume, the
eigenvalues of the linearization at p have an inevitable resonance relation λµν = 1.
Making a small volume-preserving perturbation of f if necessary, we can assume
that the only integer relations between the eigenvalues are λµν = 1 and the ones
that follow from it.

Recall that a set of n complex numbers λ1, . . . , λn has a multiplicative resonance
if for a set of n integers r1, . . . , rn,

∑

j |rj | ≥ 2 we have λr1

1 . . . λrn
n = 1. A set

λ1, . . . , λn is called multiplicatively single-resonant if all multiplicative resonances
follow from a single one. The following theorem from [13] (see also [14]) provides a
finitely smooth normal form for our system in a neighborhood of the saddle point.

Theorem 3. A deformation of a multiplicatively single-resonant hyperbolic germ
of a C∞ diffeomorphism is finitely smoothly equivalent to a local family

x 7→ Xg(u(x), ε), X = diag(x1, . . . , xn), x ∈ (R, 0),

where g(u, ε) is a vector polynomial of a scalar variable u, whose coefficients depend
smoothly on ε, and u(x) is a resonant monomial. More precisely, given a positive
integer m, there is a polynomial gm(u, ε) such that the initial family is Cm-smoothly
equivalent to the normal form defined above with g = gm in some m-dependent
neighborhood of zero in (x, ε)-space.

Application of this result to our setting. Denote u = xyz. Then for any m there
is a Cm-smooth coordinate system such that f has the form:

f : (x, y, z) → ((λ + g1(u))x, (µ + g2(u))y, (ν + g3(u))z), (3)
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where g1(u), g2(u), g3(u) are polynomials vanishing at u = 0. In what follows we
shall use these normal coordinates. Of course, the normalization does not pre-
serve the Lebesgue volume form, but transforms it into another Cm-smooth non-
degenerate volume form Ω′. The deformations of f constructed during the proof
will preserve Ω′.

3.1. Iterations of f in the normal coordinates. The next calculation describes
the n-th iterate fn of the above normal form, and will be used later to prove that fn

is “close to” a linear transformation (x, y, z) 7→ (λnx, µny, νnz) for certain (x, y, z).
Let ‖g(u)‖m denote Cm-norm of g, i.e., maximum taken over all partial derivatives
of order up to m in the domain of its definition.

Lemma 1. Fix r ∈ Z+. Let f be the normal form (3) and u = xyz. Then
there exists n0 such that for all n ≥ n0 and (x, y, z) such that |u| < λn and all
{f j(x, y, z)}n

j=0 belonging to the unit cube around zero we have:

fn(x, y, z) = (λnx, µny, νnz) + ρn(x, y, z),

where
ρn(x, y, z) = (ρx

n(u)x, ρy
n(u) y, ρz

n(u) z),

{ρξ
n(u)}ξ∈{x,y,z} are polynomials. Moreover, ρξ

n’s define polynomials by ρξ
n(u) =

uP ξ
n(u), py

n(u) = µ−nP y
n (u), and pz

n(u) = ν−nP z
n(u), and these satisfy

‖P x
n (u)‖i ≤ λnpoli(n), ‖py

n(u)‖i ≤ poli(n), ‖pz
n(u)‖i ≤ poli(n), (4)

where 0 ≤ i ≤ m and for each i we have that poli(n) is a polynomial of degree at
most 2i + 3.

Proof. Consider

K(u) := u(λ + g1(u))(µ + g2(u))(ν + g3(u)) =: u + P (u). (5)

By definition, P (u) is a polynomial of some degree d in u having zero of order 2 at
the origin. Denote Kj(u) = K(Kj−1(u)) for each j ≥ 1. Thus, we have:

ρx
n(u) = (λ + g1(u))(λ + g1(K(u))) . . . (λ + g1(K

n−1(u))) − λn,

and ρy
n and ρz

n satisfy the same formula with (λ, x, g1) replaced by (µ, y, g2) or
(ν, z, g3), respectively. These formulas imply that ρξ

n is divisible by u for each
ξ ∈ {x, y, z}. Therefore, polynomials P ξ

n are well defined.
First let us estimate the n-th iterate of K for an arbitrary n:

Kn(u) = Kn−1(u) + P (Kn−1(u)).

In other words, Kn is a finite sum of the form

Kn(u) = u + P (u) + P (u + P (u)) + P
(

u + P (u) + P (u + P (u))
)

+ . . . .

Notice that the highest degree of Kn, denoted by s(n), is bounded by dn. For any
given k ≤ s(n) we want to estimate the coefficient Cm(n) of the monomial um in
the above sum. To do this, notice that um can only appear in the composition P t

for t = t(m) ≤ m/2. Indeed, P is divisible by u2. For a polynomial K, denote by
K̄ the same polynomial with all the coefficients replaced by their absolute values.
Then |Cm(n)| is less or equal to the coefficient of um in the following polynomial:

K̄t−1(u) + P̄ (K̄t−1(u)) + P̄ (2K̄t−1(u)) + · · · + P̄ ((n − 1)K̄t−1(u))

≤ K̄t−1(u) + nP̄ (nK̄t−1(u)) ≤ K̄t(n2u).

Here t = t(m) ≤ m/2, and the comparison of polynomials is component-wise.
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It is left to estimate the coefficient of um in K̄t(u). It is less than the largest
coefficient in K̄m. The latter is less than cm, where c is a constant depending only
on the polynomial K.

In fact, we have proved that for all j ≤ s(n)

K̄j ≤ K̄n ≤
s(n)
∑

m=1

(cn2u)m. (6)

The same estimate, with different constants c and s(n), holds for gi(K̄
j). By as-

sumption |u| ≤ λn. So for n sufficiently large, the product (cn2λn) gets as small as
we like, and we can write the following estimate for j ≤ s(n), i = 1, 2, 3:

gi(K̄
j) ≤

s(n)
∑

k=1

(cn2u)k ≤
∞
∑

k=1

(cn2λn)k ≤ 2cn2λn =: bn.

The latter constant goes to zero when n grows. By (5), we can estimate:

‖ρx
n(u)‖0 ≤ λn(1 + bn/λ)n − λn ≤ 4cn3λ2n−1;

0-norms of ρy
n and ρz

n are estimated in the same way. Formula (6) permits us to
estimate the derivatives of ρξ

n with respect to u. After we obtain estimates for
ρξ

n and its derivatives it is easy to derive similar estimates for P ξ
n and pξ

n. This
completes the proof.

4. Existence of Newhouse domains and density of r-unstable saddles with
homoclinic tangency. Here we prove Theorem 1 and realize Step 1 of the proof
of Theorem 2. At some point we need to prove an analog of Lemma 2.1 from [32]
for a multiplicatively single-resonance normal form instead of a linear one. Before
we state the main result of this section we need an additional notion of a normally
hyperbolic invariant manifold.

Recall that the minimum norm m(L) of a linear transformation L is defined as

m(L) = inf{|Lx| : |x| = 1}.
When L is invertible, m(L) = ‖L−1‖−1. Let f : M → M be a Cr smooth diffeo-
morphism of a smooth manifold M and S be a Cr smooth invariant submanifold of
M . Let TSM be the tangent bundle of M over S. Suppose we have a df -invariant
splitting into three subspaces

TSM = Wu ⊕ TS ⊕ W s,

i.e., for any p ∈ M we have df(p)W s
p = W s

f(p) and df(p)Wu
p = Wu

f(p). Moreover, for

some C, λ > 1 we have |dfn(p)v| ≥ Cλn|v| for all p ∈ S, all v ∈ Wu
p (resp., W s

p ),
and all n ∈ Z+ (resp., n ∈ Z−). Denote

dfs(p) = df(p)|W s , dfu(p) = df(p)|W u , df c(p) = df(p)|TpS .

Let k be positive. We say that f is k-normally hyperbolic at S if there is a Rie-
mannian structure on TM such that for all p ∈ S we have:

m(dfu
p ) > ‖df c(p)‖k, m(df c

p)k > ‖dfs(p)‖.
Let TS be a tube neighborhood of S and πS : TS → S be the natural projection
along directions normal to S. We say that f is normally hyperbolic on S if it is
k-normally hyperbolic for some positive k.

The main result of this section is the proof of the following statement:
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Theorem 4. Let Ω be a C∞ smooth volume form and r ≥ 1. Let {fε}ε∈I be a
generic 1-parameter family of C∞-smooth Ω-preserving diffeomorphisms unfolding
a quadratic homoclinic tangency associated to a saddle with real multiplicatively
single-resonant eigenvalues. Then there exists a sequence of pairwise disjoint in-
tervals In monotonically decreasing to zero in the parameter space such that for n
sufficiently large the following holds:
• for any ε ∈ In there is a C2r-smooth 2-dimensional surface Sε,n, which is locally
invariant under fn+N

ε , kn-normally hyperbolic, and C2r-smoothly depends on the
parameter ε;
• the parameter kn → ∞ as n → ∞;
• the family of restrictions to this surface {fn+N

ε |Sε,n
}ε∈In

generically unfolds a

quadratic homoclinic tangency 5;
• for any real number K there exists a sequence of parameters εn(K) ∈ In tending
to zero as n goes to infinity, and a sequence of changes of variables Rn such that
the rescaled surface R−1

n (Sε,n) C2r-tends to a plane parallel to the XY plane and
the map

Φ2
εn(K),n := R−1

n ◦ fn ◦ fN
εn(K) ◦ Rn

restricted to R−1
n (Sεn(K),n) and written in (x, y)-coordinates, gets arbitrarily C2r-

close to
(

x
y

)

7→
(

x′

y′

)

=

(

0
y2 + K

)

as n increases.

Remark 1. This theorem is a generalization of the corresponding 2-dimensional
calculations near a homoclinic tangency, connecting planar homoclinic bifurcations
to Henon-like families (see, e.g., [26]). If f has a linear normal form (which is
the generic case for non–necessarily volume–preserving diffeomorphisms), then this
theorem is an analog of Theorem C from [32]. Since our mappings are volume-
preserving, they do not in general have a linear normal form. In this section recall
the proof of Theorem C from [32] and describe the modifications we use to treat
the non-linear case.

We speak about C2r not Cr convergence above to fit to the notations of the rest
of the paper. Below we derive from this Theorem Corollary 1, which in turn implies
the first main result Theorem 1.

Proof. Definition of a homoclinic tangency from the introduction applies to Cr-
smooth diffeomorphisms of a smooth 2-dimensional orientable manifold S. We
distinguish two types of homoclinic tangencies. Let φ : S → S be a Cr-smooth sur-
face diffeomorphism with a saddle periodic point φk(p) = p. Suppose the invariant
manifolds Wu(p) and W s(p) have a homoclinic tangency at some point q. Introduce
local coordinates near p (not necessarily linear) so that invariant manifolds W s(p)
and Wu(p) coincide with the coordinate axis OX and OY , respectively. Scale the
coordinates so that the tangency occurs at q = (1, 0), and W s(p) has a tangency
with the y-positive half of Wu(p). Denote by Wu

q,loc(p) the connected component

of the intersection of Wu(p) with a neighborhood of q that contains q. We call such
a tangency inner (resp., outer) if the intersection of Wu

q,loc(p) lies in {y ≥ 0} (resp.,

{y ≤ 0}) (see Fig. 2 and, e.g., Fig. 1 in [16] or Fig. 3.1 in [27]). In what follows we

5Since this surface, Sε,n, depends C2r-smoothly on the parameter ε ∈ In, it does make sense

to speak about the family of restrictions {fε|Sε,n
}ε∈In

unfolding a quadratic homoclinic tangency.
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q̃

W s(p)

W u(p)

q

p

(0,1)

(1,0)

Figure 2. Inner tangency.

are mainly interested in inner tangencies. The reason is that for a 3-dimensional
volume-preserving diffeomorphism f with a locally invariant 2-dimensional surface
S such that the restriction f |S has an inner homoclinic tangency one can conclude
the existence of a horseshoe (see Prop. 1). Recall definition 4 of a reduced homo-
clinic tangency.

Start with a C∞ diffeomorphism f with a homoclinic tangency. Suppose that
q = (1, 0, 0) is a point of the orbit of tangency, and let q′ = (0, 1, ηz) be such that
fN(q′) = q. Denote η := (1, ηz). Let ỹ = (y − 1), z̃ = (z − ηz). Write fN in the
form





x′

y′

z′



 =





1 + a1x + b1ỹ + c1z̃ + H1(x, ỹ, z̃)
a2x + b2ỹ + c2z̃ + d2ỹ

2 + e2ỹz̃ + f2z̃
2 + H2(x, ỹ, z̃)

a3x + b3ỹ + c3z̃ + d3ỹ
2 + e3ỹz̃ + f3z̃

2 + H3(x, ỹ, z̃)



 , (7)

where ai, . . . fi are constants, and for x = (y − 1) = (z − ηz) = 0 we have:

Hi = ∂jHi = 0, i, j = 1, 2, 3.

∂i∂jH2 = ∂i∂jH3 = 0, i, j = 2, 3.

Perturbing if necessary assume c3 6= 0.

Remark 2. Let V = (0, 1, v) be a vector such that dfN (0, 1, ηz)V = (c, 0, 0) for
some constant c 6= 0. Since we have a tangency with the OX-axis at q, such a vector
V exists. Then in our notation we have b2 + vc2 = b3 + vc3 = 0.

We consider a 1-parameter unfolding fN
ε of our system: add ε in the second line

of (7). We shall denote the coordinate functions of fN
ε by (G1, G2

ε, G
3).

The main ingredient of the proof is the following lemma.

Lemma 2. For any real numbers K1, K2, there exists a sequence of pairwise disjoint
intervals In in the parameter space, monotonically tending to zero as n grows, and
a sequence of changes of variables Rn such that the renormalized mapping

Φ2
ε,n := R−1

n ◦ fn ◦ fN
ε ◦ Rn := (Ḡ1

n, Ḡ2
ε,n, Ḡ3

n)

has the following properties:
• The first component, Ḡ1

n(x, y, z), C2r-converges to zero.
• The second and the third component are of the form

Ḡ2
εn,n(x, y, z) = y2 + K1(y + k0z) + K2 + k1yz + k2z

2 + hn
1 (x, y, z)

Ḡ3
n(x, y, z) = νn(k3z + k4 + ν−nhn

2 (x, y, z)),
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where ki are constants, only depending on the system (7), both hn
1 and ν−nhn

2 con-
verge to zero in C2r-norm as n → ∞ for any sequence {εn}n≥1 such that εn ∈ In

for each n.

Proof. We split the proof of this lemma into two steps. First we consider the
particular case when f is linear. In this case the statement coincides with the 3-
dimensional version of Lemma 2.1 from [32]. We rewrite the proof presented there,
since notations are quite different and we need to deal with the nonlinear case
anyway. At the second step we make modifications in order to treat the general
case, assuming that f has a multiplicatively single-resonant normal form.

4.1. Linearizable case. First we shall study a sequence of renormalizations of the
system fn◦fN

ε , where fn coincides with its linear part Ln(x, y, z) = (λnx, µny, νnz).
Consider

Ψu
n(x, y, z) = (λnx, y, z), Ψs

n(x, y, z) = (x, µ−ny, ν−nz).

With this notation, Ln = Ψu
n ◦ (Ψs

n)−1. For each n we define

Bn =

(

β1µ
−n β2ν

−n

β3µ
−n β4µ

−n

)

, B−1
n =

1

detBn

(

β4µ
−n −β2ν

−n

−β3µ
−n β1µ

−n

)

. (8)

Here
1

detBn
=

µ2n(1 + κn)

β1β4
,

where κn goes to zero when n goes to infinity.
We define Ψn to be of the form

Ψn(x, y, z) = (δnx + 1, Bn(y, z) + η), (9)

where constants βi and δn are to be chosen later. Define the renormalization map-
ping as

Rn = Ψu
n ◦ Ψn. (10)

The renormalized mapping looks like:

Φ2,L
ε,n = R−1

n ◦ Ln ◦ fN
ε ◦ Rn = Ψ−1

n ◦ (Ψs
n)−1 ◦ fN

ε ◦ Ψu
n ◦ Ψn =

= Ψ−1
n ◦ (Ψs

n)−1 ◦ (G1, G2
ε, G

3) ◦ Ψu
n ◦ Ψn := (Ḡ1,L

n , Ḡ2,L
ε,n , Ḡ3,L

n ).
(11)

The corresponding sequence of changes of variables is illustrated by Fig. 3.
We compute:

Ψ−1
n ◦ (Ψs

n)−1 = (δ−1
n (x − 1), B−1

n ((y, z) − η)) ◦ (x, µny, νnz)

= (δ−1
n (x − 1),

1

detBn
(β4y − β2z − pn),

1

detBn
(β3y + β1

νn

µn
z + qn),

(12)

where pn = −β4µ
−n + β2ηzν

−n, and qn = β3µ
−n − β1ηzν

−n.

Ψu
n ◦ Ψn = (λn(δnx + 1), Bn(y, z) + η) =

=

(

λn(δnx + 1),
β1y

µn
+

β2z

νn
+ 1,

β3y

µn
+

β4z

µn
+ ηz

)

.
(13)

Combining formulas (11–13) we get the following expressions for the components
of Φ2,L

ε,n . For the first component, Ḡ1,L
n , we have:

Ḡ1,L
ε,n = δ−1

n (G1 − 1) ◦
(

λn(δnx + 1),
β1y

µn
+

β2z

νn
+ 1,

β3y

µn
+

β4z

µn
+ ηz

)

. (14)
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p q

q′

x

y

z

Ψn

Ψs
n

Ψu
n

fn

W u(p)

W s(p)

Figure 3. Renormalization of the return map.

We take δn such that δ−1
n µ−n → 0 when n grows. Then Ḡ1,L

n goes to zero with the
growth of n.

For the second component, Ḡ2,L
ε,n , we have:

Ḡ2,L
ε,n =

µ2n(1 + κn)

β1β4
(β4G

2
ε − β2G

3 + pn)◦
(

λn(δnx + 1),
β1y

µn
+

β2z

νn
+ 1,

β3y

µn
+

β4z

µn
+ ηz

)

.

(15)

- Let us first compute the linear part of G2,L
ε,n , combining the above formula with

(7). The coefficient of x goes to zero with the growth of n. The coefficient of y is

µn(1 + κn)

β1β4
(β1(β4b2 − β2b3) + β3(β4c2 − β2c3)).

We choose βi so that it equals K1. The coefficient z is

µ2n(1 + κn)

β1β4
(ν−nβ2(β4b2 − β2b3) + µ−nβ4(β4c2 − β2c3))

Notice that, by Remark 2, (β4b2 − β2b3) = −v(β4c2 − β2c3). Therefore, the coeffi-
cients of y and z vanish at the same time.

- Choosing ε properly we make the free term equal K2: we take ε so that

µ2n(1 + κn)

β1β4
(β4ε + pn) = K2.

In this case ε is of order µ−n.
- The coefficients of y2, yz and z2 converge to constants as n goes to infinity. We

choose βj so that the coefficient of y2 equals 1.
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As for the third component, Ḡ3,L
n , we have:

Ḡ3,L
ε,n =

µ2n(1 + κn)

β1β4
(−β3G

2 +
νn

µn
β4G

3 + qn) ◦ Ψn =

µnνn(1 + κn)

β1β4
(−µn

νn
β3G

2 + β4G
3 +

µn

νn
qn)◦

(

λn(δnx + 1),
β1y

µn
+

β2z

νn
+ 1,

β3y

µn
+

β4z

µn
+ ηz

)

.

(16)

- The coefficient of y equals νnβ4(c3β4 + b3β1 + hy
n), where hy

n converges to zero
with the growth of n. We choose β4 and β1 so that this expression equals zero.

- The coefficient of z equals νn(c3β3 + hz
n), where hz

n converges to zero. We take
β3 6= 0.

- The free term converges to a constant times νn. Denote this constant by k4.
- Coefficients of the higher order terms go to zero when n grows.
This completes the proof of Lemma 2 in the linearizable case.
To show that Lemma 2 implies Theorem 4 in the linearizable case we use argu-

ments similar to [32]. Let K1 = 0 in the Lemma above. In this case κn = κ is a
constant. Write the locally invariant surface as a graph z(x, y) over the XY -plane.
Notice that dependence of the main term in the third component Ḡ3,L

n on x tends
to zero as n goes to infinity. Therefore, the equation for an invariant surface is of
the form:

x′ = Ḡ1,L
n (x, y, z(x, y)) = y + h0(x, y, z(x, y))

y′ = Ḡ2,L
εn,n(x, y, z(x, y)) = y2 + K1(y + k0z) + K2 + (k1y + k2z)z + hn

1 (x, y, z(x, y))

z′(x′, y′) = Ḡ3,L
n (x, y, z(x, y)) = νn(k3z + k4 + ν−nhn

2 (x, y, z(x, y))),

where all hn
0 , hn

1 , and ν−nhn
2 tend to zero with any finite number of its derivatives. It

implies that the graph z(x, y) tends to the plane {k4 +k3z = 0}, where k3 is assumed to be
nonzero. Thus, the locally invariant surface Sεn,n has to be a C2r-small perturbation of
this plane and the C2r error tends to zero as n goes to infinity. Substituting z ≈ −k4/k3

we get that y2 + K2 + k1yz + k2z
2 = y2 + (K2 − k0k4/k3) + (K1 − k1k4/k3)y + k2k

2
4/k2

3+
error, where error tends to zero as n tends to infinity. Choosing K1 = k1k4/k3 we get
that on the locally invariant surface Sεn,n the restriction of Φ2,L

εn,n converges to y2 + K,

K = K2 − k0k4/k3 + k2k
2
4/k2

3 .
Now we justify the smoothness of the surface Sεn,n. Notice that the strong expansion

in the OZ-direction, whose coefficient exponentially tends to infinity as n → ∞, implies
that Sεn,n is kn-normally hyperbolic. Fix any r ≥ 1. Then for some n0 = n0(r) and
any n > n0 normal hyperbolicity implies that a saddle fixed point pεn is 2r-unstable,
i.e. the expanding eigenvalues satisfy µ2r < ν. By the theorem on the invariant central
manifold (see e.g. [34], Thm. III 2), we have that Sεn,n is C2r smooth. This, along with
Hirsch-Pugh-Shub theory [12], implies that the surface Sεn,n depends C2r-smoothly on
the parameter εn ∈ In. This proves Theorem 4 in the linearizable case.

4.2. Non-linearizable case. Without the linearizability assumption the idea is the fol-
lowing. Recall that the resonant term ρn = fn − Ln can be bounded by Lemma 1.

We define

Ψs
n(x, y, z) = (x,µ−ny, ν−nz), Ψu

n(x, y, z) = fn ◦ Ψs
n.

With this notation, fn = Ψu
n ◦ (Ψs

n)−1. Define Ψn and Rn by formulas (9) and (10). The
renormalizations of our system look like:

Φ2
ε,n =R−1

n ◦ fn ◦ fN
ε ◦ Rn = Ψ−1

n ◦ (Ψs
n)−1 ◦ fN

ε ◦ fn ◦ Ψs
n ◦ Ψn =

Ψ−1
n ◦ (Ψs

n)−1 ◦ fN
ε ◦ (Ln + ρn) ◦ Ψs

n ◦ Ψn := (Ḡ1
n, Ḡ2

ε,n, Ḡ3
n).

(17)
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Notice that if ρn = 0, then this formula coincides with (11). Hence it is enough to
estimate the C2r-norm of ρn ◦ Ψs

n ◦ Ψn. We compute:

Ψs
n ◦ Ψn =

�
δnx + 1,

β1y

µ2n
+

β2z

µnνn
+

1

µn
,

β3y

µ2n
+

β4z

µ2n
+

ηz

νn

�
. (18)

equation
Note that each derivative of Ψs

n ◦ Ψn w.r.t. y brings a factor of µ−2n, and a derivative
w.r.t. z brings a factor of µ−nν−n. Direct calculation shows that the estimates of the
derivatives of ρn from Lemma 1 are sufficient to prove a C2r vanishing of any term from
ξρξ

n ◦ Ψs
n ◦ Ψn. This completes the proof of the Lemma.

A direct application of Lemma 1 shows that the corresponding nonlinear terms
vanish. The derivation of Theorem 4 from Lemma 2 in the non-linearizable case
is completely analogous to the one in the linearizable case. Thus, the proof of
Theorem 4.

Theorem 4 implies the following.

Corollary 1. [Choice of the parameters providing 2r-unstable saddles (Step 1)]
With the notations of Theorem 4, for any positive r, there exists a sequence of
subintervals I ′n ⊂ In in the parameter space such that if n is sufficiently large and
ε ∈ I ′n, then fε has an 2r-unstable periodic saddle pε = fn+N

ε (pε). Moreover, for
some ε∗n ∈ I ′n, f has a reduced homoclinic tangency associated to an 2r-unstable
saddle pε∗

n
. More precisely,

• pε∗
n

is multiplicatively single-resonant 2r-unstable;
• for ε near ε∗n in I ′n we have that Sε,n coincides with the local center-stable manifold
of pε under fn+N

ε ;
• for n sufficiently large the rescaled surface R−1

n (Sε,n) C2r-tends to a plane parallel
to the XY -plane, which permits us to write Φ2

εn,n in xy-coordinates, where εn ∈ In;

• for some parameter ε+
n (resp. ε−n ) in I ′n the surface map fn+N

ε |Sε,n
, i.e. the map

fn+N
ε restricted to the surface Sε,n, has a homoclinic tangency associated with pε±

n

of inner (resp., outer) type, and generically unfolds the tangency 6.

Proof. Choose K = −2 in the above theorem. Then the restriction Φ2
εn(−2),n is

C2r-close to the quadratic map (x, y) 7→ (y, y2 − 2), x, y ∈ [−2, 2]. This map
has a fixed point (2, 2) with eigenvalues 4 and 0. Therefore, for a large enough
n and ε = εn(−2), Φ2

ε,n has a saddle near (2, 2) on the surface R−1
n (Sεn,n) with

eigenvalues close to 4 and 0+. Using the standard technology varying K and the
corresponding ε = εn(K) we can get a saddle pε exhibiting a homoclinic tangency
on the surface Sε,n of either inner or outer type (see [27] sect 6.3). Notice that a
homoclinic tangency of the restriction to an invariant surface implies a homoclinic
tangency of fε itself. The eigenvalues of fn+N

ε at its fixed point pε inside Sε,n are
bounded. The surface Sε,n is kn-normally hyperbolic, where kn can be arbitrary
large provided n is large. Therefore, by volume-preservation, for any prescribed r
and n = n(r) large enough, pε is 2r-unstable.

Now we show that Corollary 1 implies Theorem 1.
Proof of Theorem 1. By Corollary 1, we have a sequence of disjoint intervals I ′n

near ε = 0 and values εn ∈ I ′n with εn → 0 as n → ∞ such that fεn
has a 2r-

unstable periodic saddle pεn
of period n+N with a quadratic homoclinic tangency.

6As we mentioned above, both Sε,n and the restriction fε|Sε,n
depend C2r-smoothly on the

parameter ε.
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By Corollary 1, the local central-stable manifold W cs(pεn
) is locally invariant and

coincides with the surface Sεn,n. By Theorem 4, the surface Sεn,n is C2r smooth.
Therefore, the family of restrictions fn+N

εn
|Sεn,n

is C2r-smooth.

Consider fn ◦ fN
εn

. Denoting ỹn = µny − 1, we write this mapping in the form:




x∗

y∗

z∗



 =





1 + a1λ
n(1 + x) + b1ỹn + c1ν

n+̃H̃1(λ
n(1 + x), ỹn, νnz̃)

a2λ
n(1 + x) + b2ỹn + c2ν

nz̃ + H̃2(λ
n(1 + x), ỹn, νnz̃)

a3λ
n(1 + x) + b3ỹn + c3ν

nz̃ + H̃3(λ
n(1 + x), ỹn, νnz̃)



 . (19)

Notice that there is exponentially large expansion in the OZ-direction. It implies
that the local center-stable manifold W cs(pεn

) is 2-dimensional. Since the restric-
tion fn+N

ε |Sεn,n
generically unfolds a homoclinic tangency, there exists an open set

Ĩn ⊆ I ′n of parameters such that the restriction fn+N
εn

|Sεn,n
has a persistent homo-

clinic tangency. Notice that a homoclinic tangency of the restriction fn+N
ε |Sεn,n

implies a homoclinic tangency of f itself. Therefore, we can apply the standard 2-
dimensional arguments (see, e.g., [32] sect. 3.2, the proof of Theorem A or [27] sect.
6.3) to show that fεn

itself has a persistent homoclinic tangency. This completes
the proof of Theorem 1.

5. Return maps in a neighborhood of a homoclinic tangency. Due to Corol-
lary 1, after a Cr-small C∞-perturbation we can start with a reduced homoclinic
tangency (see definition 4). Let U and U ′ be sufficiently small neighborhoods
of points of the homoclinic tangency q and q′, respectively. Choose N so that
fN(q′) = q (see Fig. 1). Denote by Wu

loc(p) the first connected component of the
intersection Wu(p) ∩ U . Below we shall use the coordinate systems in U and U ′,
induced by the normal coordinates from the previous section.

A parallelepiped in U (resp., U ′) is called right parallelepiped if its sides are
parallel to the coordinate planes.

Let fk have a reduced homoclinic tangency associated to a 2r-unstable periodic
saddle p = fk(p) with a smooth 2-dimensional surface S ⊂ W cs(p) being locally
invariant. Choose normal coordinates (3). Since the homoclinic tangency of fk is
reduced, fk restricted to S, has a homoclinic tangency of inner type.

Proposition 1. With the above notations, choose c and c′ sufficiently large. Put
δn = µ−n. For n sufficiently large consider the right parallelepiped Tn centered at

(1, δn, 0) with edges 2δ
1/2
n ×cδ

3/2
n ×cν−nδ

1/2
n . Then the image fn(Tn) is exponentially

close to the right parallelepiped centered at (λn, 1, 0) with edges 2δ
1/2
n λn × cδ

1/2
n ×

cδ
1/2
n with corresponding directional errors bounded by (c′λ2n(n + 1)3, c′µnλn(n +

1)3, c′νnλn(n + 1)3) (see Fig. 4).
Moreover, Tn and fn+N(Tn) form a horseshoe with an (n + N)-periodic saddle

p̃, and fn+N(Tn) is at most Cδ2r
n -distant from W s(p), where C is a constant, in-

dependent of n. It is equivalent to the fact that f−N (Tn) and fn(T n) = T ′
n form a

horseshoe (see Fig. 5).

Proof. The first statement is proved by a computation with the normal form: by
Lemma 1 we show that for the initial data in Tn, the first n iterates of f stay C0-
close to those of its linear part, see (4). Now recall that pol0(n) is of degree 3 and,
therefore, bounded from above by c′(n + 1)3.

Notice that the restriction of (3) to the XY -plane gives a linear map. Thus,
the second (horseshoe) part of Proposition follows from the corresponding planar
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≈ δn

δn = µ−n

≈ λn

≈ δ
1/2
n ≈ δ

1/2
n

≈ δ
1/2
n

≈ δ
3/2
n

≈ ν−nδ
1/2
n

δ
1/2
n λn

W u(p)
W s(p) q

q′

Figure 4. Parallelepipeds in neighborhoods of homoclinic tangencies.

statement about existence of a horseshoe (see, e.g., Prop.1 [16]). This proves the
Proposition.

T ′

n

fn+N (T ′
n)

W u(p)

q′

Figure 5. Horseshoe in U ′.
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6. Construction of a tower of horseshoe saddles (Step 2). In this section
we adapt the idea of Gonchenko-Shilnikov-Turaev [8] of constructing a tower of
heteroclinic connections in a neighborhood of a homoclinic tangency. The details of
the construction are similar to those from [16] sect. 2.4. Additional complications
are due to 3-dimensionality and volume-preservation. Construction of a tower is
the second step in the proof of Theorem 2.

Definition 5. An m-floor tower is a collection of m saddle periodic points p1, . . . ,
pm (possibly of different periods) with 1-dimensional stable manifolds W s(p1), . . . ,
W s(pm) and 2-dimensional unstable manifolds Wu(p1), . . . , W

u(pm), respectively,
such that W s

loc(pi) is tangent to Wu
loc(pi+1) for i = 1, . . . , m−1 and Wu

loc(pm) inter-
sects W s

loc(p1), where W s
loc(pi) (resp., Wu

loc(pi)) denotes the connected component of
the intersection of W s(pi) (resp., Wu(pi)) with a neighborhood of pi which contains
pi.

Let f ∈ C∞ have a reduced homoclinic tangency of a 2r-unstable saddle periodic
point p = fk(p). Let fk have a locally invariant 2-dimensional surface S, which is
contained in the central-stable manifold W cs(p) of p as in definition 4. Suppose fk,
restricted to S, has a homoclinic tangency of inner type at some point q. Existence
of such f near any Cr diffeomorphism with a homoclinic tangency associated to a
saddle with real eigenvalues follows from Corollary 1.

In this section we prove the following

Lemma 3. With the above notations, for any positive integer m there is a Cr-
small C∞-perturbation f̃ of f such that f̃ has an m-floor tower. If q is a point
of homoclinic tangency of f , then the aforementioned tower of f̃ is located in a
neighborhood U of q.

Only for convenience of drawing pictures we shall construct a tower in a neigh-
borhood U ′ of q′ = (0, 1, ηz) (see Fig. 1). Once it is constructed, it certainly implies
the existence of a tower in a neighborhood U of q = (1, 0, 0). For determines we
shall construct a tower with saddles whose y-coordinate is smaller than 1, or saddles
p1, p2, . . . are located “below” the point of the homoclinic tangency q′.

Proof: We prove the above Lemma using the standard localized perturbation
technique. As usually, consider the normal coordinates for a nonresonant saddle p.
Induce the set of coordinates in a neighborhood U (resp., U ′) of q (resp., q′) by
normal coordinates for the point p and the diffeomorphism f (see Fig. 1). Appli-
cation of Proposition 1 gives existence of a horseshoe (see Fig. 5). Now consider
simultaneously several horseshoes in U ′, e.g., obtained by taking preimages f−N of
the rectangular parallelepipeds {Tni

}i located in U and intersecting them with the
corresponding images {T ′

ni
= fni(Tni

)}i. We shall prove below that an application
of Proposition 1 and an appropriate choice of ni’s guarantee the existence of the
contour described on Fig. 5 in the case m = 3. Indeed, consider an increasing se-
quence of numbers n1, . . . , nm such that for each i = 1, . . . , m− 1 the following two
properties hold:

1) Let Tni
(resp., T ′

ni
) denote the rectangular parallelepiped, defined in Propo-

sition 1 (resp., the image of Tni
under fni) in U (resp., U ′). By construction Tni

intersects fni+N (Tni
) (resp., fN(T ′

ni
));

2) ni+1 is the largest number such that Tni+1
and fni+N (Tni

) intersects in an
open set.

For each i = 1, . . . , m, by Proposition 1, the return map fni+N has a horseshoe.
It implies existence of at least one saddle point pi ∈ Tni

(resp., p′i = f−N (pi) ∈ T ′
ni

)
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p′

1p′

2

p′

3

W u(p′

1)W u(p′

2)W u(p′

3)

W s(p′

1)

W s(p′

2)W s(p′

3)

q′1

q′ z′

2

q′2

q∗3

Figure 6. An uncompleted 3-floor tower.

of period ni + N . However, we need additional information about the position of
local stable and unstable manifolds of pi (resp., p′i). To obtain such a geometric in-
formation we study formulas for the renormalized return map (17) (see also Lemma
2) along with the diagram on Fig. 3 for ε = 0. Notice that the renormalization (11)
of the return map fn+N , by Theorem 4, last item, for K > 1 has a fixed point,
denoted pn, near the origin. Differentiating Φ2

εn,n near the origin we see that local

unstable manifold Wu
loc(f

−NP ′
n) is almost parallel to the Y Z-plane and local stable

manifold Wu
loc(Pn) is almost parallel to the OX-axis. We denote p′ni

and pni
by

pi and p′i respectively. For the construction below we need to keep in mind the
relative position of both collections {Tni

}m
i=1 and {T ′

ni
}m

i=1 and the fact that fN

distorts distances by a bounded factor.
Recall that U and U ′ are equipped with normal coordinates. Define the maximal

distance between W s
loc(p

′
i) and Wu

loc(p
′
i), denoted by s′i, as the maximum of distance

between any two points x ∈ W s
loc(p

′
i) and y ∈ Wu

loc(p
′
i). Denote the distance between

centers of Tni
and Tni+1

(resp., T ′
ni

and T ′
ni+1

) by ti (resp., t′i) (see Fig. 7). Since

the horizontal width of T ′
n is ≈ µ−n/2λn, which is significantly smaller than the

distance to the origin λn, s′i − t′i is an approximate distance by which one should
move Wu

loc(pi) to create heteroclinic tangency with W s
loc(pi+1). By Proposition

1 we get ti = µ−ni − µ−ni+1 . By the fact that fN distorts distances only by a
finite amount one can see that µ−ni+1 ≈ λni . Now recall that the saddle p with a
homoclinic tangency is 2r-unstable and volume-preserving. It implies λ < µ−(2r+1).
Intuitively it means that for each i = 1, . . . , m − 1 the rectangular parallelepipeds
Tni

and Tni+1
(resp., T ′

ni
and T ′

ni+1
) are well spaced one from the next one in the

neighborhood U of q (resp., U ′ of q′. It allows us by a Cr-small C∞-perturbation
to create an m-floor tower as follows.
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Proposition 2. Consider a homoclinic tangency associated to a 2r-unstable saddle
p. Then the ratio (s′i − t′i)(t

′
i)

−2r is arbitrarily small for each i = 1, . . . , m − 1.

Proof. Let us use notations and quantitative estimate obtained in Proposition 1.
Let p be 2r-unstable. Recall that the rectangle parallelepiped Tn is centered at
(1, δn = µ−n, 0) and has edges 3cµ−n/2 × 2cµ−3n/2 × ν−nµ−n/2. Notice that y-edge
is much smaller than µ−n, and y-coordinate of the center is µ−n. Another way
to see this: µ−n is the distance of a homoclinic tangency q to Tn. Also λn is the
distance of a homoclinic tangency q′ = f−N(q) to T ′

n = f−N(Tn). By condition
2), fni+N(Tni

) = fN(T ′
ni

) intersects Tni+1
. The fact that fN distorts distances

only by a bounded factor implies that µ−ni+1 ≈ λni . Since p is 2r-unstable we
have λn < µ−(2r+1)n. It implies that s′i − t′i < µ−ni+1 + λniµ−ni < 2µ−ni <
Cµ−(2r+1)ni < εµ2rni = ε(t′ni

)r, where ε can be chosen as small as we like by
choosing n1 sufficiently large (see Fig. 6 and Fig. 7).

W u(p)
W s(p)

T ′

ni

T ′

ni+1

Tni

Tni+1

λni

λni+1

µ−ni

µ
−ni+1

q

q′

Figure 7. Layered rectangular parallelepipeds as building blocks
for a tower.

Fix a point p̃ and a neighborhood Ũ of p̃ in 3-dimensional space R
3. Fix a small

positive number ρ and local coordinates (x, y, z) in Ũ so that p̃ is at zero and U ′

has diameter 1. We now construct a C∞-smooth family {φε} of volume-preserving
self-maps in a neighborhood of p̃ such that this family moves the image of the
horizontal plane Lx = {x = 0} in the 3ρ-neighborhood of the origin. Consider
cylindric coordinates (x, y, z) = (θ, r, z), where x = r cos θ, y = r sin θ. The family
{φε}ε, in local coordinates, is given as follows:

φε(θ, r, z) = (θ + ετ(r, z), r, z),

where τ : R+ → T is a C∞ smooth function satisfying the following properties: it
identically vanishes for r ∈ (0, ρ] ∪ [3ρ, +∞) and any z, for |z| > 3ρ and any r,
and for τ(2ρ, 0) = ρr+1. Under these conditions, the Cr-norm of φε can be chosen
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ρ-small. It is easy to see that φε is volume-preserving for any ε, and the Cr-norm
of φε is of order of 1, independently of how small ρ is. Notice also that the image
of (0, 2ρ, 0) is φε(0, 2ρ, 0) = (ερr+1, 2ρ, 0). Call such a perturbation axe symmetric
twisting.

Proposition 3. Let z be a point on Wu
loc(p

′
i) which is equidistant from both W s

loc(p
′
i)

and W s
loc(p

′
i+1). If the ratio (s′i − t′i)/(t′i)

2r is sufficiently small, then there exists
a Cr-small C∞-perturbation inside of the ball B centered at z′i of radius t′i/3 (see
Fig. 6 for location of z′2) such that W s

loc(p
′
ni+1

) and Wu
loc(p

′
ni

) have a point of a
heteroclinic tangency.

Proof. Let ε be a sufficiently small positive number. Using axe symmetric twisting
inside of the ball B of radius t′i/3 with an appropriately chosen axis one can find
an ε Cr-small volume-preserving axe symmetric twisting that “lifts Wu

loc(p
′
ni+1

) up”

by ≈ ε(t′i)
2r and creates a heteroclinic tangency with W s

loc(p
′
ni

).

p′

1

p′

2

W u(p′

1)W u(p′

2)

W s(p′

1)

W s(p′

2)

q̂

q′1

q∗2

Figure 8. A localized perturbation for a floor of a tower.

7. Construction of higher order tangencies using towers of horseshoe
saddles (Step 3). Before we start proving the existence of higher order tangencies
we need a few definitions.

Definition 6. Let r ≤ m ≤ 2r. We say that a C2r-smooth 1-dimensional curve
Γ ⊂ R

3 (resp., 3-dimensional manifold) has an m-th order tangency with a smooth
2-dimensional surface Π if there is a Cm curve lying in Π and having an m-th order
tangency with Γ.

Fix 2r ≥ m ≥ r > 1. Consider a nonresonant fixed point p = g(p) in the plane
with real eigenvalues 1 < µ < ν such that µ2r < ν. It has a 1-dimensional strong
(resp., weak) unstable manifold W su(p) (resp., Wwu(p)) tangent to the eigenvector
with eigenvalue ν (resp., µ). Notice, however, that Wwu(p) is not uniquely defined.
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Lemma 4. With the above notations, let q 6= p and q /∈ W su(p), and let γ be a
C∞ curve through q, transversal to the strong stable direction at q, r ≤ m. Then
after a Cr-small C∞-perturbation away from a neighborhood 7 of p there exists a
C∞-smooth 1-dimensional invariant manifold Wwu(p), which is m-tangent to γ at
q.

Proof. Since p is a nonresonant source, g has linearizing coordinates. Let OX (resp.,
OY ) be the weak (resp., strong) stable direction. Locally we can write the curve γ as
a graph y0(x) with (x0, y0(x0)) = q. This is possible because γ is transversal to OY
direction. Since γ is C∞ smooth, we can write y0(x) = a1x+a2x

2+· · ·+amxm+r(x),
where r(x) vanishes at zero up to the order m + 1. Consider the evolution of γ
under backward iterations. The (pre)image of q is gk(q) = (µkx0, ν

ky0(x0)). We
write locally the (pre)image of γ as a rescaled graph gm(γ) as follows: Start with
g−k(x, y0(x)) = (µ−kx, ν−k(a1x + a2x

2 + · · · + amxm + r(x)) and rescale the first
component: we have xk = µ−kx

g−k(γ) =

(

xk, a1

(µ

ν

)k

xk + · · · + am

(

µm

ν

)k

xm
k + ν−kr(xk)

)

.

Distance of g−k(q) to the origin tends to zero as µ−k. The first m-coefficients of
γk tend to zero exponentially, too. The slowest one to tend to zero — the m-th de-
rivative is of order (µm/ν)k. To make a perturbation in a neighborhood of g−k−1(q)
without affecting g−k(q) and g−k−2(q), one needs to choose a neighborhood of size
(µ− 1)µ−m−2. If we make a Cr-small C∞-perturbation of order small τ > 0 inside
of such a neighborhood, then its size should be of order τµ−rk. If (µm/ν)k < τµ−rk

or µm+r < ν and m is large, then such a perturbation is possible. Therefore, for k
sufficiently large after a Cr-small C∞-perturbation of the coordinate system one can
create m-th order tangency of g−k(γ) and the perturbed OX-axis. This completes
the proof of the Lemma.

Remark 3. Suppose that we have a m-th order homoclinic tangency of the 1-
dimensional stable and 2-dimensional unstable manifolds of a 2r-unstable saddle
p with r ≤ mε2r. By a Cr-small C∞-perturbation one can satisfy hypothesis of
Lemma 4. Therefore, Lemma 4 implies that after a Cr-small C∞-perturbation
(if necessary), one can choose Cr-coordinates in a neighborhood of p so that the
OX-axis coincides with the stable manifold W s

loc(p), the OZ-axis coincides with
the strong unstable manifold W su

loc(p), the OY-axis locally coincides with a weak
unstable manifold, which is m-tangent to the stable one at some q.

We assume without loss of generality that q = (1, 0, 0) ∈ W s
loc(p) is a point of

the orbit of an m-th order homoclinic tangency, and q′ = (0, 1, 0) lies on Wwu
loc (p).

Moreover, Wwu
loc (p) has an m-th order homoclinic tangency with W s(p). In this case

we shall say that the tangency has a geometric preliminary normal form.
Following the same strategy as in sect. 2.5 of [16], we start with an m-floor

tower. Denote by q′i heteroclinic tangencies of W s
loc(p

′
i) and Wu

loc(p
′
i+1). Then we

construct m consecutive perturbations as follows. We start with W s
loc(pm−1) tangent

to Wu
loc(pm) at some q′m−1 and W s

loc(pm) crossing Wu
loc(p1) at some q∗m. After

the first perturbation, localized in a neighborhood of q′m−1, we obtain a quadratic
heteroclinic tangency of Wu(pm−1) and W s

loc(p1) at some q∗m−1, where q∗m−1 is
close to q∗m. After the second perturbation, localized in two neighborhoods of q′m−2

7Size of such a neighborhood depends on γ, µ, and ν.
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and q∗m−1, resp., we obtain a third order heteroclinic tangency of Wu(pm−2) and
W s

loc(p1) at some q∗m−2, where q∗m−2 is close to q∗m−1. After the third perturbation,
localized in two neighborhoods of q′m−3 and q∗m−1, resp., we obtain a 4-th order
heteroclinic tangency of Wu(pm−3) and W s

loc(p1) at some q∗m−3, and so on. Finally,
after the (m − 1)-st perturbation, we obtain an m-th order homoclinic tangency of
W s(p1) and Wu(p1) (see Fig. 8).

Consider saddles pi = fni+N (pi) of the return maps. By Corollary 1 and choice
of the saddles pi’s, for n1 sufficiently large, all of them are 2r-unstable.

It suffices to prove that if W s(p2) has a tangency of order (m−1) with Wu
loc(p1) at

some q∗2 , and W s
loc(p1) has a quadratic tangency with Wu

loc(p2), then by a Cr-small
C∞-perturbation localized in neighborhoods of q∗2 and q′1 we can create a tangency
of order m of W s(p1) and Wu

loc(p1) near q∗2 (see Fig. 7). As above we assume that
the saddles have 1-dimensional stable and 2-dimensional unstable manifolds and
µm+r < ν. Consider a neighborhood Up2

of p2 with coordinate system (x, y, z)
centered at p2, and assume that f is written in the normal form from Lemma 1
in these coordinates. Moreover, assume that the OX-axis coincides with W s

loc(p2),
the OZ-axis—with W su

loc(p2), the OY-axis coincides with Wwu
loc (p2), and at the point

q∗2 this manifold is (m − 1)-tangent to W s
loc(p1). Lemma 4, this can be done by a

Cr-small C∞-perturbation, because the saddle is m + r-unstable. Recall that q′1
denotes the point of a quadratic tangency between Wu(p1) and W s(p2). Denote
the preimage of q∗2 that lies in Up2

by q̂ = f−N(q∗) for some N . By Remark 3, there
is a Cr-small C∞-perturbation away from a neighborhood of p′2 such that we can
assume that q1 = (1, 0, 0), q̂ = (0, 1, 0), and W s(p1) has an m-th order tangency

with the OY -axis. Let U , U∗, and Û denote small neighborhoods of q1, q∗2 and q̂,
respectively, with coordinate systems, induced by the normal one.

Then fN : Û 7→ U∗, expressed in coordinates (x, y, z) has the form:





x∗

y∗

z∗



 =





a1(y − 1) + b1x + c1z + H1(x, y − 1, z)
a2(y − 1)m + b2x + c2z + H2(x, y − 1, z)
a3(y − 1)m + b3x + c3z + H3(x, y − 1, z)



 ,

where for x = (y − 1) = z = 0 we have

{

Hi = ∂1Hi = ∂2Hi = ∂3Hi = 0, i = 1, 2, 3, j = 1, 2,

∂j
2Hi = 0, i = 2, 3, j = 1, . . . , m.

The idea of the proof is the the following: we choose a curve γ in W s
loc(p1) that

has a quadratic tangency with Wu
loc(p2) at q1. Then we move W s(p1) (and hence,

γ) by an Ω-preserving transformation transversally to Wu
loc(p2) by ε. At the same

time, we consider a versal family with ε0, . . . , εm−1 — scalar and εv — functional
parameters unfolding a heteroclinic tangency at q∗2 . A part of γ after a number of
backward iterations will come to U∗. We are going to show that by changing the
above parameters, we can obtain an m-th order tangency between the preimage of
γ and Wu

loc(p1) near q∗2 . By construction this is the m-th order homoclinic tangency
between the image of W s(p1) and Wu

loc(p1).
We start with the linearizable case (supposing that the fn has a linear diagonal

normal form in some neighborhood of p). In the last subsection of this section we
make the necessary modifications to treat the general case. This is done with the
help of Lemma 1.
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7.1. The versal family. Let C > 0 be a constant, which we shall make precise
later, and consider the following deformation fN

ε : Û → U∗ of the above mapping:




x∗
n

y∗
n

z∗n



 =





a1(1 + εv)(y − 1) + b1x + c1z + H1(x, y − 1, z)

a2(y − 1)m +
∑m−1

i=0 εi(y − 1)i + b2x + c2z + H2(x, y − 1, z)

a3(y − 1)m +
∑m−1

i=0 Cεi(y − 1)i + b3x + c3z + H3(x, y − 1, z)



 .

Suppose b2c3− b3c2 6= 0, i.e., the corresponding 2×2 minor is non-degenerate. This
can be achieved by a small perturbation. Recall that we are studying the linear
case. Consider a mapping fN

ε ◦ fn : Un 7→ U∗ for large enough n (Un is an open
subset of U , see Proposition 1 for the choice of Un = Tn). We denote ỹn = µny − 1,
and write this mapping in the form:




x∗
n

y∗
n

z∗n



 =





a1(1 + εv)ỹn + b1λ
n(1 + x) + c1ν

nz + H1(λ
n(1 + x), ỹn, νnz)

a2ỹ
m
n +

∑m−1
i=0 εiỹ

i
n + b2λ

n(1 + x) + c2ν
nz + H2(λ

n(1 + x), ỹn, νnz)

a3ỹ
m
n +

∑m−1
i=0 Cεiỹ

i
n + b3λ

n(1 + x) + c3ν
nz + H3(λ

n(1 + x), ỹn, νnz)



 .

(20)

7.2. The curve. Without loss of generality, assume that

j :=
a3b2 − a2b3

a2c3 − a3c2
6= 0.

Locally, in the neighborhood U of q, we consider the curve γ := Wu(p1) ∩ {z =
(λ/ν)njx}. We can parameterize it near q as

x = t, y = at2 + g(t), z = (λ/ν)njt. (21)

We shall construct a sequence of Cr-small C∞-smooth Ω-preserving deformations
of Wu

loc(p1) so that for each n ∈ N the deformed curve γ(ε(n)) looks like

x = t, y = at2 + ε(n) + g(t), z = (λ/ν)njt.

7.3. Parameter choice. The aim is to find parameters ε0(n), . . . , εm−1(n), ε(n),
the functional parameter εv(n), and tn in such a way that ỹn(tn) = 0,

y∗
n(tn) =

∂y∗
n

∂t

∣

∣

∣

∣

tn

= · · · =
∂my∗

n

∂tm

∣

∣

∣

∣

tn

= z∗n(tn) =
∂z∗n
∂t

∣

∣

∣

∣

tn

= · · · =
∂mz∗n
∂tm

∣

∣

∣

∣

tn

= 0, (22)

and the deformed mapping is volume-preserving (this latter is done by the choice

of εv(n)). Along the proof of it, we also show that
∂x∗

n

∂t

∣

∣

∣

tn

is non-zero.

If we prove the above statement, then the curves Γ(t) = (t, y∗
n(t), z∗n(t)) converge

to a curve that is tangent at the point q∗ to the x∗
n-axis as n tends to infinity.

Now we proceed similarly to [16], Prop. 5. On γ(ε(n)) we have:

ỹn(t) = µn(at2 + g(t) − (µ−1 − ε(n))).

To satisfy equation ỹn(tn) = 0, we need to choose tn close to
√

a−1(µ−n − ε(n)).

Denote ωn = (µ−n − ε(n))1/2, put tn = ωnτ and g̃n(τ) = g(ωnτ)ω2
n. Rewrite ỹn(t)

in the form:

Yn(τ) = ỹn(ωnτ) = µnω2
n(aτ2 − 1 + g̃n(τ)).

Denote

πn = (b2 + c2j)λ
nωn, σn = µnω2

n, ε0(n) = −(b2 + c2j)λ
n − πn/

√
a.
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Now we rewrite formula

y∗
n(t) =a2ỹ

m
n (t) +

m−1
∑

i=0

εiỹ
i
n(t) + b2λ

n(1 + t)+

c2jλ
nt + H2(λ

n(1 + t), ỹn(t), c2jλ
nt)

in terms of Yn(τ). Note that conditions (22) for y∗
n are equivalent to the equality

to zero of Y ∗
n and its derivatives with respect to τ . So we calculate the normalized

function Y ∗
n (τ) := y∗

n(ωnτ)/πn and get:

Y ∗
n (τ) = a2π

−1
n σm

n (aτ2 − 1 + g̃n(τ))m +

m−1
∑

i=1

εi(n)π−1
n σi

n(aτ2 − 1 + g̃n(τ))i+

τ − 1√
a

+ π−1
n H2(λ

n(1 + ωnτ), σn(aτ2 − 1 + g̃n(τ)), jλnωnτ).

Consider a polynomial

Y ∗(τ) =

m
∑

i=1

di(aτ2 − 1)i + τ − 1√
a
. (23)

In Lemma 5 (see Lemma 3 [16]) we show that there exists a set of non-zero numbers
d1, . . . , dm such that

(Y ∗)(s)
(

1√
a

)

= 0, s = 0, . . . , m. (24)

Let us fix ε1(n), . . . , εm−1(n), ε(n) in such a way that

lim
n→∞

a2π
−1
n σm

n = dm, lim
n→∞

εiπ
−1
n σi

n = di. (25)

Notice that ε(n) appears implicitly in these formulas, because σn depends on it.
We shall show that, with this choice of the parameters, in the limit we get:

lim
n

Y ∗
n (τ) = Y ∗(τ).

To do this, we shall estimate the remainder term π−1
n H2(λ

n(1 +ωnτ), σn(aτ2 − 1+
g̃n(τ)), 0) and its derivatives of order s ≤ m, showing that they go to zero when n
grows. By a standard calculation,

∣

∣∂sH2|τ=1/
√

a

∣

∣ ≤ Const.λnσn.

Since πn = λnωn, σn = µnω2
n, π−1

n σm
n ≈ const., we get:

ω2
n ≤ λn/m

µn
and σn ≤ λn/m. (26)

Then

π−1
n

∣

∣∂sH2|τ=1/
√

a

∣

∣ ≤ Const.λnσn

λnωn
= µnωn ≤ (µ1/2λ1/2m)n.

Since, by assumption, λ < 1/µm+1, the latter goes to zero when n grows.
In order to make z∗n(t) and its derivatives vanish at tn, set

C =
b3 + jc3

b2 + jc2
.
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Note that constants j and C were chosen in such a way that a3 = Ca2. In the same
way as above, we introduce a normalized function Z∗

n(τ) := z∗n(ωnτ)/πn:

Z∗
n(τ) = Ca2π

−1
n σm

n (aτ2 − 1 + g̃n(τ))m +

m−1
∑

i=0

Cεi(n)π−1
n σi

n(aτ2 − 1 + g̃n(τ))i+

Cτ − C
1√
a

+ π−1
n H3(λ

n(1 + ωnτ), σn(aτ2 − 1 + g̃n(τ)), jλnωnτ).

Exactly the same calculation as for H2 works for H3, providing that

lim
n

Z∗
n(τ) =

m
∑

i=1

Cdi(aτ2 − 1)i + Cτ − C
1√
a
.

We have proved that an arbitrarily small deformation of our system satisfies (22).
Now consider the deformed system in the original coordinates and the matrix of its
linear part. The minor which is compliment to the term with εv is nonzero, therefore
we can compensate the change in det dfN

ε after we choose ε0, . . . , εm−1 and take εv

as a functional parameter so that det dfN
ε ≡ det dfN . Then the resulting mapping

is Ω-preserving.

As the last step, one verifies that, with such a choice of εv as above, π−1
n

∂x∗
n

∂τ 6= 0
for τ close to 1/

√
a. This proves the existence of an m-order homoclinic tangency

between Wu(p1) and W s(p1) after a Cr-small C∞-perturbation of a m-floor tower
and completes the justification of Step 3 in the linearizable case.

In the arguments above we used the following lemma, whose proof can be found
in [16] (Lemma 3).

Lemma 5. Let Y ∗(τ) be as in (23). Then there exists a set of non-zero numbers
d1, . . . , dm such that Y ∗(τ) satisfies (24).

7.4. Modifications for the general case. Now we treat the general case. Sup-
pose that fn is given by Lemma 1, and repeat the above argument with the following
adjustment. Formula (20) transforms into the following:

x∗
n = a1(1 + εv)(ỹn + yρy

n) + b1(λ
n(1 + x) + xρx

n) + c1(ν
nz + zρz

n) + H1,

y∗
n = a2(ỹn + yρy

n)m +
m−1
∑

i=0

εi(ỹn + yρy
n)i + b2(λ

n(1 + x) + xρx
n)

+ c2(ν
nz + zρz

n) + H2,

z∗n = a3(ỹn + yρy
n)m +

m−1
∑

i=0

Cεj(ỹn + yρy
n)i + b3(λ

n(1 + x) + xρx
n)

+ c3(ν
nz + zρz

n) + H3,

where Hi = Hi((λ
n(1 + x) + xρx

n), (ỹn + yρy
n), (νnz + zρz

n)).
It is left to show that on the curve γ, given by (21), the terms with ρξ

n in the
above system, together with their m derivatives with respect to τ , tend to zero as
n tends to infinity. To see this, write:

u = xyz = t(at2 + g(t) + ε(n))(λ/ν)njt = ω2
nσnλn(λnµn)jτ2(aτ2 − 1 + g̃n(τ)).

Application of the bounds gives that each term ω2
n, σn, λn, and λnµn is exponen-

tially small in n. Application of the estimates from Lemma 1 shows that ξρξ
n and

its partial derivatives derivatives with respect to τ are exponentially small in n.
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8. Creation of an m-saddlenode (Step 4). In this section we prove the following
theorem.

Theorem 5. Let Ω be a smooth volume form, r ≤ m ≤ 2r. Let {fε}ε∈I be a
generic m-parameter family of C∞-smooth Ω-preserving diffeomorphisms unfolding
a homoclinic tangency of order m corresponding to a 2r-unstable saddle p. Then
there exists a sequence of pairwise disjoint compact sets In in the parameter space
tending to zero such that
• for any ε ∈ In there is a C2r-smooth 2-dimensional surface Sε,n, which is locally
invariant under fn+N

ε , transversal to the OZ-axis, and C2r-smoothly depends on
the parameter ε;
• the family of restrictions to this surface {fn+N

ε |Sε,n
}ε∈In

generically unfolds a

homoclinic tangency of order m 8.
• for an arbitrary set of real numbers K = {Kj}k−1

j=0 there exists a sequence of

parameters εn(K) tending to zero when n grows, and a sequence of linear changes
of variables Rn such that for any r the map

Φm
εn(K),n := Rn ◦ fn ◦ fN

εn(K) ◦ R−1
n ,

restricted to Sε,n, gets arbitrarily C2r-close to
(

x
y

)

7→
(

x′

y′

)

=

(

y

ym +
∑m−1

i=0 Kiy
i

)

as n increases.

The proof of this theorem follows from the lemma below.

Lemma 6. Let the saddle p be 2r-unstable, and r ≤ m ≤ 2r. For an arbitrary set
of real numbers {Kj}m−1

j=0 there exists a nested sequence of compact sets In in the
parameter space, tending to zero when n grows, such that

• For an appropriate choice of βn, the first component, Ḡ1,L
n , Cr-converges to

zero (resp., to y).
• The second and the third component have the form

Ḡ2,L
ε,n = ym +

m−1
∑

j=0

Kjy
j + hn

1 (x, y, z),

Ḡ3,L
n = c3ν

nz + hn
2 (x, y, z),

where c3 is the constant in (28), and both hn
1 and ν−nhn

2 converge to zero in Cr as
n → ∞ for any sequence {ε(n)}n≥1 such that ε(n) ∈ In for each n.

Proof. We start with discussing the linearizable case, and then describe the modi-
fication caused by the non-linearity of the single-resonant normal form (3).

8.1. Linearizable case. As before, consider L(x, y, z) = (λx, µy, νz). Since the
saddle is 2r-unstable and m ≤ 2r, we can assume that the homoclinic tangency
has the geometric preliminary normal form described after Remark 3. Then, in the

8Since this surface Sε,n depends C2r-smoothly on the parameter ε ∈ In, it does make sense to

speak about the family of restrictions {fn+N
ε |Sε,n

}ε∈In
unfolding a homoclinic tangency of order

m ≤ 2r.
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normal coordinates in the neighborhood of p, fN : Û 7→ U can be written in the
form:





x′

y′

z′



 =





1 + a1(y − 1) + b1x + c1z + H1(x, y − 1, z)
a2(y − 1)m + b2x + c2z + H2(x, y − 1, z)
a3(y − 1)m + b3x + c3z + H3(x, y − 1, z)



 ,

where for x = (y − 1) = z = 0 we have:
{

Hi = ∂1Hi = ∂2Hi = ∂3Hi = 0, i = 1, 2, 3, j = 1, 2,

∂j
2Hi = 0, i = 2, 3, j = 1, . . . , m.

(27)

Consider a generic m-parameter unfolding fN
ε (x, y, z) of the tangency with para-

meters εi, i = 0, . . . , m − 1:




x′

y′

z′



 =





1 + a1(y − 1) + b1x + c1z + H1

a2(y − 1)m +
∑m−1

i=0 εi(y − 1)j + b2x + c2z + H2

a3(y − 1)m + b3x + c3z + H3



 . (28)

In the linearizable case in order to study Ln ◦fN
ε := (G1,L

n , G2,L
ε,n , G3,L

n ), (also denote

(G2,L
ε,n , G3,L

n ) by GL
ε,n), we shall study a sequence of renormalizations of this system.

To do this, consider

Ψu
n(x, y, z) = (λnx, y, z), Ψs

n(x, y, z) = (x, µ−ny, ν−nz).

With this notation, Ln = Ψu
n ◦ (Ψs

n)−1. Let

α =
1

m − 1
, 0 < γ < α, δ = −c2/c3, η0 = (1, 0),

βn and κ be constants to be chosen later, and

Bn =

(

κµ−αn −δµ−γnν−n

0 µ−(1+γ)n

)

, B−1
n =

(

1
κµαn δ

κµ(α+1)nν−n

0 µ(1+γ)n

)

, (29)

We set

Ψn(x, y, z) = (βnx + 1, Bn(y, z) + η0),

cf. (9). Define the renormalization mapping by Rn = Ψu
n ◦ Ψn, cf. (10). So the

renormalization of our system has the same form as (11):

Φm,L
ε,n = R−1

n ◦ Ln ◦ fN
ε ◦ Rn := (Ḡ1,L

n , ḠL
ε,n) := (Ḡ1,L

n , Ḡ2,L
ε,n , Ḡ3,L

n ). (30)

First consider the second and the third components,

ḠL
ε,n = B−1

n (UnGL
ε,n(λn(βnx + 1), Bn(y, z)) − η0),

where B−1
n has the form (29), U(y, z) = (µny, νnz). The composition B−1

n Un(GL
ε,n)

has the form B−1
n Un(GL

ε,n) = (κ−1µ(α+1)n(G2,L
ε,n + δG3,L

n − µ−n), µ(1+γ)nνnG3,L
n ).

Therefore,

Ḡ3,L
n =µ(1+γ)nνnG3,L

n (λn(βnx + 1), Bn(y, z)) =

µ(1+γ)nνn

[

a3

(

κy

µαn
− δz

µγnνn

)m

+ b3λ
n(βnx + 1) + c3

z

µ(γ+1)n
+ H3

]

,

where H3 = H3

(

λn(βnx + 1), κy
µαn − δz

νn + 1, z
µn

)

. When we open the square

brackets, we get the following: since mα = α+1, and γ < α, µ(1+γ)n( y
µαn − δz

µγnνn )m

goes to zero when n grows; µ(1+γ)nλn goes to zero when n grows. All the terms in
H3 do so too. The only term that persists is c3ν

nz.
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As for the second component, Ḡ2,L
ε,n , we have:

Ḡ2,L
ε,n =κ−1µ(α+1)n

[

(a2 + δa3)

(

κy

µαn
− δz

µγnνn

)m

+

+
m−1
∑

i=0

εi

(

κy

µαn
− δz

µγnνn

)i

+ (b2 + δb3)λ
n(βnx + 1)+

+(c2 + δc3)
z

µ(γ+1)n
− 1

µn
+ H2 + δH3

]

.

Opening the square brackets, we get: the coefficient of ym is a constant (we can
assume that it be non-zero, and take κ to make it equal 1), the coefficients of yi

can be made to equal our given constants by the choice of εi (i = 0, ..., m − 1),
the others (except for the one of z) go to zero when n grows, the same is true for
H2 + δH3. The coefficient of z in the above sum equals zero since we have chosen
δ so that (c2 + δc3) = 0.

For the first component we have:

Ḡ1,L
n = β−1

n

[

a1

(

κy

µαn
− δz

µ−γnνn

)

+ b1λ
n(βnx + 1) + c1

z

µn
+ H1

]

.

If βn = 1 (resp., βn = κa1µ
−αn), then Ḡ1,L

n tends to 0 (resp., y) and all the other
terms vanish along with all its partial derivatives.

This completes the proof in the linearizable case.

8.2. Non-linearizable case. Reduction of this case to the linearizable one is done
exactly as in Section 4.2. This completes the proof of the Lemma.

Corollary 2. Fix an arbitrary set of real numbers {Ki}m−1
i=0 . Let Φm

ε,n be as in
the Lemma above. Then for n sufficiently large and ε ∈ In the map Φm

ε,n has a

C2r-smooth invariant manifold Sε,n. The restriction of Φm
ε,n to Sε,n is C2r-close to

the map
(

x
y

)

7→
(

x′

y′

)

=

(

y

ym +
∑m−1

i=0 Kiy
i

)

.

Corollary 3. [Creation of an m-saddlenode (Step 4)] Let Ω be a smooth volume
form. Suppose that a C2r diffeomorphism f has a 2r-unstable saddle with a homo-
clinic tangency of order m, r ≤ m ≤ 2r. Then there exists an arbitrarily Cr-small
C∞-smooth Ω-preserving deformation of f having a periodic m-saddlenode of arbi-
trarily high period (see definition 2 of an m-saddlenode).

We have completed the proof of Step 4, which is the last part of the proof of
Theorem 2 (see the end of Section 2.2). This completes the proof of the main result
of the paper (Theorem 2).
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sources. (French) [Heteroclinic connections and genericity of infinitely many sinks and
sources] Ann. Sci. Ecole Norm. Sup. (4) 32, (1999), no. 1, 135–150.

[6] E. Colli, Infinitely many coexisting strange attractors, Ann. Inst. H. Poincaré Anal. Non
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