Geometry of zeros and applications

Abstract

This set of personal notes is an introduction to the geometry of zeros of
multivariate polynomials. It is based on a set of lecture notes composed
by Petter Brandén and contains expanded arguments and solved exercises.
The author of this document (Nima Amini) takes full responsibility for
any typos or errors that may have been caused by misrepresenting the
original text.
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1 Stable Polynomials

Definition 1.1. (Stable Polynomial).

Let © be a subset of C* and P(z) € C|z1,...,2,]. We say P is Q-stable if
P(¢) #0. Let H={¢ € C: Im(¢) > 0}. We refer to H"-stable polynomials as
stable and H™-stable polynomials with real coeflicients as real stable.

Proposition 1.2. A univariate real polynomial is real-rooted iff it is real stable.

Proof.
Let f = >")_, axz”® be a polynomial with real coefficients. Suppose f(a+bi) = 0
where a,b € R, b # 0. Then

0=fla+bi) =Y ar(a+bi) =) arla—bi)* = f(a—bi).
k=0 k=0

Hence a — bi is also a root and so a univariate real polynomial has an imaginary
root iff it is not real stable. O

Proposition 1.3. P € R[z,...,2,] is real stable iff P(a + ft) is a univariate
real-rooted polynomial in ¢ for all o, 3 € R™ with 3 € R}.

Proof.
Let P € R[z1,...,2,] and suppose P(«a + ft) is not real-rooted for some a, 8 €
R™ with 8 € R"}. By Lemma 1.2 P(a + ft) is not real stable, so there exists
¢ € H such that P(a+ 8¢) = 0. Hence P(a; + £1(,...,an + B,() = 0 with
Im(a; + 8:¢) = BiIm(¢) > 0 for 1 < i < n showing that P(z1,...,2,) is not
stable. Conversely suppose P(« + f(t) is real-rooted for all « € R™ and 8 € R%,
but P is not real stable. Then there exists ¢ = ({1,...,(,) € H™ such that
P({) = 0. Let a := Re(¢) and b := I'm((¢). Since ¢ € H" it follows that b; > 0
for all 1 < i < n. But then P(¢) = P(a+bi) = 0 so that ¢ is a root of P(a+ bt)
contradicting its real rootedness.

O

We next concern ourselves with Hurwitz theorem associating the zeros of a
sequence of uniformly converging analytic functions (on locally compact subsets
of a connected open set) with that of its limit. Hurwitz theorem is often useful
when proving stability for a function that can be realized as the uniform limit of
more easily shown stable functions. Before we state and prove Hurwitz theorem
in the multivariate setting we recall a few classical results from complex analysis.

Proposition 1.4. (Uniform limit of analytics is analytic)
Suppose (f,) is a sequence of analytic functions f,, : D — C converging to f
uniformly on compact subsets of D. Then f is analytic.

Proof. (Sketch)

Continuity of f follows from a standard €/3 argument. Given a compact subset
S C D and a triangle v in S we have fw fn(z)dz = 0 by Cauchy integral theorem
since f, is analytic in D. By uniform convergence it follows that



Ozigﬁfn(z)dz = ﬁiﬂ%f"(z)d'z = j{f(z)dz

Since f is continuous and the integral of f is zero for all triangles v C S it
follows by Morera’s theorem that f is analytic in S. O

Theorem 1.5. (Rouchés theorem)

Let f and g be holomorphic inside and on a contour . Suppose that |f(z)| >
lg(2)| on the image v* of 7. Then f and f + g have the same number of zeros
inside 7.

Proof. (Sketch)
The assumption that |f(z)] > |g(z)] for all z € v* implies f(z) # 0 for all z € v*.
Moreover by triangle inequality it follows that

1F(2) +9(2)| = [f(2)] = |g(2)| > 0 for all z € y*.

Thus F(z2) := (f(2) + ¢g(2))/f(2) has no zeros nor poles. By the Argument
Principle (in turn following from the Cauchy Residue Theorem) we have

Ind(F o~,0) = #Zeros of F inside v — #Poles of F inside .

(where Ind(F o+,0) is the number of times F' winds around the origin i.e the
number of times the argument of F' increases by a multiple of 27).
Now

F(2) = 1] = [(£() + 9(2))/£(2) = 1] = |g(2)/ £(2)] < 1 for all z € 7.
Thus on ~*, F(z) only takes values in D(1,1). In particular it never winds
around zero so Ind(F o+y,0) = 0 Therefore

#Zeros of F inside v = #Poles of F' inside 7.

Hence

#Zeros of f + g inside v = #Zeros of F inside y
= #Poles of F inside v
= #Zeros of f inside 7

Theorem 1.6. (Identity theorem [Disc version])

Let f be analytic in the open disc D(a;r) and suppose f(a) = 0. Then either
f = 01in D(a;r) or there exists € > 0 such that the punctured disc D'(a;¢€)
contains no zeros of f.

Proof.
Consider the Taylor expansion f(z) = Z cn(z —a)" for z € D(a;r). Suppose

n=0
f is not identically zero in D(a;r). Then there exists a smallest index m > 0

such that ¢, # 0. We may therefore write

f(2) = (= = a)"g(z) where g(z) := Y crsm(z — )",
k=0



Since g has radius of convergence at least r (apply e.g ratio test) it is continuous
on D(a;r). Since g(a) = ¢, # 0 and ¢ continuous at a there is some ¢ > 0
such that g(z) # 0 in D’(a;€). Throughout this punctured disc it follows that

f(z) #0. u

Theorem 1.7. (Hurwitz’ theorem)

Let D C C™ be a non-empty connected open set, and let {f;} be a sequence
of analytic functions on D that are nonvanishing on D, and converges to f
uniformly on compact subsets of D. Then f is either identically zero or nonva-
nishing on D.

Proof. We first prove the statement for n = 1 and subsequently extend to the
multivariate case. By Proposition 1.4 it follows that f is analytic on D being
the uniform limit of analytic functions over D. Suppose for a contradiction that
f is not identically zero on D but f(a) = 0 for some a € D. Since f £ 0 on D
it follows by Identity Theorem (Theorem 1.6) that there exists € > 0 such that
f(2) # 0 on the punctured disc D’(a;€). Since f is continuous and non-zero
on the closure of D’(a;e€) then so is the function 1/|f|]. By standard analysis
a continuous function on a closed bounded subset attains its supremum and so
there exists M > 0 such that 1/|f(2)| < M for all z € D’(a;€). This holds in
particular on the circle boundary 0D’ (a;¢€). Therefore

|f(2)| > 1/M > 0 for all z € OD'(a;e).

On the other hand since fx — f uniformly there exists N € N such that k& > N
implies

|fe(z) = f(2)| < 1/M < |f(2)| for all z € dD'(a;e€)

Now apply Rouchés theorem (Theorem 1.5) with g = fx — f to see that f and
f+9=7+(fr —f) = fr have the same number of zeros inside the circular
contour dD'(a;e). But by assumption f(a) = 0 whereas fi is nonvanishing
on whole of D by hypothesis. This is a contradiction. Hence the n = 1 case
follows. For n > 1 suppose f(wi,...,w,) = 0 for some (wy,...,w,) € D.
By the n = 1 case the functions g¢;(z) := f(w1,...,wi—1,2, Wit1,...,w,) = 0
whenever |z — w;| < ¢; for some ¢; > 0, 1 < i < n. Let € := min{ey,..., e}
Then f(z1,...,2,) =0 in D((wy,...,wy);€). Thus the restriction of f and the
zero function to D((w1, ..., wy);€) coincide, so they coincide on the whole of D
by uniqueness of analytic continuation. O

Next we prove some basic closure properties in the class of stable functions.

Proposition 1.8. (Basic closure properties)

Let P(z1,..., %) be a stable polynomial of degree d; in z; for 1 < j < n. Then
for any 1 <i < n:

(1 - Specialization) P(z1,...,%-1,C, Zi+1,--.,2n) is stable or identically zero
for each ¢ € C with Im(¢) > 0.

(2 - Scaling) P(z1,...,2%i—1, A2, Zit1,- - -, 2n) 18 stable for all A > 0.

(3 - Inversion) z;iiP(zl, ey Zild, fzi_l, Zit1s---,2n) 1S stable.
(4 - Permutation) P(21,...,2i—1, Zj, Zitls- -1 2j—15Ziy Zj41s- -+, -5 Zn) Stable.
(5 - Differentiation) 0z; P(z1,...,2,) is stable.



Proof.
(1) Suppose P(z1,...,2i-1,C, Zi41,-- -, 2n) 18 not identically zero. If Im(¢) > 0

then the statement is clear since instability of P(z1,...,2i-1,(, Zi+1,- -, 2n) iM-
mediately implies instability of P(z1,...,2,). Thus suppose Im(¢) = 0. Then
P(z1,...,2zi—1,C+ i%, Zit1s---,2n) is stable for all k& € N for the same reason as
above. Hence by Hurwitz’ theorem lim P(z1,...,2;-1,(+ ii, Zidly-v-y2n) =

k— o0 2k
P(z1,...,2i-1,C, Zi+1, - - -, 2n) 1s stable.

(2) Obvious.

(3) Suppose (Ch ) C’n) € H" with Clle(Cl) ) Cifla _C;17 Ci+1a ) Cn) =
0 = P(Cy-sCi-1,-C Civt, -5 Cn) = 0. Note that Im(¢") < 0 so
Im(—¢; ") > 0. This implies P(zy,...,2,) is not stable, a contradiction.

(4) Obvious.

(5) W.lLo.g consider ¢ = 1. Let (o,...,(, € H and consider the degree d;
polynomial Q(z1) := P(z1,C2,...,(n). Then Q'(z1) = 9z1P(21,(2,y...,(n).
Write Q(z1) = CHZL1(21 — &) where ¢, &, € C. Note that Im(&,) < 0 for
all h = 1,...,d;, for otherwise if Im(§,) > 0 for some 1 < h < d; then
P(&p,Ca, ..., Cn) = 0 contradicting stability of P. Now,

QI(21) ) J - d dq B dy 1
Q=) @z 89k = o (log o 2 Joxla - @)) e

h=1 h=1

If Im(z1) > 0 then Im(—2+) < 0 for all h = 1,...,d; since Im (21 — &,) =

z21—Ep

Im(z1)—Im(&,) > 0 for h = 1,...,d;. Thus Q'(z1) # 0 so if (; € H then
—— =

>0 <0

0z1P((1y .., Cn) = Q'(¢1) # 0. Hence 0z, P is stable. O

Proposition 1.9.
Suppose that Ay is a Hermitian m X m, and that Aq,..., A, are positive
semidefinite Hermitian n x n matrices. Then the polynomial

P = det AO + ZZjAj
j=1

is either identically zero or real stable.

Proof. Let A% := A; + &1 for all k € N so that A" is positive definite for all

k (as eigenvalues are strictly positive). Define PW) .= det | Ay + szA;k)
j=1

for all k € N. Then P**) — P as k — co. Thus by Hurwitz’ theorem it suffices

to show P(¥) is stable for all k € N. To this end let ¢j = z; +iy; € C where

z; € R and y; > 0 for all j. We must show P®)((y,...,¢) # 0. We have

PO(CL, . G = det (AO 0 AN iy yjAg.‘“)) = det(A®) +iQk))

where A®*) is Hermitian and Q) is positive definite (since a sum of positive
definites is positive definite) and Hermitian. Thus Q(*) has a (Hermitian) square



root and so

P®(Cy, . ) = det (Q(k)> det (Q(’“)>_1 det (A(k) + iQ(’“)>

= et (Q) der (@)Yt (a4 i) aer ( () )

— det (Q<k>) det ((Q<k>) T2 4w (Q(k)) Ty u) .

Now (Q(k))ilﬂ A (Q(k))71/2 is Hermitian as

(@) a0 (@) ™) = () ™) (a0 (@) ™)
— (Q(k))_1/2 Ak (Q(k)>_1/2
Claim: If M is a Hermitian matrix then it has only real eigenvalues.

With the claim it immediately follows that det (@) ™"/ A®) () ™/ +i1)

must be non-zero and hence P®*)(¢y, ... ¢,) is stable for all k € N as required.
Proof of claim:
Suppose A is an eigenvalue of M with eigenvector v. Then

Mv =M = (Mv)" = (\v)*

= v*M* = \v*

= v*M*v = \v*v

= v*Mv = \v*v

= \*v = \v*v

— A=)\
Hence A € R. O
Exercise 1: Let A be a normal matrix and let Z = diag(z1,...,2,) be the

diagonal matrix with variables on the diagonal. Prove that the polynomial
P(z) = det(A + Z) is stable if and only if all eigenvalues of A lie in the closed
upper half plane.

Proof. [Find a better argument?]

The statement is straightforward in one direction. Suppose P(z) = det(A + Z)
is stable and A has an eigenvalue A € C with ImA < 0. Then P(—A\,...,—\) =
det(A—XI) = 0 where Im(—X) > 0. This contradicts stability of P. Conversely
suppose all eigenvalues of A lie in the closed upper half plane and write Z =
diag(z1,...,2n) = >y % Ei where Ey; is the matrix with entry 1 at (i,7) and
zeros elsewhere. Put Agk) = F; + 2%[ for all kK € Nand 1 < i < n. Then
Agk) is clearly positive definite and P*) := det (A+ Z?zl sz§k)> — P as
k — oo. Hence by Huruwiz theorem it suffices to show that P(*) is stable for all
k € N. We employ much the same tactics as in the previous proposition, except
we now borrow some basic results from matrix analysis to make corresponding
statements about the eigenvalues of normal matrices. Indeed if (; = z;+iy; € C



where z; € R and y; > 0 for all j we want to show P®)(¢y,...0,60) # 0. We
have

P®((y, ... Cy) = det (A + 3w AY iy yjA§k>) — det(A®) 4 iQ(k)

where Q%) = 2?21 yjAg-k) is positive definite (since a sum of positive definites
is positive definite) and A®) := A + i xjAg-k). Now

CioeeeyGn) = det(QF))det (QW)~TAM) +4)

(
where det(Q)) = (14+1/2%)(1/2("=1F) £ 0. We want to show that the eigenval-
ues of (Q*)) =1 A®) lie in the closed upper half-plane. Then det ((Q¥))~1A®) — (—i)I) #
0 proving that P®*) is stable. To show this let o(M) denote the spectrum of
eigenvalues of matrix M and let F(M) := {z*Mz : z € C", z*z = 1} denote the
field of values (aka numerical range) of M. There are a few facts relating these
two sets, namely:
e (Spectral containment) o(M) C F(M).
o (Subadditivity) F(M + N) C F(M) + F(N),
o (Normality) If M is normal then F'(M) = Convex hull ofo(M).
o (Positive definiteness) If @ is positive definite then F(QM) C F(Q)F(M).
Denote by Conv(S) the convex hull of the subset S of the complex plane. With
above facts in mind we first deduce that A*) has all eigenvalues in the closed
upper half-plane since

pk)

oAy =0 [ A+ ijA§k)

Jj=1

C Conv(a(A)) + Y Conv({z;(1+1/2%),2,;(1/2")})

j=1
C H.

since the spectrum of A lies in the upper half-plane by hypothesis and therefore
so does its convex hull, and the convex hull of real numbers lie on the real axis.
Moreover since (Q*))~1 is positive definite it follows that

(@MW) TAW) = F((QW)~1)F(A™)
C Conv(c((Q™)~1))Conv(a(A®))
C H.

Note that the first inclusion follows since A®*) is normal (since A is normal)
and has spectrum in the closed upper half plane by above. Moreover again the



convex hull of real numbers lie on the real axis giving the final inclusion. Hence
the eigenvalues of (Q*))~*A®) all lie in the closed upper half-plane H giving
the required conclusion.

O

Lemma 1.10. Let P(z) + wQ(z) € Clz1, ..., 2], where Q(z) is not identically
zero. Then P(z) + wQ(z) is stable if and only if Q(z) is stable and

p (Z)>
Im > 0.
<Q(Z) -
Proof. Suppose P(z) + w@Q(z) is stable. Then by scaling and specialization

n~1P(2) +iQ(2) is also stable. Moreover
sup,|(n"1P(2) +iQ(2)) — iQ(2)| = sup.|(n "t P(z)| — 0 as n — oc.

Thus n~ ' P(2) +iQ(z) — 0 uniformly on compact subsets as n — oo. Therefore
1Q(z) is stable by Hurwitz theorem and hence so is Q(z). Finally if ( € H™ and
P(¢) + wQ(¢) = 0 then Im(w) < 0 since P(z) + wQ(z) is stable. Thus

P(z) (P(Z))
—w = = Im = —Im(w)>0forall ( € H".
ac) Q) ) ‘

Conversely suppose P(z) + wQ(z) is not stable and @Q(z) is stable. Then there
exists ( € H",w € H such that P({) + wQ(¢) = 0. Since Q(z) is stable
Q(¢) # 0. Hence

Im (%) = —Im(w) < 0.

Lemma 1.11. (Lieb-Sokal)
Let P(z) + wQ(z) € Clz1,. .., 2y, w] be stable. If the degree in variable z; is at
most one then the polynomial

is either identically zero or stable.

Proof. Suppose Q(z) # 0 and w.l.o.g assume j = 1. Since P(z) + wQ(z) is
stable so is Q(z) by Proposition 1.10. Moreover I'm(w) > 0 iff Im(—w™!) > 0.
Thus

wQ(z) - 220

is stable. By Proposition 1.10

b (PO 3002 _ (PO g, (22200

= wQ(z, —w 2, Zn)

Q(2) Q(2) Q(2)
for all z € H™. Thus by Proposition 1.10 it follows that below function is stable
0
P - 228 4 uqe)
821



0Q

In particular the sequence {P(z) —
8Q( )

az1 + 77 Q(2) }ren is stable and uniformly

convergent to P(z) — so the statement follows from Hurwitz theorem. [

Definition 1.12. (Multiaffine polynomial)
A polynomial P(z1,...,2,) is called multiaffine if

P= Z a(8)z°, where 2° = H Zj
SC[n] jes

and a(S) € C for all S C [n]. We denote the space of complexr multiaffine
polynomials by Cq[z1,. .., 2zn].

Definition 1.13. (Symbol)
Let T : Cqylz1,...,2n] = Clz1,..., 2] be a linear transformation. The symbol
of T is the polynomial in Clzq,....2m,w1,...,w,] defined by

Gr = Z T(z w["]\s
SCln]

Proposition 1.14. Let T : Cy[z1,...,2s] = Clz1,...,24] be a linear transfor-
mation. If the symbol G is stable, then T preserves stability.

Proof. Since Im(w) > 0 if and only if Im(—w™!) > 0 we have that
(—1)"wM G (z, —w™?) is stable iff Gr(z,w) is stable.

Therefore if P € Cq[vy,...,v,] is stable then the polynomial

(—)"wGr(z, —w ™) P(v) = (~1)"wl™ Y T (%) (—w™)PP(0)

SCln]
[Lepm w;
=" Y T(= = ';'EI[T] P(v)
SCln] €[n \Swj
= Z (2% 71)‘S‘ijP(v)
SC[n] JjES
= > T(%)(~w)*P(v)
§Cn)
is stable, where v = (vy,...,v,). Write
> T (~w = Y T(z no Y TV (—w)SP().
SCln] SCn—1] Sg[n 1]

Then by Lieb-Sokal (Lemma 1.11) it follows that

> TE 0P+ Y TE) w) S P)

SCln—1] SCn—1]

is stable. Using the lemma inductively, at each step replacing —w; with % for
J
7=1,...,n we get

Z T(zS)P(S)(U), where P(5) = H ip

SC[n) j€S 0v;

10



is stable or identically zero. Letting v — 0 in H™ and invoking Hurwitz theorem
it finally follows that

= > TEFa(s) = Y T(%)PE)(0)

SCln] SC[n]

is stable. O

2 Partial Symmetrization And Grace-Walsh-Szego
Coincidence Theorem
Theorem 2.1.
Let 1 <i<j<n,T=(i7) a transposition and 0 < p < 1.
Define a linear operator Ty, on Clz1,. .., 2] by
T, p(P) = (1 = p)7(P) +pP.
Then T, preserves stability on Cq[z1,. .., zp].

Proof. The trick is to identify the relevant part of the symbol G, , with a deter-
minant satisfying the hypotheses of Proposition 1.9 and then mVOke Proposition
1.14 to conclude stability for T’ ,. Assume w.l.o.g that 7 = (12). Then

Gr, ,(z,w) = Z TT,p(zS)w[”]\S

SC[n]

S (1= p)7(e) + p2SyulhS

5C[n]

(1-p) Z (25w 4+ p Z 2Iw\S

SCn| SCln]

=1 -p)(z1 +w2)(zz+w1)H 2k + W) H zk + wg)
k=3 k=1

= ((1 = p)(z1 + wa)(z2 +w1) + p(z1 + w1) (22 + wa) H zk + wg)

(Informally the computation follows from the fact that each term in Z 2\

SCn]
comes from choosing a factor z; or wy from each bracket in the product
(z1 + w1) ... (2 + wy,). Letting 7 permute the z;’s we no longer have terms
with z; and wsy appearing together, and symmetrically no terms with zo and w;
together, hence the factor (z1 + ws)(z2 + w1)).

n

Now, H(Zk + wy) is clearly stable given that for k =3,...,n
k=3
Im(zg), Im(wg) >0 = 2z +wgp #0 = H(zk + wy) # 0.
k=3
Thus it suffices to show stability of the polynomial

G(z,w) = (1 —p)(z1 +w2)(22 + w1) + p(z1 + w1)(22 + w2)

11



where z = (21, z2) and w = (wy,w2). We can realize G(z, w) as the determinant
det(Z + C(wy, ws)) where

; (1 —p)wr + pwz p(1 —p) (w2 —w) >
Z = diag(z1, 2z2), C(wi,ws) =
9(z1, z2), Olwn, w2) ( p(1 =p)(wg —w1)  pwi+ (1= plws
[How does C(wq, ws) arise?]
Now if w;, z; € H where w; = x; + iy; and z; = a; + ib; for z;,y;,a;,b; € R,
Yiy b > 0,7 =1,2 then
G(z,w) = det ((diag(ay, az) + C(z)) + i(diag(b1, b2) + C(y)))

Note that C(z) and C(y) are clearly real symmetric (and therefore Hermitian)
so diag(a1,az) + C(x) is Hermitian. Moreover diag(by,bs) is clearly positive
definite, so diag(b1,b2) + C(y) is positive definite if C(y) is (since a sum of
positive definite matrices is again positive definite). Thus in order to apply
Proposition 1.9 we must show C(y) is positive definite. It is already symmetric
so we must show its eigenvalues are positive. Indeed letting

a=(1=py1+py2,b=py1 + (1 =p)y2, c=+/p(1 —p)(y2 — y1)
we have

a— A c
b— A

— N —(a+dDA\+ab—c*=0

b b\ 2
:>,\:a; i\/(a;— ) —ab+ 2.

a+b  y1+y
2 2

det(C(y1,y2) = M\) =0 =

-

By straightforward calculation > 0and —ab+c? = —yiy2 < 0.

b 2 2 _ 2
(52 -ave= (252 om0

Moreover

so both eigenvalues are real. Finally both eigenvalues are positive since

a+b\” v+ 2\ yi+y2 a+b
—b 2: _— — < = .
N R

Thus C(y) is positive definite and hence the symbol Gr, (2, w) is stable by
Proposition 1.9 so T’ ;, preserves stability by Proposition 1.14 O

Definition 2.2. (Symmetrization operator)

The symmetrization operator Sym, : Clz1,...,z,] — Clz1,...,2,] is de-
fined by
1
Syma(f) =— > o(f).
‘o€,

Corollary 2.3. The symmetrization operator Sym,, preserves stability on Cq[z1, ...

12



Proof. Let P € Cq[z1, ..., 2,] be stable. We claim that Sym,,(P) is the uniform
limit on compact sets, of a sequence { Py} where Py = P and Py = T%, 1/2(Pr—1)
for some sequence of transpositions {7;}. The sequence { Py} is stable by The-
orem 2.1 whence the corollary follows from Hurwitz theorem.

If P(z) = Z a(S)z° and 7 is a transposition, let

SCn
1Pl = > la(S) —a(r(5))] and ||P|| = 3, [|P||-
SCln]

where the latter sum runs over the set of all transpositions 7 € &,,. Then

[|P||=0 <= ||P||; =0 for all
<~ a(S) = a(r(9)) for all 7 and S C [n]
<~ a(S) =a(o(9)) for all 0 € &,, and S C [n] (since &,, is generated by transpositions)
<= P is symmetric.

Note that
1
1Tr1/2(P)llr = SlIT(P) + Pl

=2 3 lalr(8)) +a(S)) — (a(*(9))) +a(r(S)|

————
SC[n] =a(9)
=0
and
Tz /2(P)llo = Z |a( (5)) = a(a(5)) — a(ra(9))]
SC[TL]
1 . . .
< 3 Z |a(S) — a(o Z la(T —a(ror7(S))| [by A-inequality and 77 = id]
SC[n] SC[n]
1 . . e
= §||P||0 Z |a(S) — a(ro7(S))| [since 7 is a bijection]
SC[n]
1 1
=—-||P o —||P TOT*
NP, + 5171
Hence
| Tr1/2(P)|| = ZHTT 1/2(P)llo
= Z HTT71/2( )HU
oFT
1 1
< S UIPlo + 2 3 1Plor
oFT oFT
1 1
=3 Z [|Pls + 3 Z ||P||, [since ¢(0) = ToT = 7o' is an automorphism of &,,]
oHFT oFET
=[Pl = 1IP]l-

13



Out of the (}) transpositions in &,, choose a transposition 71 for which ||P||,,
is maximal. Then

P~ P
[|P||+, > 2Pl = [Pl [the max is at least the average]

(5) (5)

so that

T 1 /2(P)I| < ||P]] = [P

< IIPl - Ll = 1P (1—(,{))

Now inductively given Py = T, 1/2(Pr—1) choose a transposition 7y maximiz-
ing ||Pg|7,.,. Then by induction

k41
| Pryill = 1Tr, 1 172(Pe)ll < || Prl] (1 - (}L>> <||P] <1 - (}L)> .

2 2

Now by triangle inequality and invariance under permutation

1
sup  |Tra2(Pe(2))l = sup  S|7(Pu(2)) + Pi(2)]
z€C™,|z|=r z€Cn,|z|<r
1 1
<5 suwp  |7(P(2))[+ 5 sup  [F(2)]
z€Cn,|z|<r z€Cn,|z|<r
= sup |P(2)|
z€Cm,|z|<r

Hence

sup  |Pp(2)] < sup |P(z)]<ooforall keN
z€Cn,|z|<r z€Cn |z|<r

so the sequence {Py}ren is locally bounded. Hence by Montel’s theorem from
complex analysis there exists a subsequence {P,, }ren of {Pk}ren converging
uniformly on compact subsets of C". Note that ||.|| : C1[21,...,2,] = Ris a
continuous function since it is a seminorm. Thus

0= lim [|P,,]| =] im P,,]|]-
k—o0 k—o0
Therefore by our earlier observation klim P,, is symmetric.
— 00

[Why is klirrgo P, = Sym,(P)?) O

Definition 2.4. (Elementary Symmetric Polynomial)
The k' elementary symmetric polynomial e;(z1,. .., z,) is defined by

n n

H(zj +1t) = Zek(zl,...,zn)t"_k,

that s

14



Corollary 2.5. Let C be a circular domain, and P(z) =Y, _, arz* a C-stable
polynomial of degree at most n (and of degree exactly n if C is non-convex).
Then the polynomial

kZ::Oakek(zl, . ,zn)/<Z>

is C™-stable.

Proof We first prove the corollary for the case when C' = H. Write P(z) =
aq H] 1(z—¢;). Here Im({;) <0 for all 1 < j < d since P(z) is H-stable. The

polynomial Q(z1,...,24) = aq szl(zj — () is then multiaffine and H"-stable.
Now

1
Syma(@ = 3 0@ = 3 [ Got
ceS, aeb Jj=1
The term z3¢M\7(9) appears |o(S)|!(n — [o(S)))! = |S|!(n — |S])! times in
Sym,,(Q) (the number of permutations that permute o(5) and [n] \ o(S) inter-
nally). Thus summing over all permutations, z° appears with factor ajg|S'(n—
ISP in Sym.,(Q) for all S C [n] since ) ¢ (S) = ajs|. Hence

Syma(Q) = — — > as)IS|in — [S)Le”

SC[n]

= Z Z ark!(n — k)!12°

k=0 SC[n],|S|=k
n
:Zakek(zl,...,zn)/(k)
k=0

By Corollary 2.3, @ stable implies Sym,,(Q) stable so the statement follows.
Now let C' be an arbitrary open circular domain. Mdébius transformations map
circular domains bijectively onto circular domains so there exists a Mobius trans-
b

% mapping H onto C'U {oo}. If C is convex it cannot
cz

contain oo so we may assume —d/c € H. Then Q(z) = (cz + d)"P(4(z)) is
H-stable so

formation ¢ : z

(cz1+d)...(czp +d)a H

is H"-stable and so by Corollary 2.3 Symn(ad szl(qb(zj) —(j)) is H™-stable.
Thus

kZ:)akek(¢(z1), e ¢(Zn))/<2)

is H"-stable. But ¢ maps H onto C so if (by,...,b,) € C™ then there exists
(a1,...,a,) € H™ such that ¢(ar) = bg. Therefore for (by,...,b,) € C™ we
have

15



ki:_oakek(bl, y .,m)/(Z) = éakek(¢(a1), y .,d)(an))/(Z) £0

Hence Z arer(z1, .-y 2n)/ (Z) is C™-stable. O
k=0

Theorem 2.6. (Grace-Walsh-Szegd)

Let P € Clz,. .., zy] be a multiaffine and symmetric polynomial, and let C' be a
circular region. Assume that either C' is convez or that the degree of P is n. For
any C1y...,Cq € C there exists a ¢ € C such that P(¢1,...,¢n) = P((, ..., Q).

Proof. Suppose there exists K € C such that P((,...,{) # K for all { €
C. We must show P((1,...,(,) # K for any (q,...,¢(, € C. By assumption
P(z,...,2z) — K is never zero so it is C-stable. By Corollary 2.5 it follows that
P(z1,...,2,) — K is C™-stable proving the theorem. O

Definition 2.7. (Apolar polynomial)
Two polynomials P(z) = > p_oaxz® and Q(z) = Y p_obkz" of degree n are
apolar if

é(—n%kbnk/(?;) —0.

Theorem 2.8. (Graces’s theorem)
Let P and Q) be apolar polynomials. Then every circular domain containing all
the zeros of one of them contains at least one zero of the other.

Proof. Suppose C' is a circular region containing all the zeros of P and write
Q(2) = by [[j_,(# — ;). Then the coefficient b, of z"~% is given by the
sum of all products (—1)I%I¢¥ where S C [n] and |S| = k, in other words by
(=D *ex(Chy- -+, ). Hence apolarity is equivalent to

gakek(Cl,...7(n)/<Z> -0

By assumption P has no zeros in the complement of C. By Corollary 2.5

kzn:_oakek(zl, . .,zn)/<Z>

is C™-stable. Thus at least one of the roots (; must lie in C' in order to not
contradict stability of above polynomial. O

Theorem 2.9. (Schur-Szegé composition theorem)
Let P = ZZ:O 2* and Q = ZZ:O bpz* be polynomials of degree n. Suppose that
the circular region C' contains all the zeros of P, then each zero { of

PxQ= zn:akbkzk/ccb)
k=0

is of the form ( = —af, where a € C and Q(B) = 0.

16



Proof. Suppose first that C' is closed and Q(0) # 0. Let f1, ..., By, be the roots
of Q. Then

bk = en—k(fﬂla R 76n)

= Y (vt

SClnl.|S|=n—k
1

H ﬂj Z (_1)”*’“ ﬁ[n]\S

J=1  SCnl|S|=n—k

= Hﬁ] Z (_1)n (_5)5

J=1  SCnl|S|=k

= Aek(—l/ﬁl, ey _1/ﬁn)

where A = (—-1)" H?Zl B;j. Note that above computation is well-defined since
Q(0) # 0 so the roots f3; are all non-zero. Let C’ be the complement of C'. Then
P is C’-stable so by Corollary 2.5 it follows that

h(z) = Agakem—z/ﬁl, et (7).

is (C")™-stable. Thusif (—z/f1,...,—2/Bn) € (C')™ then h(z) # 0. Therefore if
¢ is a root of h(z) then there exists some j such that —(/3; = a for some a € C,
in other words ¢ = —ag; for some §; a root of Q). Now suppose Q(0) = 0 and
consider h, = P(z) * Q(z — €) for sufficiently small € > 0. Then by the previous
part the zeros of h. lie in

—(B1+e)CU---U—(Bn +e).

Since C is closed the zeros of h = lirr(l) he lie in
e—

7ﬂlc U---u 7ﬂnc

by Hurwitz theorem. This proves the theorem for C closed. Finally suppose
that C is open. Then C' may be shrunk to an open region D properly contained
in C containing the roots of P. Then D C C. Now the theorem applied to the
closed region D gives the statement for C. O

Exercise 2: Define a sector to be a set of the form S = {rew r>0,a<0<
B}. Prove that if P has all zeros in a sector S and @ in S, then P x @ has all
its zeros in —S1.55.

Proof. Let Sy = {re’? : r > 0,00 < 0 < B1}. and Sy = {re?? : r > 0,00 <
6 < B2}. We first show that we may w.l.o.g assume ay, s = 0. Suppose the
theorem holds for ay,as = 0. Given ai,as # 0 then P(e*1%z) has its zeros in
e~@118) and Q(e®?'2) its zeros in e~*2¢Sy (both sectors starting at § = 0). Our
assumption therefore applies to h(e(®1+22)i2) = P(e*12) % Q(e“2?2) whereby its
zeros lie in —e~(@1122)iG, G, To state the obvious: if —e~(@1122)i¢, ¢, is a zero
of h(el®1+2)iz) where ¢; € S,y € So, then

h(—=(1Ga) = h(elorFaz)i(—em(onte2)ic () = 0

17



Hence the zeros of h(z) must lie in —51.52 as required and so we may assume
aj,a2 = 0. The only sectors which are circular regions are the ones where
B1 — a1 = 7 (i.e the half-planes) so in this case the Schur-Szegd composition
theorem applies and the statement follows. For arbitrary 0 < 1, B2 < 7 we will
argue using half-planes containing S1 and Sy in order to exclude regions that
do not contain any zeros of h(z). Below figure illustrates the idea:

ang

Mo Zeros!

The half-planes containing S; and Sy respectively make angles 6 and 65 with
the positive x-axis (as depicted above) where $; < 6; < 7 and 2 < 03 < 7. The
zeros of h(z) are therefore contained in the intersection of the regions —Hy, Hy,
which are the sectors bounded by the rays making angle m — 61 — 65 to the rays
making angle w + 0, 4+ #3. The remaining part of the plane does not contain
any zeros of h(z). Varying 6; and 6, in respective range we find that h(z) does
not contain any zeros in the sector with angle =+ 1 + 82 to w. This leaves the
zeros in the desired sector —S1.52 reaching from 7 to w 4+ 81 + [s. O

Exercise 3: Let U = (U;;)}';_; be a unitary matrix. Define the linear operator
T on Cq[z1,...,2,] by

T= Y sign(o (H U,, l)>

UGGn

Prove that T preserves stability.
Proof. Look over this argument, it is possibly broken
Suppose P € Cq[z1,..., 2] is stable and let D C H™ such that D C H™. Then

e P stable = Sym,,(P(z)) stable.
o inf,ep{|P(2)|} = inf,ep{|7(P(2))|} for all m € &,,.
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We have

Zigjfj{|T(P(z))|}=% > inf {|n(T(P(2)))[}

wEGnZED
= inf {j, py) w(T(P(zm}
> wf 4| > W<T<P<z>>>‘}
= i % Y. D sign(o) (ﬁ Ui (')) W(P(Z))‘}

' re6, | 0€6,

= Zlggl % Z sign(o) (H Uw(n) m(P(2))
i=1

det(U)=1
= inf {|Sym, (P(2))]}
>0

Thus |T(P(z))| > 0 for all z € H™ so that T preserves stability.

3 Polarization Procedures

Definition 3.1. (Polarization operator)

Let (K1,...,kn) € N and let C§, 4 be the space of multiaffine polynomials in
the independent variables {z;; : 1 < j < K;}. Define a (linear) polarization
operator

Hz:cn[21,...,zn] %C%A

that associates to each P € Cy[z1,. .., 2,] the unique polynomial 11} (P) € C5, ,
such that

(a) For all 1 < i < n the polynomial 11|, is symmetric in {z;; : 1 < j < K;}

(b) Putting z;; = z; for all1 <i<n and1<j <k; in I recovers P.

In other words, if a < k then
Il (z*) = (%)
where () = ITj_1 (37)-

Definition 3.2. (Projection operator)
Define the projection operator

-1
Cay (2117 .o azlﬁ,l) cee ean(znh .o 727“%,)7

¥ Chpp — Crlzay ooy 20

by letting z;; — z; and extending linearly.
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Remark 3.3. Note that by (b) in Definition 3.1 it follows that T} o I} =
tde, 21, 2] AN H£ o Hﬁ is the operator that for each 1 < ¢ < n symmetrizes
the variables in {z;; : 1 <i < K;}.

Definition 3.4. (Polarization of linear operator)
Let T : Cyilz1,...,2n) = C,lz1,..., 25) be a linear operator. The polarization
of T is defined as the linear operator IL(T) : Ck, , — C), 4 given by

I(T) = HL oT olIlt.
Conversely

T:H}YOH(T)OHL

Remark 3.5. It is immediate by specialization that IT}: preserves stability. More
remarkably however is that II| preserves stability as well (See Proposition 3.6
below).

Proposition 3.6. Let P € C,[21,...,2,]. Then P is stable if and only if I} (P)
is stable.

Proof.

If II (P) is stable then note that IT¥(IIl(P)) = P by Remark 3.3 and so P
is stable since IT} preserves stability by Remark 3.5. Conversely suppose P is
stable. Write

P(z1,...,2n) = ZQj(ZQ7...,zn)z{

treating zo, ..., z, as constants. Then

N (P(z1,...,20)) = Hli” o---0 Hlfl(P(zl, cesZn))

n
=Ml oo T2 | Y Qj(z2, .., 20T (2])
j=0

n —1
K1
:HEiﬂo...on;z? ZQj(ZQ,...,Zn)( ) ej(le,...,Zl,ﬁ)

j=0 J

stable in H"1 by Corollary 2.5, fixing 22, ..., Zp in H
Arguing inductively for 2, . . ., z,, polarizing one variable at a time and applying
Corollary 2.5 we find that II] (P) is stable. O

Definition 3.7. (Symbol of T)
The symbol of a linear operator T : Cyz1,...,2,] = Cylz1,...,2,] is the
polynomial Gr(z,w) in 2n variables defined by

Grlew) = T((+0)) = 30 F) 70,

a<k
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Lemma 3.8. Let T : C,[z1,dots, z,] = Cy[21,...,25] be a linear operator. The
the symbol of the polarization of T is the polarization of the symbol of T, that
18,

Grer) = e (Gr)

T . Sk _
where I1 . : Chanlzt, - s zn,s w1, .., wy] = CULL, and YDk = (Y1, o, Yims K1y« - - En)-

Proof. We have

(0 o T o I (I o 1) (- + )]
= (7o ToII[™) [(z + w)"] [since IT%* o II1* = id]

(sz oI o T) [(2 + w)"] [since T acts only on z-variables]
= Hrf@n(GT)

4 Further Properties of Stable Polynomials

Lemma 4.1. Let P = Q + iR € Clz,...,2,] where P and Q are real polyno-
mials. Then the following are equivalent:

(1) P is stable;

(2) W+ wR € Rlzy, ..., 2n,w| is stable.

Proof. Clearly (2) implies (1) by specialization w = 4. Conversely suppose P
is stable. Let ( = a+ i € H™, where o, € R”. We want to show that

the univariate polynomial H(w) := Q(¢) + wR({) # 0 for all w € H. Since
a, B € R™ we also have that the polynomial p(t) := P(a + t3) is stable. Write

d
B) = CH(t - &)

Then by stability Im(§;) <0 for all 1 < j < d and so —¢; is closer to ¢ than ¢;
is to 4. In other words |i — &;| > [i — (=§;)| = | +&;| for all 1 < j < d. Hence

d n n
QO +iRQI=IP@I=IC[]G-&) 20 [Te+ &I =IC ] i)

= |P(a —iB)| = |P(Q)| = [P(Q)] = [Q(C) — iR()|
= [Q(¢) = iR(C)]| (%)

If R(¢) = 0 then H(w) = P(¢) # 0 by stability of P. We may therefore assume
R(¢) # 0. Then dividing (%) by R(¢) we have

[Q(Q)/R(Q) + 1| = |Q(C)/R(¢) — 1
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which implies Im(Q(¢)/R(¢)) > 0 and thus Im(Q(¢)/R(¢) + w) > 0 for all
w € H. Hence H(w) # 0 for all w € H making it stable since ¢ was arbitrary
in H™. O

Corollary 4.2. Let Q,R € R|z1,...,2,]. Then Q + iR is stable if and only if
Q — iR is (—H)™-stable.

Proof. We claim that f(z1,...,z,) real stable implies f(—z1,...,—2z,) real sta-
ble. By Proposition 1.2 it follows that the univariate polynomial f(a + St) is
real rooted for all « € R™ and § € R}. If f(—=21,...,—%,) is not real stable
then there exists (; = a; +ib; € H" where a; € Rand b; e Ry for j =1,...,n,
such that f(—(y,...,—(,) = 0. But then f(a+St) =0 for a« = (—aq,..., —ay),
B8 = (by,...,b,) and t = —i contradicting stableness of f(z1,...,2,), so the
claim follows. Now by above claim and Lemma 4.1 we have

Q + iR stable <= @ 4 wR real stable < Q(—z) — wR(—z) real stable
< Q(—=z) — iR(—z) stable
< @ —iR is (—H)"-stable

O

Lemma 4.3. Let Q, R € Clzy,...,2,], 2 C C" a connected subset, C1,Cs C C
two closed sets such that C1UCy = C, and J = C1NCy a simple curve separating
Ci and Cy. If P = Q + zp41R is Q x J-stable and R s Q-stable, then P is
etther Q x C1-stable or Q0 x Cy-stable.

PT’OOf. IfP(Clv e ,CnJr]) = Q(Clv ey Cn)+§n+1R(<17 ey Cn) = 0 where (Clv e ,Cn) c
Q then (41 € J by Q x J-stability of P. Thus solving for ¢, it follows that

(692—%€J.

R(C)

Note also that R({) # 0 by Q-stability of R. From standard topology the
continuous image of a connected set is connected, so the image {7% (¢ e}
is connected. Since J is a simple curve separating C; from Cy and —% never
hits the separating boundary J it follows by connectivity that we cannot have

_gggg e C; and —gggzg € (s for some (1,(> € €. Hence {Q_@%g : ¢ e}

lies exclusively in the interior of either Cy or Cy. If w.l.o.g ~“RQ € C4 for all

¢ € Q then P is Q x Cy-stable, for if P((1,...,(pt1) = 0 for (¢r,...,Cn) € Q
and (41 € Cy then

QCt -+, Gn) + Gt R(C1y -, Gn) = 0 = —Felebal — (1 € O

which is a contradiction. O

Corollary 4.4. Let Q and R be real polynomials that are not constant multiples
of each other. Then

a@ + BR

is stable for all a, B € R for which o + B2 # 0 if and only if Q +iR or Q — iR
is stable.
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Proof. By Lemma 4.1, @ + iR stable implies @) + wR stable. Now by special-
ization (see Proposition 1.8) @ + SR is stable for all 8 € R since Im(8) > 0.
Therefore a(Q + gR) = aQ + SR is stable for all o, 8 € R such that a2 +3% # 0
(i.e a, 8 # 0) since @ and R are not constant multiples of each other. Con-
versely suppose a@ + SR is stable for all o, 8 € R for which ? + 32 # 0. Then
Q+wR is H™ x R-stable. Hence by Lemma 4.3 it follows that ) +wR is stable
(i.e H™ x H-stable) or H™ x (—H)-stable. In other words @ + wR is stable or
@ — wR is stable. O

Lemma 4.5. Let V C K][zy,..., 2,] be a K-linear space, where K =R or C.
(1) If K =R and every non-zero element of V is real stable then dimV < 2.
(i) If K = C and every non-zero element of V is stable then dimV < 1.

Proof. We first prove (ii). Let P and @) be two linearly independent polynomials
in V. Then the linear combination P + (@ is non-zero for all ( € C and lies in
V (since V is a linear space) so it is stable by assumption on V. This however
cannot happen since for any £ € H™ we have P(£), Q(&) # 0 by stability of P and

Q@ and so for ¢ := —% we get P(§) 4+ ¢Q(&) = 0 for any £ € H™ contradicting

stability. Hence the dimension of V' can be at most 1. To prove (i) suppose
there exists three linearly independent polynomials Py, P>, P3 € V. Then the
linear combination Py +vPy + wP; € V is H™ x R2-stable. By multiplying P,
or P3 by —1 if necessary we may assume via two applications of Lemma 4.3
with J = R,C; = H,Cy = —H that P, + vP, + wP5 is stable. Via scaling
(see Poposition 1.8) it follows that A=Y(P; + AP, + AwP3) is stable for A > 0.
Hence by Hurwitz theorem, letting A — oo we get that vP; + wP;5 is stable, so
P, + ¥ Ps is stable for w,v € H. We have that {w/v : (v,w) € H*} = C\ R
and yet P, + (P3; € V is supposed to be stable for all real {, a contradiction.
Hence the dimension of V' is at most 2. O

Corollary 4.6. Let P € Clz1,...,2,]. Then the following are equivalent:
(1) P is stable and (—H)™-stable;
(2) €P is real stable for some & € C.

Proof. Real stable polynomials are automatically (—H)"-stable since roots in
(—=H)™ give roots in H™ via complex conjugation (and vice versa). Hence
(2) = (1). Now assume (1) and write P as P = @ + iR. By Lemma
4.1 we have that @ +wR and Q(—z) + wR(—=z) are real stable (by f(z1,...,2n)
real stable = f(—z1,...,—2,) real stable), which means that the non-zero
elements of the complex vector space V spanned by @ and R are stable. Hence
V' is one-dimensional by Lemma 4.5. Therefore there exists ¢ € C such that
Q = cR which implies (i + ¢)"*P = (i + ¢)"}(Q +iR) = Q is real stable. [

Lemma 4.7. Let P € C,[z1,...,2,] where k = (K1,...,kn) € N", and W =
(Wy,...,W,) € H™. Then for all € > 0 sufficiently small, the polynomial
(z+W)" +€eP(2)

is stable where (z +W)" = (21 + W)™ ... (2 + Wy)"m.
Write (z + W)* = Q + iR, where Q and R are real polynomials. Suppose that
P e Rylz1,...,2n], then

Q+eP
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is real stable for all sufficiently small € > 0.

Proof. Set Y = (Im(Wh),...,Im(W,)) € R}. For a < k we have

(z+W)e 1 _
= — —— <Y* " for z€ H"
(z+W)e ] Tl (2 + W)=
since |zj + Wil = [(Re(z; + Wy)2+  (Im(z +W;))? > Im(W;) = Y;.
—————

>Im(Wj) since z;, W; € H
Thus expanding P in powers of z + W we see that there exists ¢y > 0 such that

|P(2)] 1
— < — f H™.
(z—i—W)"”" <60 or z €

Hence by (reverse) triangle inequality
|(z + W)* +eP(2)| > |(z + W)*| — ¢|P(2)| > 0 for all z€ H™ and € € (0, ).

In particular (z 4+ W)" + eP(z) is stable for all such e. If P is a real polynomial,
then since (z + W)" + eP(z) = (Q + €P) + iR is stable it follows directly from
Corollary 4.4 with o« = 1,8 = 0 that @ + €P is stable. O

5 Algebraic Characterization of Stability Pre-
servers

Definition 5.1. (Multiplier Sequence)

A sequence A = {A}72, C R is a multiplier sequence if the diagonal linear
operator, Ty, defined by Tr(2*) = \i.2* preserves the property of having only
real zeros.

Theorem 5.2. (Polya-Schur theorem,)

Let A = {A}2, C R. Then the following are equivalent:

(1) A is a multiplier sequence;

(2) For each n € N, either To((1 4 2)™) = 0, or all zeros of Ta((1 + 2)™) are
real, and all its nonzero zeros are of the same sign; (Algebraic characterization)
(3) The series

oo
A
> "
n!
n=0

is an entire function which is the limit, uniformly on compact subsets of C of
polynomials with only real zeros which are of the same sign (Transcendental
characterization).

Theorem 5.3. Let T : Cylz1,...,2n] — Clz1,...,2,] be a linear operator.
Then T preserves stability if and only if
(1) The range of T is at most one-dimensional and T is of the form
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where o : Cylz1, ..., 2n] = C is a linear functional and Q is a stable polynomial,
or
(2) The symbol Gr(z,w) = T((z +w)") is stable.

Proof. Clearly if T is a linear operator satisfying (1) then T preserves stability
(by scaling a stable polynomial). If Gp is stable then Gy is stable since
Hz@m preserves stability by Proposition 3.6 and Gy = HI@H(GT) by Lemma
3.8. Now by Proposition 1.14 stability of Gry(7y implies stability of II(T"). By
definition

T =1II} o II(T) o II}.

and so T is a composition of stability preservers (recall projection is stable), so T'
itself preserves stability. Conversely suppose T : Cylz1,. .., 2n] — Clz1,. .., 24]
preserves stability. Given W € H™ we have that (z+W)" is stable or identically
zero so T'((z + W)") is stable or identically zero. Suppose first the former case
that T((z + W)*®) = 0 and let P € C,[z1,...,2,). Then by Lemma 4.7 there
exists € > 0 such that (z + W)* + eP(z) is stable. It follows that

€T(P) = T((z+ W)" + €P(2)).

is stable or identically zero. Hence the image of T is a complex linear space whose
non-zero elements are all stable polynomials. By Lemma 4.5 (ii) it follows that
the image has dimension 1 so that T(P) = «(P)Q where @ is a stable polynomial
and «(P) is a linear functional. Suppose now that T'((z+W)"*) £ 0 for all W €
H"™. Then T'((2+W)") is stable for all W € H"™. Hence Gr(z,w) = T((z+W)*)
is stable since T preserves stability. O

Theorem 5.4. Let T : Ry[z1,...,2n] — Rlz1,...,2,] be a linear operator.
Then T preserves stability if and only if
(1) The range of T is at most two-dimensional and T is of the form

T(P)=a(P)Q+B(P)R,

where a, B : Ryz1,...,2,] = R are linear functionals and R+ iQ is a stable
polynomial, or

(2) The symbol Gr(z,w) = T((z +w)") is stable, or

(3) Gr(z,—w) = T((z —w)") is stable.

Proof. f T : Ri[z1,...,2n] = R[z1,...,2,] is a linear operator as in (1) then
T is stable by Corollary 4.4. If T, T : Ry[21,...,2,] = R[z1,..., 2,] are linear
operators whose symbol satisfy Gr(z,w) = Gr(z, —w) then by definition

> ()= X (5)rewe

: B :2;:: (Z) T(2%)(—1)" "
) ; (D (—1)"T((—2)*)w .

Comparing terms we see that 77 and T are related via

T'(P)(2) = (=1)"T(P(=2)).
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Thus they preserve stability simultaneously (by f(z1,...,2,) real stable iff
f(=2z1,...,—2z,) real stable). We may therefore assume that (2) holds i.e that
Gr(z,w) is stable. But by Proposition 1.14 G stable implies T stable and hence
sufficiency is proved. Suppose conversely that T preserves stability. Consider
Gr(z,w) =T((z +w)*) and let W € H™. Write

(z+ W) = F(z) +iG(2), where F,G € Ry [21,...,25]

Then by Corollary 4.4 we have that oF' 4+ SG is stable or identically zero for all
a, B € R and hence T(aF + G) = oT(F) 4+ BT(G) is stable or identically zero
for all a, 8 € R since T is a linear operator preserving stability by hypothesis.
Thence by Corollary 4.4 again we have that

T(F) +iT(G) = Gr(z, W)

is stable, (—H)™-stable or identically zero. Suppose there exists Wi, W, € H™
such that Gr(z, W) is stable or identically zero and Gr(z, W) is (—H)"-stable
or identically zero. By a homotopy argument details? we deduce that there
exists t € [0,1] such that Gp(z, W’) is stable and (—H)"-stable, or identically
zero where W/ = (1 — t)W; + tWy € H"™. Therefore by Corollary 4.6 there
exists £ € C such that £Gr(z, W’) is real stable i.e there exists a real stable
polynomial P(z) such that Gr(z, W’') = £ 1P(z). Write £~ = a + bi where
a,b € R and write (z + W’')* = Q(z) + iR(z) where Q(z) and R(z) have real
coefficients. Then T'(Q) = aP and T'(R) = bP so that

T(bQ — aR) == bT(Q) — aT(R) = baP — abP = 0.

As noted in the proof of Lemma 4.7 we have that for all h € R, [z1,. .., 2,] there
exists € > 0 such that
|hl 1

(z+W")r <%

whenever Im(z;) > 0 for 1 <i < n. Hence if a® + b* # 0 we get
i ) | B i
[bQ — aR +i(aQ + bR)|  |b(Q +iR)+ia(Q +iR)| |(b+ia)(z+ W')*"|
1 1
Sbtia o

This implies by (reverse) triangle inequality that
0<16Q —aR+ €h+i(a@Q +bR)| — €|h] < |bQ — aR + ¢'h +i(aQ + bR)|

whenever z € H". In particular, b@Q) — aR + €¢'h + i(a@ + DR) is stable so by
Corollary 4.4 b@Q — aR + ¢'h is stable. It follows that

T(h) = éT(bQ —aR+¢€'h)

is stable or identically zero since T' preserves stability. Thus all non-zero poly-
nomials in the image of T are real stable and so we may conclude by Lemma
4.5 (i) that the Image of T has linear space dimension at most two. Hence T' is
of the form (1). We may therefore assume the symbol T'((z + W)") is stable for
all W e H™ or T((z — W)") is stable for all W € H™. This amounts to saying

that Gr(z,w) or Gr(z, —w) is stable. O
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6 Transcendental Characterization of Stability
Preservers

Definition 6.1. (Laguerre-Pdlya class)

We say that an entire function in f(z) inn variables is in the complex Laguerre-
Pélya class, f(z) € L — P,(C), if there is a sequence of stable polynomials
{Px(2)}r such that f(z) is the limit, uniformly on compact subsets of C, of
{Px(2)}. The real Laguerre-Pdlya class, L — P,(R) consists of those func-
tions in L — Pp(C) with real coefficients.

Theorem 6.2. A real entire function f(z) is in the Laguerre-Podlya class if
and only if it may be written as

w

flz) = Czn et H(l + zpz)e” TrF

k=1
where C,a,zy € R for all k,b >0, w € NU{oc} and Y, 23 < co.

Theorem 6.3. A real entire function f(z) with nonnegative coefficients is in
the Laguerre-Pdlya class if and only if it may be written as

f(z) =Cz"e"" H(l + xp2)
k=1

where C, 0,25, > 0 for all k,w € NU{oco} and )", x < cc.

Definition 6.4.
The symbol of a linear operator T : Clz1,...,2z,] = Clz1,..., 2] is the formal
power series

—zZ-w e aw
Gr(zw) =T ") = Y T(E)(-1) i
aeN”
where a! = aq!---ay,! and z - w0zywy + - - - + 2wy,
Theorem 6.5. Let T : Clzy ..., 2, = Clz1, ..., 2zy] be a linear operator. Then

T preserves stability if and only if
(1) The range of T is at most one-dimensional and T is of the form

T(P) = a(P)Q,
where ac[z1, ..., 2n] = C is a linear functional and Q is a stable polynomial, or
(2) Gr(z,w) € L —P,(C)
Theorem 6.6. Let T : R[z; ..., z,] — R[z1,...,2,] be a linear operator. Then

T preserves real stability if and only if
(1) The range of T is at most two-dimensional and T is of the form

T(P) = a(P)Q + B(P)R,

where a, B8 : Rlz1,...,2,] — R are linear functionals and Q + iR is a stable
polynomial, or

(2) Gr(z,w) € L —"P,(R), or

(8) Gr(z,—w) € L —P,(R)
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Definition 6.7. (Multivariate Jensen multipliers)

For o, B € N" let J(a, B) = (B)aB~% (using the convention that 0¥° =1). For
fized B € N™ the sequences {J(a, ) }a<p and {(B)a}a<p are called multivari-
ate Jensen multipliers.

Lemma 6.8. Fiz 1 < i <n and 8 € N. The linear operator on Clzy,...,zy]
that replaces zF with (B)k2% for all k € N preserves stability.
Let B € N™. Hence, the linear operators on Clz1, ..., z,] defined by

2% J(a, 8)2%, aeN"
2% = (B)az®, a e N?,

preserve stability.

Proof. Fix € N™. Since the first operator is a composition of the second
operator along with a scaling of variables, it is enough to prove the lemma only
for the second operator. Denote by T, the restriction of the given operator to
Cklz1,y ..., 2n) where k € N™. By Theorem 5.3 it is enough to show that the
symbol of T} is stable for every x € N™. That is,

1 (w) =Tl + 0 = X

a<lk

=% (&) s

a<lk

n Ki
)
i=1 | j=0 J J

K2

>T(Za)w,{a

(67

is stable. This amounts to showing that for any m,n € N the univariate poly-

nomial
o-$()0)

is real-rooted [why? by Proposition 1.37] whence its roots are necessarily nega-
tive since the polynomial has all positive coefficients. To prove this note that

()] =50 (@) el
-y (%) mtm = 1)+ e

J

S0
()

t—t—1

t—t—1
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To prove that (1 + %)n preserves stability it is enough to consider n = 1, thence
the operator is a composition of stability preservers and the statement follows.
Indeed the symbol of (1 + %) is given by

(1 + ;’t) [(t+w)™] = (m + (¢ + w)) (¢ +w) ™

which is clearly a stable polynomial. Hence the symbol G, (z,w) is stable for
every k£ € N™ and so the lemma follows. O

Lemma 6.9. (Szdsz)

Suppose f(z) =1+ Zle a;zt = Hle(l +¢;z) is stable. Then

k
> 1617 < 3lay]? + 2|azl.

Jj=1

Proof. By assumption Im(¢;) < 0 for 1,< j < k as otherwise —5]71 € Hisa
root contradicting stability. Hence

k k
me(éj)QS me(ﬁj) = I'm(a1)*.
j=1 j=1

Note that

2
k k
D=2 -2 X &) =dd-2m
j=1 j=1 1<i<j<k

Thus

k k
ZI&;\Z D (Re(&)? + Im(&))?)

Jj=1

= Z(Re(gj — Im(&)?) + 2ZIm (&)?
j=1

j=1

k
Z (Re(&;) +iIm(&;))? | + QZIm £)?

Jj=1
k k
DG +2> Im(g)?
j=1 j=1

k
= Re(a? — 2a3) + QZIm(fj)g
j=1
< Re(a}) —2Re(ag) +2Im(a;)?
N—— ——
Slaa?  <2laz| <laa|?

< 3lay|? + 2|as|

as claimed. O
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Definition 6.10. (Phase)
The phase of a complex number ¢ = re' is given by 6.

Lemma 6.11. Let P be a stable homogeneous polynomial. The all nonzero
Taylor coefficients of P have the same phase.

Proof. By passing to the polarization operator if necessary we may assume by
Proposition 3.6 that P is multiaffine. The proof is by induction on the number of
variables. Write P as P = Q+ 2z, R where P,Q € Cq[z1,...,2,_1]. If either Q or
R is zero then we are done by induction. Otherwise assume ) and R are stable
homogeneous polynomials of degree d and d — 1 respectively. By induction R
and @ are polynomials with Taylor coefficients of same phase. Multiplying (and
scaling suitably) we may assume the Taylor coefficients of R and e™%Q = Q
have the same phase and are nonnegative. By Lemma 1.10 it follows that

ew()(z)
I >0
" ( R(z) )~
forall z € H" !, Let z € Ri_l and 0 < ¢ < . By homogeneity and the fact
that deg(Q) = d, deg(R) = d — 1 we have

¢0Q(e"x) ¢tIQ)\ _ Q)
0<Im <W> Im( Riciz) ) = sin(0 + ¢).

Since % >0 forz e ]Rf__l (by nonnegativity of the Taylor coefficients of R

and @) we must have sin(f + ¢) > 0 for all 0 < ¢ < w. This forces 0 to be a
multiple of 27 so the Taylor coefficients of R and ) have the same phase and
hence so does P. The proof follows. O

Remark 6.12. Let P(z) = Y, cyn a(a)z® be a stable polynomial. Let
M = min{|o]| : a(a)z*} and N = max{|a| : a(a) # 0}.
Then
=1 -M e = «
Py (2) Algb)\ P(Az1,...,zp) Z ala)z

and

Pn(z) := lim A™NP(\zp,...,\z,) = Z ala)z®

A—00
la|=N

are homogeneous polynomials which are stable by Hurwitz theorem (being a limit
of stable polynomials via scaling of P). By Lemma 6.11 all Taylor coefficients
of Pyp(2) (and Pn(z)) have the same phase.

Lemma 6.13. Let P(z) = ) y» a(a)z® be a stable polynomial and let M be
defined as in Remark 6.12. Let further

ol
A= min{a—a|a(a)| ol = M and a(a) # 0},

B= Y la(a), C= > la(o)],

|a|l=M+1 |a|=M+2
32 C 1/2
D= <3A2 +2A> , and E= > la(a)l.
|la|=M
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Then

la(B )|<E (Iﬁl M)~ UBI=M)/2 plBl=M

for all B € N™ with |8] > M.

Proof. If a(8) = 0 then there is nothing to prove as the right hand side is always
non-negative. Therefore assume a(/3) # 0. Then the polynomial

=Y J(a, Ba(a)t* = ZAk

a<lp

where d = |8, is stable by specialization (z; = t) and Lemma 6.8. By Remark
6.12 we have A/ (B) # 0 since

Py(2) = Z a(a)z” stable = Z J(a, B)a(a)z” stable

le|=M lee|=M

= Z J(a, B)a(a) | tM stable via specialization z; =t = Ap(8) # 0.
|a)|=M

=Am(B)

Hence we may write g(t) as

-M
g(t) = H 1+¢&;t).

62—

Note that v — J(«,7) is increasing. [Indeed note that J(a,y) = (7)ay™* =

(717;),7% =(1- %)(1 — %) e (1— %) which increases to 1 as v — oo]. Hence

v lAu() =1 Y ala)J(a,7)

jal=M

increases as 7y increases. Thus it follows that

A=min{ = Ja(a)|:[a] = M,a(a) #0
2~
=J(a,a)
< [Ap(a)]
<|Am(B)| = Z J(a, B)a(ca) [since |Aps(7y)] is increasing]
|a|=M
< Z |J (e, B)| |a(c)] [by triangle inequality]
R
< Y la(a)]
|a)|=M
>
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Note that on one hand the coefficient of ¢/° = % in g(t) is given by J(3, B)a(B) =
Blgiéﬁ) and on the other hand by A/ (8) H?;{W &;. Thus

) \—dﬁm

_ (d—=M)/2
ol I3l i
< ( W [by AM-GM ineq]
(d—M)/2
<(Ur ) @ by e

S Dd*M(d o M)*(d*M)/Q.
In combination with |Ax;(8)| < E we get the desired inequality. O
Proposition 6.14. Let P(z) be a stable polynomial, and keep the notation in
Lemma 6.13. Then
max{|P(2)|: |zi| <7 for all1 <i<n}

V2e? —e

and D' = 2¢*D?.
e—1

where E' = FantM-1M

Proof. From Stirling approximation of n! it follows that

|
e < L <(en+1)e™, n>0 (1)
nn

s etk
Let d(n, k) = 3 genn 51—k 57 and note that [{8 € N™: [8] = k}| = ("*;~") by
a standard ”stars and bars” argument. By (1) we obtain the estimate

B . n+k—1 B
dnk)= Y %s 3 ek_<n+l]: 1>€k§ 3 <n+lf 1>ek_2n+k16k

BeEN™,|B|=k BeNn,|B|=k =0 J
(2)
for n, k € N. Thus
B
max {|P(2)| : |si| <1 <i<n} < ErM Y (18] - M)*WI*MW%(DT)WI*M [by Lemma 6.13]
181>M '
= ErM Z d(n, k+ M)k="/?(Dr)*
k=0
o
< BotM-1 M M Z k_k/Q(ZeDr)k [by (2)]

k=0
24 M—1 S _k (2eDr)?k
< Bp*tM eMerZ:O,/(ek +1)e k‘/T [by (1)]
= EQHM_I@MTMJ (i(ek + 1)6"“> ' <§: 4(261;7« )2k> [by C-S ineq]

k=0 k=0

— go2tM-1,M MY 2¢e? I € o(2¢Dr)?/2.
e —
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Proposition 6.15. Let f(2) = Y cyn a(@)z® be a formal power series. Then
the following are equivalent

(1) f € L—"P,(C).

(2) The polynomial

> a(@)(8)az"

asp

is stable or identically zero for each B € N™.
(8) There is a sequence {5(k)}52,, where (k) = (B1(k),...,Bn(k)) € N* and

limy,_, o mini <<y, 55 (k) = 00, such that

S ala) (B(k))a="

a<p(k)
is stable or identically zero for each k € N.

Proof. We prove (1) = (2) = (3) = (1). If f € L —P,(C), then let
Py(z) =3, a®(a)2* be a sequence of stable polynomials with limit f. Then
Qr(2) =2 0<s a™ (a)(B)az" is stable or identically zero for all k being a scaling
of Py(z). Since a'® (o — a(a)) for all a it follows that > a<pala)(B)az® is the
limit, uniformly on compact sets, of Q(2), so it is stable or identically zero by
Hurwitz theorem. Clearly (2) = (3). Now suppose >_, 5 a(@)(B(k))az®
is stable or identically zero for all k£ and let

Pi(z)= ) a(a)J(a, B(k))=".
a<p(k)
Since 8 — J(a, B) is increasing with limg_,o J(c, 8(k)) = 1 for all « it follows
by Proposition 6.14 that there exists constants A, B, M such that

max{|Px(2)] : |z;| <r forall j} < ArMBr®

for all k¥ and » > 0. Hence the sequence {Pj(z)} is uniformly bounded on
compact sets and so {Py(2)} is a normal family whose convergent subsequences
converge to f(z) by Montel’s theorem. The proposition now follows from Vitali’s
theorem [why is this needed?]. O

Proof of Theorem 6.5.

Suppose T preserves stability. If the range of T is at most one-dimensional,
then T has the form (1). Suppose therefore T' has range of dimension greater
than one.. For 5 € N let Ag be the linear operator that sends z* to (5)q2%.
In view of Proposition 6.15 it remains to prove that A,gz(Gr) is stable for
and S large enough. By Theorem 5.3,

> (D)
a<p ¢
is stable for all £ large enough. By inversion we thus have that

> TE)(1)(B)

a<p

wOé

Y al’
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is stable. Then by Lemma 6.8
« wa
Aap(Gr) = > Ay ~1)%(B)a—r
a<p

is stable or identically zero for 8 large enough. The converse is immediate from
Theorem 5.3 and Proposition 6.15.

Exercise 4: Prove Theorem 5.2 from Theorem 5.4 and Theorem 6.6.

Proof. (1) = (2). Suppose A = {\;}72 is a multiplier sequence and T ((1+
z)™) # 0. Since (14 z)™ has all real roots (—1 with multiplicity n), then so does

TA((L+2)" ﬁszj

by assumption where {; € R for all 1 < j < n. Recall that linear transformations
preserving real-rootedness for real univariate polynomials is equivalent to being
stable. Thus by Theorem 5.4 we have that either the range of T is at most two-
dimensional, or G, (z,w) = Ta((z + w)™) is stable, or G, (z,—w) = Ta((z —
w)™) is stable. If dim(ImTy) = 0,1 then Th((1 + 2)™) has no non-zero root.
Suppose therefore dim(ImTy) = 2. Then

Ta((1+2)") = jz: (?) A2l = <Z> Aoz + <7> A2

for some 0 < k <1 <n with A\g, A\; # 0. Note that if [ — k > 2 then

(s (o= (e (o)

has imaginary roots, contrary to assumption. If {—k = 2 then we have imaginary
roots above, provided that Ay and \; have the same sign. If they have different
sign then consider the real rooted polynomial 2% —2! = 2#(1—22). By assumption
on A being a multiplier sequence it follows that z*(\; — A\;22) has all real roots

/A
which is a contradiction since the non-zero roots are given by z = + /\—k which

is imaginary as A and \; have opposite sign. Hence [ — k = 1 and slo there
is exactly one non-zero real root which thus satisfies our requirements. We
may therefore assume G, (z,w) = Tx((z + w)™) is stable or Gr, (z,—w) =
Ta((z —w)™) is stable. In the former case we have

Ta((z+w)") = [](z = &w
j=1

stable so
Im(z),Im(w) >0 = §; <0foralll1<j<n.
Similarly if Th((z —w)™) is stable then

Im(z),Im(w) >0 = & >0foralll1 <j<n.
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Hence the roots of Tx((1 + z)™) are real with non-zero roots of the same sign.

(2) = (3).
Similarly to above if

TaA((L+2)" ﬁ

1

=
with &; real and of the same sign for j = 1,...,n then

Gr,(z,w) =Ta((z +w)" z—fj

n',':]:

or

:j:

Gy (2, —w) = Ta((z —w)") = | | (z + &w)

1

J

is stable which implies T} is stable by Theorem 5.4. Then by Theorem 6.6 it
follows that Ty (e*") € L — P1(R) or Th(e*™) € L —P1(R). Thus we deduce
that

S 2n _ Ty (%) € £ - Py(R).

n!
n=0

Note further that on one hand

3
3

Th((1+2)") = [[(z— &) = IS | IR P

J=1 j=0 5C[n),|S|=ji€S

By assumption for fixed n, all non-zero roots §j(-n) have the same sign. If all
non-zero roots 53('”) are positive for some n then by comparing coefficients we
see that the A; alternate in sign i.e A\; = (=1)"77|\;| for j = 1,...,n. Thus
we cannot have that the non-zero roots fj(."ﬂ) are all positive for then \; =
()N ==X forj=1,...,n+1. If fj(-m_l) are all instead positive then
the \; are all positive for j = 1,...,n + 1 contradicting that A\; = (—1)"77|\,|
for 7 =1,...,n. Hence f("H) are always negative so that A\; > 0 for all j € N.

An
But then it follows that the non-zero roots of Z —z must be all negative

n= O
since A\; > 0 for all j € N. O
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7 Hyperbolic Polynomials

Definition 7.1. (Hyperbolic polynomial)

A homogeneous polynomial h(z) € R|z1,...,z,] is hyperbolic with respect to
a vector e € R™ if h(e) # 0, and if for all x € R™ the univariate polynomial
t — h(x + et) has only real zeros.

Example 7.2. (Ezamples of hyperbolic polynomials).

(1) Let h(z) = 2z1-+-2n. Then h(z) is hyperbolic with respect to any vector
e € R™” that has no coordinate equal to zero

n
+et ij—i—ej

(2) Let Z = (25);'j=1 be a matrix of variables where we impose 2;; = zj.
Then det(Z) is hyperbolic with respect to I = diag(1,...,1). Indeed h : t —
det(X + tI) is the characteristic polynomial of the symmetric matrix X. A
symmetric matrix has only real eigenvalues and so h(X +¢I) has only real zeros.

(3) Let h(z) = 22 — 25 — -+ — 22, Then h is hyperbolic with respect to

n

Remark 7.3.
If h is hyperbolic with respect to e and of degree d, then we may write

d
h(x + et) = Ht+)\

where Aj(x) < --- < Ag(x). By homogeneity it follows that
Aj(sz) = sAj(x) and Aj(z + se) = Aj(z) + s

forall1 <j<n,zr€R"andseC.

Definition 7.4. (Hyperbolicity cone)
The hyperbolicity cone is the set

A++ = A++(€) = {il? eR: )\1(37) > O}
Remark 7.5.
Since h(e +te) = h(e)(1 +t)? we see that e € Ay

Example 7.6.

The hyperbolicity cones for the hyperbolic polynomials in Example 7.2 are given
by:

(1) Ayy(e)={zeR":z4¢; >0,i =1,...,n} since

n n

n
h(z + et) Ha:]—ke] —61"'6nH( Yo +t) = H Yo+ t)
j=1

j=1 j=1
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with e;lxj >0 <— e;T; > 0.

(2) In this case the Aj(X) represent eigenvalues of the matrix X, and so A\ (X) >
0 implies all eigenvalues are positive since 0 < A\ (X) < -+ < A\, (X) which in
turn implies that A; (I) is given by the set of all symmetric positive definite
matrices.

(3) Here
h(z 4 et) = h((x1 +t,z2,...,2,)) = (1 +)* — (253 + - +22)

= ((x1+t)+ x§+~~~+x%> ((x1+t) x§+-~+x,%).

Hence \i(z) = o1 — /22 + -+ 22 and so Ay, (1,0,...,0) is given by the

Lorentz cone
{x e R" 12y > /a3 + -+ 22},
Proposition 7.7. The hyperbolicity cone is the connected component of

{z € R": h(x) # 0}
which contains e.

Proof. Let C be the connected component that contains e. Since C'is connected,
it is also path connected as C' C R™. Therefore let z(s) be a continuous path in
C from z(0) = e to 2(1) = x. Note that since e belongs to the hyperbolicity cone
by Remark 7.5 it follows that A1(z(0)) = Ai(e) > 0. If there exists 0 < ¢t < 1
such that A;(x(¢)) < 0 then since z(s) is a continuous function it follows by
intermediate value theorem that there exists v with 0 < u < ¢t < 1 such that
A1(z(u)) = 0. Then

d
h(z(u)) = h(z(u) + e.0) = H0+)\ ) = 0.

This contradicts the fact that z(u) € C and so A(x(s)) > 0 for all 0 < s < 1.
Conversely if z € A, then by homogeneity

d d
h(tz + (1 —t)e) H (1-1) Ht)\ +(1—1)).

Now z € Ay, = 0<)\(
never identically zero for 0 <t

) o(x) < -+ Ag(z). Hence h(tx + (1 —t)e) is

<A
<1 botas—l—(l—t)eeCforaHO <t<1 O

Lemma 7.8. Let h(z) be a homogeneous real polynomial of degree d, and sup-
pose that a,b € R™ are such that h(a)h(b) # 0. Then the following are equiva-
lent:

() h is hyperbolic with respect to a, and b € A4 (a).

(#7) For all x € R™, the polynomial

(s,t) — h(x + sa + tb)

is stable.
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Proof. Suppose (i7) holds and let © € R™. By specialization t = 0 we see that
the univariate polynomial s — h(x + sa) is stable. This is equivalent to having
only real zeros. Hence h is hyperbolic with respect to a since h(a) is also non-
zero by assumption. This proves the first assertion in (i7). By taking = 0 in
(s,t) = h(xz + sa+tb) we get that p(s,t) = h(sa + tb) is stable since the former
map is stable for all € R™. p(s,t) is moreover homogeneous of degree d by
homogeneity of h. By Lemma 6.11 the Taylor coefficients of ¢(s) = p(s,1) =
h(b + sa) must have the same phase being a homogeneous stable polynomial.
Since the coeflicients of ¢(s) are real this means they must have the same sign
(i,e @ = 0 or 7). But then the roots of ¢(s) cannot be positive. Moreover
q(0) = h(b) # 0. Hence the roots of ¢(s) must be negative. Hence b € A1 (a)
which proves the second assertion in (i4). Conversely assume (i) holds. Fix
29 € H and z € R™ and consider the zero set, Z(z), of t — h(x + spa + tb).
We need to prove Z(x) C —H = {z € C: Im(z) < 0} for all x € R". Consider
Z(0). Since b € A4 (a) and h hyperbolic w.r.t a it follows that all the zeros
of h(b+ sa) = h(a) H;l:l(s + X;(b)) are real and negative since A;(b) > 0 and
0 < A1(b) < Xo(b) < --- < Ag(b). Hence if h(spa + tb) = t?h(b+ sot'a) = 0
then so/t < 0. Thus Z(0) C —H. Suppose for a contradiction that there exists
x € R" such that Z(z) € —H. By moving from 0 to z along the line segment
{0z : 0 < 0 < 1} we see that for some 0 < § < 1 we have Z(6z) NR # 0 (by
Hurwitz theorem). Hence there is a number a € R such that h(fz+ab+spa) = 0.
By assumption sy € R and moreover 0z + ab € R™ so h has a non-real zero
contradicting its hyperbolicity with respect to a. Hence Z(x) C —H for all
x € R™ which implies Z(z) C R for all # € R™ since h has real coefficients. [

Theorem 7.9. Suppose that h is hyperbolic with respect to e.
(1) If a € Ar1(e), then h is hyperbolic with respect to a and Ay4(a) = Ap4(e).
(i) Ayt (e) is a convex cone.

Proof. If a € A; (e) then it follows by Lemma 7.8 that (s,t) — h(z + se + ta)
is stable. Thus switching the roles of e and a it follows by Lemma 7.8 again
that h is hyperbolic with respect to @ and e € Ay y(a). By Proposition 7.7
the hyperbolicity cones A4y (a) and Ai,(e) are the connected components of
{z € R : h(x) # 0} containing a and e respectively. Since a € A, (e) it follows
that a and e belong to the same connected component of {z € R™ : h(z) # 0}.
Thus any x € A4 (e) can be connected to a via a path through e and so it follows
that € A4 (a). Therefore Ay (e) C Ay (a). Similarly since e € Ay (a) we
have that A;4(a) € Ayy(e). This proves (i). For (i7) let a,b € A4y (e). Then
since Ar4(a) = Aii(e) it follows by the argument in Proposition 7.7 that
ta+(1—¢t)be Ayy(e), for all 0 <t < 1. This proves convexity. That A;(e) is
a cone follows from the fact that A\ (kx) = kA (z) for all z € Ay (e) so Ay (e)
is closed under multiplication by positive scalars. O

Corollary 7.10. Suppose h is hyperbolic of degree d with respect to e. If a €
Ay (e) then for any x € R? the polynomial g(t) = h(a+tx) only has real roots.

Proof. Indeed since a € A4 (e) we have by Theorem 7.9 (i) that h is hyperbolic
with respect to a. Therefore for every 2 € R? the polynomial ¢ + h(zx + ta) has
only real roots. By homogeneity h(z-+ta) = t*h(t 'z+a) and so t > h(t~'z+a)
has only real roots so g(t) := h(a + tz) has only real roots. O
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Theorem 7.11. Let Ai(z) : R™ — R be given as in 7.3. Then A\ (z) is concave.

Proof. Let x,y € R. Note that x — A1 (z)e,y— A1 (y)e € A4y (e) since by Remark
7.3 we have A\j(x — A\ (z)e) = A\ (z) — Ai(z) = 0 > 0 (and likewise for y). By
Theorem 7.9 we have that A (e) is convex. Thus 3(z — A1 (z)e) + (1 — 3)(y —

A(y)e) € Ayy(e) and so (z +y) — (M(z) + Ai(y))e € Ay (e) since Ay (e)
is closed under multiplication by positive scalars. But the smallest ¢ such that
(x+y)+te € Api(e) is given by —A1(z + y) (again using Remark 7.3). Thus
by minimality =\ (z +y) < —A1(z) + A1 (y) so that A\ (z) + M (y) < Az +y).
Therefore by the established inequality and Remark 7.3 we have

M=tz +ty) > M (1 =t)a) + M(ty) = (1 — )\ (z) + tA(y)
for all 0 <t < 1. Hence A\;(z) is concave. O

Theorem 7.12. Suppose that h is hyperbolic of degree d with respect to e. Then
R/ is concave on Ay (e).

Proof. Let a,b € A, (e) and consider f(t) := h'/%(ta + (1 — t)b) = hY/ (b +
t(a—b)). It suffices to prove that f is concave on [0, 1], that is, f”(¢) < 0. Since
b € Ay (e) the zeros of g(t) := h(b+t(a — b)) are real by Corollary 7.10. Since

f// _ 1 Lgl/d—Q <g/2 _ dgg//).

S dd-1 d—1
The theorem now follows from Newton’s inequalities [How?]. O

Proposition 7.13. Let P(z1,...,2n) = Y cnn a(a)z® be a real polynomial of
degree d, and let h(z1,...,2n41) = ngP(zl/an, ooy 2Zn/2Znt1)- The following
are equivalent

(1) P stable;

(2) h is hyperbolic with respect to e = (1,...,1,0)T and its hyperbolicity cone
contains R’} x {0}.

Proof. Suppose P is stable, and let Py(z) := limy oo A*P(A21,...,A2,) =
ZIal:d a(a)z®. Then by Remark 6.12 the Taylor coefficients of P; have the
same phase so Py(1,...,1) # 0. Let € R*""!. We must prove all zeros of
h(xz + et) are real. Suppose first that 2,11 # 0. If ¢ = a + ib where b # 0 then
Zj/Tpt1 +t/Tps1 € H or xj/Tpi1 + t/xny1 € —H for all j. Thus since P is
real stable by assumption we have that

h(z + et) = a2t P(x1/Tns1 +1/Tnst, - o Tn /g1 +t/Tngr) # 0.

If it was zero then by conjugating if necessary there is a root in H™ contra-
dicting stability of P. If on the other hand x,+; = 0 then h(z + et) =
limy o A™MP(\zy,...,\2,) = > laj=nr ()2 where M = min{|a| : a(a) # 0}
This polynomial only has real zeros by the same argument as above. Hence h is
hyperbolic with respect to e. If z € R} x{0}, then h(x) = P;(z) # 0 since by Re-
mark 6.12 all coefficients have the same phase. By Proposition 7.7 the hyperbol-
icity cone A4 (e) is given by the connected component of {z € R™ : h(z) # 0}
which contains e. The continuous path y(s) = se+ (1 —s)z, 0 < s < 1 between
e and x is contained in R? x {0} so h(y(s)) # 0 for all 0 < s < 1. Thus e and z
belong to the same connected component and hence x € A4 (e) by Proposition
7.7. Hence R, x {0} € A4 (e). Now assume (2) and let +iy € H". Let further

39



' = (x1,...,2p,1) and y = (y1,...,Yn,0). Then P(z +iy) = h(z' +1iy’) # 0
by Theorem 7.9 (i) since y € Aty (e). O

Corollary 7.14. Let P(z1,...,2,) be a stable polynomial of degree d that has
only nonnegative Taylor coefficients. Then the polynomial

h=28  P(21/2n41, -+ 21/ Zn41)
1s stable.

Proof. By Proposition 7.13 we have that h is hyperbolic with hyperbolicity cone
containing R’ x {0}. By Proposition 7.7 the hyperbolicity cone is given by the
connected component of {z € R™*! : h(x) # 0} containing e. Since all Taylor
coefficients are nonnegative we have that h is positive on RQL_H and so we can
find a continuous path between any = € ]Rf'l and e contained in Ri‘“ on which
h is non-zero (positive). Hence the hyperbolicity cone contains R’_,’_H. Given
z=(21,...,2n41) € H"', write z; = a;j + ib; where b; € Ry. Then by Lemma
7.8 the polynomial (s,t) + h(z + sa + tb) is stable for all z € R*""L, so in
particular h(z) = h((a1,...,an+1) +i(b1,...,bar1)) # 0. Hence h is stable. [

Proposition 7.15. Let h € R[z1,...,2,] be hyperbolic and let ay,...,am €
Aii(e) and ag € R™. Then the polynomial

P(z1,...,2m) = hlag + z1a1 + - - + amzm)
is stable or identically zero.

Proof. By Hurwitz theorem we may assume that aj,...,a, € Ayi(e). let
z =2z + 1y € H™ where x € R™,y € R". Then

m m
P(z)=h|ao+ ijaj +iZyjaj
j=1 j=1

Note that a := 27:1 yja; € Ay (e) by definition since A (e) is a convex cone
by Theorem 7.9 (i7). By Theorem 7.9 (i) it therefore follows that h is hyperbolic
with respect to a. Hence by Lemma 7.8 we have that the polynomial

(s,t) = h ao—i—ijaj + se+ta
j=1

is stable so letting s — 0 we get by Hurwitz theorem that

m
t—h a0+2xjaj + ta
j=1

is stable. Hence

m

h(z) =h ao—l—ijaj +ia | #0

j=1

proving h is stable since z is arbitrary in H™. O
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Definition 7.16. (Lineality space)

The lineality space, L, of a convex cone C' is the largest linear subspace con-
tained in C, that is, L = C' N (—C). We denote by L(h) the lineality space of
the closure of hyperbolicity cone of h.

Proposition 7.17. Let h be a hyperbolic polynomial of degree d with respect to
e. Then

Lh)={y e R": h(y +x) = h(x) for all x € R"}.
Proof. If y € L(h), then y € Ay (e) N —A4(e). Recall that

—.

hy +et) = | [(E+X(y))

<
Il
—

with 0 < A (y) < Aa(y) < ) since h is hyperbohc w.r.t e. Since
y € —A;4(e) we also have that 0 < )\ —y) < Ao(—y) < -+ < Ag(—y) i.e that
0< =Ai(y) < —Xa(y) < -+ < =Xg(y) (by homogeneity) and s00=M(y) =
)-
)

)—AA
/\@

- = Ag(y). Hence h(y + et) = h(e)t?. Therefore h(y + xt) = h(x)t? for all
x € Ayy(e) since © € Ay (e) implies h is hyperbolic w.r.t by Theorem 7.9
(#7). Thus h(y + ) = h(z) for all z € Ayy(e). Therefore the polynomial
p(z) = h(y + x) — h(zx) is identically zero on A, (e) which is an open set, so
p(z) = 0 on whole of R being an entire function. Hence h(y+ x) = h(z) for all
z € R™. Conversely let y € R™ such that h(y + z) = h(z) for all z € R™. Then

h((1—t)y +te) = h(y + t(e —y)) = h(t(e — y)) = t*h(e —y)
= t4(=1)?h((—e) +y) = t4(=1)?h(—e) = t?h(e) # 0.

for all 0 < ¢ < 1. Thus by Proposition 7.7 it follows that (1 —t)y +te € Ay (e)
for all 0 < ¢t < 1. Thus y € Ay (e). Similarly —y € Ay, (e) and hence the
proposition follows. O

Suppose A, ..., A, are symmetric d x d matrices and e = (ej,...,e,)T € R™.
Suppose further that > " ; e;A; = I, where [ is the identity matrix. Then

det (e1 41 + -+ +e,A,) =det(I) #0
and for every x € R™ we have that the polynomial
t > det (z1e1tA1 + -+ - + xpentAy) =t" det (16941 + -+ - + TpenAy)

has only real roots. Hence the polynomial h(z) = det(z1A4; + -+ + 2, A,) is
hyperbolic with respect to e. Its hyperbolicity cone is given by those z € R"
such that 147 + - -+ + x, A, has only positive eigenvalues, that is, by

Aiyi(e) = {x eR": inAi is positive deﬁnite}.

i=1

Hence A4y is an intersection of the cone of positive definite matrices with a
hyperplane. The Generalized Lax Conjecture asks if this is always the case?

Conjecture 7.18. (Generalized Laz conjecture)
Suppose that Ay C R™ is a hyperbolicity cone. Are there symmetric d X d
matrices A1, ..., A, such that
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n
Ay = {:E eR™: inAi 1S positive deﬁm’te}?

i=1

Remark 7.19. The conjecture has been shown to be true for n = 3.

8 The Lee-Yang Theorem

Lemma 8.1. (Newton’s inequalities)
Let P(z) = ZZ:O apz® be a polynomial with only real zeros and of degree at
most n. Then

a; Ak—1 ki1
(2)2 G0 G

Proof. Let P(z) = > p_, (})bkz" be a real-rooted polynomial. We want to
prove that bi > bi_1bg4q for all 1 <k <n —1 since ax = (Z)bk. If n < 2 then
there is nothing to prove and if n = 2 then the inequality amounts to

a% ap a2

2 = 2\ 2\

@ 66
which is equivalent to the statement that the discriminant of the polynomial
a2% + a1z + ag is positive which we know holds since the the polynomial is

assumed to be real-rooted. Therefore assume n > 2. Note that

1 1w~ (n

7P/ I k—1
k=1
n—1

1 n
- 1 k
2 2k ()

n—1
> (" st

k=0

foralll<k<n-—1.

and that the roots of P’(z) interlace those of P(z) by Rolle’s theorem so

P(z) is real-rooted if and only if 2P’(z) is real-rooted. Note moreover that

o (1)brz" is real-rooted if and only if > (})brz""* is real-rooted, for if

. —k

is a non-zero real root of 3", _o (7)brz" then >3 (1o (1) = (£)" Xy ()bwr®
0 and vice versa. Given s € {1,...,n— 1} we can now differentiate as above re-
peatedly s — 1 times to get the real rooted polynomial ZZ;SH ("_;_1)bk+(g_1zk

and then use our second observation to conclude that ZZ;SH (”7271) bpys_1 2tk
is real-rooted. We finally differentiate again n — s — 1 times to get that

2 2 2 ,
(0) bs—1+ <1) bsz + (2) bsy12

is real-rooted. Hence the lemma follows from the n = 2 case. O

42



Theorem 8.2. Let P € Ry[z1,...,2,] \ {0}. Then P is stable if and only if

o’P oP, 0P
< 2 (2

forallz e R™ and all 1 <i < j<mn.

Proof. Suppose P is stable. Write P as P = Q + ;R € R[z1, ..., 2,] where Q
and R do not depend on z;. If R = 0 then (3) clearly holds for all ¢ since this
implies P does not depend on z;. Therefore let x € R"~! such that R(z) # 0
and let q(t) := Q(z + e;t)/R(z + e;t) where ¢; is the i*!' standard basis vector.
Note that

, 52 (2)R(x) — Q(x) 52 (x)
q'(0) =2 B2 .

(gg () + 25 %(z)) R(z

2
o7 (@) 57 (2) = 5255 (2)P(x)

R(z)?

Taylor expansion therefore gives

Q) @8R (@) - Z(0)P(x)

= R@) R()? t+0(t). )

By Lemma 1.10 it follows that Im(Q(z)/R(z)) > 0 whenever z € H . Hence
Im(q(iX)) = Im (Q(x + e;ir)/R(x + e;i\)) > 0 for all A > 0. Thus evaluating
imaginary parts in (4) we have

oP, oP 2P )
52, )z (8) ~ o (B)P() 2 R@)? — O

Hence for A > 0 sufficiently small the inequality in (3) follows for all z € R"~1
such that R(x) # 0. However because the non-roots of R are dense in R"~! the
inequality (3) follows for all x € R"~!. For the converse we argue by induction
on n. The case n = 1 is trivial since one variable affine polynomials always have

a single real root so P is certainly stable. Suppose P(z1,...,2p4+1) = Q+2p41 R
satisfies (3). If @ = 0 or R = 0 we are done by induction, so assume this is
not the case. Clearly the specialization P, (z1,...,2,) = P(z1,...,2,,a) still

satisfies the inequalities in (3) for all & € R. Hence by inductive hypothesis P, =
Q@+ aR, Q and R are all stable or identically zero for all @« e R. If Q + aR =0
for some « then P = Q 4+ z,41R = —aR + zp41R = (2h41 — @) R and we are
done since R is stable. Therefore we may assume this is not the case. Then P is
H™ x R-stable which by Lemma 4.3 with Q = H",C, = H,Cy = —H it follows
that P is stable or H™ x —H-stable, that is P is stable or P(z1,...,2n, —Zn+1)
is stable. If the latter occurs then on one hand we have the inequality in (3) by
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assumption and on the other hand P(z1,...,2,, —2,+1) stable implies

O?P(21, .. 20y —2ns1) OP (21, 2n,—2n41) , \OP(21,. ., Zny —Zn+1)
<
I~ (z)P(z) < 97, (2) E— (z) =

aQP(Zla"'vznaZ’ﬂ"rl) 6P(Zl7"'7zn7zn+1) 8P(Zl,...,Zn,Zn+1)

_ Ply) < —
R (z)P(x) < o=, (z) . (z) =
0%P oP oP
- > .
8zi82n+1 ZL')P(I) — 0z . 8zn+1 .
Hence we have equality in (3) for j =n+1, 1 <i < n and for all x € R”. Thus
oP oP 0?P Q OR OR
S @) = g (@P(a) = (G2 + 2o (@) ) Re) = 52 @)@ + 21 R(a)
oQ _OR oQ 1 OR 1
— SE@RE) = @) = @) = 5 @) g
B ) 9 Q

— (2m@) @ = (um) @ = (u(%))w=0

for all 1 <7 <n and x € R". Therefore
Q
(<) =
n (R> C
for some constant C' € R which implies
Q=¢“R
so that
P(2) = (e + z,11)R.

Finally since R is stable so is P. O

Definition 8.3. (Permanent)
The permanent of a square matriz A = (aij)?,jzl is the unsigned determinant

per(4) = > [[aiow-

ceS, i=1

Definition 8.4. (Doubly stochastic matriz)
An n x n matriz is doubly stochastic if all entries are nonnegative and each
row and column sums to one.

Remark 8.5. In 1926 Van der Waerden conjectured that if A is a doubly
stochastic n x n matrix then

n!
per(A) > e
with equality if and only if all entries of A are equal to 1/n. In 1981 the
inequality was proved by Falikman and the characterization of the equality
proved by Egorychev. Recently Leonid Gurvits came up with a proof for a vast
generalization of the Van der Waerden conjecture. His methods uses the theory

of stable and hyperbolic polynomials.
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Definition 8.6. (Capacity)
The capacity of a polynomial P € Rzy,..., z,] is defined by

P
Cap(P) = inf Play, v an)
D1y >0 Xy Ty
For convenience we will also define a function G : N — Q given by G(0) =
G(1) =1 and G(k) = (1 — 1/k)*~! for k > 2.

Lemma 8.7. Let P be a stable univariate polynomial with only nonnegative
coefficients and of degree d > 0. Then

P'(0) > G(d) Cap(P),
with equality of an only if P has just one zero.

Proof. If P has just one zero then P(z) = (z+a)? for some a € R>q,d > 1 since
P is univariate real stable making it real-rooted and has nonnegative coefficients
making its roots all non-positive. We first seek to evaluate Cap(P). To this end

d d d—1 d—1 _

d ((z+a) _0 — (z+a)*(( )T a):0:>x:—a, a

dx x x? d—1
We are only looking at z € (0,00) so we can discard x = —a. We check that

the critical point = 7% indeed gives a minimum.

& ((z+a)
dx? x .

22 ((d-1D)(z+a)?2((d-1)z—a)+ (z+a)(d—1)) + 22 ((z+a) 1 ((d - 1)z — a))

@1 (35) (g + ) 7
()

Hence x = 5% gives a global minimum for
tends to co as * — 0 and to co as x — 0o so

> 0.

(z+a)?

—— in (0, c0) since the expression

d
d 2= +a d-1
Cap(P) — 11'>1% (Z‘—‘;G;) _ (d 1 ) _ dad_l (ddl> — dad_lG(d)_l.

Hence
G(d)Cap(P) = da®* = P'(0).

Now consider the general case where we may assume by continuity that all of
the non-positive roots of P are strictly negative. Then P(z) = H?:1(1 +0;2)
for some 0; >0, j =1,...,d. By AM-GM inequality we thus have

d

d d d

(140 (24:1(1+9jw)) 1 4 Gty
Cap(P) = inf [ i) < inf ’ = inf (1+ i) =a 4inf (@

x>0 x z>0 T x>0 T x>0 x

d

where ¢ = ———— . The right hand side is minimized according to our
014 -+ 0q

previous calculation, giving
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d
N () M S S S
Cap(P) <a ;r;fo - a”%da*""G(d) G

Finally note that

so P'(0) =6y + -+ 64. Hence
P'(0) > G(d)Cap(P)
as required. Equality occurs whenever the AM-GM inequality gives equality.

This precisely happens when 6; = - -- = 64, that is, P has only one root. O
Lemma 8.8. Let P € R|zy,...,2,] be a stable polynomial with nonnegative
coefficients, and let Q = — ER[Z1,. ., 2j—1,Zj41, -+ » Zn)-

32’] ZjZO
Then

Cap(Q) > G(k)Cap(P),
where k is the degree in z; of P.

Proof. Without loss of generality assume j = n and let x1,...,2,-1 > 0. Then

via specialization it follows that p(z) = P(x1,...,2Zn_1, 2) is stable. Hence by

Lemma 8.7 we have

sy Ty (0 1 .. Plxy, ...z,
Qv 2nt) PO G(k)Cap(p) = G(k) inf ZELTn) o GopyCap(P)
X1 Tp—1 X1 Tp—1 X1 Tp—1 xn>0 X1 Tp
and the lemma follows. O
Theorem 8.9. Let P € Rz,...,2,] be a stable polynomial with nonnegative

coefficients, of total degree m, and of degree d; in z; for each i € [n]. Let
e; = min{i,d;}. Then

o - n!
Can(P) 2 5o, PO 2 CanP) [T 61) 2 CantP)
Proof.
Define the sequence of polynomials {QJ} by Q,=Pand Q;_, = aan )
Zj z;=0

By Lemma 8.8 we have Cap(Q;-1) > Cap(Q;)G(deg;(Q;)) for each 1 < j <n.

Note that Cap(Qo) = Qo = 9" /921 - - - 9z, P(0). Note also that -= ((z — 1)In(1 — 1/z)) =
In(1-1/x)— (f{_lz) =In(z—1)—In(z) — 1 <0 for all z > 1. Thus it follows that

In(G(k)) is decreasing and so G/(k) is decreasing. Moreover deg;(Q;) < e; < j

and hence

& - " j-1 -1
IF”%QJZH %ZH =H( ) T

nm"
j=1

O
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Definition 8.10. (H;})
Let H} denote the set of all homogeneous polynomials of degree n inR[z1,. ..,z
that have nonnegative coefficients.

Definition 8.11. (Doubly stochastic polynomial)
A polynomial P € H} is doubly stochastic if

gij(l) =1, foralll <j<n,

where 1 = (1,...,1).

Remark 8.12. Let P € H,\. Since P is homogeneous we have the identity
t"P(z1,. ..y 2n) = P(tz1, ..., tz,)

Differentiating both sides with respect to t we have

- d " JP
" P (21, ... 2,) = %P(tzl,...,tzn) = sz—_(tzh s tzy).

By setting t = 1 we get that

I~ oP
P=- i—.
n Z % 0z
Jj=1
Hence if P is doubly stochastic then

Lemma 8.13. Let 01,...,0, be positive numbers which sum to 1, and let
T1,...,2T, be positive. Then

log (Z 9m> > 3" 0;log(x:)
i=1 i=1
with equality if and only if t1 = --- = x,.

Proof. Follows straight from Jensen’s inequality since log(x) is a convex func-
tion. O

Lemma 8.14. Suppose that P € H, and P(1) = 1. Then P is doubly stochastic
if and only if Cap(P) = P(1) = 1.

Proof. Suppose that P =) _ a(a)z® is doubly stochastic. Then

1= g:(l) = 3823 (; a(a)za> . = ;aja(a)

for every 1 < j < n. By Lemma 8.13 we have

log(P(x)) > Z ) log(z Z Z o log(z;) Z log(z,) (Z oqa(oz)) =log(xy -~

=1

for all z € R%. Thus

47

Tp)-



0 < log(P()) ~log(o ) =log (00— ) = 1<

P
Therefore 1 < inf _Pl) = Cap(P). On the other hand the lower
T1oes@n>0 T - Ty

bound is obtained by setting z = 1 since P(1) = 1 by Remark 8.12. Hence

Cap(P) = P(1) = 1. Conversely if Cap(P) = P(1) = 1, then consider the

function f : (—=1,1) — R defined by f(t) = P(1 —t,1 +¢,1,...,1)/(1 — ¢?).

Then f(t) > Cap(P) = 1 and f(0) = 1 so t = 0 gives a global minimum for
f(t). Thus

, oP oP

0= (0 = —5 (1) + 5 (

Similarly we get —0P/0z;(1) + OP/0z;(1) = 0 for all 1 < 4,5 < n. Hence by

1).

Remark 8.12 we have for each ¢ = 1,...,n that
1 - 0P 1OP . & opP
1=P(1) = — — (1) == 1 1= 1).
CEEIN SC R T AL DIES

O

Lemma 8.15. Suppose that all coefficients of P € H'} are positive. Then there

s a unique vector x € R™, with all entries positive, such that
P(xy,...,x,)
xl PRI l‘n

= Cap(P).

Proof. We first prove existence. By homogeneity it follows that

Plar,..z2) P m)Vmal,. . (o 2a)V"a)
‘rl..'xn - xl...xn
Therefore it suffices to consider x € R™ such that zy---2, = 1. If P(z) =
Yoo a(a)xz®, then P(x) > a(n,0,...,0)z} for all z € R’} . Hence when computing
the infimum in the capacity it suffices to consider z; < C; for some constant
C1. Similarly if 71 < e <1 we have for all z € R that

= P(2},...,2)).

) n

n
P(x) > Za(l —e1+ej)ry- - xj_lm?xjH S Zp [subset of terms of P]
j=2
1 n
:—Za(lfelJrej)xj [since xq - -z, = 1]
T =
1. .
> — min a(l —ej +e¢j) [£1---x, =1and 1 <1 = z; > 1 for some j].
€ 2<j<n

Thus since P(x) is bounded below by a positive number there must be a positive
constant By such that x; > B;. Similarly we find constants C}, B; such that
B < z; < Cjfor j =2,...,n. Hence P(z)/x1 -z, attains its infimum for
some x € R’} being a continuous function on a compact domain. For uniqueness
we may assume via rescaling and normalization that P(1) = Cap(P) = 1. Then
by Lemma 8.14 it follows that P is doubly stochastic. Suppose x is another
vector which realizes the capacity of P so that
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P(xy,...,2,)
:1:‘1...:1:"

=Cap(P) =1
then

log(P(x1,...,2,)) =log(zy - - xp).
But since P is stochastic we have as in Lemma 8.14 that

log(x Zlog (x5) (Z aja(a)> = Z ZO‘J log(z;) a(a) log(z
(o7 «

(e

=1
Thus

log (Z a(oz)a:“) = log(P(z1,...,x Za ) log(z

[ [e3

where ) a(a) = 1 since P(1) = 1. Therefore by Lemma 8.13 we have that

2% = 2 for all a, 3 € N" such that |a| = |3| = n. In particular 27 = 27 'a;
so that x; = x; for all 1 <14, j <n. Since P is doubly stochastic we have z =1
as desired [Explain the punchline]. O

Theorem 8.16. Let P € H.' be stable. Then

o"P n!
7821_”3%() Cap(P)

if and only if Cap(P) =0 or

P=(a1z1+ -+ apzy)”,
where a; > 0 for each j.
Proof. Recall that by Theorem 8.9 we have

om n!

Cap(P) > mp(o) > CaP(P)n7~ (5)

Thus if Cap(P) = 0 then we clearly have equality. If P = (a121 + -+ + anz,)"
then

nm onp B nm 8n(a121 + a4 anzn | o
T el U on 8z1-~-8n ”Hal " H“Z
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Moreover by AM-GM inequality we have

PR n
Cap(P)= inf (@71t @utu)
L1,y >0 X1 Tp
= inf 1((11961 + ot apTy)”

T1yeeey Ty >
T1Tn=1

inf
T1,esTp>1
Ty Ty=1

n
nf 0121+ apxy
n
n

n
AM;GMnn H a;x;
=1

Therefore

o"P
>_ - -
~ 0z1---0z,

and hence we have equality. Suppose conversely that

" Gap(P) 0

! _P ) (6)

[TGten=TT66 =1

If the coefficient in front of 2 is zero then e, = min{n,deg,,(P)} < min{n,n —
1}. But then since G is strictly decreasing and e; < j for all j = 1,...,n we
have

[ > [160)

which is a contradiction. Thus the coefficient in front of 2’ must be non-zero.
But the inequality in Theorem 8.9 remains invariant under permutation of the
variables since mixed partials commute and the infimum in Cap(P) remains the
same under permutation. Hence we conclude that the coeflicient of z7* must be
non-zero for all j = 1,...,n. Thus by an induction argument on the degree of
z; for each i = 1,...,n it follows via differentiation that all coefficients of P
are strictly positive. Moreover P(e;) > 0 (where e; is the standard basis vector
in R™) since the only term that survives evaluation in e; is 2! (because P is
homogeneous of degree n) and all coeflicients are strictly positive. Since P is
real stable by hypothesis it follows by Proposition 1.3 that ¢t — P(x + e;t) is
real rooted for every € R™. Hence P is hyperbolic with respect to e; for every
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t=1,...,n. Now let ¢1,...,¢, > 0 and R(z1,...,2n) := Plcrz1,...,cnzy).
Then

R
Cap(R) = inf By, an)
T1,...,2,>0 Ty Tp
— inf P(cizy, ..., cnzy)
T1,...,n >0 Ty, Ty

B . Pz, ..., cney)
=cy ¢, inf
z1,520>0 (C127) -+ (Cpy)

=c; - ¢, Cap(P).

Thus
O"R(z1,...,2n) ., O"P(c121,...,Cn2n)
0z1+++0zp, (0)= Oz1+++0zp, (0)
e .cha P(zl,...,zn)(o)

0z1+++0zp,
n!
=c¢p - -c,—Cap(P)
n

n

= ﬁCaP(R)
Thus the equality in (6) remains true under scaling of the variables by posi-
tive real numbers. Therefore by Lemma 8.15 we may assume that P is dou-
bly stochastic and that the vector 1 uniquely realizes the capacity. Suppose

Q = 0P/0z; for some 1 < i < n and Cap(Q) > G(n)Cap(P). Recall that
ZiIO
by defining Q,, := P, Q;_1 := 0Q;/0z; we have Qo = 0"/0z - -- 0z, P(0)
Zj:O
and by Lemma 8.8 that Cap(Q;-1) > Cap(Q;)G(deg;(Q;)). Thus by permuting
variables if necessary we have strict inequality in (5) contradicting our assump-
tion in (6). Hence by the equality case in Lemma 8.7 it follows that the stable
(by specialization) univariate polynomial ¢ — P(1 —e; +te;) has only one zero.
Thus since P(1) = 1 we may write

P(1+te;) = (1+\1)"
for some A; € R. Since P is doubly stochastic we have
d d oP

n)\j *(1—|—)\jt)n = *P(l—i—te]‘)

dt o di ®)

— 0%
Hence
P(1—nej+nte;) = P(14+n(t—1)e;))) = (1+A\n(t—1))" = (1—|—%n(t—1))” =t"

for all 1 <5 < n. Thus 1 — ne; belongs to the closure of the hyperbolicity cone
of P with respect to e;. Similarly by homogeneity of P we have

P(—(1—ne;j)—nte;) = P(—(1+n(t—1)e;)) = (—1)"P(1+n(t—1)e;) = (—1)™t"

so that —(1 —ne;) lies in the closure of the hyperbolicity cone of P and thereby
1 —ne; € L(P) for 1 < j < n. Thus since L(P) is a linear subspace we have
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ij(ej - %1) = —%(1 —nej) € L(P).
j=1

As such it follows by Proposition 7.17 that

AR

n n 1 1 n n Zn_lxj n
Ple)=P |3 ey | = P D ayles =)+ (D ay | 1) =P | | D oy 1) = | =

j=1 j=1 j=1 j=1

which is of the desired form.
O

Proof. (Van der Waerden Conjecture)
If A= (aij)z‘fj:l is a matrix with nonnegative entries then the polynomial

n n

Pa(z)=1]] jiZ;
1

i=1 \j=

is identically zero, or homogeneous stable of degree n since I'm (2?21 ajizj) >0

for all z € H™ (so in particular the factors are non-zero). Note that

o"P

— (0) = per(4

8z1---8zn() per(A)
since only the terms (H;;l ajc,(j)) Z1 - 2Zn, Where 0 € &,,, survive the deriva-
tion. If A is doubly stochastic then for every k =1,...,n we have

87(1) = Zark H Zaijzj = H aij =1.
k =1 =1 \j=1 z=1 =1 \j=1
N~—— i #k i#k

=1 2
Hence P4 is doubly stochastic. Note that P4 € H' and P4(1) = 1. By Lemma
8.14 we therefore have Cap(P4) = 1 and by Theorem 8.9 that

o n! n!
— P > P
Oz -0z 4(0) = Cap(Pa)

By Theorem 8.16 it follows that we have equality if and only if P = (a2 +
o+ 4 apzy)™ where a; > 0 for each j. Thus aj; = a; for all 1 < 4,5 < n.
Since 1 = Y | aj; = na; it follows that a; = 1/n and so aj; = a; = 1/n for
1 <14,5 < n as required. O

per(A) =

v onn

Definition 8.17. (Complete polarized form)

Let h(z1, ..., 2z,) be a homogeneous polynomial of degree d. Let v; = (v1ij,. .., Un;
for 1 < j < d. The complete polarized form of & is defined as the form
H : (R™")? — R defined by

11 (& 0
H(Ul,...,vd) = a li[l (vaa,z) h(Z)

i=1

)T
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Remark 8.18.

Note that

(1) H is clearly symmetric.

(2) H is multilinear: Indeed by symmetry it is enough to show linearity in the

first entry.
H(\vy + pol,v v ):l Z()\v- + pv; )i ﬁ ivi h(z)
1 M 15 Y255 Un d' - 71 H 71 82’1 =\= ”O”'zi
)\Zvl +u2v/ 0 ﬁ i 0 h(z)
d' v ”(‘)zi j=2 — Ua
:)\lﬁ iv h(z)Jr,ul iv{ 0 H ivl 0 h(z)
d i\ = 0 A\ 0z | 4\ Y 0z

=1

Exercise 5: Prove that

1
H(Ulw";vd) d' 82’1 (ZZ]U])

Proof. We argue by induction on d.

d n
H(’Ul,...,’ljd) = (; (Z’Uijaii> h(z)

n 0 1 91 d—1



Exercise 6: Garding’s inequality reads as follows. Suppose that h is hyperbolic
of degree n, and that aq,...,a, € Ay, then

h(al)l/" .. h(an)l/n < H(ay,...,an).
Prove that Garding’s inequality follows from Gurvits’ inequality (Theorem 8.9).

Proof. First note that

- (oe102) s (o))

- (<aib>nh(a+b)>l/n+ ((JLb)anb))””

a b
=——h'Y"(a+b)+ ——h""(a+b
Tt et b+ h M (a+ b)

= hY"(a + D).

n
Set P(z1,...,25) == h sza]). Then since aq,...,a, € Ay we have by
j=1

Proposition 7.15 that P is stable. By Lemma 6.11 P stable and homogeneous
implies all coefficients of P have the same phase. Thus by hyperbolicity, all
coefficients of P are nonnegative [might be talking BS in this sentence, fix it!].
Hence

[Gurvits ineq]

= inf
Ty >0 T1- Ty
n
i b M (@hay)
n
= inf
L1y, Tn >0 Ty Tp
n n
n 1/n .
) (\/Hj:lh / (acjaj)) )
>  inf [AM-GM ineq]
Ty >0 T1 Ty
noog1
. 1w 152y 7 (ay)
= inf
Z1,...xn >0 T1 Ty

= hY"™(ay) - hY™(ay).
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9 Negative Dependence and The Geometry of
Polynomials

In this section we are concerned with discrete probability measures on {0, 1}
where S is a finite set, by which we mean functions p : {0,1}® — R>g such that

> nefo1ys () = 1. Hence if A C {0, 1}5, we set p(A) := 2 nea ().

Definition 9.1. (PNC)
A probability measure p is pairwise negatively correlated, PNC, if

p({n:n@) =n0) =1}) < p(n:n6@) =1Hu(n : n(j) = 1})
foralli#jin S.

Definition 9.2. (NLC)
A probability measure i is said to satisfy the negative lattice condition, NLC,

if
p(n Vv Eun A& < p(n)u(§)
for allv, & € {0,1}.

Definition 9.3. (NA)
A probability measure u is said to be negatively associated, NA, if

/fgdu§ /fdu/gdu

for all increasing functions f,g : {0,1}° — R that depend on disjoint sets
of variables, that is, there exists a subset A C S such that f(vi,...,vyn) only
depends on {n; : j € A} and g only depends on {n; : j € S\ A}.

Definition 9.4. An external field is a vector x € Ri giving rise to a measure
Lo given by
" p(n)

/1’1(77) = ZM(JZ') fOT’ all 77 € {Oa 1}S

where

Zu(w)= > plm)a?, =]

nef{0,1}5 jes
is the partition function of u.

Definition 9.5. If P is a property of measures, we say that p satisfies Py if
Wy satisfies P for all x € Ry.

Remark 9.6. Note that

8ZH(x) -1 Zn:n(j):l M(n)xn

8zj J -
nn(§)=1
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Thus p, is negatively correlated if and only if

2,020 7 0 e Y e

T)————
Ti0T; v nn(j)=1

= Zu(@)x et Y )

nn(§)=1,n(i)=1
= Z3 (@) oy e ({n  n(i) = n(j) = 1})
< Zp(w)ay w e ({n 20 (i) = 1 ua({n = 0(5) = 13)
= (27" Zu(@)pe({n = 0(0) = 1)) (27 Zu(@)pa({n 2 0(5) = 13))
_0Zy(x) 0Z,,(x)
n 8x1 al‘j
Definition 9.7. (Rayleigh)
A probability measure u is Rayleigh if
240 < 5ot

forallxeRJSr,i,jeS

Remark 9.8. By Theorem 3 it follows immediately that if Z, is a stable poly-
nomial, then 1 is Rayleigh. In fact, more is true. If Z, is stable then u is
said to be strongly Rayleigh, or SR for short. Strongly Rayleigh measures are
NA,.

Definition 9.9. (Constant sum)
A measure p has constant sum if (1(§)u(n) # 0 implies |&| = |n|, that is, if Z,
is homogeneous.

Theorem 9.10. (Feder and Mihail)
If 1 is a constant sum Rayleigh measure then mu is NA,.

Definition 9.11. (Projection of measure)

Let p1 be a probability measure on {0,1}° and let R C S. Then the projection
of 1 onto {0, 1} is defined as the measure whose partition function is obtained
from Z,, by setting z; =1 for all j € S.

Remark 9.12. Since stability is a closed property under specialization by Propo-
sition 1.8 it follows that the class of strongly Rayleigh measures are closed under
projection, and so is the class of negatively associated measures. Hence in view
of Theorem 9.10, to prove that SR measures are NA it suffices to show that each
SR measure is the projection of a constant sum SR measure.

Definition 9.13. (Homogeneous symmetrization)

Let ju be a probability measure on {0,1}° and let R be a set such that RN.S = ()
and |R| = |S|. The homogeneous symmetrization of [ is defined as the
unique measure, (1, on {0,1}5°E satisfying:

(1) pr has contant sum |S|;

(2) The sites in R are indistinguishable, that is, pp(o(n)) = un(n) whenever
o c 6|R‘;

(3) The projection of uy, onto {0,1}5 is p.

In terms of partition functions, up is the measure with partition function
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Zuh = Z M(U)ZW%KZR)v
ne{0,1}3 (k)

where n. = |S| and ex(zr) is the k™ elementary symmetric polynomial in the
variables zr = (2;) jer-

Corollary 9.14. u is strong Rayleigh if and only if up, is strong Rayleigh.

Proof. If py is strong Rayleigh, then so is p since the strong Rayleigh property
is closed under projections. Conversely suppose that pu is strong Rayleigh. Then
Z,, is stable by definition and has nonnegative coefficients, so by Corollary 7.14
we have that

P= 3wty

ne{0,1}%

is stable in z and w. By Proposition 3.6 the polarization IIT(P) = Z,, is also
stable showing py, is strong Rayleigh. O

Theorem 9.15. Strong Rayleigh measures are negatively associated

Proof. If u is strong Rayleigh then by Corollary 9.14 so is pp. Since pyp is
constant sum we have by Theorem 9.10 that u; is negatively associated. But
1y projects onto p and the class of negatively associated measures is closed
under projections. Hence p is negatively associated. O

Exercise 7: Prove that u is negatively associated whenever Z,, is stable.

Proof. If Z, is stable then pu is strong Rayleigh by definition. The statement
now follows by Theorem 9.15. O

Definition 9.16. (The exclusion process)

The exclusion process is one of the main models considered in the area of
Interacting Particle Systems. The idea is that particles move in continuous on a
countable set S of sites in such a way that there is always at most one particle
per site.

Definition 9.17. (The symmetric exclusion process)

The symmetric exclusion process is a continuous time Markov chain (SEP)
on a state space {0, 1}* where S is a countable set of sites. To avoid technicalities
we will only consider the case where |S| < co. If n € {0,1}° we think of the
indices j such that n(j) = 1 as occupied sites and those with n(j) = 0 as
vacant sites. The transitions of the Markov chain are: For each ¢,5 € S,n —
7i;(n) at rate ¢;;, where 7;; is the transposition that exchanges ¢ and j. Ligett
and Pemantle conjectured independently that if the initial distribution of SEP
is a product measure or deterministic, then the distribution at all positive times
is negatively associated. It turns out much more is true, namely SEP preserves
the strong Rayleigh property. This was proved by Borcea, Branden and Ligett.
It is convenient to view the Markov chain as acting on the partition functions
of the measures. We may then view a Markov chain as acting on Cq[z1,. .., 2,]
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as a family of linear operators (or matrices) {7} }:>0 indexed by the continuous
variable t. It follows that T} satisfies

d
%Tt = ,CTt, for all ¢ > O7 (7)
where £ : Cq[z1,...,2n] = Ci[21,...,2,] is the (linear) generator. In the case

of SEP
L= Zqij(nj - Zd)
i<j
where id is the identity. Clearly (7) is equivalent to

T, = et Zt”ﬁ”/n'— lim (1+t£) .

n—oo
n=0

Thus if the distribution at ¢ = 0 has partition function Z, then the partition
function at time ¢ > 0 is T;(2).

Theorem 9.18. (Lie-Trotter product formula)
Let A and B be complex square matrices, or bounded operators on a Banach
space. Then

lim (eA/neB/n)n _ oA+B

n—oo

in the operator norm.

Proof. We have

A/n _B/n — A¥ — B! A*B! -2
e?'me = ank! ZW :Zm:1+(A+B)/n+n C(n)

k=0 =0

where ||C(n)|| < K for all n and some K > 0. By triangle inequality we get
that

(M + N)™ = M| < ([[M]] + [[N]])" = [[M]]".

(252 (25
S e -2
(G =)y -5

= (I +0)" = [[[[" =0 asn = oo.

Thus

(eA/”eB/”)n B (I A+B>

n

Finally by the standard realization of e® as the limit lim,, (1 + %)n we get

e“B—(I+A+B>

as n — o0
n

and hence the theorem follows. O
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Theorem 9.19. If the initial distribution of the symmetric exclusion process is
strong Rayleigh, then the distribution is strongly Rayleigh, and thus negatively
associated for all t > 0.

Proof. We show that Ty : Cq[21,...,2,] = C1]z1,..., 2n] preserves stability for
all t > 0 i.e if Z is the partition function at ¢ = 0 then T;(Z) is stable for all
t > 0. In the case of symmetric exclusion processes the generator of T} is given
by

L= gy(n; —id)

i<j
To show that T; preserves stability we wish to reduce the problemv to the case
of a single transposition with £ = ¢(7 — id). To this end if Tt(”) and Tt(kl)
preserve stability for all ¢ > 0 and are generated by £(%7) = ¢ij (135 —1id), LED =
qr1(Tr1 —id) respectively, then by Lie-Trotter product formula the linear operator
generated by £(9) 4+ £ is given by

LD +LE) gy <€w(ij)et£<kl))n = lim (Tt(ij)Tt(kl)y.

n—oo n—roo
.. n
Given that (Tt(” )Tt(kl)) preserves stability for all ¢ > 0 it follows by Hurwitz’
theorem that so does e!(£"”+£"") " Since £ is a sum of generators of above
form we conclude by repeating the argument a finite number of times that T3
preserves stability. It thus remains to prove the result for £ = ¢(7 — id) where
T is a transposition. Given that 72 = id we have

oo

> 2n+1 0 2n
_ _tq(r—id) _ _tqr ,—tq __ 2™ _ (tq) (tq) —t
Ty =e" =ee q—<27n o )e = ;(2n+1)!7+;(2n)! e

n=0

tq _ —1q tq —tq 1— —2qt 1 —2qt
= (1—p(t))T + p(t)id.
1— 672qt

where p(t) = — Hence by Theorem 2.1 it follows that 7T} preserves

stability for every ¢ > 0. O

10 The Matrix Tree Theorem

Let G = (V, E) be a graph without loops and multiple edges, and define a V' x E
+1, ifiece
0, ifide

where we require that U;cUj. = —1 for each edge e = {7, j} € E.

matrix U by e, =

Definition 10.1. (Rooted forest)

A rooted forest in G is a pair F = [F, R|, where F C E contains no cycle,
RCV,andifCy,...,Cr CV are the connected components of the graph (F, V),
then there is a bijection ¢ : [k] — R such that ¢(j) € C; for every 1 < j < k. If
F is a rooted forest let roots(F) = R and edges(F) = F.
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Definition 10.2. (Rooted tree)
A rooted tree is a rooted forest where |R| = 1.

Definition 10.3. (Total unimodularity)
An m X n matriz is totally unimodular if the determinant of each square
submatriz of A is either 0,—1 or 1.

Lemma 10.4. The matriz U is totally unimodular. Moreover if F C E and
W CV with |F| = |W/|, then det(U(W, F)) = 1 if and only if [FV \ W] is a
rooted forest.

Proof. We argue by induction on the size of the submatrix. By definition of U
the result is clearly true for square submatrices of size 1. Let M be a square
submatrix of size > 1. If M has a zero column then det(M) = 0. Likewise if
M has a column with only one non-zero entry then expanding the determinant
along this column gives us a square submatrix of size one less and so det(M) €
{0,+1} by induction. Notice that U has exactly two non-zero entries per column
as given by the fact that each edge is incident to exactly two vertices in G.
Moreover by the condition that U;.Uj. = —1 if (¢,5) = e it follows that the
two non-zero entries are necessarily of opposite sign. In particular each column
sum to zero. Thus if M has exactly two non-zero entries per column it follows
that MT1 = 0 where 1 = (1,...,1) and so M has non-zero null-space which
implies det M = 0. Hence every submatrix of U has determinant 0,1 or —1
by induction and so U is totally unimodular. From the reasoning above that
no column can be zero nor all columns contain exactly two non-zero entries, it
follows that det(U(W, F')) = £1 if and only if we may reorder the columns and
rows, multiplying certain columns by —1 if necessary (operations which only
changes the sign of the determinant) so that U(W, F) has the form

* % % *
1 * x *
0 1 =« *
0 0 1 *
o0 0 ... 1

where the first rows correspond to the vertices in V'\ W. This matrix represents
a bipartite graph with independent sets W and V' \ W. In particular [F,V \ W]
has no cycles and hence is a rooted forest.

O

If Ais an m x n matrix and S C [m], T C [n] with |S| = |T|, let A(S,T) denote
the determinant of the submatrix of A that has rows and columns indexed by
S and T, respectively.

Theorem 10.5. (Binet-Cauchy)
Let A be an m x n matriz, B an n x ¢ matriz and suppose that S C [m| and
T C [q] satisfy |S| = |T| = k. Then
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(AB)(S,T)= Y A(S,R)B(R,T).

R,|R|=k

Theorem 10.6. (Principal Minors Matriz-Tree Theorem)

Let G = (V,E) be a graph without loops and multiple edges, and Z and W
diagonal matrices with variables z;, (i € V') and we, (e € E), where the variables
are ordered in the same order as in the matrix U. Then

det(Z + UWUT) _ Z Zroots(]—')wedges(]:)

where the sum is over all rooted forests in G.
Proof. If A is an n X n matrix and Z = diag(z1, ..., z,), then

det(A+2Z) = Y A(S,8)zI"\5
SCln]

Thus by above observation and the Binet-Cauchy theorem we have

det(Z + UWUT) = > 2NSUWUT)(S, S)

SCvV
=Y 2V N WS, R)UT(R,S)
SCV. RIS

= Z Z ZV\SwRU(S, R)2.

SCV RCE,|R|=|S|

Finally, since by Lemma 10.4 (the determinant) U(S, R) = +1 if and only if
F =[R,V\ 5] is a rooted forest (and zero otherwise) we have that

det(Z+ UWUT) = Z Z SV\S RU(S R eroots(}') edges(F)_
SCV RCE,|R|=|S| F

Hence the proof follows. O

Corollary 10.7. (Matrix-Tree theorem)
Let G = (V, E) be a connected graph and i € V. Then

OWUT)V\A{i}, V\ {i}) =Y wedoestD),

T

where the sum is over all spanning trees of G.

Definition 10.8. (Uniform spanning tree measure)

The uniform spanning tree measure is the measure p on {0,1}¥ such that
1)1, 4fF is a spanning tree,
n(F) =~ .
t |0, otherwise

where t is the number of spanning trees.

Corollary 10.9. The polynomial det(Z + UWUT) is stable, and the uniform
spanning tree measure is strong Rayleigh.

Proof. Suppose that V' = [n] and let {e;};c[, be the standard basis of R™. If
Ue, (e € E) are the columns of U, then
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Z+UwuT = Z zueielT + Z weueuz

i€[n] e€E
Note that e;e] = E;; where Ej; is the standard basis vector of M, (R). The
matrix E;; has eigenvalue spectrum o (F;;) = {1,0,...,0} so is therefore positive

semidefinite and moreover Hermitian being real symmetric. Note also that
ueul = (e; —ej)(e; — ;)T = ejel — eief — eief + ejef =FE;,—E;; —E;, +Ej;
which is clearly real symmetric and therefore Hermitian. Moreover expanding
det(A — uul’) along column i we get

det(M — weul) = (—1)E=DHE=D )\ _1)2\n=2 4 (_1)(=D+G-1) ((_1)(j—2)+(i—1)/\n—2)
( 1)2)\71 2 — A" 2

=N (A1) 1)
= \" 1 ()\ )
Thus the matrix u.ul has eigenvalue spectrum o(u.ul’) = {2,0,...,0} so it is

positive semidefinite for every e € E. Hence by Proposmon 1.9 1t follows that
det(Z +UWUT) is stable. The same proof works for the uniform spanning tree
measure by the Matrix-Tree theorem. O

11 Stable Polynomials and Matroid Theory

Matroid theory tries to capture the essence of independence, as linear inde-
pendence in linear algebra, algebraic independence, or the notion of cycles in
graphs.

Definition 11.1. (Matroid)

A matroid is a pair (M, E), where M is a collection of subsets of a finite set
E satisfying:

(1) M is hereditary, i.e if B € M and A C B, then A € M.

(2) The collection B consisting of maximal elements with respect to inclusion of
M respects the basis change axiom:

A BeBandx € A\B = Jy € B\ A such that A\ {z} U {y} € B.

The elements of M are called independent sets and the set BB is called the set
of bases of M.

Example 11.2. The fundamental motivating example of a matroid arises from
a list of vectors v1,...,v, in a k-linear space V. If E = [n] then A C [n]
is an independent set of the matroid M over E if and only if the vectors v;,
(i € A) are linearly independent. The basis change axiom follows from Steinitz
exchange lemma in linear algebra. Such a matroid is said to be representable
over k. A subclass of the representable matroids are the graphic matroids.
If G = (V,FE) is a graph, we define a matroid on F by declaring S C F to be
independent if S contains no cycle. Hence the set of bases are the spanning
trees if G is connected and the maximal spanning forests otherwise. By the
Matrix-Tree theorem it follows that the graphic matroids are representable over
R. However the arguments in Lemma 10.4 hold over any field and so the graphic
matroids are representable over any field.
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Definition 11.3. (Jump system,)
Let o, 8 € Z™ and define |a| = Y., |i|. The set of steps from a to j is
defined by

St(a,8) ={c€Z" :|o|=1]Ja+0—8|=|a—p| -1}

A collection F of vectors in Z"™ is called a jump system if it respects the
Two-step Axiom:

Ifa,8€F,o€ St(a,B) and a + 0 &€ F,
then there exists T € St(a + o, 8) such that « +0 + 71 € F.

Remark 11.4. Jump systems generalizes matroids to arbitrary collections of
finite subsets of Z™. Suppose J C {0,1}"™ has constant sum, i.e |{| = |n| for
all &, n € J. If we identify {0,1}" with {S : S C [n]} we see that J is a jump
system if and only if 7 is the set of bases of a matroid.

Definition 11.5. (Support of a polynomial)
The support, supp(P), of a polynomial P(z) = Y cnn a(a)z® € Clzy, ..., 2,]
is defined by

supp(P) = {a € N" : a(a) # 0}.

Suppose that P(z) = Zo<y<n a(v)z" € Clzy, ..., 2z,] is a stable polynomial of
degree r; in z; for each j and suppose that a, 3 € supp(P) with a < 3. If
a=(a,...,a,) € N7 let

oL O%n
ap— .
0 0zt Oz
Let
G(z) = 0" P(2"P(—1/2)), —1/z=(—1/z1,...,—1/z,).

Then G(z) is stable since stability is preserved under inversion and differentia-
tion. Let further

P,s(z) = aa(zﬁG(—l/z)).

For a, 8 € Z™, let [o, Bl ={y € Z" :a <y < B} and (o,f) ={y €Z" : a <
v < B}. Again P, g is stable and

supp(Pa,s) = {7y — a : v € supp(P) N [a, B]}.

Theorem 11.6. Suppose that P is stable. Then the support of P is a jump
system.
Proof. Let «, 8 € supp(P) and let u(P) be the change of variables

—1 .
s —z; if oy >.ﬁi,
Zi otherwise
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and let v € N be sufficiently large so that G(z) := 27 P(u(z)) is a polynomial.
By inversion P(z) is stable if and only if G(z) is. Under this transformation
a, 8 € supp(P) are translated into o/, 8’ € supp(G) where o < 3. Thus we
may assume « < 8 when checking the two-step axiom. Suppose there is a stable
polynomial P and a, 8 € supp(P) with o < 8 and «, 8 minimal with respect to
|ae— 3| for which the two-step axiom is violated. Note that if P, «, 8 constitutes a
counterexample then so does P, 3,0, 3—a € supp(P,,z). Hence we may assume
that our minimal counterexample is of the form > _a(y)z? € Clz, ..., z,] with
a(0),a() # 0 where §; > 0forall 1 <i < nandsupp(P) C [0,5]. Letey,..., e,
be the standard orthonormal basis of R™. Note that eq,...,e, € St(0,3) since
B; > 0 for all 1 < i < n. By symmetry we may assume o = e; in the two-step
axiom. Then by failure of the two-step axiom for this counterexample we have
e1,0+0+e =2e,0+0+es =€ +ey,...,0+0+e, =e; +e, €supp(P). If
there was & € (e1, 8) Nsupp(P) then there would be a smaller counterexample
given by Py¢. Hence if v € N with v3 > 0 then a(y) = 0 unless v = 5.
Let A > 0 and r = 51 ! Z?:g B;. Then by scaling the univariate polynomial
P(A"z,\z,..., Az) is stable. Letting A — 0 we end up with the polynomial

a(0) +a(B)z",

which is stable by Hurwitz’s theorem. We cannot have || < 2, since then the
two-step axiom would be valid, so |8| > 3. But this is a contradiction, since
when |8| > 3 the equation

a(0)

a(0) +a(f)zl =0 = 2Pl = -2

(0) +a(p) o
necessarily has non-real solutions contradicting stability of the univariate poly-
nomial. O

Corollary 11.7. The support of a stable, multiaffine and homogenous polyno-
mial is the set of bases of a matroid.

Example 11.8. A finite subset F of N is a jump system if and only if it has
holes of size at most 1 i.e,

ke Fii<kandjg Fforalli<j<k = k—i<2.

One may ask whether all finite jump systems in N are supports of polynomials
with the half-plane property? The answer is in fact Yes. If we assume that
0 € F then we claim there is a real-rooted polynomial P with simple zeros such
that F = supp(P). The proof of this is by induction over the maximal element
of F. If 1 € F then

Fi={i—1:i>1icF}.

is a jump system with 0 € F;. Hence by induction, there is a real- and simple-
rooted polynomial @ such that supp(Q) = F;. If € > 0 is small enough then
e+ 2@ will be real- and simple-rooted (amounts to vertically perturbing the real-
and simple-rooted polynomial zQ by a very small positive amount). Moreover
supp(e + 2Q) = F since the factor z shifts back the support up one step and
€ makes sure 0 belongs to the support, ensuring we get back F. If 1 € F then
F = {0} or 2 € F since holes can be of size at most 1. In the latter case we
have that
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Fo={i—2:i>2icF}

is a jump system with 0 € F5. Hence by induction there is a real- and simple-
rooted polynomial @ such that supp(Q) = Fz. For small € > 0 the polynomial
—€Q(0) + 22Q will be real- and simple-rooted and supp(—eQ(0) + 22Q) = F.

A well known property of real-rooted polynomials with non-negative coefficients
is that the coefficients have no internal zeros, i.e, if P(2) = ag+ai1z+- -+ a,z"
is real-rooted and a; > 0 for 0 < ¢ < n, then

i<j<kandaar#0 = a; #0.

(Ref: M Aissen, A Edrei, I.J Schoenberg, A Whitney, On the Generating Func-
tions of Totally Positive Sequences, Proc. Nat. Acad. Sci. U.S.A., 37 (1951),
pp. 303307 ). This extends to several variables.

Corollary 11.9. Let P be a real stable polynomial with nonnegative coefficients.
Ifa <y <8 and a, B € supp(P) then v € supp(P).

Proof. If the corollary is false then there is a real stable polynomial P with
nonnegative coefficients, and points «, 8 € N" with a < 8, o, 8 € supp(P)
but a + e; & supp(P) for some 1 < i < n with a + e; < 5. By the two-step
axiom there exists a 1 < j < n such that { = a + ¢; +¢; € supp(P). Now
Poe = a+ bz + czzj with a,b,¢c > 0, ac > 0 is real stable. If i = j then
Poe=a+ cz? is not real stable, so we must have i # j. By letting z; = Az and
z; = A7'z and letting A — co we have by Hurwitz’s theorem that the univariate
polynomial a + cz? is real stable which is a contradiction. O

Lemma 11.10. If J C Z" is a finite jump system and o, B € J are mazimal
(or minimal) with respect to <, then |a| = |5|.

Proof. We argue by contradiction. Let M be the set of maximal elements
of J with |3] = d maximal. Suppose further that 3 € M is of minimal L!-
distance to the set of all maximal (w.r.t <) elements o with || < d. Let «
be a maximal element that realizes the above distance to 8. Clearly o > f;
for some j as otherwise a would not be a maximal element. Thus e; is a step
from § to a and B+ e; € J by maximality of 3. Thus by the two-step axiom,
B'=pB+e; +s e J for some step s from 5+ e; to a. Since § is maximal, the

non-zero coordinate in s is negative. Now |5’| = |8], so 8’ is maximal (w.r.t <).
However |3’ — a| < |8 — « since 5/ € M is a step closer to « than 3, but this
contradicts the minimality of 5 € M. O

Definition 11.11. (HPP and WHPP)
A matroid has the half-plane property (HPP) if the bases generating poly-

nomial
Pi(z) = Z H Zj

BeBjeB

is stable. A matroid has the weak half-plane property (WHPP) if there is a
function a : B — C\ {0} such that

> aB) ] =

BeB jeB
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is stable.
By Lemma 6.11 there is no restriction in assuming that a : B — Ry [Why?].

Proposition 11.12. All matroids representable over C have the weak half-plane
property.

Proof. Suppose that vy,...,v, € C™ realizes the matroid M. We may assume
that m = r, where r is the rank of M. Let U be the matrix with vq,...,v, as
columns. Then

det(z1v10} + -+ + zvavy) = det(UZU*) = Y |U([r], §)[%2%,
S,|S|=r

by the Binet-Cauchy theorem. Since w;u} is positive semidefinite, the above
polynomial is stable by Proposition 1.9. The support of the polynomal is the
set of bases of M. O

Corollary 11.13. Graphic matroids have the half-plane property.

Proof. By definition the maximal elements of graphic matroids are the maxi-
mal edge subsets which contain no cycles, that is, the spanning trees if G is
connected. If G is not connected then the base generating polynomial natu-
rally becomes the product of the base generating polynomial of each connected
component with each component having a disjoint set of variables. We may
therefore assume G is connected, in which case stability simply follows from
Corollary 10.9. O
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