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Abstract

This thesis consists of five papers in algebraic and enumerative combina-
torics. The objects at the heart of the thesis are combinatorial polynomials
in one or more variables. We study their zeros, coefficients and special eval-
uations.

Hyperbolic polynomials may be viewed as multivariate generalizations of
real-rooted polynomials in one variable. To each hyperbolic polynomial one
may associate a convex cone from which a matroid can be derived - a so called
hyperbolic matroid. In Paper A we prove the existence of an infinite family
of non-representable hyperbolic matroids parametrized by hypergraphs. We
further use special members of our family to investigate consequences to a cen-
tral conjecture around hyperbolic polynomials, namely the generalized Lax
conjecture. Along the way we strengthen and generalize several symmetric
function inequalities in the literature, such as the Laguerre-Turán inequality
and an inequality due to Jensen. In Paper B we affirm the generalized Lax
conjecture for two related classes of combinatorial polynomials: multivariate
matching polynomials over arbitrary graphs and multivariate independence
polynomials over simplicial graphs. In Paper C we prove that the multivariate
d-matching polynomial is hyperbolic for arbitrary multigraphs, in particular
answering a question by Hall, Puder and Sawin. We also provide a hyper-
graphic generalization of a classical theorem by Heilmann and Lieb regarding
the real-rootedness of the matching polynomial of a graph.

In Paper D we establish a number of equidistributions between Mahonian
statistics which are given by conic combinations of vincular pattern functions
of length at most three, over permutations avoiding a single classical pattern
of length three.

In Paper E we find necessary and sufficient conditions for a candidate
polynomial to be complemented to a cyclic sieving phenomenon (without
regards to combinatorial context). We further take a geometric perspective
on the phenomenon by associating a convex rational polyhedral cone which
has integer lattice points in correspondence with cyclic sieving phenomena.
We find the half-space description of this cone and investigate its properties.
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Sammanfattning

Denna avhandling best̊ar av fem artiklar i algebraisk och enumerativ kom-
binatorik. Objekten som ligger till hjärtat av avhandlingen är kombinatoriska
polynom i en eller flera variabler. Vi studerar deras nollställen, koefficienter
och speciella evalueringar.

Hyperboliska polynom kan ses som multivariata generaliseringar av reell-
rootade polynom i en variabel. Till varje hyperboliskt polynom kan en kon-
vex kon associeras fr̊an vilket en matroid kan härledas - en s̊a kallad hyper-
bolisk matroid. I Artikel A bevisar vi existensen av en oändlg familj av icke-
representerbara hyperboliska matroider som parametriseras av hypergrafer.
Vidare använder vi speciella medlemmar av v̊ar familj för att undersöka kon-
sekvenser till en central förmodan kring hyperboliska polynom, nämligen den
generaliserade Lax förmodan. Längst vägen stärker och generaliserar vi ett
flertal symmetriska olikheter i literaturen s̊a som Laguerre-Túran olikheten
och en olikhet av Jensen. I Artikel B bekräftar vi den generaliserade Lax
förmodan för tv̊a relaterade klasser av kombinatoriska polynom: multivariata
matchningspolynom över godtyckliga grafer, samt multivariata oberoende-
polynom över simpliciala grafer. I Artikel C bevisar vi att det multivaria-
ta d-matchningspolynomet är hyperboliskt för godtyckliga multigrafer vilket
i synnerhet besvarar en fr̊aga av Hall, Puder och Sawin. Vi tillhandh̊aller
även en hypergrafisk generalisering av en klassisk sats av Heilmann och Lieb
ang̊aende reell-rotenheten hos matchningspolynomet för en graf.

I Artikel D fastställer vi en rad olika ekvidistributioner mellan Mahoniska
statistiker som ges av koniska kombinationer av generaliserade mönsterfunktioner
av längd som mest tre, över permutationer som undviker ett enstaka klassiskt
mönster av längd tre.

I Artikel E hittar vi nödvändiga och tillräckliga villkor för att ett kan-
didatpolynom ska kunna komplementeras till ett cykliskt s̊allfenomen (utan
hänsyn till kombinatoriskt kontext). Vi tar dessutom ett geometrisk perspek-
tiv p̊a fenomenet genom att associera en konvex rationell polyhedral kon vars
gitterpunkter är i korrespondens med cykliska s̊allfenomen. Vi finner halv-
rymdsbeskrivningen av denna kon och undersöker dess egenskaper.



v

Acknowledgements
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1 Overview

Polynomials have a long history in mathematics and remain relevant to almost all
branches of mathematical science. In combinatorics, polynomials are an indispens-
able tool for studying quantitative properties associated with discrete structures.
In this thesis this manifests itself in at least three different ways:

• The geometry of zeros of combinatorial polynomials

• Generating polynomials of combinatorial statistics

• Counting via evaluation of polynomials

The geometry of zeros of combinatorial polynomials

The problem of locating zeros of polynomials is almost as old as mathematics
itself and includes fundamental theoretical contributions by mathematicians such
as Cauchy, Fourier, Gauss, Hermite, Laguerre, Newton, Pólya, Schur and Szegö.

In combinatorics there are numerous examples of polynomials which are known
to have zero sets confined to a prescribed region in the complex plane. Many of
them are polynomials associated with combinatorial objects such as graphs, ma-
troids, posets and lattice polytopes etc. For a combinatorialist the zero set of a
univariate polynomial is mainly interesting due its relationship with the polyno-
mial coefficients. This relationship is especially pronounced when the polynomial
vanishes only at real points, a property which is known to imply both unimodal-
ity and log-concavity of the coefficients. Unimodality and log-concavity are prop-
erties exhibited by many important combinatorial sequences and have been the
subject of much research. More recently, with breakthroughs by Borcea, Brändén
and others, analogues of real-rootedness in multivariate polynomials have attracted
a lot of attention. These ideas are captured in the notion of hyperbolic/stable
polynomials which is fundamentally the subject of papers A, B and C in this the-
sis. Although hyperbolic polynomials originated in PDE-theory with the works of
G̊arding, Hörmander and others, they have recently found applications in diverse
areas such as optimization, real algebraic geometry, computer science, probability
theory and combinatorics. They were notably used by Marcus, Spielman and Sri-
vastava in 2013 to give an affirmative answer to the longstanding Kadison-Singer
problem from 1959 - a problem originally formulated in the area of operator theory
but with far-reaching consequences for other areas of mathematics. Linear transfor-
mations preserving stability were fully characterized in seminal work of Borcea and
Brändén, completing a century old classification program going back to Pólya and
Schur. Their characterization have since been applied to a multitude of combinato-
rial settings as a tool for establishing stability through primarily linear differential
operators.
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Generating polynomials of combinatorial statistics

A combinatorial statistic may be loosely defined as a function which associates
to each object in a combinatorial set a non-negative integer which is derived in
some concrete way from the object. Generating polynomials are standard tools in
enumerative combinatorics for reasoning about multi-dimensional arrays of combi-
natorial data. In essence, the coefficients of a generating polynomial represent the
number of objects in the combinatorial set grouped by the statistics under consid-
eration. Two tuples of statistics (on possibly different combinatorial objects) are
said to be equidistributed if their generating polynomials have the same coefficients.
Many interesting and sometimes unexpected equidistributions have been identified
in combinatorics through a variety of different techniques, ranging from generating
function manipulations to concrete bijective proofs. Perhaps the most well-known
equidistribution is that between the inversion statistic and the major index statistic
on permutations.

Pattern avoidance is an area of combinatorics which has seen considerable expan-
sion in the last couple of decades, now even boasting a dedicated annual conference.
The study of pattern avoidance in permutations was pioneered by Donald Knuth.
He showed in his book The art of computer programming Vol 1, that a permutation
is sortable by a stack if and only if it avoids the pattern 231, and moreover that
these permutations are enumerated by the Catalan numbers. Since then, a main
objective in the community have been to enumerate pattern classes and finding sim-
ilar pattern restrictions in sorting procedures with other data structures. However
the study has now expanded well beyond this endeavour.

More recently people including Claesson-Kitaev and Sagan-Savage have com-
bined the study of combinatorial statistics with pattern avoidance in order to refine
patterns classes and study statistic-preserving bijections between them. This is the
context for paper D in this thesis.

Counting via evaluation of polynomials

The chromatic polynomial of a graph and the Ehrhart polynomial of a lattice poly-
tope are examples of combinatorial polynomials which when evaluated at a natural
number n count the number of n-colourings of a graph and the number of lattice
points inside the nth dilation of a lattice polytope respectively. The evaluation of
combinatorial polynomials at non-natural numbers may sometimes count interest-
ing quantities too, despite there being no a priori reason for it to do so. A prime
example of this so called combinatorial reciprocity is due to Stanley and occurs
when the chromatic polynomial is evaluated at −1. By a combinatorial miracle
this evaluation amounts to the number of acyclic orientations of G, a quantity
which is seemingly unrelated to counting colourings. Other examples of this phe-
nomenon occurs when counting fixed points under a cyclic action. The phenomenon
is exhibited when the evaluations of a combinatorial polynomial at roots of unity
coincides with the number of fixed points under a cyclic action on a combinatorial
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set. This so called cyclic sieving phenomenon was introduced by Reiner, Stanton
and White, and there are plenty of examples of it in the literature. Again there
is no a priori reason why evaluating a combinatorial polynomial at roots of unity
should mean anything at all. In paper E we look closer at the nature of the cyclic
sieving phenomenon.

2 Background

Stable polynomials

For a subset Ω ⊆ Cn, a polynomial P (z) ∈ C[z1, . . . , zn] is called Ω-stable if P (z) 6=
0 for all z ∈ Ω. Let H := {z ∈ C : Im(z) > 0}, denote the open upper complex
half-plane. Conventionally Hn-stable polynomials are simply referred to as stable.
If P is a stable polynomial with only real coefficients, then P is referred to as a real
stable polynomial. It is worth noting that real stable polynomials in one variable
are precisely the real-rooted polynomials. Indeed if a real univariate polynomial is
non-vanishing on H, then it must also be non-vanishing on −H since its complex
roots come in conjugate pairs. Therefore all roots must lie on the real line. In this
sense real stability is a multivariate generalization of the notion of real-rootedness.
Examples of stable polynomials occurring in combinatorics include:

• Elementary symmetric polynomials:

ed(z) :=
∑

S⊆[n]
|S|=d

∏

i∈S
zi.

• Spanning tree polynomials:

PG(z) :=
∑

T

∏

e∈T
ze,

where the sum runs over all spanning trees T of a graph G.

• Matching polynomials:

µG(z) :=
∑

M

(−1)|M |
∏

ij∈M
zizj ,

where the sum runs over all matchings M of a graph G.

• Eulerian polynomials:

A(y, z) :=
∑

σ

∏

i∈DB(σ)

yi
∏

j∈AB(σ)

zj ,

where the sum runs over all permutations σ in Sn and DB(σ) (resp. AB(σ))
denote the set of descent (resp. ascent) bottoms of σ.
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Linear transformations preserving stability

A common technique for proving that a polynomial is stable is to realize the polyno-
mial as the image of a known stable polynomial under a stability preserving linear
transformation.

Stable polynomials satisfy a number of basic closure properties:

(i) Permutation: for any permutation σ ∈ Sn, P (z) 7→ P (zσ(1), . . . , zσ(n)).

(ii) Scaling : for λ ∈ C and a ∈ Rn+, P (z) 7→ λP (a1x1, . . . , anzn).

(iii) Diagonalization: for 1 ≤ i < j ≤ n, f(z) 7→ f(z)|zi=zj .

(iv) Specialization: for 1 ≤ i ≤ n and ζ ∈ C with Im(ζ) ≥ 0, f(z) 7→ f(z)|zi=ζ .

(v) Translation: f(z) 7→ f(z + t) ∈ C[z, t].

(vi) Inversion: if degzi(f) = d, f(z) 7→ zdi f(z1, . . . , zi−1,−z−1
i , zi+1, . . . , zn).

(vii) Differentiation: for 1 ≤ i ≤ n, f(z) 7→ (∂/∂zi)f(z).

Despite the elementary nature of the above facts they accomplish a fair amount. For
instance, both the Newton inequalities and the Gauss-Lucas theorem are straight-
forward consequences of the last two facts.

It is natural to ask more generally, which linear transformations preserve sta-
bility? For real univariate polynomials this question was already considered by
Pólya and Schur in [57] where they characterized diagonal operators preserving
real-rootedness. However it was not until nearly a century later that Borcea and
Brändén gave a complete answer to this question. They later generalized their
results to the multivariate setting [11, 12], in the most general case characterizing
stability preservers on Cartesian products of open circular domains (i.e. images of
H under Möbius transformations). We state one version of the characterization be-
low. The key to the characterization is an associated 2n-variate polynomial which
characterizes the stability-preserving properties of the linear transformation.

Let κ ∈ Nn and let Cκ[z1, . . . , zn] be the space of polynomials P ∈ C[z1, . . . , zn]
such that degzi(P ) ≤ κi for each 1 ≤ i ≤ n. Given a linear transformation T :
Cκ[z1, . . . , zn]→ C[z1, . . . , zn], define its algebraic symbol GT by

GT (z,w) := T


∏

j∈[n]

(xj + wj)
κj


 ∈ C[z1, . . . , zn, w1, . . . , wn].

Theorem 2.1 (Borcea-Brändén [11]). A linear transformation T : Cκ[z1, . . . , zn]→
C[z1, . . . , zn] preserves stability if and only if either

(i) T has range of dimension at most one and is of the form

T (f) = α(f)P,
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where α is a linear functional on Cκ[z1, . . . , zn] and P is a stable polynomial,
or

(ii) GT (z,w) is stable.

Stable multiaffine polynomials

A polynomial P (z) ∈ C[z1, . . . , zn] is said to be multiaffine if each variable occurs
to at most the first power in P , that is, degzi(P ) ≤ 1 for all i = 1, . . . , n. Stable
multiaffine polynomials play a special role in the theory and applications of stable
polynomials, primarily due to important results by Grace-Walsh-Szegö, Borcea-
Brändén-Liggett and Choe-Oxley-Sokal-Wagner.

The Grace-Walsh-Szegö theorem is a cornerstone which is often relied upon
when proving results on stability. The theorem is in essence a polarization procedure
which proclaims the equivalence between stability and multiaffine stability.

Theorem 2.2 (Grace-Walsh-Szegö [31, 68, 66]). Suppose P (z) ∈ C[z1, . . . , zn] is a
polynomial of degree at most d in the variable zn. Write

P (z) =

d∑

k=0

Pk(z1, . . . , zn−1)zkn.

Let Q be the polynomial in variables z1, . . . , zn−1, w1, . . . , wn−1 given by

Q =

d∑

k=0

Pk(z1, . . . , zn−1)
ek(w1, . . . , wd)(

d
k

) .

Then P is stable if and only if Q is stable.

The following corollary is nearly a restatement of Theorem 2.2, often quoted in prac-
tise to depolarize symmetries in a multiaffine polynomial for achieving a reduction
in the number of variables.

Corollary 2.3. If P (z1, . . . , zn) ∈ C[z1, . . . , zn] is a multiaffine and symmetric
polynomial, then P (z1, . . . , zn) is stable if and only if P (z, . . . , z) ∈ C[z] is stable.

Example 2.4. The elementary symmetric polynomial ed(z1, . . . , zn) is a multiaffine
and symmetric polynomial of degree d. By Corollary 2.3 we have that ed(z1, . . . , zn)
is stable if and only if ed(z, . . . , z) =

(
n
d

)
zd is stable, the latter of which is clear

since
(
n
d

)
zd is trivially a real-rooted univariate polynomial.

Brändén [14] proved that real stability in multiaffine polynomials is equivalent to
certain polynomial inequalities being satisfied.
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Theorem 2.5. Let P (z) ∈ R[z1, . . . , zn] be a multiaffine polynomial. Then P is
stable if and only if

∂P

∂zi
(z)

∂P

∂zj
(z) ≥ ∂2P

∂zi∂zj
(z)P (z)

for any z ∈ Rn and i, j ∈ [n].

The inequalities in Theorem 2.5 are similar, but stronger than those satisfied by
the partition function of a Rayleigh measure, leading to an interesting connection
between stable polynomials and probability theory. This topic was investigated
closer in a paper by Borcea, Brändén and Liggett [13].

The significance of stable multivariate polynomials in combinatorics first became
apparent in a long paper by Choe, Oxley, Sokal and Wagner [22]. The authors dis-
covered a highly fascinating connection between matroids and stable homogeneous
multiaffine polynomials. Matroids are structures which try to capture the combina-
torial essence of independence. They admit several cryptomorphic axiomatizations
which is an important reason why they serve as useful abstractions. The definition
we give here is the most relevant for our current purposes. We refer to [54] for
further background on matroid theory.

A matroid is a pair (M, E), whereM is a collection of subsets of a finite ground
set E satisfying,

(1) If B ∈M and A ⊆ B, then A ∈M,

(2) The collection B(M) of maximal (with respect to inclusion) elements of M
satisfies the basis exchange axiom:

A,B ∈ B(M) and x ∈ A\B implies y ∈ B\A such that A\{x}∪{y} ∈ B(M).

The elements ofM are called independent sets and the elements of B(M) are called
bases of M. The support, supp(P ), of a polynomial P (z) =

∑
α∈Nn a(α)

∏n
i=1 z

αi
i

is defined by
supp(P ) := {α ∈ Nn : a(α) 6= 0}.

Theorem 2.6 (Choe-Oxley-Sokal-Wagner). The support of a stable homogeneous
multiaffine polynomial is the set of bases of a matroid.

In fact Brändén later proved that the support of an arbitrary stable polynomial
posesses the structure of a so called jump system, see [14] for further details. The
converse to Theorem 2.6 is false however, the weighted bases generating polynomial

PM(z) :=
∑

B∈B(M)

a(B)
∏

i∈B
zi

of every matroid is not necessarily a stable polynomial for some weighting a(B) ∈ R,
B ∈ B(M). One such example is given by the Fano matroid. A matroid is said
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to have the weak half-plane property (WHPP) if PM is a stable polynomial and is
said to have the half-plane property (HPP) if PM is stable with a(B) = 1 for all
B ∈ B(M). Despite the Fano matroid there are many important matroid classes
which have HPP and WHPP, e.g., the class of uniform matroids and the class of
C-representable matroids respectively. There are also matroids, e.g. the Pappus
matroid, which have WHPP but not HPP. A natural question is thus to properly
characterize these two matroid classes, but the problem remains elusive.

Hyperbolic polynomials

A polynomial h(z) ∈ R[z1, . . . , zn] is hyperbolic with respect to a vector e ∈ Rn if

(1) h(z) is a homogeneous polynomial (i.e., h(tz) = tdh(z)),

(2) h(e) 6= 0,

(3) for all x ∈ Rn, the univariate polynomial

t 7→ h(te− x)

has real zeros only.

Geometrically speaking hyperbolicity means that any line parallel to the direction e
of hyperbolicity must intersect the real algebraic variety cut out by h(z) in exactly
d points (counting multiplicity), where d is the degree of h(z). Thus the notion
of hyperbolicity may, in addition to the notion of stability, be viewed as a multi-
variate generalization of real-rootedness. As we will point out in the next section,
hyperbolicity is essentially a more general notion than real stability.

It is worth giving a brief explanation regarding the origins of this definition.
Hyperbolic polynomials first appeared in the theory of partial differential equations
with the works of Petrowsky, G̊arding, Hörmander, Atiyah and Bott [6, 38, 42, 56].
Let h(z1, . . . , zn) be a polynomial and consider the Cauchy problem,

h(∂/∂z1, . . . , ∂/∂zn)u(z) = f(z),

where f ∈ C∞0 (H) and H = {x ∈ Rn : x · e ≥ 0}. The analytical significance of
hyperbolicity is that the PDE above has a unique solution u(z) supported on H
for every f ∈ C∞0 (H) if and only if h is a hyperbolic polynomial with respect to e.
Whenever h(z) is a hyperbolic polynomial with respect to e ∈ Rn, such equations
are therefore naturally referred to as hyperbolic partial differential equations. A
classical example is the second order wave equation (∂2/∂z2

1 − c2∂2/∂z2
2)f = 0 in

two variables.

Example 2.7. Below we list a few examples of hyperbolic polynomials:
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• Any product h(z) =
∏d
i=1 `i(z) of linear forms `i(z) is a hyperbolic polynomial

with respect to any direction e ∈ Rn without a zero coordinate.

• The determinant polynomial det(Z), where Z = (zij) is a symmetric matrix
with

(
n+1

2

)
indeterminate entries, may be regarded as a quintessential example

of a hyperbolic polynomial due to its prominent role in the theory. If X is a
real symmetric n×n matrix and I is the identity matrix, then t 7→ det(tI−X)
is the characteristic polynomial of a symmetric matrix and is thus real-rooted.
Hence det(Z) is a hyperbolic polynomial with respect to I.

• Let h(z) = z2
1 − z2

2 − · · · − z2
n. Then h(z) is hyperbolic with respect to

e = (1, 0, . . . , 0)T .

Hyperbolicity cones

Let h be a hyperbolic polynomial with respect to e of degree d. We may write

h(te− x) = h(e)

d∏

j=1

(t− λj(x)),

where
λmax(x) := λ1(x) ≥ · · · ≥ λd(x) =: λmin(x)

are called the eigenvalues of x (with respect to e). By homogeneity of h one sees
that

λj(sx) = sλj(x) and λj(x + se) = λj(x) + s,

for all j = 1, . . . , d, x ∈ Rn and s ∈ C. The hyperbolicity cone of h with respect to
e is the set

Λ+(h, e) := {x ∈ Rn : λmin(x) ≥ 0}.
The interior of Λ+(h, e) is denoted Λ++(h, e). Note that e ∈ Λ++(h, e) since
h(te − e) = h(e)(t − 1)d. We usually abbreviate and write Λ+(e), or even Λ+, if
there is no risk for confusion.

Example 2.8. Below we list the hyperbolicity cones associated with the hyperbolic
polynomials in Example 2.7.

• Λ+(e) = {x ∈ Rn : `i(x)ei ≥ 0 for all i}.

• Λ+(I) is the cone of positive semidefinite matrices.

• λ+(1, 0, . . . , 0) =
{

x ∈ Rn : x1 ≥
√
x2

2 + · · ·+ x2
n

}
is the Lorentz light cone.

The following facts are due to G̊arding.
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Theorem 2.9 (G̊arding). Let h be a hyperbolic polynomial with respect to e. Then

(i) Λ+(h, e) is a convex cone.

(ii) Λ+(h, e) is the connected component of

{x ∈ Rn : h(x) 6= 0}

which contains e.

(iii) If v ∈ Λ++(h, e), then h is hyperbolic with respect to v, and Λ++(h,v) =
Λ++(h, e).

(iv) λmin : Rn → R is a concave function.

Another natural property of the hyperbolicity cone is its facial exposure, that is,
the property that all its faces are intersections between the cone itself and one of its
supporting hyperplanes (see [59]). The following elementary lemma is a consequence
of Rolle’s theorem from real analysis and states that taking directional derivatives
of a hyperbolic polynomial relaxes the hyperbolicity cone.

Lemma 2.10. If h is a hyperbolic polynomial and v ∈ Λ+ such that Dvh 6≡ 0, then
Dvh is hyperbolic with respect to v and Λ+(h,v) ⊆ Λ+(Dvh,v).

Finally we remark on the connection between hyperbolic polynomials and homoge-
neous real stable polynomials.

Proposition 2.11. Let P ∈ R[z1, . . . , zn] be a homogeneous polynomial. Then P
is stable if and only if P is hyperbolic with Rn+ ⊆ Λ+(P ).

It is also worth noting that the homogenization of a real stable polynomial is a
polynomial hyperbolic with respect to any vector with non-negative coordinates.
Therefore the real stable polynomials essentially form a subclass of hyperbolic poly-
nomials with hyperbolicity cone containing the positive orthant.

Hyperbolic polymatroids

Let E be a finite set. A polymatroid is a function r : 2E → N satisfying

1. r(∅) = 0,

2. r(S) ≤ r(T ) whenever S ⊆ T ⊆ E,

3. r is semimodular, i.e.,

r(S) + r(T ) ≥ r(S ∩ T ) + r(S ∪ T ),

for all S, T ⊆ E.
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Rank functions of matroids on E coincide with polymatroids r on E with r({i}) ≤ 1
for all i ∈ E. The connection between hyperbolic polynomials and polymatroids
was noted by Gurvits in [35].

In analogy with the rank of a matrix, the hyperbolic rank, rk(x), of x ∈ Rn is
defined as the number of non-zero eigenvalues of x, i.e., rk(x) := degh(e + tx).
Note that the rank is independent of the direction e of hyperbolicity.

Theorem 2.12 (Gurvits). Let V = (v1, . . . ,vm) be a tuple of vectors in Λ+(h, e).
Define a function rV : 2[m] → N, where [m] := {1, 2, . . . ,m}, by

rV(S) = rk

(∑

i∈S
vi

)
.

Then r is the rank function of a polymatroid.

The polymatroid constructed in Theorem 2.12 is called a hyperbolic polymatroid. If
the vectors in V have rank at most one, then we obtain the hyperbolic rank function
of a hyperbolic matroid.

Example 2.13. Let A1, . . . , An be positive semidefinite matrices over C. Define
r : 2[n] → N by r(S) = dim

(∑
i∈S Ai

)
for all S ⊆ [n]. Then r : 2[n] → N is a

hyperbolic polymatroid on [n]. In particular, if A1, . . . , An are positive semidefinite
matrices of rank at most one, then we obtain the rank function of a hyperbolic
matroid on [n]. These are the matroids representable over C.

Hyperbolic matroids are in fact equivalent to WHPP matroids, see [5].

The generalized Lax conjecture

The generalized Lax conjecture is one of the major outstanding problems in the
theory of hyperbolic polynomials. Interest in it is largely driven by the connection
between hyperbolic polynomials and convex optimization. The field of hyperbolic
programming was introduced by Güler [36] for studying efficient optimization of
linear functionals over hyperbolicity cones. A hyperbolic program is an optimization
problem of the form

minimize cTx

subject to Ax = b and

x ∈ Λ+,

where c ∈ Rn, Ax = b is a system of linear equations and Λ+ is a hyperbolicity
cone. Notable subfields of hyperbolic programming are linear programming (LP)
and semidefinite programming (SDP). Linear programming arises by taking Λ+ to
be the positive orthant in Rn and semidefinite programming arises by taking Λ+ to
be the cone of positive semidefinite matrices. Recall that these cones are associated
with the hyperbolic polynomials h(z) = z1 · · · zn and h(Z) = det(Z) respectively.



2. BACKGROUND 13

The generalized Lax conjecture roughly asserts that hyperbolic programming is in
fact not a generalization of semidefinite programming at all, but that the two fields
are equivalent.

A convex cone in Rn is said to be spectrahedral if it is of the form
{

x ∈ Rn :

n∑

i=1

xiAi is positive semidefinite

}

whereA1, . . . , An are symmetric matrices such that there exists a vector (y1, . . . , yn) ∈
Rn with

∑n
i=1 yiAi positive definite.

Remark 2.14. It is not difficult to see that spectrahedral cones are the hyperbol-
icity cones associated with the hyperbolic polynomials

h(z) = det

(
n∑

i=1

ziAi

)
.

The generalized Lax conjecture asserts more precisely that every hyperbolicity
cone is conversely an affine section of the cone of positive semidefinite matrices.

Conjecture 2.15 (Generalized Lax conjecture (geometric version)). All hyperbol-
icity cones are spectrahedral.

Remark 2.16. Note that h1 and h2 are hyperbolic polynomials with respect to e
if and only if h1h2 is hyperbolic with respect to e. In that case we also have

Λ+(h1h2, e) = Λ+(h1, e) ∩ Λ+(h2, e).

Moreover if C1 and C2 are two spectrahedral cones with respect to symmetric
matrices A1, . . . , An and B1, . . . , Bn respectively, then their intersection

C1 ∩ C2 =

{
x ∈ Rn :

n∑

i=1

xi

(
Ai 0
0 Bi

)
is positive semidefinite

}
,

is again spectrahedral. Hence it suffices to prove the generalized Lax conjecture for
hyperbolicity cones associated with irreducible hyperbolic polynomials.

The generalized Lax conjecture can also be formulated algebraically as follows, see
[41].

Conjecture 2.17 (Generalized Lax conjecture (algebraic version)). If h(z) ∈ R[z]
is hyperbolic with respect to e = (e1, . . . , en) ∈ Rn, then there exists a polynomial
q(z) ∈ R[z], hyperbolic with respect to e, such that Λ+(h, e) ⊆ Λ+(q, e) and

q(x)h(z) = det

(
n∑

i=1

ziAi

)
(2.1)

for some real symmetric matrices A1, . . . , An of the same size such that
∑n
i=1 eiAi

is positive definite.
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Indeed if the conditions in Conjecture 2.17 are satisfied, then Λ+(qh, e) is a spec-
trahedral cone by Remark 2.14, and by Remark 2.16 we have that

Λ+(qh, e) = Λ+(q, e) ∩ Λ+(h, e) = Λ+(h, e).

Conversely if Λ+(h, e) is a spectrahedral cone, then by Remark 2.14 there ex-
ists symmetric matrices A1, . . . , An such that Λ+(h, e) = Λ+(f, e) where f(z) :=
det(z1A1 + · · ·+ znAn). By Remark 2.16 we may assume that h is irreducible. Fur-
thermore h and f both vanish on the boundary ∂Λ+(h, e) of Λ+(h, e). Therefore
h must divide f i.e. f(z) = q(z)h(z) for some hyperbolic polynomial q(z) with
respect to e. Hence

Λ+(q, e) ∩ Λ+(h, e) = Λ+(f, e) = Λ+(h, e),

implying that Λ+(h, e) ⊆ Λ+(q, e). This establishes the equivalence between Con-
jecture 2.15 and Conjecture 2.17.

For hyperbolic polynomials h(z1, z2, z3) in three variables more is true, namely
there exists symmetric matrices A1, A2, A3 satisfying Conjecture 2.17 with q(z) ≡ 1,
i.e., h has a definite determinantal representation. This property was initially con-
jectured by Peter Lax [46] (originally known as the Lax conjecture), and was proved
by Helton and Vinnikov [41] as pointed out in [48]. However the former conjec-
ture cannot extend to more than three variable. This may be seen by comparing
dimensions. The set of polynomials on Rn of the form det(x1A1 + · · ·xnAn) with
Ai a d × d symmetric matrix for 1 ≤ i ≤ n, has dimension at most n

(
d+1

2

)
(as an

algebraic image (A1, . . . , An) 7→ det(x1A1 + · · ·xnAn) of a vector space of the same
dimension) whereas the set of hyperbolic polynomials of degree d on Rn has non-
empty interior in the space of homogeneous polynomials of degree d in n variables
(see [53]) and therefore has the same dimension

(
n+d−1

d

)
.

Apart from the theorem by Helton and Vinnikov for n = 3, the generalized Lax
conjecture, as it currently stands (Conjecture 2.17), is known to be true only in a
few special cases, see [5] for an up to date summary at the time of writing.

Permutation patterns

There are many different notions of “patterns” in combinatorics involving objects
such as graphs, matrices, partitions, words and permutations etc. In this section
we shall give a brief (and by no means comprehensive) background on permutation
patterns. For a more extensive introduction we refer to books by Kitaev [44] and
Bona [10].

Let Sn denote the set of permutations on [n]. A permutation σ ∈ Sn is said
contain an occurrence of the classical pattern π ∈ Sm, m ≤ n if there exists a
subsequence in σ whose letters are in the same relative order as those in π i.e.
there exists iπ(1) < iπ(2) < · · · < iπ(m) such that σ(i1) < σ(i2) < · · · < σ(im).
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Example 2.18. The permutation σ = 241563 ∈ S6 has four occurrences of the
pattern π = 231 ∈ S3 given by the subsequences 241, 453, 463 and 563 in σ. On
the other hand σ avoids the pattern 321.

Remark 2.19. It is also possible to visualize the definition using permutation
matrices. Let Mσ denote the permutation matrix of σ ∈ Sn. Then a permutation
σ ∈ Sn contains an occurrence of the pattern π ∈ Sm if and only if Mπ is a
submatrix of Mσ.

For a set Π of patterns, let Sn(Π) denote the set of permutations in Sn avoiding
all of the patterns in Π simultaneously. Two pattern classes Π1 and Π2 are called
Wilf-equivalent if |Sn(Π1)| = |Sn(Π2)|. Unfortunately the problem of enumerating
Sn(Π) is very difficult in general, even for small patterns. However one of the
earliest results in the area relates to the enumeration of permutations avoiding
patterns of length three, a result that goes back to MacMahon [49] and Knuth [45].

Theorem 2.20 (MacMahon, Knuth). If π ∈ S3, then |Sn(π)| = Cn where Cn =
1

n+1

(
2n
n

)
denotes the nth Catalan number.

In other words the theorem says that all classical patterns of length three are Wilf-
equivalent. This no longer remains true for classical patterns of length greater than
three. Already for patterns of length four we have three different Wilf-equivalence
classes, one of which has not yet been enumerated.

Another early result (famous from Ramsey theory) is due to Erdős and Szekeres
[28] which in the language of permutation patterns states the following.

Theorem 2.21 (Erdős-Szekeres [28]). Let a, b be positive integers and n = (a −
1)(b− 1) + 1. Then any permutation σ ∈ Sn contains an occurrence of the pattern
123 · · · a or an occurrence of the pattern b · · · 321.

A milestone was reached when Marcus and Tardos [52] proved the Stanley-Wilf
conjecture which asserts that for each pattern π ∈ Sm there exists a constant C
such that |Sn(π)| ≤ Cn. The conjecture is equivalent to the following statement.

Theorem 2.22 (Marcus-Tardos [52]). For any pattern π ∈ Sm, the limit lim
n→∞

n
√
|Sn(π)|

exists and is finite.

There are several different generalizations of classical patterns. One such general-
ization is the notion of a vincular pattern introduced by Babson and Steingŕımsson.
A vincular pattern is a permutation π ∈ Sm some of whose consecutive letters are
underlined. If π contains π(i)π(i+ 1) · · ·π(j), then the letters corresponding to
π(i), π(i + 1), . . . , π(j) in an occurrence of π in σ ∈ Sn must be adjacent, whereas
there is no adjacency condition for non-underlined consecutive letters. Moreover if
π begins with [π(1), then any occurrence of π in σ must begin with the leftmost
letter of σ. Similarly if π ends with π(m)], then any occurrence of π in σ must end
with the rightmost letter of σ.
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Example 2.23. Let σ = 241563.

Pattern π Occurrences in σ
231 241, 453, 463, 563
231 241, 563
231 241, 463, 563
[231 241
231] 453, 463, 563

More recently vincular patterns have been generalized a step further to so called
mesh patterns introduced by Brändén and Claesson in [17].

Permutation patterns and statistics

A statistic on a combinatorial set S is a function stat : S → N that keeps track of
a particular quantity associated with S. A plethora of statistics have been studied
on a number of different combinatorial objects in the literature. Many of them are
currently being collected in the findstat database [61]. The generating polynomial
of a statistic stat : S → N is given by

f stat(q) :=
∑

σ∈S
qstat(σ)

The polynomials f stat(q) provide natural q-analogues to the enumeration sequence
of the combinatorial family. Furthermore f stat(q) may have other natural properties
of interest such as real-rootedness and coefficient unimodality etc. Generating poly-
nomials of statistics defined on two different combinatorial objects may occasionally
coincide leading to new and sometimes unexpected connections in combinatorics
and beyond.

Example 2.24. The inversion statistic is a particularly well-studied statistic on
permutations. The inversion set of σ ∈ Sn is defined by Inv(σ) := {(i, j) : i <
j and σ(i) > σ(j)}. The inversion statistic inv : Sn → N is given by inv(σ) :=
|Inv(σ)|. Rodrigues [60] showed in 1839 that

∑

σ∈Sn

qinv(σ) = [n]q!,

where [n]q! := [1]q[2]q · · · [n]q and [n]q := 1 + q + q2 + · · ·+ qn−1. It is not difficult
to show that [n]q! is a polynomial with unimodal coefficients.

Example 2.25. The descent set of σ is defined by Des(σ) := {i : σ(i) > σ(i+ 1)}
and the descent statistic by des(σ) := |Des(σ)|. The coefficients of the polynomial
fdes(q) are given by the Eulerian numbers and the Eulerian polynomial fdes(q) is
well-known to be real-rooted (see e.g. [55]).
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Example 2.26. The major index statistic is defined by maj(σ) :=
∑
i∈Des(σ) i.

MacMahon [49] showed that the maj and inv statistics are equidistributed, i.e.,
fmaj(q) = f inv(q). Permutation statistics which are equidistributed with inv are
called Mahonian.

Patterns give rise to statistics as well. A pattern function (π) : Sn → N is a statistic
that is induced by a permutation pattern π, counting the number of occurrences
of π in a permutation σ ∈ Sn. The length of a pattern function is the length of its
underlying pattern. Babson and Steingŕımsson[7] classified (up to trivial bijections)
all Mahonian statistics that are conic combinations of pattern functions of length
at most 3. Among them are inv and maj.

Sagan and Savage [63] introduced a q-analogue of Wilf-equivalence in order to
refine Wilf-classes by statistic equidistribution. Formally two sets of patterns Π1

and Π2 are said to be st-Wilf equivalent with respect to the statistic st : Sn → N if

∑

σ∈Sn(Π1)

qst(σ) =
∑

σ∈Sn(Π2)

qst(σ).

Clearly st-Wilf equivalence implies Wilf-equivalence but not conversely. Dokos
et.al. [25] completed the inv-Wilf and maj-Wilf classifications over Sn(π) where
π is a classical pattern of length three. The st-Wilf classification of other permu-
tation statistics such as fixed points, exceedances, peak and valley have also been
investigated in detail, see [9, 26].

The cyclic sieving phenomenon

Let Cn be a cyclic group of order n generated by σn, X a finite set on which Cn
acts and f(q) ∈ N[q]. Let Xg := {x ∈ X : g · x = x} denote the fixed point
set of X under g ∈ Cn. A triple (X,Cn, f(q)) is said to exhibit the cyclic sieving
phenomenon (CSP) if

f(ωkn) = |Xσk
n |, for all k ∈ Z, (2.2)

where ωn is any fixed primitive nth root of unity. The cyclic sieving phenomenon
was introduced by Reiner, Stanton and White in [58]. Although it is always possible
to find a (generally uninteresting) polynomial satisfying the equations in (2.2) when
provided with a cyclic action, namely,

f(q) =
∑

O∈OrbCn (X)

qn − 1

qn/|O| − 1
, (2.3)

it sometimes happens that a polynomial f(q) ∈ N[q] can be found which satisfies
(2.2) and is intrinsically related to the set X on which Cn acts. Generally we would
consider a CSP “interesting” if for example

• f(q) =
∑
x∈X q

stat(x) where stat : X → N is a natural statistic on X.
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• f(q) is the formal character of some representation ρ : Cn → GL(V ).

• f(q) is the Hilbert series Hilb(R, q) :=
∑
i dim(Ri)q

i of some graded ring
R =

⊕
iRi.

• f(q) at q = pd counts the number of points of a variety over a finite field Fq.

There is no a priori reason why one would expect the existence of polynomials with
any of the above properties. Nevertheless such situations occur quite ubiquitously
in combinatorics, as witnessed by the growing literature on the phenomenon. See
[62] for an extensive survey on CSP.

Example 2.27. The prototypical example of CSP is given by X =
(

[n]
k

)
and

f(q) =

[
n

k

]

q

:=
[n]q!

[k]q![n− k]q!
,

where [m]q! := [m]q[m − 1]q · · · [2]q[1]q and [m]q = 1 + q + q2 + · · · + qm−1. Here
the generator σn of Cn acts on S = {i1, . . . , ik} ∈ X via

σn · S := {i1 (mod n) + 1, . . . , ik (mod n) + 1}.
By [58] the triple (X,Cn, f(q)) exhibits CSP. The following facts are also proved in
[58]:

• If sum : X → N is the statistic defined by sum(S) :=
∑
i∈S i, then

f(q) = q−(k+1
2 )
∑

S∈X
qsum(S).

• Let V =
∧k

(Cn) denote the kth exterior power of the vector space Cn. The
action of Cn on X induces an action of Cn on V , giving rise to a repre-
sentation ρ : Cn → GL(V ). Denote the character of ρ by χρ(x1, . . . , xn) :
Cn → C[x1, . . . , xn], defined for σ ∈ Cn as the trace of the matrix ρ(σ) with
eigenvalues x1, . . . , xn. Then

f(q) = q−(k
2)χρ(1, q, q

2, . . . , qn−1).

• Let Z[x]G denote the ring of polynomials in variables x = (x1, . . . , xn) invari-
ant under the action of the group G. Then

f(q) = Hilb(Z[x]Sk×Sn−k/Z[x]Sn+ , q),

where Sk × Sn−k and Sn act as usual on Z[x], and Z[x]+ denotes the ring of
polynomials with positive degree.

• f(q) counts the number of k-subspaces of a vector space of dimension n over
a finite field Fq with q elements i.e. the number points in the Grassmanian
variety GrFq (k, n).
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3 Summary of results

Paper A [5]

In the wake of Helton and Vinnikov’s celebrated proof of the Lax conjecture [41]
the follow up question was how the theorem should be generalized to more than
three variables. Stronger versions of Conjecture 2.17 were initially believed to be
true. For instance it was conjectured in [41] that if h(z) is a hyperbolic polynomial,
then h(z)N has a definite determinantal representation for some positive integer N .
This belief is not totally unreasonable given that for p(z) homogeneous and irre-
ducible, it is well-known that p(z)N has a (not necessarily definite) determinantal
representation for some N , see [8]. The claim was however disproved by Brändén in
[15] via the bases generating polynomial of a certain non-representable hyperbolic
matroid.

The Vámos matroid V8 is the matroid with ground set E = {1, . . . , 8} and bases

B(V8) =

(
[8]

4

)
\ {{1, 2, 3, 4}, {3, 4, 5, 6}, {1, 2, 5, 6}, {1, 2, 7, 8}, {5, 6, 7, 8}}.

Theorem 3.1 (Wagner-Wei [67]). V8 is a HPP matroid (and therefore hyperbolic).

In 1969 Ingleton [43] proved a necessary condition for a matroid to be representable.

Theorem 3.2 (Ingleton). Suppose r : 2E → N is the rank function of a repre-
sentable matroid and A,B,C,D ⊆ E. Then

r(A ∪B) + r(A ∪ C ∪D) + r(C) + r(D) + r(B ∪ C ∪D) ≤
r(A ∪ C) + r(A ∪D) + r(B ∪ C) + r(B ∪D) + r(C ∪D)

(3.1)

Considering V8 and setting

A = {1, 2}, B = {3, 4}, C = {5, 6}, D = {7, 8},

the Ingleton inequality (3.1) reads, 4 + 4 + 2 + 2 + 4 ≤ 3 + 3 + 3 + 3 + 3 which is a
contradiction. Hence V8 cannot be representable.

Theorem 3.3 (Brändén). There exists no positive integer N such that PV8
(z)N has

a definite determinantal representation where PV8
(z) denotes the bases generating

polynomial of V8.

Proof sketch. Suppose

PV8
(z) = det(

n∑

i=1

ziAi),

for some positive integer N and symmetric matrices A1, . . . , An. The bases gener-
ating polynomial PV8(z) is stable by Theorem 3.1, so it is hyperbolic with respect
to 1. The rank function of the hyperbolic matroid associated with the hyperbolic
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polynomial PV8
(z)N with respect to V = {δ1, . . . , δ8} ⊆ R8

+ ⊆ Λ+ can be expressed
as

rV(S) = deg


PV8

(
1 + t

∑

i∈S
δi

)N
 = NrV8

(S)

where δ1, . . . , δ8 denote the standard basis vectors of R8 and rV8
denotes the rank

function of the matroid V8. Now consider the representable matroid given by

r(S) := rk

(∑

i∈S
Ai

)
.

By initial assumption we have

r(S) = rV(S) = NrV8(S).

However we know that rV8
violates the Ingleton inequalities (3.1) which contradicts

the fact that r is the rank function of a representable matroid.

Remark 3.4. Brändén [15] in fact proved a slightly stronger statement: There
exists no positive integers M,N and no linear form `(z) such that `(z)MPV8

(z)N

has a definite determinantal representation.

It is not known whether PV8
(z) satisfies the generalized Lax conjecture (Conjecture

2.17). In order to find potential obstructions to the generalized Lax conjecture it is
worthwhile understanding the role of non-representable hyperbolic matroids in the
context of the conjecture and finding additional instances of them. Prior to Paper
A, only the Vámos matroid V8 and a certain generalization of it were known to be
both non-representable and hyperbolic.

A paving matroid of rank r is a matroid such that all its circuits (minimal
dependent sets) have size at least r. A paving matroid of rank r is called sparse if
all its hyperplanes (flats of rank r − 1) have size r − 1 or r.

Further instances of non-representable hyperbolic matroids come from finite pro-
jective geometry. Sparse paving matroids of rank three can be obtained from finite
point-line configurations in which every line contains three points. Such matroids
are obtained by letting a subset of three points define a circuit hyperplane if and
only if there is a line containing them. The Pappus and Desargues configurations
are geometrical configurations with 9 and 10 points respectively such that every
line contains three points and every point is incident to three lines (note that such
configurations need not be unique). The Non-Pappus and Non-Desargues matroids
are obtained from the Pappus and Desargues configurations by deleting one line.
Both of these matroids are not representable over any field. However the Non-
Pappus matroid can be shown to be representable over every skew-field e.g. the
quaternions H, see [43]. The Non-Desargues matroid on the other hand is not even
representable over any skew-field [43], but is known to be representable over the
octonions O, see [37]. The algebras H3(H) and H3(O) of Hermitian 3× 3 matrices



3. SUMMARY OF RESULTS 21

over H and O respectively, are examples of real Euclidean Jordan algebras. All
real Euclidean Jordan algebras A come equipped with a hyperbolic determinant
polynomial det : A → R, in particular realizing the cone of positive semidefinite
matrices in H3(H) and H3(O) as hyperbolicity cones. Hence we obtain:

Theorem 3.5. The Non-Pappus and Non-Desargues matroids are hyperbolic ma-
troids not representable over any field.

Burton et.al. [19] defined a class of matroids V2n for n ≥ 4 with base set

B(V2n) :=
(

[2n]
4

)
\ H2n where

H2n := {1, 2, 2k − 1, 2k} ∪ {2k − 1, 2k, 2k + 1, 2k + 1} for 2 ≤ k ≤ n,

extending the Vámos matroid. They made the following conjecture regarding the
family V2n for n ≥ 4.

Conjecture 3.6 (Burton-Vinzant-Youm). For each n ≥ 4, V2n is a HPP matroid.

Burton et.al. confirmed Conjecture 3.6 for n = 5. In Paper A we prove a sweep-
ing generalization of Conjecture 3.6, in particular proving Conjecture 3.6 in the
affirmative for all n ≥ 4.

Theorem 3.7. Let H be a d-uniform hypergraph on [n], and let E = {1, 1′, . . . , n, n′}.
Let

B(VH) =

(
E

2d

)
\ {e ∪ e′ : e ∈ E(H)},

in which e′ := {i′ : i ∈ e} for each e ∈ E(H). Then B(VH) is the set of bases of a
sparse paving matroid VH of rank 2d.

Theorem 3.8. If G is a simple graph, then VG is a HPP matroid.

Theorem 3.8 unfortunately does not admit a full generalization to matroids VH
parametrized by hypergraphs H. An obstruction is e.g. given by the complete
3-uniform hypergraph on [6]. Nevertheless we can prove the following.

Theorem 3.9. If H is a d-uniform hypergraph, then VH is a WHPP matroid.

Remark 3.10. Since the class of hyperbolic matroids is equivalent to the class of
WHPP matroids [5], all matroids VH are hyperbolic by Theorem 3.9.

Remark 3.11. The family {V2n}n≥4 studied by Burton et al. [19] corresponds to
VGn

where Gn is an n-cycle with edges {1, i}, i = 2, . . . , n, adjoined. Thus Theorem
3.8 implies Conjecture 3.6.

Remark 3.12. Since representability is closed under taking minors, any matroid
VH containing the Vámos V8 as a minor is necessarily non-representable (and fails
to satisfy Ingleton’s inequality (3.1)).
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The proof of Theorem 3.9 depends on certain symmetric function inequalities.
These inequalities are also of independent interest.

Recall that a partition of a natural number d is a sequence λ = (λ1, λ2, . . .)
of natural numbers such that λ1 ≥ λ2 ≥ · · · and λ1 + λ2 + · · · = d. We write
λ ` d to denote that λ is a partition of d. The length, `(λ), of λ is the number of
nonzero entries of λ. If λ is a partition and `(λ) ≤ n, then the monomial symmetric
polynomial, mα, is defined as

mλ(z1, . . . , zn) :=
∑

zβ1

1 zβ2

2 · · · zβn
n ,

where the sum is over all distinct permutations (β1, β2, . . . , βn) of (λ1, . . . , λn). If
`(λ) > n, we set mλ(z) = 0. The dth elementary symmetric polynomial is ed(z) :=
m1d(z). Lemma 3.13 below is a refinement of the Laguerre-Turán inequalities

0 ≤ rer(z)2 − (r + 1)er−1(z)er+1(z),

and is used in the proof of Theorem 3.14.

Lemma 3.13. If r ≥ 1, then

m2r (z) ≤ rer(z)2 − (r + 1)er−1(z)er+1(z).

The theorem below is a central ingredient to the proof of Theorem 3.9.

Theorem 3.14. Let r ≥ 2 be an integer, and let

M(z) =
∑

|S|=r

a(S)
∏

i∈S
z2
i ∈ R[z1, . . . , zn],

where 0 ≤ a(S) ≤ 1 for all S ⊆ [n], where |S| = r. Then the polynomial

4er+1(z)er−1(z) +
3

r + 1
M(z)

is stable.

In light of Remark 3.4 it is natural to question whether it is possible to put
any kind of restrictions on the factor q(z) in Conjecture 2.17 when it comes to a
prescribed bound on its degree and its number of irreducible factors. The answer
turns out to be no. We construct a family of hyperbolic polynomials obtained from
the bases generating polynomials of specific members of the family VH , such that
for sufficiently many variables z = (z1, . . . , zn), the factor q(z) in Conjecture 2.17
must either have an irreducible factor of large degree or have a large number of
irreducible factors of low degree.

Given positive integers n and k, consider the k-uniform hypergraph Hn,k on

[n+2] containing all hyperedges e ∈
(

[n+2]
k

)
except those for which {n+1, n+2} ⊆ e.

By Theorem 3.9 the matroid VHn,k
is hyperbolic and therefore has a hyperbolic
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bases generating polynomial hVHn,k
(z) with respect to 1. The polynomial hn,k(z) ∈

R[z1, . . . , zn+2], obtained from the multiaffine polynomial hVHn,k
(z) by identifying

the variables zi and zi′ pairwise for all i ∈ [n + 2] is therefore hyperbolic with
respect to 1.

Theorem 3.15. Let n and k be a positive integers. Suppose there exists a positive
integer N and a hyperbolic polynomial q(z) such that

q(z)hn,k(z)N = det

(
n+2∑

i=1

ziAi

)
(3.2)

with Λ+(hn,k) ⊆ Λ+(q) for some symmetric matrices A1, . . . , An+2 such that A1 +
· · ·+An+2 is positive definite and

q(z) =

s∏

i=1

pj(z)αi

for some irreducible hyperbolic polynomials p1, . . . , ps ∈ R[z1, . . . , zn+2] of degree at
most k − 1 where α1, . . . , αs are positive integers. Then

n < (2s+ 1)k − 1.

Paper B [2]

Although there is not an extensive amount of evidence for the generalized Lax
conjecture (Conjecture 2.17), the conjecture is known to hold for some specific
classes of hyperbolic polynomials (see [5]). In particular Brändén [16] confirmed
the conjecture for elementary symmetric polynomials, extending work of Zinchenko
[69] and Sanyal [64]. Brändén applied the matrix-tree theorem, which implies that
every spanning tree polynomial has a definite determinantal representation, and
realized the spanning tree polynomial of a certain series-parallel graph as a product
of elementary symmetric polynomials. A consequence of Brändén’s result is that
hyperbolic polynomials which are iterated derivatives of products of linear forms
have spectrahedral hyperbolicity cones. Moreover the hyperbolicity cone of the
spanning tree polynomial of a complete graph is linearly isomorphic to the cone of
positive semidefinite matrices. Hence the generalized Lax conjecture is equivalent
to the assertion that each hyperbolicity cone is an affine slice of the hyperbolicity
cone of a spanning tree polynomial.

In Paper B we consider hyperbolicity cones of multivariate matching polynomi-
als in context of the generalized Lax conjecture. Two main reasons for considering
matching polynomials are the well-known facts that the univariate matching poly-
nomial of a tree coincide with its characteristic polynomial and that every univariate
matching polynomial divides the matching polynomial of a tree. Multivariate ver-
sions of the above two facts are important inputs for proving the generalized Lax
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conjecture for the class of multivariate matching polynomials. As an application
we reprove Brändén’s result by realizing the elementary symmetric polynomials of
degree k as a factor in the matching polynomial of the length-k truncated path tree
of the complete graph.

Recall that a k-matching in a graph G = (E, V ) is a subset M ⊆ E(G) of k
edges, no two of which have a vertex in common. Let M(G) denote the set of all
matchings in G and for M ∈M(G), let V (M) denote the set of vertices contained in
M . Let z = (zv)v∈V and w = (we)e∈E be indeterminates. Define the homogeneous
multivariate matching polynomial µ(G, z⊕w) ∈ R[z,w] by

µ(G, z⊕w) :=
∑

M∈M(G)

(−1)|M |
∏

v 6∈V (M)

zv
∏

e∈M
w2
e .

As a direct consequence of a theorem by Heilmann and Lieb [40], the polynomial
µ(G, z ⊕ w) is hyperbolic with respect to e = 1 ⊕ 0, where 1 = (1, . . . , 1) ∈ RV
and 0 = (0, . . . , 0) ∈ RE . Note that µ(G, z ⊕ w) specializes to the conventional
univariate matching polynomial µ(G, t) by putting z⊕w = t1⊕ 1. The following
recursion is immediate from the definition,

µ(G,x⊕w) = zuµ(G \ u, z⊕w)−
∑

v∈N(u)

w2
uvµ((G \ u) \ v, z⊕w).

Let G be a graph and u ∈ V (G). The path tree T (G, u) is the tree with vertices
labelled by simple paths in G (i.e. paths with no repeated vertices) starting at u
and where two vertices are joined by an edge if one vertex is labelled by a maximal
subpath of the other. Godsil [32] proved the following divisibility relation for the
univariate matching polynomial,

µ(G \ u, t)
µ(G, t)

=
µ(T (G, u) \ u, t)
µ(T (G, u), t)

.

The above identity implies that µ(G, t) divides µ(T (G, u), t). To establish a mul-
tivariate version of the above relationship we must consider a natural change of
variables. The technique used to prove the multivariate divisibility relation is very
similar to its univariate counterpart. Let φ : RT (G,u) → RG denote the linear
change of variables defined by

zp 7→ zik ,

wpp′ 7→ wikik+1
,

where p = i1 · · · ik and p′ = i1 · · · ikik+1 are adjacent vertices in T (G, u). For every
subforest T ⊆ T (G, u), define the polynomial

η(T, z⊕w) := µ(T, φ(z′ ⊕w′))

where z′ = (zp)p∈V (T ) and w′ = (we)e∈E(T ).
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Lemma 3.16. Let u ∈ V (G). Then

µ(G \ u, z⊕w)

µ(G, z⊕w)
=
η(T (G, u) \ u, z⊕w)

η(T (G, u), z⊕w)
.

In particular µ(G, z⊕w) divides η(T (G, u), z⊕w).

The next lemma arises as a multivariate analogue to the fact that the matching
polynomial of a tree T is equal to the characteristic polynomial of the adjacency
matrix of T .

Lemma 3.17. Let T = (V,E) be a tree. Then µ(T, z⊕w) has a definite determi-
nantal representation.

Note that
∂

∂zu
µ(G, z⊕w) = µ(G \ u, z⊕w),

and therefore
Λ+(µ(G, z⊕w)) ⊆ Λ(µ(G \ u, z⊕w)).

Using the above fact, Lemma 3.16 and Lemma 3.17 it follows, using an inductive ar-
gument, that multivariate matching polynomials µ(G, z⊕w) satisfy the generalized
Lax conjecture for any graph G.

Theorem 3.18. The hyperbolicity cone of µ(G, z⊕w) is spectrahedral.

By considering the matching polynomial of the partial path tree of the complete
graph Kn up to paths of length at most k, along with a suitable linear change of
variables, we recover Brändén’s result regarding the spectrahedrality of hyperbolic-
ity cones of elementary symmetric polynomials. Hence Theorem 3.18 can be viewed
as a generalization of this fact.

A subset I ⊆ V (G) is called independent if no two vertices of I are adjacent in
G. Let I(G) denote the set of all independent sets in G. Define the homogeneous
multivariate independence polynomial I(G, z⊕ t) ∈ R[z, t] by

I(G, z⊕ t) =
∑

I∈I(G)

(−1)|I|

(∏

v∈I
z2
v

)
t2|V (G)|−2|I|.

A graph is said to be claw-free if it has no induced subgraph isomorphic to the
complete bipartite graph K1,3. If G is a claw-free graph, then I(G, z ⊕ t) is hy-
perbolic with respect to e = (0, . . . , 0, 1). This fact is a simple consequence of the
real-rootedness of the weighted univariate independence polynomial of a claw-free
graph, due to Engström [27]. We prove that when G satisfies an additional tech-
nical condition (stronger than claw-freeness), then I(G, z ⊕ t) satisfies Conjecture
2.17.

Matching polynomials and independence polynomials are intimately related.
The line graph L(G) of G is the graph having vertex set E(G) and where two
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vertices in L(G) are adjacent if and only if the corresponding edges in G are in-
cident. The univariate matching polynomial of a graph G can be realized as the
univariate independence polynomial of its line graph L(G). With that said, the
multivariate polynomial I(G, z⊕ t) does not strictly generalize µ(G, z⊕w) due to
the dummy homogenization in the variable t. Unfortunately we were unsuccessful
in constructing a hyperbolic refinement of I(G, z ⊕ t) with respect to the variable
t which reduces to µ(G, z⊕w) (after relabelling) when G is a line graph.

The key to proving the generalized Lax conjecture for I(G, z⊕t) is to find a tree
that plays a role similar to that of the path tree for the matching polynomial. Such
a tree was constructed by Leake and Ryder in [47]. We outline its construction
below.

An induced clique K in G is called a simplicial clique if for all u ∈ K the induced
subgraph N [u] ∩ (G \K) of G \K is a clique. In other words the neighbourhood
of each u ∈ K is a disjoint union of two induced cliques in G. Furthermore, a
graph G is said to be simplicial if G is claw-free and contains a simplicial clique.
A connected graph G is a block graph if each 2-connected component is a clique.

Given a simplicial graph G with a simplicial clique K we recursively define a
block graph T�(G,K) called the clique tree associated to G and rooted at K.

We begin by adding K to T�(G,K). Let Ku = N [u]\K for each u ∈ K. Attach
the disjoint union

⊔
u∈K Ku of cliques to T�(G,K) by connecting u ∈ K to every

v ∈ Ku. Finally recursively attach T�(G \K,Ku) to the clique Ku in T�(G,K)
for every u ∈ K.

Theorem 3.19 (Leake-Ryder). Let K be a simplicial clique of a simplicial graph
G. Then

I(G, z⊕ t)
I(G \K, z⊕ t) =

I(T�(G,K), z⊕ t)
I(T�(G,K) \K, z⊕ t) ,

where T�(G,K) is relabelled according to the natural graph homomorphism φK :
T�(G,K)→ G. Moreover I(G, z⊕ t) divides I(T�(G,K), z⊕ t).

The following lemma asserts that vertex deletion relaxes the hyperbolicity cone,
providing the necessary setup for an inductive argument of spectrahedrality.

Lemma 3.20. Let v ∈ V (G). Then Λ+(I(G, z⊕ t)) ⊆ Λ+(I(G \ v, z⊕ t)).

Using Theorem 3.19, Lemma 3.20 and the fact that the clique tree T�(G,K) can be
realized as the line graph of an actual tree, one proves the theorem below using an
inductive argument which unfolds in an analogous manner to the proof of Theorem
3.18.

Theorem 3.21. If G is a simplicial graph, then the hyperbolicity cone of I(G, z⊕t)
is spectrahedral.
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Paper C [3]

A graph G is called Ramanujan if the absolute value of its largest non-trivial eigen-
value is bounded above by the spectral radius ρ(G) of its universal covering tree.
We refer to [33] for undefined terminology. Expanders are graphs which can be
informally characterized by being sparse and yet well-connected. Expanders are
of importance in e.g. computer science where they serve as basic building blocks
for robust network designs (among other things). Due to their spectral properties,
Ramanujan graphs are considered optimal expanders in the sense that a random
walk on a Ramanujan graph converges to the uniform distribution in the fastest
possible way. The existence of Ramanujan graphs is a highly non-trivial issue. A
longstanding open question asks about the existence of infinitely many k-regular
Ramanujan graphs for every k ≥ 3. Marcus, Spielman and Srivastava proved that
every finite graph G has a 2-sheeted covering (or 2-covering for short) with maxi-
mum non-trivial eigenvalue (not induced by G) bounded above by ρ(G), a so called
one-sided Ramanujan covering. Since coverings of bipartite graphs are bipartite,
and the spectrum of a bipartite graph is symmetric around zero, they were able to
point to the existence of infinitely many k-regular bipartite Ramanujan graphs.

Subsequently Hall, Puder and Sawin [39] generalized the techniques in [50, 51]
and proved that every loopless connected graph has a one-sided Ramanujan d-
covering for every d ≥ 1. An essential polynomial to the proof is the average
matching polynomial of all d-coverings of G. For d ≥ 1, the d-matching polynomial
of G is defined by

µd,G(z) :=
1

|Cd,G|
∑

H∈Cd,G

µH(z),

where Cd,G denotes the set of all d-coverings of G and

µG(z) :=

bn/2c∑

i=0

(−1)imiz
n−2i ∈ Z[z]

denotes the univariate matching polynomial of G. In particular if d = 1, then
µd,G(z) = µG(z).

Using the celebrated technique of interlacing families, developed by Marcus,
Spielman and Srivastava, the authors prove that the maximum root of the ex-
pected characteristic polynomial over all d-coverings of G is bounded above by
their uniform average, which in turn is proved to equal µd,G(z). The real roots of
µd,G(z) on the other hand can easily be deduced to lie in the interval [−ρ(G), ρ(G)]
using a well-known theorem of Heilmann and Lieb [40]. Hence there is at least one
covering in the family which has its maximal non-trivial eigenvalue less than the
maximum root of the average µd,G(z), that is, less than ρ(G) as desired.

As implied by the paragraph above we have in particular the following theorem.

Theorem 3.22 (Hall-Puder-Sawin). If G is a finite loopless graph, then µd,G(z)
is real-rooted.
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The authors gave a rather long and indirect proof of Theorem 3.22. They further
asked for a direct proof that includes graphs with loops. In Paper C we answer
their question by proving that a multivariate version of the d-matching polynomial
is stable, a statement which is more general than their original question. Define
the multivariate d-matching polynomial of G by

µd,G(z) := EH∈Cd,GµH(z),

where
µG(z) :=

∑

M

(−1)|M |
∏

v∈[n]\V (M)

zv,

and the sum runs over all matchings in G. By analysing the algebraic symbol it
follows that the multi-affine part operator

MAP : C[z1, . . . , zn]→ C[z1, . . . , zn]
∑

α∈Nn

a(α)zα 7→
∑

α:αi≤1,i∈[n]

a(α)zα

is a stability-preserving linear operator. Moreover one sees that

MAP


 ∏

uv∈E(G)

(1− zuzv)


 = µG(z),

proving that µG(z) is stable. By using MAP and the Grace-Walsh-Szegö theorem
we prove:

Theorem 3.23. Let G be a finite graph and d ≥ 1. Then µd,G(z) is stable.

Corollary 3.24. Let G be a finite graph and d ≥ 1. Then µd,G(z) is real-rooted.

Proof. Follows by putting z = (z, . . . , z) in Theorem 3.23

In [40] Heilmann and Lieb proved that the matching polynomial µG(z) of any graph
G is real-rooted. In analogy with graph matchings, a matching in a hypergraph
consists of a subset of (hyper)edges with empty pairwise intersection. However the
analogous matching polynomial for hypergraphs is not real-rooted in general, see
e.g. [34]. A natural question is thus how to generalize the Heilmann-Lieb theorem
to hypergraphs. We consider a relaxation of matchings in general hypergraphs that
leads to an associated real-rooted polynomial which reduces to the conventional
matching polynomial for graphs.

Consider the problem of assigning a subset of n people with prescribed compe-
tencies into teams of no less than two people, working on a subset of m different
projects in such a way that no person is assigned to more than one project and each
person has the competency to work on the project they are assigned to. We shall
call such team assignments “relaxed matchings”. More formally define a relaxed
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matching in a hypergraph H = (V (H), E(H)) to be a collection M = (Se)e∈E of
edge subsets such that E ⊆ E(H), Se ⊆ e, |Se| > 1 and Se∩Se′ = ∅ for all pairwise
distinct e, e′ ∈ E.

Remark 3.25. If H is a graph then the concept of relaxed matching coincides
with the conventional notion of graph matching. Note also that a conventional
hypergraph matching is a relaxed matching M = (Se)e∈E for which Se = e for all
e ∈ E.

Remark 3.26. The subsets Se in the relaxed matching are labeled by the edge they
are chosen from in order to avoid ambiguity. However if H is a linear hypergraph,
that is, the edges pairwise intersect in at most one vertex, then the subsets uniquely
determine the edges they belong to and therefore no labeling is necessary. Graphs
and finite projective geometries (viewed as hypergraphs) are examples of linear
hypergraphs.

Let V (M) :=
⋃
Se∈M Se denote the set of vertices in the relaxed matching. More-

over let mk(M) := |{Se ∈ M : |Se| = k}| denote the number of subsets in the
relaxed matching of size k. Define the multivariate relaxed matching polynomial of
H by

ηH(z) :=
∑

M

(−1)|M |W (M)
∏

i∈[n]\V (M)

zi,

where the sum runs over all relaxed matchings of H and

W (M) :=

n−1∏

k=1

kmk+1(M).

Let ηH(z) := ηH(z1) denote the univariate relaxed matching polynomial.

Remark 3.27. If H is a graph, then ηH(z) = µH(z).

Theorem 3.28. The polynomial ηH(z) is stable. In particular

ηH(z) =
∑

M

(−1)|M |W (M)zn−|V (M)|,

is a real-rooted polynomial for any hypergraph H.

Paper D [4]

Combining the study of pattern avoidance with combinatorial statistics is a paradigm
which has been advocated in papers by Claesson-Kitaev [23] and Sagan-Savage [63]
among others. Typically one is interested in the generating polynomial

f(q) =
∑

σ∈Sn(Π)

qstat(σ),
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for some pattern set Π and combinatorial statistic stat : Sn(Π)→ N. Examples of
questions one may ask about f(q) have to do with equidistribution, recursion and
unimodality/log-concavity/real-rootedness etc. In Paper D we focus on equidistri-
butions of the form

∑

σ∈Sn(Π1)

qstat1(σ) =
∑

σ∈Sn(Π2)

qstat2(σ),

where Π1,Π2 consist of a single classical pattern of length three and stat1, stat2

are Mahonian permutation statistics.

Let Π denote the set of vincular patterns of length at most d. A d-function is
a statistic of the form

stat =
∑

π∈Π

απ · (π),

where απ ∈ N and (π) is the statistic counting the number of occurrences of the
pattern π. Babson and Steingŕımsson classified all Mahonian 3-functions up to
trivial symmetries. Several previously studied Mahonian statistics fall under the
classification, including maj and inv. The complete table of Mahonian 3-functions
may be found below along with their original references.

Name Vincular pattern statistic Reference

maj (132) + (231) + (321) + (21) MacMahon [49]

inv (231) + (312) + (321) + (21) MacMahon [49]

mak (132) + (312) + (321) + (21) Foata-Zeilberger [30]

makl (132) + (231) + (321) + (21) Clarke-Steingŕımsson-Zeng [24]

mad (231) + (231) + (312) + (21) Clarke-Steingŕımsson-Zeng [24]

bast (132) + (213) + (321) + (21) Babson-Steingŕımsson[7]

bast′ (132) + (312) + (321) + (21) Babson-Steingŕımsson[7]

bast′′ (132) + (312) + (321) + (21) Babson-Steingŕımsson[7]

foze (213) + (321) + (132) + (21) Foata-Zeilberger [29]

foze′ (132) + (231) + (231) + (21) Foata-Zeilberger [29]

foze′′ (231) + (312) + (312) + (21) Foata-Zeilberger [29]

sist (132) + (132) + (213) + (21) Simion-Stanton [65]

sist′ (132) + (132) + (231) + (21) Simion-Stanton [65]

sist′′ (132) + (231) + (231) + (21) Simion-Stanton [65]

Since all statistics in the table above are Mahonian, they are by definition equidis-
tributed over Sn. In Paper D we ask what equidistributions hold between the
statistics if we restrict ourselves to permutations avoiding a classical pattern of
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length three. Existing bijections φ : Sn → Sn in the literature for proving the Ma-
honian nature of these statistics do not restrict to bijections over pattern classes.
Therefore there is no a priori reason to expect that such equidistributions should
continue to hold over Sn(π). Another motivation for studying equidistributions
over Sn(π) where π ∈ S3, is that these pattern classes are enumerated by the
Catalan numbers. Thus under appropriate bijections we may get induced equidis-
tributions between combinatorial statistics on other Catalan structures (and vice
versa). Below we give an example of such an induced equidistributions from Paper
D.

Theorem 3.29. For any n ≥ 1,

∑

σ∈Sn(321)

qmaj(σ)xDB(σ)yDT(σ) =
∑

σ∈Sn(321)

qmak(σ)xDB(σ)yDT(σ),

where DB(σ) := {σ(i+ 1) : σ(i) > σ(i+ 1)} and DT(σ) := {σ(i) : σ(i) > σ(i+ 1)}.

The equidistribution in Theorem 3.29 is proved via an explicit involution φ :
Sn(321) → Sn(321) mapping maj to mak and preserving descent bottoms and
descent tops in the process. The involution φ induces an equidistribution on short-
ened polyominoes (another Catalan structure) as we shall now describe.

A shortened polyomino is a pair (P,Q) of N (north), E (east) lattice paths
P = (Pi)

n
i=1 and Q = (Qi)

n
i=1 satisfying

1. P and Q begin at the same vertex and end at the same vertex.

2. P stays weakly above Q and the two paths can share E-steps but not N -steps.

Denote the set of shortened polyominoes with |P | = |Q| = n byHn. Let Valley(Q) =
{i : QiQi+1 = EN} denote the set of indices of the valleys in Q and let nval(Q) =
|Valley(Q)|. Define the statistics valley-column area, vcarea(P,Q), and valley-row
area, vrarea(P,Q), as illustrated below.

Q

P

(a) vcarea(P,Q) = 2 + 3 + 2 = 7

Q

P

(b) vrarea(P,Q) = 2 + 4 + 3 = 9

Cheng, Eu and Fu [21] gave a creative bijection Ψ : Hn → Sn(321). In Paper D we
show that

• vcarea(P,Q) = [(21) + (312)]Ψ(P,Q).
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• vrarea(P,Q) = [(21) + (231)]Ψ(P,Q).

From the involution φ in Theorem 3.29 one gets

[(21) + (312)]φ(σ) = [(21) + (231)]σ.

Hence by considering the composition Ψ−1 ◦ φ ◦ Ψ we get the following induced
equidistribution.

Theorem 3.30. For any n ≥ 1,
∑

(P,Q)∈Hn

qvcarea(P,Q)tnval(Q) =
∑

(P,Q)∈Hn

qvrarea(P,Q)tnval(Q).

Conversely we may prove equidistributions between Mahonian 3-functions via equidis-
tributions over an intermediate Catalan structure. Below we give an example of
this technique from Paper D.

Recall that a Dyck path of length 2n is a lattice path in Z2 between (0, 0) and
(2n, 0) consisting of up-steps (1, 1) and down-steps (1,−1) which never go below
the x-axis. For convenience we denote the up-steps by U and the down-steps by
D. Let Dn denote the set of Dyck paths of semi-length n. Under Krattenthaler’s
well-known bijection Γ : Sn(321)→ Dn, the statistic inv is mapped to the statistic
sumpeaks, defined for Dyck paths P = s1 · · · s2n ∈ Dn by

spea(P ) :=
∑

p∈Peak(P )

(htP (p)− 1),

where Peak(P ) := {p : spsp+1 = UD} and htP (p) is the y-coordinate of the pth step
in P . The figure below illustrates the Dyck path corresponding to σ = 341625978 ∈
S9(321) under Krattenthaler’s bijection, mapping inv to spea.

Let Valley(P ) := {v : svsv+1 = DU} denote the set of indices of the valleys in
P . For each v ∈ Valley(P ), there is a corresponding tunnel which is the subword
si · · · sv of P where i is the step after the first intersection of P with the line
y = htP (v) to the left of step v (see figure below). The length, v − i, of a tunnel is
always an even number. Let Tunnel(P ) := {(i, j) : si · · · sj tunnel in P} denote the
set of pairs of beginning and end indices of the tunnels in P . Define the statistic
sumtunnels by

stun(P ) :=
∑

(i,j)∈Tunnel(P )

(j − i)/2.
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The tunnel lengths of the Dyck path below are highlighted by dashes.

Cheng, Elizalde, Kasraoui and Sagan [20] gave a bijection Ψ : Dn → Dn mapping
spea to stun. The mass corresponding to two consecutive U -steps, is half the
number of steps between their matching D-steps (i.e. if P = UUP ′DP ′′D, then
the mass of the pair UU is |P ′′|/2). Define the statistics

mass(P ) := sum of masses over all occurrences of UU

dr(P ) := number of double rises UU in P .

The part of the Dyck path below contributing to the mass associated with the first
double rise is highlighted in red.

In Paper D we give a bijection Φ : Dn → Dn, mapping stun to mass + dr. Finally
via Knuth’s standard bijection ∆ : Sn(231) → Dn defined recursively by kσ1σ2 7→
U∆(σ1)D∆(σ2) where σ1 < k < σ2, we map the 3-Mahonian statistic mad to
mass + dr. Combining all mentioned bijections we obtain the following theorem.

Theorem 3.31. For any n ≥ 1,

∑

σ∈S(321)

qinv(σ) =
∑

P∈Dn

qspea(P ) =
∑

P∈Dn

qstun(P ) =
∑

P∈Dn

qmass(P )+dr(P )

=
∑

σ∈Sn(231)

qmad(σ)

As an aside we find several other related equidistributions with inv and mad over
Sn(321) and Sn(231) respectively.

Consider the statistic

inc := ι1 +

∞∑

k=2

(−1)k−12k−2ιk

where ιk−1 = (12 . . . k) is the statistic that counts the number of increasing subse-
quences of length k in a permutation. Using the Catalan continued fraction frame-
work of Brändén, Claesson and Steingŕımsson[18] we prove the following equidis-
tribution.
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Theorem 3.32. For any n ≥ 1,

∑

σ∈Sn(231)

qmad(σ) =
∑

σ∈Sn(132)

qinc(σ).

Let Up(P ) := {i : si = U} denote the indices of the up-steps in P = s1 · · · s2n.
Define

sups(P ) :=
∑

i∈Up(P )

dhtP (i)/2e.

By constructing a bijection Θ : Dn → Dn, mapping sups to mass + dr, we deduce
via Theorem 3.31 the following equidistribution.

Proposition 3.33. For any n ≥ 1,

∑

σ∈Sn(321)

qinv(σ) =
∑

P∈Dn

qsups(P ).

If (P,Q) ∈ Hn is a shortened polyomino, then the area statistic, area(P,Q) is
defined as the number of boxes enclosed by (P,Q).

Q

P

It is finally worth mentioning the following equidistribution.

Theorem 3.34 (Cheng-Eu-Fu). For any n ≥ 1,

∑

σ∈Sn(321)

qinv(σ) =
∑

(P,Q)∈Hn

qarea(P,Q).

See Paper D for the full table of established and conjectured Mahonian 3-function
equidistributions.

Paper E [1]

Given a cyclic action of Cn on the set X, Reiner, Stanton and White [58] showed
that the polynomial f(q) in (2.3) always makes (X,Cn, f(q)) into a CSP triple.
Many natural CSP triples occurring in the literature have the additional property
that f(q) =

∑
x∈X q

stat(x) for some combinatorial statistic stat : X → N. Con-
versely it is natural to ask under what circumstances a combinatorial polynomial
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f(q) =
∑
x∈X q

stat(x) can be complemented with a cyclic action to a CSP? In Paper
E we give a necessary and sufficient criterion for this to be the case. In particular
the converse is not trivial in the sense that if f(q) ∈ N[q] is a polynomial such
that f(ωjn) ∈ N for all 1 ≤ j ≤ n, then one cannot always find a cyclic action
complementing f(q) to a CSP. Our main theorem is the following.

Theorem 3.35. Let f(q) ∈ N[q] and suppose f(ωjn) ∈ N for each j = 1, . . . , n.
Let X be any set of size f(1). Then there exists an action of Cn on X such that
(X,Cn, f(q)) exhibits CSP if and only if for each k|n,

∑

j|k

µ(k/j)f(ωjn) ≥ 0. (3.3)

The action complementing f(q) to a CSP in Theorem 3.35 is given by the following
generic construction.

Construction 3.36. Let X = O1 t O2 t · · · t Om be a partition of a finite set
X into m parts such that |Oi| divides n for i = 1, . . . ,m. Fix a total ordering on
the elements of Oi for i = 1, . . . ,m. Let Cn act on X by permuting each element
x ∈ Oi cyclically with respect to the total ordering on Oi for i = 1, . . . ,m.

We call the action in Construction 3.36 an ad-hoc cyclic action. The action lacks
combinatorial context and merely depends on the choice of partition and total
order. By ordinary Möbius inversion, the sums Sk =

∑
j|k µ(k/j)f(ωjn) represent

the number of elements of order k under the action of Cn. Thus the only non-trivial
issue in the proof of Theorem 3.35 is whether k divides Sk for all k. This is required
for the elements to be evenly partitioned into orbits. Rather surprisingly it turns
out that the divisibility property always hold as long as f(ωjn) ∈ Z for all 1 ≤ j ≤ n.

Although we would generally not consider a CSP “interesting” unless both the
action and the polynomial are combinatorially meaningful, we think that our crite-
ria serves a useful purpose in the way that a candidate polynomial can be quickly
tested for CSP without having a combinatorial cyclic action at hand. A combina-
torial polynomial passing the test may be a likely indication that a combinatorially
meaningful cyclic action is present explaining the CSP.

Example 3.37. Let f(q) = q5+3q3+q+9. Then f(ωj6) takes values 7, 11, 4, 11, 7, 14

for j = 1, . . . , 6. On the other hand Sk =
∑
j|k µ(k/j)f(ωj6) takes values 7, 4,−3, 0, 0, 6

for k = 1, . . . , 6. Since we cannot have a negative number of elements of order 3,
there is no action of C6 on a set X of size f(1) = 14 such that (X,C6, f(q)) is a
CSP-triple.

Thus even if f(q) ∈ N[q] satisfies f(ωjn) ∈ N for all j = 1, . . . , n, we may not
have an associated cyclic action complementing f(q) to a CSP.

In the second part of Paper E we consider CSP from a more geometric perspective.
Let stat : X → N be a statistic and denote statn(x) = stat(x) (mod n). Consider
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the joint distribution

∑

x∈X
qstatn(x)to(x) =

n−1∑

i=0

n∑

j=1

aijq
itj ,

where o(x) denotes the order of x ∈ X under Cn. We can now restate CSP as
follows.

Proposition 3.38. Suppose X is a finite set on which Cn acts and let f(q) =∑
x∈X q

stat(x) where stat : X → N is a statistic. Then the triple (X,Cn, f(q))
exhibits CSP if and only if A(X,Cn,stat) = (aij) satisfies the condition that for each
1 ≤ k ≤ n, ∑

0≤i<n
1≤j≤n

aijω
ki
n =

∑

0≤i<n

∑

j|k

aij . (3.4)

where ωn is a primitive nth root of unity.

We call a matrix A = (aij) ∈ Rn×n≥0 a CSP matrix if it satisfies the linear
equations in (3.4). Let CSP(n) denote the set of n× n CSP matrices.

Example 3.39. Consider all binary words of length 6, with group action being
cyclic right-shift by one position and stat being the the major index statistic (sum
of all descent indices). Then




2 1 0 0 0 11
0 0 2 0 0 7
0 0 0 0 0 11
0 1 2 0 0 7
0 0 0 0 0 11
0 0 2 0 0 7




is the corresponding CSP matrix. The above matrix can be checked to satisfy (3.4)
with n = 6. The entry in the upper left hand corner correspond to the two binary
words 000000 and 111111. These have major index 0 and are fixed under a single
shift, so they have order one. The words corresponding to the second column are
010101 and 101010. These have major index 6 ≡ 0 (mod 6) and 9 ≡ 3 (mod 6)
respectively and are fixed under a minimum of two consecutive shifts, so they have
order two etc.

Define the hyperplanes

Hk(x) :=

n−1∑

i=0

∑

j|n
j>1

αijkxij ∈ Z[x],



3. SUMMARY OF RESULTS 37

where

αijk :=





−n+ n
j , if i = k and k ≡ 0 (mod n

j ),

−n, if i = k and k 6≡ 0 (mod n
j ),

n
j , if i 6= k and k ≡ 0 (mod n

j ),

0, if i 6= k and k 6≡ 0 (mod n
j ).

Theorem 3.40. We have

CSP(n) ∼= {x ∈ Rn(d−1)+1
≥0 : Hk(x) ≥ 0},

where d denotes the number of divisors of n.

Thus we see that CSP(n) forms a convex rational polyhedral cone of dimension
n(d − 1) + 1. The cone CSP(n) has several notable properties as summarized
below.

• The integer lattice points CSP(n)∩Zn×n correspond to distributions that are
realizable by a CSP triple (X,Cn, f(q)).

• Suppose that i and i′ are indices such that gcd(n, i) = gcd(n, i′). Then the
operation of swapping rows i and i′ preserves the property of being a CSP
matrix.

• Adding a matrix B with zero row and column-sum to a CSP matrix A pre-
serves the property of being a CSP matrix provided A+B ∈ Rn×n≥0 .

About the joint paper contributions of the author

Papers A and E in this thesis are a result of joint collaboration with two different
coauthors. The contribution of the author in each of these papers is described
below.

Paper A was written together with the author’s advisor Petter Brändén. While
the author participated in all aspects of the project, many of the key breakthroughs
regarding the symmetric function inequalities were made by the advisor. Initially
the hyperbolicity of the matroids in our family was proved only for graphs. The
main contribution of the author pertains to the generalization of the inequalities
in the graphical case to strengthen the main result to matroids derived from hy-
pergraphs. This later turned out to have consequences for the generalized Lax
conjecture and produce instances of non-representable hyperbolic matroids with-
out a Vámos minor. Some smaller results regarding the minor closure of the matroid
family and facts regarding representability of matroids derived from tree-like hy-
pergraphs was also contributed by the author. Paper E was written jointly with
Per Alexandersson where both authors contributed approximately equal amounts
to all aspects of the work.
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[10] M. Bóna, Combinatorics of Permutations, second edition, Discrete Mathemat-
ics and its Applications (Boca Raton). CRC Press, Boca Raton, FL. 2012.
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[16] P. Brändén, Hyperbolicity cones of elementary symmetric polynomials are
spectrahedral, Optimization Letters 8 (2014), 1773-1782.
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NON–REPRESENTABLE HYPERBOLIC MATROIDS

NIMA AMINI AND PETTER BRÄNDÉN

Abstract. The generalized Lax conjecture asserts that each hyperbolicity cone is a linear
slice of the cone of positive semidefinite matrices. Hyperbolic polynomials give rise to a class
of (hyperbolic) matroids which properly contains the class of matroids representable over
the complex numbers. This connection was used by the second author to construct coun-
terexamples to algebraic (stronger) versions of the generalized Lax conjecture by considering
a non–representable hyperbolic matroid. The Vámos matroid and a generalization of it are,
prior to this work, the only known instances of non–representable hyperbolic matroids.

We prove that the Non–Pappus and Non–Desargues matroids are non-representable hyper-
bolic matroids by exploiting a connection between Euclidean Jordan algebras and projective
geometries. We further identify a large class of hyperbolic matroids which contains the
Vámos matroid and the generalized Vámos matroids recently studied by Burton, Vinzant
and Youm. This proves a conjecture of Burton et al. We also prove that many of the matroids
considered here are non–representable. The proof of hyperbolicity for the matroids in the
class depends on proving nonnegativity of certain symmetric polynomials. In particular we
generalize and strengthen several inequalities in the literature, such as the Laguerre–Turán
inequality and an inequality due to Jensen. Finally we explore consequences to algebraic
versions of the generalized Lax conjecture.
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2 NIMA AMINI AND PETTER BRÄNDÉN

1. Introduction

Although hyperbolic polynomials have their origin in PDE theory, they have during re-
cent years been studied in diverse areas such as control theory, optimization, real algebraic
geometry, probability theory, computer science and combinatorics, see [35, 36, 39, 40] and
the references therein. To each hyperbolic polynomial is associated a closed convex (hyper-
bolicity) cone. Over the past 20 years methods have been developed to do optimization over
hyperbolicity cones, which generalize semidefinite programming. A problem that has received
considerable interest is the generalized Lax conjecture which asserts that each hyperbolicity
cone is a linear slice of the cone of positive semidefinite matrices (of some size). Hence if the
generalized Lax conjecture is true then hyperbolic programming is the same as semidefinite
programming.

Choe et al. [11] and Gurvits [20] proved that hyperbolic polynomials give rise to a class
of matroids, called hyperbolic matroids or matroids with the weak half–plane property. The
class of hyperbolic matroids properly contains the class of matroids which are representable
over the complex numbers, see [11, 41]. This fact was used by the second author [7] to
construct counterexamples to algebraic (stronger) versions of the generalized Lax conjecture.
To better understand, and to identify potential counterexamples to the generalized Lax
conjecture, it is therefore of interest to study hyperbolic matroids which are not representable
over C, or even better not representable over any (skew) field. However previous to this
work essentially just two such matroids were known: The Vámos matroid V8 [41] and a
generalization V10 [10]. In this paper we first show that the Non-Pappus and Non-Desargues
matroids are hyperbolic (but not representable over any field) by utilizing a known connection
between hyperbolic polynomials and Euclidean Jordan algebras. Then, in Theorem 6.5, we
construct a family of hyperbolic matroids which are parametrized by uniform hypergraphs,
and prove that many of these matroids fail to be representable over any field, and more
generally over any modular lattice. The proof of the main result is involved and uses several
ingredients. In order to prove that the polynomials coming from our family of matroids are
hyperbolic we need to prove that certain symmetric polynomials are nonnegative. The results
obtained generalize and strengthen several inequalities in the literature, such as the Laguerre–
Turán inequality and an inequality due to Jensen. Finally we explore some consequences to
algebraic versions of the generalized Lax conjecture.

2. Hyperbolic and stable polynomials

A homogeneous polynomial h(x) ∈ R[x1, . . . , xn] is hyperbolic with respect to a vector
e ∈ Rn if h(e) 6= 0, and if for all x ∈ Rn the univariate polynomial t 7→ h(te − x) has only
real zeros. Note that if h is a hyperbolic polynomial of degree d, then we may write

h(te− x) = h(e)
d∏

j=1
(t− λj(x)),

where
λmax(x) = λ1(x) ≥ · · · ≥ λd(x) = λmin(x)

are called the eigenvalues of x (with respect to e). The hyperbolicity cone of h with respect
to e is the set Λ+(h, e) = {x ∈ Rn : λmin(x) ≥ 0}. We usually abbreviate and write Λ+ if
there is no risk for confusion. We denote by Λ++ the interior Λ+.
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Example 2.1. An important example of a hyperbolic polynomial is det(X), where X =
(xij)ni,j=1 is a symmetric matrix with

(
n+1

2

)
indeterminate entries. If X is a real symmetric

n × n matrix and In is the identity matrix of size n × n, then t 7→ det(tIn − X) is the
characteristic polynomial of a real symmetric matrix, so it has only real zeros. Hence det(X)
is a hyperbolic polynomial with respect to In, and its hyperbolicity cone is the cone of positive
semidefinite matrices.

The real linear space of complex hermitian matrices of size n is parametrized by matrices
X in n2 variables, and as above it follows that det(X) is a hyperbolic polynomial.
The next theorem follows from a theorem of Helton and Vinnikov [22], see [29]. It proved
the Lax conjecture, after Peter Lax [28].
Theorem 2.2. Suppose that h(x, y, z) is of degree d and hyperbolic with respect to e =
(e1, e2, e3)T . Suppose further that h is normalized such that h(e) = 1. Then there are sym-
metric d× d matrices A,B,C such that e1A+ e2B + e3C = Id and

h(x, y, z) = det(xA+ yB + zC).

Remark 2.3. The exact analogue of the Helton-Vinnikov theorem fails for n > 3 variables.
This may be seen by comparing dimensions. The space of degree d polynomials on Rn of the
form det(x1A1 + · · ·xnAn) with Ai symmetric for 1 ≤ i ≤ n, has dimension at most n

(
d+1

2

)

whereas the space of hyperbolic polynomials on Rn has dimension
(
n+d−1

d

)
.

A convex cone in Rn is spectrahedral if it is of the form
{

x ∈ Rn :
n∑

i=1
xiAi is positive semidefinite

}

where Ai, i = 1, . . . , n are symmetric matrices such that there exists a vector (y1, . . . , yn) ∈ Rn

with ∑n
i=1 yiAi positive definite. It is easy to see that spectrahedral cones are hyperbolicity

cones. Indeed if A1, . . . , An are real symmetric d × d matrices and e ∈ Rn is a vector such
that ∑n

i=1 eiAi is positive definite, then h(x) = det (∑n
i=1 xiAi) ∈ R[x1, . . . , xn] is a hyperbol-

ic polynomial with respect to e, since for all x ∈ Rn we have that det (tId −
∑n
i=1 xiAi) ∈

R[t] is the characteristic polynomial of a real symmetric matrix and hence real-rooted.
Therefore the hyperbolicity cone of h(x) is precisely the spectrahedral cone {x ∈ Rn :∑n
i=1 xiAi is positive definite}. A major open question asks if the converse is true.

Conjecture 2.4 (Generalized Lax conjecture (geometric version) [22, 39]). All hyperbolicity
cones are spectrahedral.
We may reformulate Conjecture 2.4 as follows, see [22, 39].
Conjecture 2.5 (Generalized Lax conjecture (algebraic version) [22, 39]). If h(x) ∈ R[x] is
hyperbolic with respect to e = (e1, . . . , en) ∈ Rn, then there exists a polynomial q(x) ∈ R[x],
hyperbolic with respect to e, such that Λ++(h, e) ⊆ Λ++(q, e) and

q(x)h(x) = det
(

n∑

i=1
xiAi

)
(2.1)

for some real symmetric matrices A1, . . . , An of the same size such that ∑n
i=1 eiAi is positive

definite.
Here is an overview of known facts regarding Conjecture 2.4.
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• Conjecture 2.4 is true for n = 3 by Theorem 2.2,
• Conjecture 2.4 is true for homogeneous cones [13], i.e., cones for which the automor-

phism group acts transitively on its interior,
• Conjecture 2.4 is true for quadratic polynomials, see e.g. [32],
• Conjecture 2.4 is true for elementary symmetric polynomials, see [8],
• Conjecture 2.4 is true for certain multivariate generalizations of matching and inde-

pendence polynomials, see [1],
• Conjecture 2.4 is true for the first derivative relaxation of the positive semidefinite

cone, see [38],
• Weaker versions of Conjecture 2.4 are true for smooth hyperbolic polynomials, see

[27, 31].
• Stronger algebraic versions of Conjecture 2.4 are false, see [7].

A class of polynomials which is intimately connected to hyperbolic polynomials is the
class of stable polynomials. Below we will collect a few facts about stable polynomials
that will be needed in forthcoming sections. A polynomial P (x) ∈ C[x1, . . . , xn] is stable if
P (z1, . . . , zn) 6= 0 whenever Im(zj) > 0 for all 1 ≤ j ≤ n. Stable polynomials satisfy the
following basic closure properties, see e.g. [40].

Lemma 2.6. Let P (x1, . . . , xn) be a stable polynomial of degree di in xi for i = 1, . . . , n.
Then for all i = 1, . . . , n we have

(i) Specialization: P (x1, . . . , xi−1, ζ, xi+1, . . . , xn) is stable or identically zero for each
ζ ∈ C with Im(ζ) ≥ 0.

(ii) Scaling: P (x1, . . . , xi−1, λxi, xi+1, . . . , xn) is stable for all λ > 0.
(iii) Inversion: xdi

i P (x1, . . . , xi−1,−x−1
i , xi+1, . . . , xn) is stable.

(iv) Permutation: P (xσ(1), . . . , xσ(n)) is stable for all σ ∈ Sn.
(v) Differentiation: (∂/∂xi)P (x1, . . . , xn) is stable.

Hyperbolic and stable polynomials are related as follows, see [5, Prop. 1.1] and [11, Thm.
6.1].

Lemma 2.7. Let P ∈ R[x1, . . . , xn] be a homogenous polynomial. Then P is stable if and
only if P is hyperbolic with Rn

+ ⊆ Λ+.
Moreover all non-zero Taylor coefficients of a homogeneous and stable polynomial have the

same phase, i.e., the quotient of any two non-zero coefficients is a positive real number.

Lemma 2.8 (Lemma 4.3 in [7]). If h ∈ R[y1, . . . , yn] is a hyperbolic polynomial, v1, . . . ,vm ∈
Λ+ and v0 ∈ Rn, then the polynomial

P (x) = h(v0 + x1v1 + · · ·+ xmvm)
is either identically zero or stable.

3. Hyperbolic polymatroids

We refer to [34] for undefined matroid terminology. The connection between hyperbol-
ic/stable polynomials and matroids was first realized in [11]. A polynomial is multiaffine
provided that each variable occurs at most to the first power. Choe et al. [11] proved that if

P (x) =
∑

B⊆[m]
a(B)

∏

i∈B
xi ∈ C[x1, . . . , xm] (3.1)
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is a homogeneous, multiaffine and stable polynomial, then its support
B = {B : a(B) 6= 0}

is the set of bases of a matroid, M, on [m]. Such matroids are called weak half–plane
property matroids (abbreviated WHPP–matroids). If further P (x) can be chosen so that
a(B) ∈ {0, 1}, then M is called a half–plane property matroid (abbreviated HPP–matroid).
If so, then P (x) is the bases generating polynomial of M. Here are a few known facts
regarding WHPP or HPP matroids.

• All matroids representable over C are WHPP, [11].
• A binary matroid is WHPP if and only if it is HPP, and if and only if it is regular,

[9, 11].
• No finite projective geometry PG(r, n) is WHPP, [9, 11].
• The Vámos matroid V8 is HPP (but not representable over any field), [41].

We shall now see how weak half-plane property matroids may conveniently be described
in terms of hyperbolic polynomials.

Let E be a finite set. A polymatroid is a function r : 2E → N satisfying
(i) r(∅) = 0,
(ii) r(S) ≤ r(T ) whenever S ⊆ T ⊆ E,

(iii) r is semimodular, i.e.,
r(S) + r(T ) ≥ r(S ∩ T ) + r(S ∪ T ),

for all S, T ⊆ E.
Recall that rank functions of matroids on E coincide polymatroids r on E with r({i}) ≤ 1
for all i ∈ E.

Let V = (v1, . . . ,vm) be a tuple of vectors in Λ+(h, e), where e ∈ Rn. The (hyperbolic)
rank, rk(x), of x ∈ Rn is defined to be the number of non-zero eigenvalues of x, i.e., rk(x) =
deg h(e + tx). Define a function rV : 2[m] → N, where [m] := {1, 2, . . . ,m}, by

rV(S) = rk
(∑

i∈S
vi
)
.

It follows from [20] (see also [7]) that rV is a polymatroid. We call such polymatroids
hyperbolic polymatroids. Hence if the vectors in V have rank at most one, then we obtain the
hyperbolic rank function of a hyperbolic matroid.

Example 3.1. Let A1 = u1u∗1, . . . , Am = umu∗m be PSD matrices of rank at most one in Cn.
By Example 2.1 the function r : 2[m] → N defined by

r(S) = rk
(∑

i∈S
Ai

)

is the rank function of a hyperbolic matroid. It is not hard to see that r(S) is equal to the
dimension of the subspace of Cn spanned by {ui : i ∈ S}. Hence r is the rank function of
the linear matroid defined by u1, . . . ,um.

Proposition 3.2. A matroid is hyperbolic if and only it has the weak half–plane property.

Proof. Suppose B is the set of bases of a matroid, M, with the weak half–plane property
realized by (3.1). By Lemma 2.7 we may assume that a(B) is a nonnegative real number for
all B ⊆ [m]. Then P (x) is hyperbolic with hyperbolicity cone containing the positive orthant
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by Lemma 2.7. Let V = (δ1, . . . , δm), be the standard basis of Rm, and let 1 = (1, . . . , 1) ∈ Rm

be the all ones vector. Then

rV(S) = rk
(∑

i∈S
δi

)
= degP

(
1 + t

∑

i∈S
δi

)

= deg
∑

B

a(B)(1 + t)|B∩S| = max{|B ∩ S| : B ∈ B},

and hence rV is the rank function of M.
Conversely, assume that h is hyperbolic, that V = (v1, . . . ,vm) ∈ Λ+(h, e)m, and that

rV is the rank function of a hyperbolic matroid of rank r. We may assume h(e) > 0. The
polynomial g(x0, x1, . . . , xm) = h(x0e + x1v1 + · · ·+ xmvm) is stable by Lemma 2.8 and has
only nonnegative coefficients by Lemma 2.7. Since vi has rank at most one for each i we see
that g has degree at most one in xi for all i ≥ 1. It follows that

g(x) = xd−r0

r∑

i=0
gi(x1, . . . , xm)xr−i0 ,

where gi(x) is a homogeneous and multiaffine polynomial of degree i for 0 ≤ i ≤ r ≤ d =
deg h. By dividing by xd−r0 and setting x0 = 0, we see that gr(x) is stable by Lemma 2.6.
Moreover B is a basis of the matroid defined by V if and only if |B| = r and g(δ0 + t

∑
i∈B δi)

has degree d. This happens if and only if gr(
∑
i∈B δi) 6= 0, that is, if and only if B is in the

support of gr(x). �

4. Projections and face lattices of hyperbolicity cones

Let C be a closed convex cone in Rn. If x,y ∈ C and y− x ∈ C, we write x ≤ y. Recall
that a face F of a convex cone C is a convex subcone of C with the property that x,y ∈ C,
x ≤ y and y ∈ F implies x ∈ F . Equivalently a face is a convex subcone of C such that for
each open line segment in C that intersects F , the closure of the segment is contained in F .
The collection of all faces of C is a lattice, L(C), under containment with smallest element
{0} and largest element C. Clearly F ∧G = F ∩G and F ∨G = ⋂

H H, where H ranges over
all faces containing F and G. The collection of all relative interiors of faces of C partitions
C. If Fx is the unique face that contains x ∈ C in its relative interior, then Fx ∨ Fy = Fx+y.
See [37] for more on the face lattices of convex cones.

The rank of a face F of the hyperbolicity cone Λ+ is defined by

rk(F ) = max
x∈F

rk(x).

Note that if L(Λ+) is a graded lattice, then the above hyperbolic rank function is not neces-
sarily the rank function of L(Λ+).

Lemma 4.1 (Thm 26, [36]). Let F be a face of Λ+ and let x ∈ F . Then rk(x) = rk(F ) if
and only if x is in the relative interior of F .

By Lemma 4.1 and the semimodularity of hyperbolic polymatroids we see that rk :
L(Λ+)→ N is semimodular, that is,

rk(F ∨G) + rk(F ∧G) ≤ rk(F ) + rk(G)
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for all F,G ∈ L(Λ+). We may therefore equivalently define a hyperbolic polymatroid in
terms of the face lattice of the hyperbolicity cone as follows: If F = (F1, . . . , Fm) is a tuple
of elements of the face lattice L(Λ+), then the function rF : 2[m] → N defined by

rF(S) = rk
(∨

i∈S
Fi

)

is a hyperbolic polymatroid.
The following theorem collects a few fundamental facts about hyperbolic polynomials and

their hyperbolicity cones. For proofs see [21, 36].

Theorem 4.2 (G̊arding, [21]). Suppose h is hyperbolic with respect to e ∈ Rn.
(i) Λ+(e) and Λ++(e) are convex cones.
(ii) Λ++(e) is the connected component of

{x ∈ Rn : h(x) 6= 0}
which contains e.

(iii) λmin : Rn → R is a concave function, and λmax : Rn → R is a convex function.
(iv) If e′ ∈ Λ++(e), then h is hyperbolic with respect to e′ and Λ++(e′) = Λ++(e).

Recall that the lineality space of a convex cone C is C ∩ −C, i.e., the largest linear space
contained in C. It follows that the lineality space of a hyperbolicity cone is {x : λi(x) =
0 for all i}, see e.g. [36]. Also if x is in the lineality space, then λi(x + y) = λi(y) for all
1 ≤ i ≤ d and y ∈ Rn [36].

By homogeneity of h

λj(sx + te) =



sλj(x) + t if s ≥ 0 and
sλd−j+1(x) + t if s ≤ 0

, (4.1)

for all s, t ∈ R and x ∈ Rn.
In analogy with the eigenvalue characterization of matrix projections we define projections

in Λ+ as follows.

Definition 4.3. An element in Λ+ is a projection if its eigenvalues are contained in {0, 1}.
Remark 4.4. Note that 0, e and appropriate multiples of rank one vectors in Λ+ are always
projections.

Lemma 4.5. Suppose x,y ∈ Λ+ are such that Fx ≤ Fy and rk(y) = r. If λ1(x) ≤ λr(y),
then x ≤ y.

In particular if x,y ∈ Λ+ are projections, then Fx ≤ Fy if and only if x ≤ y.

Proof. Suppose x,y ∈ Λ+ are such that Fx ≤ Fy, rk(y) = r and λ1(x) ≤ λr(y). Consider
the polynomial

g(u, s, t) = h(ue + sy + tx),
which is hyperbolic with respect to (1, 0, 0) and whose hyperbolicity cone contains the positive
orthant. Since x ∈ Fy we know that rk(ax + by) = r for all a, b > 0. Since all non-zero
Taylor coefficients of g(u, s, t) have the same sign, by Lemma 2.7, we may write

g(u, s, t) = ud−rg0(u, s, t), d = deg h,
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where g0(u, s, t) is hyperbolic with respect to (1, 0, 0) and also (0, 1, 0), and its hyperbolicity
cone contains the positive orthant. Let λ′j(a, b, c), j = 1, . . . , r, denote the eigenvalues of g0
(with respect to (1, 0, 0)). Then by (4.1) and the concavity of λ′r (Theorem 4.2):

λ′r(0, 1,−1) ≥ λ′r(0, 1, 0) + λ′r(0, 0,−1) = λr(y)− λ1(x) ≥ 0.
By construction λmin(y− x) = min{0, λ′r(0, 1,−1)}, and the lemma follows. �
Lemma 4.6. If x,y ∈ Λ+ are projections with x ≤ y, then y− x is a projection with

rk(y− x) = rk(y)− rk(x).

Proof. Suppose first that Fy = Λ+ = Fe. Then y− e, e− y ∈ Λ+ by Lemma 4.5, and hence
y− e is in the lineality space of Λ+. Then

λi(y− x) = λi(e− x) = 1− λd−i+1(x),
for all 1 ≤ i ≤ d = deg h, and hence y− x is a projection of rank d− rk(x).

If Fy 6= Fe, then r := rk(y) < d. Consider the hyperbolic polynomial
g(u, s, t) = h(ue + sx + ty) = ud−rg0(u, s, t),

where g0 is hyperbolic with respect to e′ = (1, 0, 0). It follows that x′ = (0, 1, 0) and
y′ = (0, 0, 1) are projections with Fe′ = Fy′ . The lemma now follows from the first case
considered. �

Remark 4.7. Note that if x ≤ y and y ≤ x, then y − x is in the lineality space of Λ+.
Moreover x ≤ y if and only if e − y ≤ e − x. Since Fe = Λ+ we have by Lemma 4.5 that
x ≤ e for all projections x ∈ Λ+. Hence by Lemma 4.6 it follows that x is a projection if
and only if e− x is a projection.

The following proposition gives a sufficient condition for two faces in Λ+ to be modular with
respect to the hyperbolic rank function.

Proposition 4.8. If x,y ∈ Λ+ are projections such that Fx ∧ Fy, Fx ∨ Fy, Fe−x ∧ Fe−y and
Fe−x ∨ Fe−y all contain a projection in their relative interiors, then

rk(Fx) + rk(Fy) = rk(Fx ∧ Fy) + rk(Fx ∨ Fy).

Proof. Let v,w,v′,w′ be the projections in the relative interiors of Fx ∧Fy, Fx ∨Fy, Fe−x ∧
Fe−y and Fe−x ∨ Fe−y, respectively. Then e − w ≤ e − x and e − w ≤ e − y, so that
e − w ∈ Fe−x ∧ Fe−y by Lemma 4.5. By Lemma 4.5 again, e − w ≤ v′. We also have
e − v′ ≥ x and e − v′ ≥ y so that e − v′ ≥ w, that is, e −w ≥ v′. Thus Fv′ = Fe−w and
analogously Fw′ = Fe−v. Since rk : L(Λ+)→ N is semimodular we have

rk(x) + rk(y) ≥ rk(v) + rk(w),
and also

rk(e− x) + rk(e− y) ≥ rk(e−w) + rk(e− v),
and so the proposition follows from Lemma 4.6. �

Corollary 4.9. Let Λ+(h, e) be a hyperbolicity cone with trivial lineality space. Suppose
all extreme rays of Λ+ have the same hyperbolic rank, and that each face of Λ+ contains a
projection in its relative interior. Then L(Λ+) is a modular geometric lattice.
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(a) Non-Pappus (b) Non-Desargues

Figure 1. The Non-Pappus and Non-Desargues configurations.

Proof. Since each face of L(Λ+) except {0} is generated by extreme rays, see e.g. [37, Cor.
18.5.2], it follows that L(Λ+) is atomic with all atoms (extreme rays) having the same hy-
perbolic rank by hypothesis. Suppose rk(a) = c for all atoms a ∈ L(Λ+). By modularity of
the hyperbolic rank function (Proposition 4.8) and induction we see that c divides rk(F ) for
all F ∈ L(Λ+). It follows that the function defined by rk(F )/c is the proper rank function
of L(Λ+), since it is modular and equal to one on each atom. �

5. Hyperbolic matroids and Euclidean Jordan algebras

In light of the generalized Lax conjecture it is of interest to find hyperbolic but non-linear
(poly-) matroids. Until present the only known instances of non-linear hyperbolic matroids
are the Vámos matroid [41] and a generalization of it [10]. The generalized Vámos matroids
introduced in the following section provide an infinite family of such matroids. In this sec-
tion we identify two further types of matroids that are hyperbolic but not linear through a
connection with Euclidean Jordan algebras and projective geometry.

Some classical examples of non-linear matroids are obtained by relaxing a circuit hyperplane
in a matroid that comes from a geometric configuration. In fact the Non-Fano, Non-Pappus
and Non-Desargues matroids (see Fig 1) are all derived from the family n3 of symmetric con-
figurations on n points and n lines, arranged such that 3 lines pass through each point and 3
points lie on each line [19]. Note that such configurations need not be unique up to incidence
isomorphism for given n. The Non-Fano, Non-Pappus and Non-Desargues matroids are all
rank three matroids corresponding respectively to instances of the configurations 73, 93 and
103 after removing one line. It is interesting to note how representability diminishes as we
move upwards in this hierarchy: The Non-Fano matroid is representable over all fields that
do not have characteristic 2 [34]. The Non-Pappus matroid is skew-linear but not linear
[23], which is to say that it only admits representations over non-commutative division rings
e.g. the quaternions H. Moreover it is known that the Non-Desargues matroid is not even
skew-linear [23]. On the other hand, it is known that the Non-Desargues matroid can be
coordinatized by rank one projections over the octonions O, see e.g. [18]. The octonions
form a non-commutative and non-associative division ring over the reals.

An algebra (A, ◦) over a field K is said to be a Jordan algebra if for all a, b ∈ A

a ◦ b = b ◦ a and a ◦ ((a ◦ a) ◦ b) = (a ◦ a) ◦ (a ◦ b).
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Note in particular that Jordan algebras are not necessarily associative. A Jordan algebra is
Euclidean if

a2
1 + · · ·+ a2

k = 0 implies a1 = · · · = ak = 0
for all a1, . . . , ak ∈ A. By a theorem of Jordan, von Neumann and Wigner [25] the simple
finite dimensional real Euclidean Jordan algebras classify into four infinite families and one
exceptional algebra (the Albert algebra) as follows:

(i) Hn(K) (K = R,C,H) - the algebra of Hermitian n× n matrices over K with Jordan
product a ◦ b = 1

2(ab+ ba).
(ii) Rn⊕R - the real inner product space with inner product (u⊕λ, v⊕µ) = (u, v)Rn +λµ

and Jordan product (u⊕ λ) ◦ (v ⊕ µ) = (µu+ λv)⊕ ((u, v)Rn + λµ).
(iii) H3(O) - the algebra of octonionic Hermitian 3 × 3 matrices with Jordan product

a ◦ b = 1
2(ab+ ba).

Let A be a real Euclidean Jordan algebra of rank r with identity e. A Jordan frame is a
complete system of orthogonal idempotents of rank one, that is, rank one elements c1, . . . , cr ∈
A such that c2

i = ci, ci ◦ cj = 0 for i 6= j and c1 + · · · + cr = e. A characteristic property of
finite dimensional real Euclidean Jordan algebras is the following spectral theorem, see [17,
Theorem III.1.2].
Theorem 5.1. Let A be a real Euclidean Jordan algebra of rank r. Then for each x ∈ A
there exists a Jordan frame c1, . . . , cr ∈ A and unique real numbers λ1(x), . . . , λr(x) (the
eigenvalues) such that

x =
r∑

j=1
λj(x)cj.

Moreover
∑

j:λj=λ
cj

is uniquely determined for each eigenvalue λ.
A finite dimensional real Euclidean Jordan algebra is equipped with a hyperbolic determinant
polynomial det : A→ R given by

det(x) =
r∏

j=1
λj(x).

Let P be a set of points and L a set of lines. Recall that a pair G = (P,L) is a projective
geometry if the following axioms are satisfied:

(i) For any two distinct points a, b ∈ P there is a unique line ab ∈ L containing a and b.
(ii) Any line contains at least three points.

(iii) If a, b, c, d ∈ P are distinct points such that ab ∩ cd 6= ∅ then ac ∩ bd 6= ∅.
Each projective geometry is a (simple) modular geometric lattice, and each modular geometric
lattice is a direct product of a Boolean algebra with projective geometries, see [2, p. 93].
The following proposition is essentially a known connection between Jordan algebras and
projective geometries, which we prove here in the theory of hyperbolic polynomials.
Proposition 5.2. Let A be a finite dimensional real Euclidean Jordan algebra and let Λ+
denote the hyperbolicity cone of det : A→ R. Then L(Λ+) is a modular geometric lattice.

In particular if A is simple, then L(Λ+) is a projective geometry.
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Proof. By Theorem 5.1 the extreme rays of Λ+ are multiples of rank one idempotents. Also,
a face Fx contains the projection

c =
∑

j:λj(x)6=0
cj

in its relative interior. The proposition now follows from Corollary 4.9. �
The Non-Pappus and Non-Desargues configurations are depicted in Fig 1. The configurations
give rise to rank 3 matroids where three points are dependent if and only if they are collinear.
The Non-Pappus and Non-Desargues matroids are not linear but may be represented over
the projective geometries associated to the Euclidean Jordan algebras H3(H) and H3(O),
respectively. This may be deduced from the coordinatizations in [34, Example 1.5.14] and
[18]. Hence by Proposition 5.2 we have

Theorem 5.3. The Non-Pappus and Non-Desargues matroids are hyperbolic.

6. Generalized Vámos Matroids with the (weak) half–plane property

In this section we provide an infinite family of hyperbolic matroids that do not arise from
modular geometric lattices. Suppose that L is a lattice with a smallest element 0̂, and
f : L→ N is a function satisfying

(i) f(0̂) = 0,
(ii) if x ≤ y, then f(x) ≤ f(y),

(iii) for any x, y ∈ L,
f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y).

If x1, . . . , xm ∈ L, then the function r : 2[m] → N defined by

r(S) = f

(∨

i∈S
xi

)

defines a polymatroid. All polymatroids arise in this manner. Indeed if r : 2[m] → N is a
polymatroid, we may take L = 2[m], f = r, and xi = {i} for each i ∈ [m]. However if f is
modular, i.e.,

f(x) + f(y) = f(x ∨ y) + f(x ∧ y), for all x, y ∈ L,
we say that r is modularly represented. Hence all linear matroids as well as all projective
geometries are modularly represented. Although Ingleton’s proof [23] of the next lemma only
concerns linear matroids it extends verbatim to modularly represented matroids.

Lemma 6.1 (Ingleton’s Inequality, [23]). Suppose r : 2E → N is a modularly represented
polymatroid and A,B,C,D ⊆ E. Then

r(A ∪B) + r(A ∪ C ∪D) + r(C) + r(D) + r(B ∪ C ∪D) ≤
r(A ∪ C) + r(A ∪D) + r(B ∪ C) + r(B ∪D) + r(C ∪D).

The Vámos matroid V8 is the rank-four matroid on E = [8] having set of bases

B(V8) =
(
E

4

)
\ {{1, 2, 3, 4}, {1, 2, 5, 6}, {1, 2, 7, 8}, {3, 4, 5, 6}, {5, 6, 7, 8}}.

The rank function of the Vámos matroid fails to satisfy Ingleton’s inequality (see [23]),
and hence it is not modularly represented. Nevertheless Wagner and Wei [41] proved that
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1

2

3

4
(a) G (Diamond graph)

1

1′
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2′ 3

3′

4

4′

(b) VG ∼= V8 (Vámos matroid)

V8 has the half-plane property, and hence V8 is hyperbolic. This was used in [7] to provide
counterexamples to stronger algebraic versions of the generalized Lax conjecture.

Burton, Vinzant and Youm [10] studied an infinite family of generalized Vámos matroids,
{V2n}n≥4, and conjectured that all members of the family have the half-plane property. They
proved their conjecture for n = 5. Below we generalize their construction and construct a
family of matroids; one matroid for each uniform hypergraph. We prove that all matroids
corresponding to simple graphs are HPP, and that all matroids corresponding to uniform
hypergraphs are WHPP. In particular this will prove the conjecture of Burton et al.

Recall that a rank r paving matroid is a matroid such that all its circuits have size at least
r. Paving matroids may be characterized in terms of d-partition. A d-partition of a set E
is a collection S of subsets of E all of size at least d, such that every d-subset of E lies in a
unique member of S. The d-partition S = {E} is the trivial d-partition. For a proof of the
next proposition see [34, Prop. 2.1.21].

Proposition 6.2. The hyperplanes of any rank d+ 1 ≥ 2 paving matroid form a non-trivial
d-partition.

Conversely, the elements of a non-trivial d-partition form the set of hyperplanes of a paving
matroid of rank d+ 1.

A paving matroid of rank r is sparse if its hyperplanes all have size r − 1 or r.
Recall that a hypergraph H consists of a set V (H) of vertices together with a set E(H) ⊆

2V (H) of hyperedges. We say that a hypergraph H is d-uniform if all hyperedges have size d.

Theorem 6.3. Let H be an d-uniform hypergraph on [n], and let E = {1, 1′, . . . , n, n′}. Let

B(VH) =
(
E

2d

)
\ {e ∪ e′ : e ∈ E(H)},

in which e′ := {i′ : i ∈ e} for each e ∈ E(H). Then B(VH) is the set of bases of a sparse
paving matroid VH of rank 2d.

Proof. Let

S = {e ∪ e′ : e ∈ E(H)} ∪
{
S ∈

(
E

2d− 1

)
: S ⊂ e ∪ e′ for no e ∈ E(H)

}
.
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(a) A 3-uniform hypergraph H
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(b) The matroid VH

Then S is a (2d − 1)-partition, and so it defines a sparse paving matroid with set of bases(
E
2d

)
\ {e ∪ e′ : e ∈ E(H)} by Proposition 6.2. �

Let V = {VH : H is a d-uniform hypergraph on [n] with 0 < d ≤ n, n ∈ N}.
Example 6.4. If G is the diamond graph (Fig 2a) then VG = V8, the Vámos matroid.
Moreover VK̄n

= U4,2n, where K̄n denotes the complement of the complete graph on n vertices
and U4,2n denotes the uniform rank 4 matroid on 2n elements. The family {V2n}n≥4 studied
by Burton et al. [10] corresponds to VGn where Gn is an n-cycle with edges {1, i}, i = 2, . . . , n,
adjoined.

We postpone the proofs of the next two theorems until Section 9.

Theorem 6.5. All matroids in V are hyperbolic, i.e., they all have the weak half-plane
property.

Theorem 6.6. For each simple graph G, VG has the half–plane property.

If G contains the Diamond graph as an induced subgraph then the rank function of VG fails
to satisfy Ingleton’s inequality, and thus VG is hyperbolic but not modularly represented.

There is no full analogue of Theorem 6.6 in the hypergraph setting. To see this let H be
the complete 3-uniform hypergraph on [6]. The bases generating polynomial of VH is given
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by
hVH

(x) = e6(x1, x1′ , . . . , x6, x6′)− e3(x1x1′ , . . . , x6x6′).
By Lemma 2.7 we have that hVH

(x) is stable if and only if hVH
(x) is hyperbolic with R12

+ ⊆
Λ+(hVH

). Take e = (1, 1, 0, . . . , 0) ∈ R12
+ and x ∈ R12 with x1 = x1′ = 0, x2 = x2′ = x3 =

x3′ = 2 and xi = xi′ = −1 for i > 3. Then
hVH

(te− x) = −4t2 − 36t− 160
is a quadratic polynomial with non-real zeros t = 9

2 ± 1
2
√

79i. Hence VH does not have
the half-plane property. Clearly if V8 is a minor of VH then VH cannot be representable.
Below we give an example of a non-representable matroid VH with no Vámos minor. Hence
this constitutes a genuinely new instance of a hyperbolic matroid in the family which is not
representable.

Example 6.7. The following linear rank inequality in six variables was identified by Dougher-
ty et al. [15]

r(A ∪D) + r(B ∪ C) + r(C ∪ E) + r(E ∪ F ) + r(B ∪D ∪ F ) + r(A ∪B ∪ C ∪D)+
r(A ∪B ∪ C ∪ E) + r(A ∪ C ∪ E ∪ F ) + r(A ∪D ∪ E ∪ F ) ≤
r(A ∪B ∪ C) + r(A ∪B ∪D) + r(A ∪ C ∪ E) + r(A ∪D ∪ F ) + r(A ∪ E ∪ F )+
r(B ∪ C ∪D) + r(B ∪ C ∪ E) + r(C ∪ E ∪ F ) + r(D ∪ E ∪ F ).

This inequality is satisfied by all polymatroids r representable over some field, where r : 2[n] →
N, n ∈ N and A,B,C,D,E, F ⊆ [n]. We proceed by designing a 3-uniform hypergraph H
on [6] such that VH violates the above inequality. Let

A = {1, 1′}, B = {2, 2′}, C = {3, 3′}, D = {4, 4′}, E = {5, 5′}, F = {6, 6′}.
By taking the hypergraph H with edges

{1, 2, 3}, {1, 2, 4}, {1, 3, 5}, {1, 4, 6}, {1, 5, 6}, {2, 3, 4}, {2, 3, 5}, {3, 5, 6}, {4, 5, 6}
we see that VH violates the above inequality. One checks that V8 is not a minor of VH .

7. Consequences for the generalized Lax conjecture

Helton and Vinnikov [22] conjectured that if a polynomial h ∈ R[x1, . . . , xn] is hyperbolic
with respect to e = (e1, . . . , en) ∈ Rn, then there exist positive integers M,N and a linear
polynomial `(x) ∈ R[x1, . . . , xn] which is positive on Λ++(h, e) such that

`(x)M−1h(x)N = det
(

n∑

i=1
xiAi

)

for some symmetric matrices A1, . . . , An such that e1A1 + · · ·+ enAn is positive definite. In
[7] the second author used the bases generating polynomial hV8 of the Vámos matroid to
prove that there is no linear polynomial `(x) ∈ R[x1, . . . , xn] which is nonnegative on the
hyperbolicity cone of hV8 and positive integers M,N such that

`(x)M−1hV8(x)N = det
( 8∑

i=1
xiAi

)

for some symmetric matrices A1, . . . , A8 with e1A1 + · · · + e8A8 positive definite. We will
here construct further “counterexamples” that preclude more general factors q(x) in (2.1).
First we prove two lemmata of matroid theoretic nature. If r : 2E → N is a polymatroid and
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A ⊆ E, we say that A is spanning if r(A) = r(E). Moreover A ⊂ E is a hyperplane if it is a
maximal non–spanning set.

Lemma 7.1. For n, r, c ≥ 1, let P(n, r, c) be the family of all polymatroids of rank at most r
on n elements such that each hyperplane has at most r− 1 + c elements. If α(n, r, c) denotes
the maximal number of non-spanning sets of size r taken over all polymatroids in P(n, r, c),
then

α(n, r, c) ≤ c

(
n

r − 1

)
. (7.1)

Proof. If r = 1, then each hyperplane has at most c elements, i.e., there are at most c loops
so that α(n, r, c) = c as desired. The proof is by induction over n ≥ 1 where r ≥ 1. The
lemma is trivially true for n = 1.

Let P ∈ P(n, r, c), where n, r ≥ 2. If n ≤ r, then (7.1) is trivially true. Assume n > r. Let
i be a non-loop of P . If r(E \i) < r(E), then E \i is a hyperplane and hence n−1 ≤ r−1+c,
so that

(
n
r

)
≤ c

(
n
r−1

)
. Hence we may assume r(E \ i) = r(E) > 0.

If S is a non-spanning r-set of P , then either S is a non-spanning r-set of P \ i, or S \ i is
a non-spanning (r − 1)-set of P/i. Hence P \ i ∈ P(n− 1, r, c) and P/i ∈ P(n− 1, r − 1, c),
and thus

α(n, r, c) ≤ α(n− 1, r, c) + α(n− 1, r − 1, c)

≤ c

(
n− 1
r − 1

)
+ c

(
n− 1
r − 2

)
= c

(
n

r − 1

)
,

by induction. �

Lemma 7.2. Let Pi, i = 1, . . . , s, be polymatroids on [n] of rank at most k − 1 such that no
hyperplane has more than k elements. If n ≥ (2s + 1)k − 1, then there is a set S of size k
such that there are at least two (k − 1)-subsets of S that are spanning in all Pi, i = 1, . . . , s.

Proof. Suppose the conclusion is not true. Let

A =
{

(S, T ) ∈
(

[n]
k − 1

)
×
(

[n]
k

)
: S ⊂ T and S is not spanning in Pi for some i ∈ [s]

}
.

Then
|A| ≥ (k − 1)

(
n

k

)
.

Furthermore by Lemma 7.1 we have

|A| = #
{
S ∈

(
[n]
k − 1

)
: S is not spanning in Pi for some i ∈ [s]

}
· (n− k + 1)

≤ sα(n, k − 1, 2)(n− k + 1)

≤ 2s
(

n

k − 2

)
(n− k + 1).

Hence
(k − 1)

(
n

k

)
≤ 2s

(
n

k − 2

)
(n− k + 1).

Solving for n gives n ≤ (2s+ 1)k − 2, which proves the lemma. �
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Given positive integers n and k, consider the k-uniform hypergraph Hn,k on [n+2] containing
all hyperedges e ∈

(
[n+2]
k

)
except those for which {n + 1, n + 2} ⊆ e. By Theorem 6.5 the

matroid VHn,k
is hyperbolic and therefore has a stable weighted bases generating polynomial

hVHn,k
by Proposition 3.2. The polynomial hn,k ∈ R[x1, . . . , xn+2] obtained from the multi-

affine polynomial hVHn,k
by identifying the variables xi and xi′ pairwise for all i ∈ [n + 2] is

stable. Hence by Lemma 2.7 we have Rn+2
+ ⊆ Λ+(hn,k) so hn,k is hyperbolic with respect to

1.

Theorem 7.3. Let n and k be a positive integers. Suppose there exists a positive integer N
and a hyperbolic polynomial q(x) such that

q(x)hn,k(x)N = det
(
n+2∑

i=1
xiAi

)
(7.2)

with Λ+(hn,k) ⊆ Λ+(q) for some symmetric matrices A1, . . . , An+2 such that A1 + · · ·+An+2
is positive definite and

q(x) =
s∏

i=1
pj(x)αi

for some irreducible hyperbolic polynomials p1, . . . , ps ∈ R[x1, . . . , xn+2] of degree at most k−1
where α1, . . . , αs are positive integers. Then

n < (2s+ 1)k − 1.

Proof. Suppose the hypotheses are satisfied and n ≥ (2s + 1)k − 1. Let r0 : 2[n] → N be
the hyperbolic polymatroid defined by hn,k and V = (δ1, . . . , δn), where δi, i ∈ [n] are the
standard basis vectors. Hence r0(S) is the rank of S ∪ {i′ : i ∈ S} in the matroid VHn,k

.
Moreover, for i ∈ [s], let ri : 2[n] → N be the hyperbolic polymatroid defined by pi and
V = (δ1, . . . , δn). Any subset S of [n] of size at least k + 1 is spanning for r0, and thus∑
i∈S δi ∈ Λ++(hn,k). Hence ∑i∈S δi ∈ Λ++(pi), and thus S is spanning with respect to ri for

all i ∈ [s]. By Lemma 7.2, since n ≥ (2s + 1)k − 1, there exists a subset T ⊆ [n] of size
k containing at least two distinct subsets X, Y of size k − 1 with full rank with respect to
all hyperbolic polymatroids ri, i = 1, . . . , s. Let x, y ∈ T be the unique elements in X, Y ,
respectively, not contained in Z = X ∩ Y . Define

A = Z ∪ {n+ 1}, B = Z ∪ {n+ 2}, C = Z ∪ {x}, D = Z ∪ {y}.
Now A ∪B,A ∪ C ∪D and B ∪ C ∪D have full rank with respect to r0. Since Λ++(hn,k) ⊆
Λ++(pi) for all i, we see that A ∪ B,A ∪ C ∪D and B ∪ C ∪D have full rank with respect
to ri for all i. Hence the rank of each set to the left in the Ingleton inequality have full rank
with respect to ri, so that

ri(A ∪B) + ri(A ∪ C ∪D) + ri(C) + ri(D) + ri(B ∪ C ∪D) ≥
ri(A ∪ C) + ri(A ∪D) + ri(B ∪ C) + ri(B ∪D) + ri(C ∪D)

for i = 1, . . . , s. Note also that
r0(A ∪B) + r0(A ∪ C ∪D) + r0(C) + r0(D) + r0(B ∪ C ∪D) =
2k + 2k + (2k − 2) + (2k − 2) + 2k > (2k − 1) + (2k − 1) + (2k − 1) + (2k − 1) + (2k − 1) =
r0(A ∪ C) + r0(A ∪D) + r0(B ∪ C) + r0(B ∪D) + r0(C ∪D).
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Thus r0 violates the Ingleton inequality. Let R denote the representable polymatroid with
rank function

rR(S) = rank
(∑

i∈S
Ai

)
.

for all S ⊆ [n]. Then, by (7.2),

rR(S) = rank
(∑

i∈S
Ai

)
=

s∑

i=1
αiri(S) +Nr0(S).

Hence rR violates Ingleton’s inequality, a contradiction. �
Hence, for n sufficiently large, q in (2.1) either has an irreducible factor of large degree or is
the product of many factors of low degree.
Example 7.4. Consider

h2,2 = x2
1x

2
2 + 4(x1 + x2 + x3 + x4)(x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4).

The polynomial h2,2 comes from the bases generating polynomial of the Vámos matroid
under the restriction xi = xi′ for i = 1, . . . , 4. Kummer [26] found real symmetric matrices
Ai, i = 1, . . . , 4 with A1 + A2 + A3 + A4 positive definite and a hyperbolic polynomial q of
degree 3 with Λ+(h2,2) ⊆ Λ+(q) such that

q(x)h2,2(x) = det (x1A1 + x2A2 + x3A3 + x4A4) ,
where

q(x) = 32(2x1 + 3x2 + 3x3 + 4x4)(x1x2 + x1x3 + 2x1x4 + x2x4 + x3x4).
If s = 2 and k = 3 in Theorem 7.3 it follows that there exists no linear and quadratic hyper-
bolic polynomials `(x), q(x) ∈ R[x1, . . . , x16] respectively such that h14,3(x) ∈ R[x1, . . . , x16]
has a positive definite representation of the form

`(x)q(x)h14,3(x) = det
( 16∑

i=1
xiAi

)

with Λ+(h14,3) ⊆ Λ+(`q).

8. Nonnegative symmetric polynomials

Recall that a polynomial P (x) ∈ R[x1, . . . , xn] is nonnegative if P (x) ≥ 0 for all x ∈
Rn, and it is symmetric if it is invariant under the action (permuting the variables) of the
symmetric group of order n. In this section we prove that certain symmetric polynomials
are nonnegative. This is needed for the proof of Theorem 6.5. The results are interesting in
their own right, and they generalize several well known inequalities in the literature.

Recall that a partition of a natural number d is a sequence λ = (λ1, λ2, . . .) of natural
numbers such that λ1 ≥ λ2 ≥ · · · and λ1 +λ2 + · · · = d. We write λ ` d to denote that λ is a
partition of d. The length, `(λ), of λ is the number of nonzero entries of λ. If λ is a partition
and `(λ) ≤ n, then the monomial symmetric polynomial, mα, is defined as

mλ(x1, . . . , xn) =
∑

xβ1
1 x

β2
2 · · · xβn

n ,

where the sum is over all distinct permutations (β1, β2, . . . , βn) of (λ1, . . . , λn). If `(λ) > n,
we set mλ(x) = 0. If k1, . . . , k` are distinct positive integers and a1, . . . , a` ∈ N we denote by
ka1

1 k
a2
2 · · · ka`

` the unique partition of a1 + · · ·+ a` with exactly aj coordinates equal to kj for
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1 ≤ j ≤ `. The dth elementary symmetric polynomial is ed(x) = m1d(x), and the dth power
symmetric polynomial is pd(x) = md(x).

Nonnegative symmetric polynomials have been studied in several areas of mathematics, see
[3, 12, 16] and the references therein. We will initially concentrate on nonnegative polynomials
of the form

2r∑

k=0
akek(x)e2r−k(x), x ∈ Rm, (8.1)

where r is a positive integer and ak ∈ R for 0 ≤ k ≤ 2r. Hence these are the nonnegative
symmetric polynomials spanned by {m2k12(r−k) : 0 ≤ k ≤ r}. A classical family of such
nonnegative and symmetric polynomials was found already by Newton [33]:

er(x)2
(
n
r

)2 −
er−1(x)(

n
r−1

) er+1(x)(
n
r+1

) ≥ 0,

for x ∈ Rm with m ≤ n and 1 ≤ r ≤ n − 1. Letting n → ∞ in Newton’s inequalities we
obtain the Laguerre–Turán inequalities (see e.g. [14]):

rer(x)2 − (r + 1)er−1(x)er+1(x) ≥ 0, x ∈ Rm,m ≥ 1.
A different but equivalent view on nonnegative symmetric polynomial is that of inequalities
satisfied by the derivatives of a real–rooted polynomial: Let {ak}2m

k=0 be a sequence of real
numbers. Then the polynomial (8.1) is nonnegative if and only if

2r∑

k=0
ak

(
2r
k

)
f (k)(t)f (2r−k)(t) ≥ 0, t ∈ R, (8.2)

holds for all real–rooted polynomials f of degree at most m. Indeed by translation invariance
(8.2) holds for all real–rooted polynomials f of degree at most m if and only if (8.2) holds at
t = 0 for all real–rooted polynomials f of degree at most m. Hence if f(t) = ∏m

j=1(1 + xjt),
then the left–hand–side of (8.2) at t = 0 is the same as (8.1) up to a constant factor (2r)!.
The following inequality is due to Jensen.

Theorem 8.1 (Jensen [24]).
2r∑

k=0
(−1)r+j

(
2r
k

)
f (k)(t)f (2r−k)(t) ≥ 0, t ∈ R, (8.3)

for all real–rooted polynomials f .

The inequality (8.3) follows easily from a symmetric function identity as follows
n∑

r=0
m2r(x)t2r =

n∑

r=0
er(x2

1, . . . , x
2
n)t2r

=
n∏

j=1
(1 + x2

j t
2) =

n∏

j=1
(1 + ixjt)

n∏

j=1
(1− ixjt)

=
(

n∑

k=0
ikek(x)tk

)(
n∑

k=0
(−i)kek(x)tk

)

=
n∑

r=0

( 2r∑

k=0
(−1)k+rek(x)e2r−k(x)

)
t2r.
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Clearly m2r(x) ≥ 0 for all x ∈ Rn, so that inequality (8.3) follows from

m2r(x) =
2r∑

k=0
(−1)k+rek(x)e2r−k(x). (8.4)

Lemma 8.2. If r is a positive integer and 0 ≤ t ≤ 2/r, then
m2r(x) + tm2r−112(x)

is a sum of squares (sos for short), and in particular nonnegative.

Proof. Since m2r(x) is a sos it suffices to consider t = 2/r, by convexity. Note that
m2r−112(x) =

∑

|S|=r−1
e2(xS)

∏

i∈S
x2
i ,

where xS = x \ {xi : i ∈ S}. Using e2(x) = e1(x)2/2− p2(x)/2

m2r−112(x) = 1
2

∑

|S|=r−1
e1(xS)2 ∏

i∈S
x2
i −

1
2

∑

|S|=r−1
p2(xS)

∏

i∈S
x2
i

= S(x)− r

2m2r(x),

where S(x) is a sum of squares. Indeed
1
2

∑

|S|=r−1
p2(xS)

∏

i∈S
x2
i = Cm2r(x)

for some C, and setting x = (1, . . . , 1) one sees that
1
2

(
n

r − 1

)
(n− r + 1) = C

(
n

r

)
,

so that C = r/2. The lemma follows. �
Let P (x) be a symmetric polynomial. Suppose P (x) = Q(e1(x), . . . , em(x)) is the unique

expression of P in terms of the elementary symmetric polynomials. If Q is of degree d, let
H(x0, x1, . . . , xm) = xd0Q(x1/x0, . . . , xm/x0) be its homogenization, and let

L(P ) := H(e1(x), 2e2(x), . . . , (m+ 1)em+1(x))
be the lift of P . This operation enables us to lift symmetric nonnegative polynomial inequal-
ities to higher degrees.

Lemma 8.3. If P is a symmetric and nonnegative polynomial, then so is its lift L(P ).

Proof. Note first that if P is nonnegative and symmetric, then the degree of Q above is even.
Indeed if x(t) = (t, x2, . . . , xn) where x2, . . . , xn ∈ R are generic and t is a variable, then we
obtain a univariate nonnegative polynomial t 7→ P (x(t)) of degree d. Hence d is even. Now if
x ∈ Rn is such that e1(x) 6= 0, then there is a y ∈ Rn such that ek(y) = (k+ 1)ek+1(x)/e1(x)
for all k. Indeed

1
e1(x)

d

dt

n∏

k=1
(1 + xkt) =

n∏

k=0
(1 + ykt), where yn = 0,

since the operator d/dt preserves real–rootedness. Thus
L(P )(x) = P (y)
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and the proof follows.
�

Lemma 8.4. The lift of m2r−1(x) is
r2m2r(x) + 2m2r−112(x).

Proof. By (8.4), the lift of m2r−1(x) is

L :=
2r−2∑

j=0
(−1)j+r−1(j + 1)(2r − 1− j)ej+1(x)e2r−1−j(x)

=
2r∑

j=0
(−1)j+rj(2r − j)ej(x)e2r−j(x).

The coefficient in front of m2k12(r−k)(x) in the expansion of ej(x)e2r−j(x) in the monomial
bases is seen to be

(
2r−2k
j−k

)
. (Look at how many times we get the monomial x2

1x
2
2 · · ·x2

kxk+1xk+2 · · ·
in the expansion of the ej(x)e2r−j(x).) Hence the coefficient infront of m2k12(r−k)(x) in the
expansion of L in the monomial basis is

ak =
2r∑

j=0
(−1)j+rj(2r − j)

(
2r − 2k
j − k

)
.

Now ar = r2, ar−1 = 2, and ak = 0 otherwise. This follows from the fact that if p is a
polynomial of degree d, then

n∑

j=0
(−1)jp(j)

(
n

j

)
= 0

whenever n > d. �
Our next lemma is a refinement of the Laguerre–Turán inequalities and may be formulated

as the Laguerre–Turán inequalities beat Jensen’s inequalities (8.3). Lemma 8.5 is also a
generalization of [16, Theorem 3], where the case r = 2 was proved. If P,Q ∈ R[x], we write
P ≤ Q if Q− P is a nonnegative polynomial.
Lemma 8.5. If r ≥ 1, then

m2r(x) ≤ rer(x)2 − (r + 1)er−1(x)er+1(x).
Proof. The proof is by induction over r. For r = 1 we have equality. Let r ≥ 2 and assume
the inequality in the case r − 1 by induction. Taking the lift of this inequality and applying
Lemmas 8.3 and 8.4, we find that

r2m2r(x) + 2m2r−112(x) ≤ (r − 1)r2er(x)2 − r(r − 1)(r + 1)er−1(x)er+1(x).
By Lemma 8.2

(r2 − r)m2r(x) ≤ r2m2r(x) + 2m2r−112(x),
and the lemma follows. �
Lemma 8.6. If r ≥ 2 is an integer, then

(arer−1(x)er(x)− er−2(x)er+1(x))2 ≥ Crer−2(x)er(x)m2r(x), (8.5)
where

ar = 3r − 1
r + 1 and Cr = 9 r − 1

(r + 1)2 .
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Proof. We prove the inequality by induction over r ≥ 2. Assume r = 2. The polynomial
(t,x) 7→ e4(t, t, x1, x1, . . . , xn, xn) is stable, this may for instance be deduced from the Grace-
Walsh-Szegő theorem (see Remark 9.3). It specializes to a real-rooted (or identically zero)
polynomial when we set x = (x1, . . . , xn) ∈ Rn:

(4e2(x) + p2(x))t2 + 4(e1(x)e2(x) + e3(x))t+m22(x) + 4e1(x)e3(x).
Hence its discriminant is nonnegative, which gives

(e3(x) + e1(x)e2(x))2 ≥ (e2(x) + p2(x)/4)(m22(x) + 4e1(x)e3(x)).
To prove (8.5) for r = 2 we may assume e2(x) > 0. Rewriting (8.5) as

(e3(x) + e1(x)e2(x))2 ≥ e2(x)(m22(x) + 4e1(x)e3(x)),
we may assume also m22(x) + 4e1(x)e3(x) > 0. Then, since p2(x) ≥ 0,

(e3(x) + e1(x)e2(x))2 ≥ (e2(x) + p2(x)/4)(m22(x) + 4e1(x)e3(x))
≥ e2(x)(m22(x) + 4e1(x)e3(x))

which proves the lemma for r = 2.
Assume that the inequality is true for a given r ≥ 2. We lift the inequality for r and use

Lemma 8.4 to get
(arr(r + 1)er(x)er+1(x)− (r − 1)(r + 2)er−1(x)er+2(x))2 ≥

Cr(r − 1)(r + 1)3er−1(x)er+1(x)
(
m2r+1(x) + 2

(r + 1)2m2r12(x)
)

We may exchange the factor m2r+1 +(2/(r + 1)2)m2r12 by something nonnegative and smaller
and still get a valid inequality. By Lemma 8.2 we obtain the inequality

(arr(r + 1)er(x)er+1(x)− (r − 1)(r + 2)er−1(x)er+2(x))2 ≥
Cr(r − 1)(r + 1)3er−1(x)er+1(x) r

r + 1m2r+1(x).

Dividing through by (r − 1)2(r + 2)2 we obtain
(
ar

r(r + 1)
(r − 1)(r + 2)er(x)er+1(x)− er−1(x)er+2(x)

)2

≥

Cr
r(r + 1)2

(r − 1)(r + 2)2 er−1(x)er+1(x)m2r+1(x),

which simplifies to the desired inequality for r + 1. �

9. Proof of Theorem 6.6

The next tool for the proof of Theorem 6.6 is a lemma that enables us to prove hyperbolicity
of a polynomial by proving real-rootedness along a few (degenerate) directions.

Lemma 9.1. Let h ∈ C[x1, . . . , xn] and v1,v2 ∈ Cn. Define d to be the maximum degree of
the polynomial t 7→ h(tv2 + y), where the maximum is taken over all y ∈ Cn. Let further

P (x) := lim
t→∞

t−dh(tv2 + x) ∈ C[x1, . . . , xn].

Suppose S ⊆ Cn and x0 ∈ S are such that
(i) S + Rv2 = S, i.e., S is closed under translations by real multiples of v2.
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(ii) S is pathwise connected.
(iii) The polynomial (s, t) 7→ h(sv1 + tv2 + x0) is stable and not identically zero.
(iv) For each x ∈ S, the polynomials s 7→ h(sv1 + x) and s 7→ P (sv1 + x) are stable and

not identically zero.
Then the polynomial (s, t) 7→ h(sv1 + tv2 + x) is stable for all x ∈ S.

Proof. The proof is by contradiction. Suppose x1 ∈ S and ξ, η ∈ C are such that Im(ξ) > 0,
Im(η) > 0 and

h(ξv1 + ηv2 + x1) = 0.
Let x(θ) : [0, 1]→ S be a continuous path such that x(0) = x0 and x(1) = x1 and let

pθ(t) = h(ξv1 + tv2 + x(θ)) = tdP (ξv1 + x(θ)) +O(td−1),

where P (ξv1 + x(θ)) 6= 0 by (iv). By assumption all zeros of p0(t) are in the closed lower
half-plane, while p1(η) = 0 where Im(η) > 0. Hence, by continuity using Hurwitz’ theorem
on the continuity of zeros (see e.g., [11, Footnote 3, p. 96]), a zero will cross the real axis as
θ runs from 0 to 1. In other words

0 = pθ(α) = h(ξv1 + αv2 + x(θ)),

for some α ∈ R and θ ∈ [0, 1]. Since αv2 + x(θ) ∈ S, by (i), this contradicts (iv). �

The next theorem is a version of the Grace-Walsh-Szegő coincidence theorem, see [4, Prop.
3.4].

Theorem 9.2 (Grace-Walsh-Szegő). Suppose P (x1, . . . , xn) ∈ C[x] is a polynomial of degree
at most d in the variable x1:

P (x1, . . . , xn) =
d∑

k=0
Pk(x2, . . . , xn)xk1.

Let Q be the polynomial in the variables x2, . . . , xn, y1, . . . , yn

Q =
d∑

k=0
Pk(x2, . . . , xn)ek(y1, . . . , yd)(

d
k

) .

Then P is stable if and only if Q is stable.

Remark 9.3. Note that ek(x1, . . . , xn) is stable, by the Grace–Walsh–Szegő theorem applied
to the polynomial xk1 considered as a polynomial of degree at most n.

Lemma 9.4. If x ∈ Rn and ek(x) = ek+1(x) = 0 where 0 < k < n, then x has at most k− 1
nonzero coordinates.

Proof. It is well known that if ek(x) = ek+1(x) = 0, then ej(x) = 0 for all k ≤ j ≤ n, see
e.g., [6, Example 3.6]. Hence the number of non-zero coordinates of x is equal to

max{0 ≤ i ≤ n : ei(x) 6= 0} < k.

�

The following theorem provides families of stable polynomials which are closed under
convex sums.
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Theorem 9.5. Let r ≥ 2 be an integer, and let

M(x) =
∑

|S|=r
a(S)

∏

i∈S
x2
i ∈ R[x1, . . . , xn],

where 0 ≤ a(S) ≤ 1 for all S ⊆ [n], where |S| = r. Then the polynomial

4er+1(x)er−1(x) + 3
r + 1M(x) (9.1)

is stable.

Proof. Let x = (x1, . . . , xn) and x′ = (x2, . . . , xn) where n ≥ 2r + 4. Suppose M is of the
form described in the statement of the theorem and that additionally no xi, i = 1, . . . , 2r+ 3
appears in M . We will prove, by applying Lemma 9.1, that polynomials of the form

h(x) := 4(arx1er(x′) + er+1(x′))(x1er−2(x′) + er−1(x′)) + 3
r + 1M (9.2)

are stable, where ar is defined as in Lemma 8.6. Since any polynomial of the form (9.1)
may be obtained from some polynomial of the form (9.2) by setting variables to zero and
relabelling the indices, the stability of polynomials of the form (9.1) follows from Lemma 2.6.

Recall the notation of Lemma 9.1. Let v1 = δ1, v2 = δ2 + δ3 + · · ·+ δr+2, and let S be the
set of all x ∈ Rn such that at least r+ 1 of the coordinates {xr+3, . . . , xn} are nonzero. Note
that S is pathwise connected and S +Rv2 = S. Let x0 = δr+3 + · · ·+ δ2r+3. The polynomial

q(x) := 4(arx1er(x′) + er+1(x′))(x1er−2(x′) + er−1(x′))
= 4er+1(arx1, x2, . . . , xn)er−1(x1, x2, . . . , xn)

is stable by Remark 9.3 and Lemma 2.6. Since q(x0) > 0 we know, by Lemma 2.8, that the
bivariate polynomial h(sv1 + tv2 + x0) = q(sv1 + tv2 + x0) is stable and not identically zero.
This verifies (iii) of Lemma 9.1. Note that P (x) is a non-zero constant. Consider

h(sv1 + x) = 4arer(x′)er−2(x′)(s+ x1)2

+ 4(arer(x′)er−1(x′) + er+1(x′)er−2(x′))(s+ x1)

+ 4er+1(x′)er−1(x′) + 3
r + 1M.

We now prove that h(sv1+x) 6≡ 0 for each x ∈ S, as a polynomial in s. Assume h(sv1+x) ≡ 0
for some x ∈ S. Then er(x′)er−2(x′) = 0, so suppose first er(x′) = 0. If er+1(x′)er−1(x′) = 0,
then either er−1(x′) = er(x′) = 0 or er+1(x′) = er(x′) = 0, which implies x′ has at most r− 1
non-zero coordinates by Lemma 9.4. This contradicts x ∈ S. Hence er+1(x′)er−1(x′) < 0 by
Lemma 8.5. Then h(−x1v1 + x) is equal to

4er+1(x′)er−1(x′) + 3
r + 1M < 3er+1(x′)er−1(x′) + 3

r + 1M

≤ 3er+1(x′)er−1(x′) + 3
r + 1m2r(x′) ≤ 0,

by Lemma 8.5, a contradiction. If er(x′) 6= 0, then er−2(x′) = 0. But then also er−1(x′) = 0,
since h(sv1 + x) ≡ 0. Hence x′ has at most r − 3 non-zero coordinates Lemma 9.4, which
contradicts x ∈ S. We conclude that h(sv1 + x) 6≡ 0 for x ∈ S.
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To apply Lemma 9.1 and prove that h(sv1 + tv2 + x) is stable for all x ∈ S it remains
to prove that h(sv1 + x) is real–rooted. However h(sv1 + x) is of degree at most two so it
suffices to show that its discriminant ∆ is nonnegative. Now

∆
16 = (arer−1(x′)er(x′)− er−2(x′)er+1(x′))2 − 3

r + 1arer(x
′)er−2(x′)M.

If er(x′)er−2(x′) < 0, then clearly ∆ ≥ 0, so assume er(x′)er−2(x′) ≥ 0. Then, since M(x′) ≤
m2r(x′), it follows that ∆ ≥ 0 by Lemma 8.6.

Since S is dense in Rn we have by Hurwitz’ theorem that h(sv1 + tv2 + x) is stable or
identically zero for all x ∈ Rn. However h(v2) 6= 0 so that h(sv1 + tv2 + x) is stable for all
x ∈ Rn. In particular h is hyperbolic with respect to v2. Since all Taylor coefficients of h are
nonnegative we see that the hyperbolicity cone contains the positive orthant, i.e., h is stable,
by Lemma 2.7.

�

Lemma 9.6. Let r ≥ 2. Then
e2r(x1, x1, . . . , xn, xn)−m2r(x) =
4(er−1(x)er+1(x) + er−3(x)er+3(x) + er−5(x)er+5(x) + · · · ).

Proof. Note that
2n∑

k=0
ek(x1, x1, . . . , xn, xn)tk =

n∏

j=1
(1 + xjt)2 =

( 2n∑

k=0
ek(x)tk

)2

.

The coefficient of t2r is

e2r(x1, x1, . . . , xn, xn) =
2r∑

j=0
ej(x)e2r−j(x).

The proof follows by combining this with (8.4). �

We are now in a position to prove Theorem 6.6 and Theorem 6.5.

Proof of Theorem 6.5. By definition the bases generating polynomial of VH ∈ V is given by

hVH
=

∑

B∈B(VH)

∏

i∈B
xi = e2r(x1, x1′ , . . . , xn, xn′)− er(x1x1′ , . . . , xnxn′) +N(x).

where

N(x) =
∑

(i1,...,ir)6∈E(H)

r∏

j=1
xijxi′j .

The polynomial hVH
is clearly multiaffine and symmetric pairwise in xi, xi′ for all i ∈ [n]. Set

xi′ = xi for all 1 ≤ i ≤ n and obtain the polynomial
fVH

= e2r(x1, x1, . . . , xn, xn)− er(x2
1, . . . , x

2
n) +N(x1, x1, . . . , xn, xn).

By Lemma 9.6

fVH
= 4

dr/2e−1∑

j=0
er+2j+1(x)er−2j−1(x) +N(x1, x1, . . . , xn, xn).
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The support of er+j(x)er−j(x) is contained in the support of er+1(x)er−1(x) for each 1 ≤ j ≤
r. Hence fVH

has the same support as the polynomial

WVH
= 4er+1(x)er−1(x) + 3

r + 1N(x1, x1, . . . , xn, xn)

which in turn is stable by Theorem 9.5. Hence if we replace xki for k = 0, 1, 2, in WVH
with

ek(xi, xi′)/
(

2
k

)
, we obtain a polynomial which is stable by the Grace-Walsh-Szegő theorem

(Theorem 9.2), and has the same support as hVH
. Hence VH is a WHPP-matroid so VH is

hyperbolic by Proposition 3.2. �

Proof of Theorem 6.6. Recall the notation in the proof of Theorem 6.5. If r = 2, then
WVG

= fVG
, so that VG has the half-plane property by the proof of Theorem 6.5. �

10. Representability and minor closure

The following amended section is not part of the published research article. We begin the
section by proving some facts related to the representability of the matroids in the class V .
The class V is not closed under taking minors. Therefore in the final part of the section we
determine the minor closure of V .

Let H be a d-uniform hypergraph on [n]. Let Hj denote the hypergraph with vertex set
V (Hj) = V (H) \ j and edges E(Hj) = {e \ j : e ∈ E(H), j ∈ e}. Moreover let H∗ denote the
(n−d)-uniform hypergraph on [n] with E(H∗) = {[n]\e : e ∈ E(H)}. Recall that the dual of
a matroid M on E, denoted M∗, is the matroid on E whose bases are the complements of the
bases of M . The free extension of a matroid M of rank k with rank function rM : 2E(M) → N,
by an element e 6∈ E(M), is given by the matroid, denoted M + e, on E(M) t e with rank
function

rM+e(S) =





rM(S), if e 6∈ S,
rM(S \ e) + 1, if e ∈ S and rM(S \ e) < k,

k, if rM(S \ e) = k.

The free coextension of M by e is given by the matroid M × e = (M∗ + e)∗. For i ∈ [n]
we shall also use the convention that (i′)′ = i. Below we list some basic properties of the
matroid class V .

Proposition 10.1. If H, H1 and H2 are d-uniform hypergraphs on [n], then
(i) VH1

∼= VH2 if and only if H1 ∼= H2,
(ii) ([n] ∪ [n]′, I(VH1) ∩ I(VH2)) = VH1∪H2,

(iii) ([n] ∪ [n]′, I(VH1) ∪ I(VH2)) = VH1∩H2,
(iv) V ∗H = VH∗. In particular VH is self-dual if and only if H ∼= H∗,
(v) VH \ j = VH\j + j′,

(vi) VH/j = VHj
× j′,

(vii) VH has Tutte-polynomial,

TVH
(x, y) = |E(H)|(xy − x− y) +

2d∑

i=1

(
2n− i− 1

2n− 2d− 1

)
xi +

2n−2d∑

j=1

(
2n− j − 1

2d− 1

)
yj.
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Proof. For (i), suppose that Φ : E(VH1) → E(VH2) is a an isomorphism between VH1 and
VH2 . Then we have Φ(i′) = Φ(i)′ for all i ∈ [n] since i is included in a circuit hyperplane of
VH1 if and only if i′ is included in a circuit hyperplane of VH1 . Hence

φ : V (H1)→ V (H2)

i 7→



j, if Φ(i) = j,

j, if Φ(i) = j′,

is a hypergraph isomorphism between H1 and H2 since {i1, . . . , ir} ∈ E(H1) if an only if
{i1, i′1, . . . , ir, i′r} is a circuit hyperplane in VH1 if and only if {Φ(i1),Φ(i′1), . . . ,
Φ(ir),Φ(i′r)} is a circuit hyperplane in VH2 if and only if {φ(i1), . . . , φ(ir)} ∈ E(H2). Con-
versely if φ : V (H1)→ V (H2) is a hypergraph isomorphism, then clearly

Φ : E(VH1)→ E(VH2)
i 7→ φ(i)
i′ 7→ φ(i)′

is an isomorphism between the sparse paving matroids VH1 and VH2 since Φ bijectively maps
circuit hyperplanes to circuit hyperplanes.

The statements (ii) and (iii) are clear since both sides are readily seen to have the same
independent sets.

For (iv), we use the circuit-hyperplane correspondence between a matroid M on E and its
dual M∗. Namely, C is a circuit in M if and only if E − C is a hyperplane in M∗ and H is
a hyperplane in M if and only if E \ C is a circuit in M∗ (see [34, Prop. 2.16]). This shows
that sparse paving matroids are closed under duality. In particular C is a circuit hyperplane
in VH if and only if E(VH)\C is a circuit hyperplane in the sparse paving matroid V ∗H . Hence
V ∗H = VH∗ which proves (iv).

For (v), let S ⊆ E(VH) \ j. If j′ 6∈ S, then

rVH\j+j′(S) = rVH\j (S) = rVH\j(S).

Suppose therefore j′ ∈ S. If rVH\j+j′(S \ j′) < k, then

rVH\j+j′(S) = rVH\j (S \ j′) + 1 = rVH\j(S \ j′) + 1 = rVH\j(S).

Otherwise if rVH\j+j′(S \ j′) = k, then

k = rVH\j+j′(S) = rVH\j+j′(S \ j′) = rVH\j (S \ j′) = rVH\j(S \ j′),

so rVH\j(S) = k. Hence rVH\j+j′(S) = rVH\j(S) for all S ⊆ E(VH) \ j which establishes (v).
Statement (vi) now follows from (iv) and (v) via

VH/j = (V ∗H \ j)∗ = (VH∗ \ j)∗ = (VH∗\j + j′)∗ = V ∗H∗\j × j′ = V(H∗\j)∗ × j′ = VHj
× j′.

For (vii), note that the uniform matroid U2n,2d on 2n elements of rank 2d is obtained from
VH via a sequence of |E(H)| circuit hyperplane relaxations. Hence (vii) follows from the fact
that

TM(x, y) = xy − x− y + TM ′(x, y)
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where M ′ is the matroid obtained from M by relaxing a circuit hyperplane, and

TUn,d
(x, y) =

d∑

i=1

(
n− i− 1
n− d− 1

)
xi +

n−d∑

j=1

(
n− j − 1
d− 1

)
yj,

see [30]. �
Remark 10.2. The class V is seen not to be closed under minors, direct sums and matroid
unions.

Although VH does not have the half-plane property for hypergraphs H in general, a simple
consequence of Proposition 10.1 (iv) is the following.

Proposition 10.3. Let H be a d-uniform hypergraph on [n]. If n ≤ d + 2, then VH has
half-plane property.

Proof. Suppose n = d + 2. By Proposition 10.1 (iv) we have that V ∗H = VH∗ where H∗ is a
2-uniform hypergraph on [n] (i.e. a graph). Thus VH has half-plane property if and only if
VH∗ has half-plane property by closure under duality [11]. Hence VH has half-plane property
by Theorem 6.6. Finally if n < d+ 2 then via free extension VH is a minor of a matroid VH′
with |V (H ′)| = d + 2. Since the half–plane property is closed under taking minors [11], the
result follows. �

Clearly any matroid VH ∈ V in which the Vámos matroid V8 is a minor cannot be repre-
sentable (and necessarily fails to satisfy Ingleton’s inequality). Hence Theorem 6.5 provides
an infinite family of hyperbolic matroids which are not representable. By Proposition 10.1
we have that VH \ j and VH/j are representable if and only if VH\j and VHj

are respectively
representable. It follows that every non-representable matroid VH has a minimal excluded
minor for representability of the form VH′ in its minor hierarchy for some hypergraph H ′.

A natural question is which matroids in V are representable/non-representable? Below we
identify a class of matroids in V which are guaranteed to be representable over any infinite
field.

Theorem 10.4. Let H be a d-uniform hypergraph on [n] and let F be an infinite field.
Suppose j ∈ [n] such that j ∈ e for at most one e ∈ E(H). Then VH is F-representable if
and only if VH\j is F-representable.

Proof. If VH is F-representable, then VH\j is F-representable by Proposition (v) since repre-
sentability is closed under taking minors. Conversely suppose VH\j is representable over F. If
j 6∈ e for all e ∈ E(H), then VH = (VH\j + j)+ j′ so the statement follows since representabil-
ity is closed under taking free extensions. Therefore suppose j ∈ [n] belongs to a unique
e ∈ E(H). If n ≤ d then the proposition is clear so we may assume n > d. By relabelling if
necessary we may assume j = n. Let u1, u1′ . . . , un−1, u(n−1)′ be vectors in a 2d-dimensional
vector space V over F representing the elements En−1 = {1, 1′, . . . , n − 1, (n − 1)′} of VH\j.
Since F is infinite, V cannot be a union of finitely many proper subspaces, so we may choose

un ∈ V \
⋃

i1,...,i2d−2∈En−1

〈ui1 , . . . , ui2d−2〉,

where 〈ui1 , . . . , ui2d−2〉 denotes the linear span of the vectors ui1 , . . . , ui2d−2 over F. Let
U = 〈un〉 ⊕ 〈ui, ui′ : i ∈ e \ n〉.
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Figure 5. The matroid VH in the figure is representable since H is a tree graph.

By modularity we have
dim

(
U ∩ 〈ui1 , . . . , ui2d−1〉

)
= dim(U) + dim(〈ui1 , . . . , ui2d−1〉)− dim(U + 〈ui1 , . . . , ui2d−1〉)
≤ (2d− 1) + (2d− 1)− 2d < 2d− 1.

for all i1, . . . , i2d−1 ∈ E. Thus U 6= 〈ui1 , . . . , ui2d−1〉 for all {i1, . . . , i2d−1} 6= {n} ∪ {i, i′ : i ∈
e \ n}. Therefore we may choose

un′ ∈ U \
⋃

i1,...,i2d−1∈En−1∪{n}
{i1,...,i2d−1}6={n}∪{i,i′:i∈e\n}

〈ui1 , . . . , ui2d−1〉.

It follows that 〈ui, ui′ : i ∈ e〉 has rank 2d − 1, and for any other subset containing un
or un′ of size at most 2r the rank is equal to the cardinality of the spanning set. Hence
u1, u1′ , . . . , un, un′ are vectors in V representing VH . �

Corollary 10.5. If G is a forest then VG is F-representable for any infinite field F.
Proof. If G is the empty graph forest then VG ∼= U2n,4 which is representable over F. If G is
non-empty then the statement follows by removing a leaf in any tree-component and arguing
by induction applying Theorem 10.4. �
If A is a class of matroids, then denote by A the minor closure of the class A, that is, the
smallest class that contains all minors of matroids in A. Consider the following class:

Definition 10.6. Let C denote the class of sparse paving matroids M with E(M) ⊆ [n]∪ [n]′
having circuit hyperplanes C1, . . . , Ck and a set S ⊆ ⋂kt=1Ct such that

(i) i ∈ S implies i′ 6∈ E(M),
(ii) i ∈ Ct \ S if and only if i′ ∈ Ct \ S for all t = 1, . . . , k.

Remark 10.7. Note that the definition implies that S is unique. Indeed suppose S1, S2 ⊆⋂k
t=1Ct both satisfy conditions (i) and (ii). If j ∈ S1 \ S2, then on one hand j′ 6∈ E(M), and

on the other hand j ∈ Ct \ S2 for all t = 1, . . . , k, so j′ ∈ Ct \ S2 ⊆ E(M) for all t = 1, . . . , k.
This gives a contradiction. Hence S1 = S2.

Lemma 10.8. The matroid class C is minor closed, i.e., C = C.
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Proof. Let M ∈ C be a matroid with circuit hyperplanes C1, . . . , Ck and let i ∈ E(M). We
distinguish between three cases:

Case 1. Suppose i ∈ E(M) \⋃kt=1Ct. Clearly M \ i is a matroid with the same set of circuits
and therefore belongs to C. The matroid M/i has no circuit hyperplanes since i belongs to
no circuit hyperplane of M . Hence M/i is a uniform matroid which again belongs to C.

Case 2. Suppose i ∈ S. Then M \ i has no circuit hyperplanes since i belongs to every circuit
hyperplane of M . Thus M \ i is a uniform matroid and therefore belongs to C. Since i ∈ S
the circuit hyperplanes of M/i are given by Ct \ i for t = 1, . . . , k. Hence the axioms of C
remain intact with S \ i ⊆ ⋂kt=1Ct \ i.
Case 3. Suppose i ∈ Ct \ S for t ∈ I where I ⊆ [k]. The remaining circuit hyperplanes in
M \ i are given by {Ct : t ∈ [k] \ I} which are easily seen to satisfy the axioms of the class C.
The circuit hyperplanes in M/i are given by {Ct \ i : t ∈ I} and the axioms of C are satisfied
with S ∪ {i′} ⊆ ⋂i∈I Ct \ i.
Hence C is minor closed. �

Theorem 10.9. The minor closure of V is C, i.e., V = C.

Proof. Certainly V ⊆ C since the matroids in V are instances of matroids in C with S = ∅.
Hence by Lemma 10.8 we have V ⊆ C = C. Conversely let M ∈ C and suppose M has circuit
hyperplanes C1, . . . , Ck. Let T = (S ∪ S ′) ∩ [n] and et = (Ct ∪ C ′t) ∩ [n] for t = 1, . . . , k. By
definition |Ct \ S| = 2l for all t = 1, . . . , k for some l ∈ N. Thus |e1| = · · · = |ek| = |T | + l.
Consider the matroid VH ∈ V where H is the (|T |+ l)-uniform hypergraph on [n] with edges
e1, . . . , ek. It follows that M is a minor of VH . Indeed since S ∪ S ′ ⊆ ⋂k

t=1(et ∪ e′t), we find
that the circuit hyperplanes of VH/S ′ are given by C1, . . . , Ck. Finally delete all elements in
VH/S

′ belonging to U = [n] ∪ [n]′ \ E(M). Then M = (VH/S ′) \ U . Hence V ⊇ C. �
Remark 10.10. We remark that C is also closed under taking duals. Indeed if M ∈ C with
circuit hyperplanes C1, . . . Ck, then M∗ has circuit hyperplanes E(M) \ Ct for t = 1, . . . , k
which together with the unique maximal subset S ⊆ E(M) \ ⋃kt=1Ct such that i ∈ S ⇒ i′ 6∈
E(M) satisfies the axioms of C.
Corollary 10.11. The class C consists of hyperbolic matroids.

Proof. By Theorem 6.5 the class V consists of hyperbolic matroids. Since the class of hyper-
bolic matroids is minor closed the statement follows by Theorem 10.9. �
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References
[1] N. Amini, Spectrahedrality of hyperbolicity cones of multivariate matching polynomials, preprint arX-

iv:1611.06104 (2016)
[2] G. Birkhoff, Lattice Theory, Third Edition, Amer. Math. Soc. 25 (1967)
[3] G. Blekherman, C. Riener, Symmetric nonnegative forms and sums of squares, arXiv:1205.3102, (2012)
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[5] J. Borcea, P. Brändén, Multivariate Pólya–Schur classification problems in the Weyl algebra, Proc. Lond.
Math. Soc. 101 (2010), 73–104.
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SPECTRAHEDRALITY OF HYPERBOLICITY CONES OF
MULTIVARIATE MATCHING POLYNOMIALS

NIMA AMINI

Abstract. The generalized Lax conjecture asserts that each hyperbolicity cone is a linear
slice of the cone of positive semidefinite matrices. We prove the conjecture for a multivariate
generalization of the matching polynomial. This is further extended (albeit in a weaker
sense) to a multivariate version of the independence polynomial for simplicial graphs. As
an application we give a new proof of the conjecture for elementary symmetric polynomials
(originally due to Brändén). Finally we consider a hyperbolic convolution of determinant
polynomials generalizing an identity of Godsil and Gutman.

1. Introduction

A homogeneous polynomial h(x) ∈ R[x1, . . . , xn] is hyperbolic with respect to a vector
e ∈ Rn if h(e) 6= 0, and if for all x ∈ Rn the univariate polynomial t 7→ h(te − x) has only
real zeros. Note that if h is a hyperbolic polynomial of degree d, then we may write

h(te− x) = h(e)
d∏

j=1

(t− λj(x)),

where
λmax(x) = λ1(x) ≥ · · · ≥ λd(x) = λmin(x)

are called the eigenvalues of x with respect to e. The (hyperbolic) rank of x ∈ Rn with respect
to e is defined as rk(x) = #{λi(x) 6= 0}. The hyperbolicity cone of h with respect to e is the
set Λ+(h, e) = {x ∈ Rn : λmin(x) ≥ 0}. If v ∈ Λ+(h, e), then h is hyperbolic with respect to
v and Λ+(h,v) = Λ+(h, e). For this reason we usually abbreviate and write Λ+(h) if there
is no risk for confusion. We denote by Λ++(h) the interior of Λ+(h). The cone Λ++(h) is
convex and can be characterized as the connected component of the set {x ∈ Rn : h(x) 6= 0}
containing e. These are all facts due to G̊arding [17].

Example 1.1. An important example of a hyperbolic polynomial is det(X), where X =
(xij)

n
i,j=1 is a matrix of variables where we impose xij = xji. Note that t 7→ det(tI−X) where

I = diag(1, . . . , 1), is the characteristic polynomial of a symmetric matrix so it has only real
zeros. Hence det(X) is a hyperbolic polynomial with respect to I, and its hyperbolicity cone
is the cone of positive semidefinite matrices. Note that the hyperbolic rank of a symmetric
matrix X with respect to I coincides with the usual notion of rank for matrices.

Denote the directional derivative of h(x) ∈ R[x1, . . . , xn] with respect to v = (v1, . . . , vn)T ∈
Rn by

Dvh(x) =
n∑

k=1

vk
∂h

∂xk
(x).

The following lemma is well-known and essentially follows from the identity Dvh(t) =
d
dt
h(tv + x)|t=0 together with Rolle’s theorem (see [17] [35]).



2 NIMA AMINI

Lemma 1.2. Let h be a hyperbolic polynomial and let v ∈ Λ+ be such that Dvh 6≡ 0. Then
Dvh is hyperbolic with Λ+(h,v) ⊆ Λ+(Dvh,v).

A class of polynomials which is intimately connected to hyperbolic polynomials is the class
of stable polynomials. A polynomial P (x) ∈ C[x1, . . . , xn] is stable if P (z1, . . . , zn) 6= 0
whenever Im(zj) > 0 for all 1 ≤ j ≤ n. A stable polynomial P (x) ∈ R[x1, . . . , xn] is said to
be real stable. Hyperbolic and stable polynomials are related as follows, see [3, Prop. 1.1].

Lemma 1.3. Let P ∈ R[x1, . . . , xn] be a homogenous polynomial. Then P is stable if and
only if P is hyperbolic with Rn

+ ⊆ Λ+(P ).

The next theorem which follows (see [27]) from a theorem of Helton and Vinnikov [21] proved
the Lax conjecture (after Peter Lax 1958 [25]).

Theorem 1.4 (Helton-Vinnikov [21]). Suppose that h(x, y, z) is of degree d and hyperbolic
with respect to e = (e1, e2, e3)

T . Suppose further that h is normalized such that h(e) = 1.
Then there are symmetric d× d matrices A,B,C such that e1A+ e2B + e3C = I and

h(x, y, z) = det(xA+ yB + zC).

Remark 1.5. The exact analogue of Theorem 1.4 fails for n > 3 variables. This may be seen
by comparing dimensions. The set of polynomials on Rn of the form det(x1A1 + · · ·xnAn)
with Ai a d×d symmetric matrix for 1 ≤ i ≤ n, has dimension at most n

(
d+1
2

)
(as an algebraic

image (A1, . . . , An) 7→ det(x1A1 + · · ·xnAn) of a vector space of the same dimension) whereas
the set of hyperbolic polynomials of degree d on Rn has non-empty interior in the space of
homogeneous polynomials of degree d in n variables (see [34]) and therefore has the same
dimension

(
n+d−1

d

)
.

A convex cone in Rn is spectrahedral if it is of the form{
x ∈ Rn :

n∑

i=1

xiAi is positive semidefinite

}

where Ai, i = 1, . . . , n are symmetric matrices such that there exists a vector (y1, . . . , yn) ∈ Rn

with
∑n

i=1 yiAi positive definite. It is easy to see that spectrahedral cones are hyperbolicity
cones. A major open question asks if the converse is true.

Conjecture 1.6 (Generalized Lax conjecture [21, 37]). All hyperbolicity cones are spectra-
hedral.

Remark 1.7. An important consequence of Conjecture 1.6 in the field of optimization is that
hyperbolic programming [35] is the same as semidefinite programming.

We may reformulate Conjecture 1.6 as follows, see [21, 37]. The hyperbolicity cone of h(x)
with respect to e = (e1, . . . , en) is spectrahedral if there is a homogeneous polynomial q(x)
and real symmetric matrices A1, . . . , An of the same size such that

q(x)h(x) = det

(
n∑

i=1

xiAi

)
(1)

where Λ++(h, e) ⊆ Λ++(q, e) and
∑n

i=1 eiAi is positive definite. If we can choose q(x) ≡ 1,
then we say that h(x) admits a definite determinantal representation.



3

• Conjecture 1.6 is true for n = 3 by Theorem 1.4,
• Conjecture 1.6 is true for homogeneous cones [9], i.e., cones for which the automor-

phism group acts transitively on its interior,
• Conjecture 1.6 is true for quadratic polynomials, see e.g. [33],
• Conjecture 1.6 is true for elementary symmetric polynomials, see [5],
• Weaker versions of Conjecture 1.6 are true for smooth hyperbolic polynomials, see

[23, 32].
• Stronger algebraic versions of Conjecture 1.6 are false, see [1, 4].

The paper is organized as follows. In Section 2 we prove Conjecture 1.6 for a multivariate
generalization of the matching polynomial (Theorem 2.16). We also show that this implies
Conjecture 1.6 for elementary symmetric polynomials (Theorem 2.19). Our result may there-
fore be viewed as a generalization of [5]. In Section 3 we generalize further to a multivariate
version of the independence polynomial using a recent divisibility relation of Leake and Ry-
der [26] (Theorem 3.9). The variables of the homogenized independence polynomial do not
fully correspond combinatorially (under the line graph operation) to the more refined ho-
mogeneous matching polynomial. The restriction of Theorem 3.9 to line graphs is therefore
weaker than Theorem 2.16. Finally, in Section 4 we consider a hyperbolic convolution of
determinant polynomials generalizing an identity of Godsil and Gutman [14] which asserts
that the expected characteristic polynomial of a random signing of the adjacency matrix of
a graph is equal to its matching polynomial.

Unless stated otherwise, G = (V (G), E(G)) denotes a simple undirected graph. We shall
adopt the following notational conventions.

• Sym(S) denotes the symmetric group on the set S. Write Sn = Sym([n]).
• NG(u) = {v ∈ V (G) : (u, v) ∈ E(G)} (resp. NG[u] = NG(u) ∪ {u}) denotes the open

(resp. closed) neighbourhood of u ∈ V (G).
• If S ⊆ V (G), then G[S] denotes the subgraph of G induced by S.
• G tH denotes the disjoint union of the graphs G and H.
• RS = {(as)s∈S : as ∈ R} ∼= R|S|.
• RG = RV (G) × RE(G).

2. Hyperbolicity cones of multivariate matching polynomials

A k-matching in G is a subset M ⊆ E(G) of k edges, no two of which have a vertex in
common. LetM(G) denote the set of all matchings in G and let m(G, k) denote the number
of k-matchings in G. By convention m(G, 0) = 1. We denote by V (M) the set of vertices
contained in the matching M . If |V (M)| = |V (G)|, then we call M a perfect matching. The
(univariate) matching polynomial is defined by

µ(G, t) =
∑

k≥0
(−1)km(G, k)t|V (G)|−2k.

Note that this is indeed a polynomial since m(G, k) = 0 for k > |V (G)|
2

. Heilmann and Lieb
[20] studied the following multivariate version of the matching polynomial with variables
x = (xi)i∈V and non-negative weights λ = (λe)e∈E,

µλ(G,x) =
∑

M∈M(G)

(−1)|M |
∏

ij∈M
λijxixj.

Remark 2.1. Note that t|V (G)|µ1(G, t−11) = µ(G, t), where 1 = (1, . . . , 1).
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Figure 1.

Theorem 2.2 (Heilmann-Lieb [20]).
If λ = (λe)e∈E is a sequence of non-negative edge weights, then µλ(G,x) is stable.

Remark 2.3. A quick way to see Theorem 2.2 is to observe that

MAP


 ∏

e=(i,j)∈E(G)

(1− λexixj)


 = µλ(G,x)

where MAP : C[z1, . . . , zn] → C[z1, . . . , zn] is the stability preserving linear map taking a
multivariate polynomial to its multiaffine part (see [2]). Since real stable univariate poly-
nomials are real-rooted the Heilmann-Lieb theorem (together with Remark 2.1) implies the
real-rootedness of µ(G, t).

We will consider the following homogeneous multivariate version of the matching polynomial.

Definition 2.4. Let x = (xv)v∈V and w = (we)e∈E be indeterminates. Define the homoge-
neous multivariate matching polynomial µ(G,x⊕w) ∈ R[x,w] by

µ(G,x⊕w) =
∑

M∈M(G)

(−1)|M |
∏

v 6∈V (M)

xv
∏

e∈M
w2
e .

Example 2.5. The homogeneous multivariate matching polynomial of the graph G in Figure
1 is given by

µ(G,x⊕w) = x1x2x3x4 − x3x4w2
a − x1x4w2

b − x2x4w2
c − x1x2w2

d − x2x3w2
e + w2

aw
2
d + w2

bw
2
e .

Remark 2.6. Note that µ(G, t1 ⊕ 1) = µ(G, t) and that µ(G,0 ⊕ w) is the multivariate
matching polynomial restricted to perfect matchings.

In this section we prove Conjecture 1.6 in the affirmative for the polynomials µ(G,x ⊕ w).
We first assert that µ(G,x⊕w) is indeed a hyperbolic polynomial.

Lemma 2.7. The polynomial µ(G,x⊕w) is hyperbolic with respect to e = 1⊕ 0.

Proof. Clearly µ(G,1⊕ 0) = 1 6= 0. Let x⊕w ∈ RG and λe = w2
e for all e ∈ E(G). Then

µ(G, te− x⊕w) =

(∏

v∈V
(t− xv)

)
µλ(G, (t1− x)−1).

Since µλ(G,x) is real stable by Heilmann-Lieb theorem it follows that the right hand side is
real-rooted. Hence µ(G,x⊕w) is hyperbolic with respect to e = 1⊕ 0.

�



5

Analogues of the standard recursions for the univariate matching polynomial (see [13, Thm
1.1]) also hold for µ(G,x⊕w). In particular the following recursion is used frequently so we
give details.

Lemma 2.8. Let u ∈ V (G). Then the homogeneous multivariate matching polynomial sat-
isfies the recursion

µ(G,x⊕w) = xuµ(G \ u,x⊕w)−
∑

v∈N(u)

w2
uvµ((G \ u) \ v,x⊕w).

Proof. The identity follows by partitioning the matchings M ∈M(G) into two parts depend-
ing on whether u ∈ V (M) or u 6∈ V (M). Let fG(M) =

∏
v 6∈V (M) xv

∏
e∈M w2

e . Then

µ(G,x⊕w) =
∑

M∈M(G)

(−1)|M |fG(M)

=
∑

M∈M(G)
u6∈V (M)

(−1)|M |fG(M) +
∑

M∈M(G)
u∈V (M)

(−1)|M |fG(M)

= xu
∑

M∈M(G\u)
(−1)|M |fG\u(M) +

∑

v∈N(u)

∑

M∈M(G)
uv∈M

(−1)|M |fG(M)

= xuµ(G \ u,x⊕w)−
∑

v∈N(u)

w2
uv

∑

M∈M((G\u)\v)
(−1)|M |f(G\u)\v(M)

= xuµ(G \ u,x⊕w)−
∑

v∈N(u)

w2
uv µ((G \ u) \ v,x⊕w).

�

Let G be a graph and u ∈ V (G). The path tree T (G, u) is the tree with vertices labelled by
simple paths in G (i.e. paths with no repeated vertices) starting at u and where two vertices
are joined by an edge if one vertex is labelled by a maximal subpath of the other.

Example 2.9.
G T (G, 1)

1 3 5

2 4 6

1

13

12

134

135

124

1356

1346

1342

1243

1246

13564 135642

12465 124653

12435 124356

12465
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Definition 2.10. Let G be a graph and u ∈ V (G). Let φ : RT (G,u) → RG denote the linear
change of variables defined by

xp 7→ xik ,

wpp′ 7→ wikik+1
,

where p = i1 · · · ik and p′ = i1 · · · ikik+1 are adjacent vertices in T (G, u). For every subforest
T ⊆ T (G, u), define the polynomial

η(T,x⊕w) = µ(T, φ(x′ ⊕w′))

where x′ = (xp)p∈V (T ) and w′ = (we)e∈E(T ).

Remark 2.11. Note that η(T,x ⊕ w) is a polynomial in variables x = (xv)v∈V (G) and w =
(we)e∈E(G).

For the univariate matching polynomial we have the following rather unexpected divisibility
relation due to Godsil [12],

µ(G \ u, t)
µ(G, t)

=
µ(T (G, u) \ u, t)
µ(T (G, u), t)

.

Below we prove a multivariate analogue of this fact. A similar multivariate analogue was
also noted independently by Leake and Ryder [26]. In fact they were able to find a further
generalization to independence polynomials of simplicial graphs. We will revisit their results
in Section 3. The arguments all closely resemble Godsil’s proof for the univariate matching
polynomial. For the convenience of the reader we provide the details in our setting.

Lemma 2.12. Let u ∈ V (G). Then

µ(G \ u,x⊕w)

µ(G,x⊕w)
=
η(T (G, u) \ u,x⊕w)

η(T (G, u),x⊕w)
.

Proof. If G is a tree, then µ(G,x⊕w) = η(T (G, u),x⊕w) and µ(G\u,x⊕w) = η(T (G, u)\
u,x⊕w) so the lemma holds. In particular the lemma holds for all graphs with at most two
vertices. We now argue by induction on the number of vertices of G. We first claim that

η(T (G, u) \ {u, uv},x⊕w)

η(T (G, u) \ u,x⊕w)
=
η(T (G \ u, v) \ v,x⊕w)

η(T (G \ u, v),x⊕w)
.

Let v ∈ N(u). By examining the path tree T (G, u) we note the following isomorphisms

T (G, u) \ u ∼=
⊔

n∈N(u)

T (G \ u, n),

T (G, u) \ {u, uv} ∼=



⊔

n∈N(u)
n6=v

T (G \ u, n)


 t T (G \ u, v) \ v,

following from the fact that T (G\u, n) is isomorphic to the connected component of T (G, u)\u
which contains the path un in G. By the definition of φ and the general multiplicative identity

µ(G tH,x⊕w) = µ(G,x⊕w)µ(H,x⊕w),
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the above isomorphisms translate to the following identities

η(T (G, u) \ u,x⊕w) =
∏

n∈N(u)

η(T (G \ u, n),x⊕w),

η(T (G, u) \ {u, uv},x⊕w) = η(T (G \ u, v) \ v,x⊕w)
∏

n∈N(u)
n6=v

η(T (G \ u, n),x⊕w),

from which the claim follows. By Lemma 2.8, induction, above claim and the definition of φ
we finally get

µ(G,x⊕w)

µ(G \ u,x⊕w)
=
xuµ(G \ u,x⊕w)−∑v∈N(u)w

2
uvµ(G \ {u, v},x⊕w)

µ(G \ u,x⊕w)

= xu −
∑

v∈N(u)

w2
uv

µ((G \ u) \ v,x⊕w)

µ(G \ u,x⊕w)

= xu −
∑

v∈N(u)

w2
uv

η(T (G \ u, v) \ v,x⊕w)

η(T (G \ u, v),x⊕w)

= xu −
∑

v∈N(u)

w2
uv

η(T (G, u) \ {u, uv},x⊕w)

η(T (G, u) \ u,x⊕w)

=
η(T (G, u),x⊕w)

η(T (G, u) \ u,x⊕w)

which is the reciprocal of the desired identity.
�

Lemma 2.13. Let u ∈ V (G). Then µ(G,x⊕w) divides η(T (G, u),x⊕w).

Proof. The argument is by induction on the number of vertices of G. Deleting the root u of
T (G, u) we get a forest with |N(u)| disjoint components isomorphic to T (G\u, v) respectively
for v ∈ N(u). This gives

η(T (G, u) \ u,x⊕w) =
∏

v∈N(u)

η(T (G \ u, v),x⊕w). (2)

Therefore η(T (G \ u, v),x⊕w) divides η(T (G, u) \ u,x⊕w) for all v ∈ N(u). By induction
µ(G \ u,x⊕w) divides η(T (G \ u, v),x⊕w) for all v ∈ N(u). Hence µ(G \ u,x⊕w) divides
η(T (G, u) \ u,x⊕w), so by Lemma 2.12, µ(G,x⊕w) divides η(T (G, u),x⊕w).

�

In [14] Godsil and Gutman proved the following relationship between the univariate match-
ing polynomial µ(G, t) of a graph G and the characteristic polynomial χ(A, t) of its adjacency
matrix A

χ(A, t) =
∑

C

(−2)comp(C)µ(G \ C, t),

where the sum ranges over all subgraphs C (including C = ∅) in which each component is a
cycle of degree 2 and comp(C) is the number of connected components of C. In particular if
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T is a tree, then the only such subgraph is C = ∅ and therefore

χ(A, t) = µ(T, t).

Next we will derive a multivariate analogue of this relationship for trees.

Lemma 2.14. Let T = (V,E) be a tree. Then µ(T,x ⊕ w) has a definite determinantal
representation.

Proof. Let X = diag(x) and A = (Aij) be the matrix

Aij =

{
wij if ij ∈ E(T )

0 otherwise

for all i, j ∈ V (T ). If σ ∈ Sym(V (T )) is an involution (i.e σ2 = id), then clearly Ajσ(j) =
wjσ(j) = Aσ(j)σ2(j) since A is symmetric. Hence by acyclicity of trees we have that

det(X + A) =
∑

σ∈Sym(V (T ))

sgn(σ)
∏

i∈V (T )

(Xiσ(i) + Aiσ(i))

=
∑

S⊆V (T )

∏

i∈V (T )\S
xi

∑

σ∈Sym(S)
σ(j)6=j ∀j∈S

σ2=id

sgn(σ)
∏

j∈S
Ajσ(j)

=
∑

S⊆V (T )

∏

i∈V (T )\S
xi

∑

M∈M(T [S])
M perfect

(−1)|M |
∏

jk∈M
w2
jk

=
∑

M∈M(T )

(−1)|M |
∏

i 6∈V (M)

xi
∏

jk∈M
w2
jk

= µ(T,x⊕w).

Write

X + A =
∑

i∈V (T )

xiEii +
∑

ij∈E(T )

wij(Eij + Eji),

where {Eij : i, j ∈ V (T )} denotes the standard basis for the vector space of all real |V (T )| ×
|V (T )| matrices. Evaluated at e = 1 ⊕ 0 we obtain the identity matrix I which is positive
definite.

�

Remark 2.15. The proof of Lemma 2.14 is not dependent on T being connected so the
statement remains valid for arbitrary undirected acyclic graphs (i.e. forests).

We now have all the ingredients to prove our main theorem.

Theorem 2.16. The hyperbolicity cone of µ(G,x⊕w) is spectrahedral.

Proof. The proof is by induction on the number of vertices of G. For the base case we have
µ(G,x ⊕ w) = xv, so Λ+ = {x ∈ R : x ≥ 0} which is clearly spectrahedral. Assume G
contains more than one vertex. If G = G1 t G2 for some non-empty graphs G1, G2, then
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Λ++(µ(Gi,x⊕w)) is spectrahedral by induction for i = 1, 2. Therefore

Λ++(µ(G,x⊕w)) = Λ++(µ(G1 tG2,x⊕w))

= Λ++ (µ(G1,x⊕w)µ(G1,x⊕w))

= Λ++(µ(G1,x⊕w)) ∩ Λ++(µ(G2,x⊕w))

showing that Λ++(µ(G,x⊕w)) is spectrahedral. We may therefore assume G is connected.
Let u ∈ V (G). Since G is connected and has size greater than one, N(u) 6= ∅. By Lemma
2.13 we may define the polynomial

qG,u(x⊕w) =
η(T (G, u),x⊕w)

µ(G,x⊕w)

for each graph G and u ∈ V (G). We want to show that

Λ++(µ(G,x⊕w)) ⊆ Λ++(qG,u(x⊕w)).

By Lemma 2.12 we have that

qG,u(x⊕w)µ(G \ u,x⊕w) = η(T (G, u) \ u,x⊕w).

Fixing v ∈ N(u) it follows using (2) that

qG,u(x⊕w)

qG\u,v(x⊕w)
=

qG,u(x⊕w)µ(G \ u,x⊕w)

qG\u,v(x⊕w)µ(G \ u,x⊕w)

=
η(T (G, u) \ u,x⊕w)

η(T (G \ u, v),x⊕w)

=
∏

w∈N(u)\v
η(T (G \ u,w),x⊕w)

=
∏

w∈N(u)\v
qG\u,w(x⊕w)µ(G \ u,x⊕w).

Note that
∂

∂xu
µ(G,x⊕w) = µ(G \ u,x⊕w).

Therefore by Lemma 1.2,

Λ++(µ(G,x⊕w)) ⊆ Λ++(µ(G \ u,x⊕w)) ⊆ Λ++(qG\u,w(x⊕w))

for all w ∈ N(u) where the last inclusion follows by inductive hypothesis. Hence

Λ++(µ(G,x⊕w)) ⊆
⋂

w∈N(u)

Λ++(qG\u,w(x⊕w)) ∩ Λ++ (µ(G \ u,x⊕w))

= Λ++


qG\u,v(x⊕w)

∏

w∈N(u)\v
qG\u,w(x⊕w)µ(G \ u,x⊕w)




= Λ++(qG,u(x⊕w)).

Finally by Lemma 2.14, η(T (G, u),x⊕w) has a definite determinantal representation. Hence
the theorem follows by induction.

�
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xn+1

x1xn

x5

x4 x3

x2

w1

w2

w3
w4

w5

wn

Figure 2. The star graph Sn labelled by vertex and edge variables

Remark 2.17. To show that a hyperbolic polynomial h has a spectrahedral hyperbolicity
cone it is by Theorem 2.16 sufficient to show that h can be realized as a factor of a matching

polynomial µ(G,x⊕w) with Λ++(h, e) ⊆ Λ++

(
µ(G,x⊕w)

h
, e
)

(possibly after a linear change

of variables).

The elementary symmetric polynomial ed(x) ∈ R[x1, . . . , xn] of degree d in n variables is
defined by

ed(x) =
∑

S⊆[n]
|S|=d

∏

i∈S
xi.

The polynomials ed(x) are hyperbolic (in fact stable) as a consequence of e.g Grace-Walsh-
Szegő theorem (see [31, Thm 15.4]).

Example 2.18. The star graph, denoted Sn, is given by the complete bipartite graph K1,n

with n + 1 vertices. As an application of Theorem 2.16 we show that several well-known
instances of hyperbolic polynomials have spectrahedral hyperbolicity cones by realizing them
as factors of the multivariate matching polynomial of Sn under some linear change of variables.
With notation as in Figure 2, using the recursion in Lemma 2.8, the multivariate matching
polynomial of Sn is given by

µ(Sn,x⊕w) =
n+1∏

i=1

xi −
n∑

i=1

w2
i

n∏

j=1
j 6=i

xj.

(i) For h(x) = en−1(x) consider the linear change of variables xn 7→ −xn and wi 7→ xn
for i = 1, . . . , n− 1. Then µ(Sn−1,x⊕w) 7→ −xnen−1(x). Clearly Λ++(en−1(x),1) ⊆
Λ++(xn,1). The spectrahedrality of Λ++(en−1(x),1) was first proved by Sanyal in
[36].

(ii) For h(x) = e2(x) consider the linear change of variables xi 7→ e1(x1, . . . , xn) and wi 7→
xi for i = 1, . . . , n + 1. Then µ(Sn,x⊕w) 7→ 2e1(x)n−1e2(x). Since D1e2(x) = (n−
1)e1(x), Lemma 1.2 implies that Λ++(e2(x),1) ⊆ Λ++(e1(x),1). Hence Λ++(e2(x),1)
is spectrahedral.

(iii) Let h(x) = x2n − x2n−1 − · · · − x21. Recall that Λ++(h, e) is the Lorentz cone where
e = (0, . . . , 0, 1). Consider the linear change of variables xi 7→ xn and wi 7→ xi
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L[n],k,n

L[n−1],k,2

L[n−1],k,3

L[n−1],k,1

L[n−1],k,n−1

L[n−1]\2,k,1

Tn−2,k−2

L[n−1]\2,k,3

Tn−2,k−2

L[n−1]\2,k,n−1 Tn−2,k−2

x1

x2

x3

xn−1

x1

x3

xn−1

L[n−2],k,1

L[n−2],k,2

L[n−2],k,n−2

x1

x2

xn−2

Tn−2,k−2

Tn−2,k−2

Tn−2,k−2

L[n−1]\1,k,2 x2

Tn−2,k−2

L[n−1]\1,k,3

x3

Tn−2,k−2

L[n−1]\1,k,n−1

xn−1

Tn−2,k−2

L[n−1]\3,k,1x1

Tn−2,k−2

L[n−1]\3,k,2

x2

Tn−2,k−2

L[n−1]\3,k,n−1

xn−1

Tn−2,k−2

Figure 3. The length k-truncated path tree Tn,k of Kn labelled by linear
change of variables.

for i = 1, . . . , n. Then µ(Sn−1,x ⊕ w) 7→ xnn −
∑n−1

i=1 x
2
ix

n−2
n = xn−2n h(x). Clearly

Λ++(h, e) ⊆ Λ++(xn−2n , e). Hence the Lorentz cone is spectrahedral. Of course this
(and the preceding example) also follow from the fact that all quadratic hyperbolic
polynomials have spectrahedral hyperbolicity cone [33].

Hyperbolicity cones of elementary symmetric polynomials have been studied by Zinchenko
[39], Sanyal [36] and Brändén [5]. Brändén proved that all hyperbolicity cones of elementary
symmetric polynomials are spectrahedral. As an application of Theorem 2.16 we give a new
proof of this fact using matching polynomials.

Theorem 2.19. Hyperbolicity cones of elementary symmetric polynomials are spectrahedral.

Proof. For a subset S ⊆ [n] we shall use the notation

ek(S) =
∑

T⊆S
|T |=k

∏

j∈T
xj.

We show that ek(x) = ek([n]) divides the multivariate matching polynomial of the length
k-truncated path tree Tn,k of the complete graph Kn rooted at a vertex v after a linear change
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of variables. Let (Ck)k≥0 denote the real sequence defined by

C0 = 1, C1 = 1, Ck =

bk/2c−1∏

j=0

k − 2j

k − 2j − 1
for k ≥ 2,

so that

CkCk−1 = k for all k ≥ 1.

Consider the family

MS,k,i = µ(T|S|,k, φS,k,i(x⊕w))

of multivariate matching polynomials where i ∈ S, k ∈ N and φS,k,i is the linear change of
variables defined recursively (see Fig 3) via

(i) φS,0,i is the map xv 7→ e1(S) for all S ⊆ [n] and i ∈ S.
(ii) xv 7→ LS,k,i if k ≥ 1 where

LS,k,i =
1

Ck−1
e1(S \ i) + Ckxi

and xv is the variable corresponding to the root of Tn,k.
(iii) wej 7→ xj for j ∈ S \ i where wej are the variables corresponding to the edges ej

incident to the root of Tn,k.
(iv) For each j ∈ S \ i make recursively the linear substitutions φS\i,k−1,j respectively to

the variables corresponding to the j-indexed copies of the subtrees of Tn,k isomorphic
to Tn−1,k−1.

We claim

MS,0,i = e1(S),

MS,k,i =
Ckek(S)

ek−1(S \ {i})
∏

j∈S\{i}
MS\i,k−1,j

for all S ⊆ [n], i ∈ S and k ∈ N by induction on k. Clearly MS,0,i = e1(S) since µ(Tn,0,x⊕
w) = xv. By Lemma 2.8 and induction we have

MS,k,i

= LS,k,i
∏

s∈S\{i}
MS\i,k−1,s −

∑

j∈S\i
x2j

∏

s∈S\{i,j}
MS\i,k−1,sMS\{i,j},k−2,s

=


 1

Ck−1
e1(S \ i) + Ckxi −

∑

j∈S\{i}
x2j

ek−2(S \ {i, j})
Ck−1ek−1(S \ i)


 ∏

s∈S\{i}
MS\i,k−1,s

=
1

ek−1(S \ i)



(

1

Ck−1
e1(S \ i) + Ckxi

)
ek−1(S \ i)−

1

Ck−1

∑

j∈S\i
x2jek−2(S \ {i, j})




×
∏

s∈S\{i}
MS\i,k−1,s

=
1

ek−1(S \ i)

(
k

Ck−1
ek(S \ i) + Ckxiek−1(S \ i)

) ∏

s∈S\{i}
MS\i,k−1,s
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=
Ckek(S)

ek−1(S \ i)
∏

s∈S\{i}
MS\i,k−1,s.

Unwinding the above recursion it follows that MS,k,i is of the form

MS,k,i = Cek(S)
∏

T⊆S\i
|T |>|S|−k

ek+|T |−|S|(T )αT

for some constant C and exponents αT ∈ N . Taking S = [n] we thus see that ek(x) is a
factor of the multivariate matching polynomial M[n],k,n. It remains to show that

Λ++(ek(x),1) ⊆ Λ++

(
M[n],k,n

ek(x)
,1

)
.

for all k ≤ n. By Lemma 1.2 above inclusion follows from the fact that

Λ++(ek(S),1) ⊆ Λ++(ek−1(S),1)

for all k ≥ 1 since D1ek(S) = (|S| − k)ek−1(S), and from the fact that

Λ++(ek(S),1) ⊆ Λ++ (ek(T ),1)

for all T ⊆ S since ek(T ) =
(∏

i∈S\T
∂
∂xi

)
ek(S). Hence Λ++(ek(x),1) is spectrahedral by

Theorem 2.16.
�

3. Hyperbolicity cones of multivariate independence polynomials

A subset I ⊆ V (G) is independent if no two vertices of I are adjacent in G. Let I(G) denote
the set of all independent sets in G and i(G, k) denote the number of independent sets in G
of size k. By convention i(G, 0) = 1. The (univariate) independence polynomial is defined by

I(G, t) =
∑

k≥0
i(G, k)tk.

The line graph L(G) of G is the graph having vertex set E(G) and where two vertices in
L(G) are adjacent if and only if the corresponding edges in G are incident. It follows that
µ(G, t) = t|V (G)|I(L(G),−t−2). Therefore the independence polynomial can be viewed as
a generalization of the matching polyomial. In contrast to the matching polynomial, the
independence polynomial of a graph is not real-rooted in general. However Chudnovsky and
Seymour [10] proved that I(G, t) is real-rooted if G is claw-free, that is, if G has no induced
subgraph isomorphic to the complete bipartite graph K1,3. The theorem was later generalized
by Engström to graphs with weighted vertices.

Theorem 3.1 (Engström [11]). Let G be a claw-free graph and λ = (λv)v∈V (G) a sequence
of non-negative vertex weights. Then the polynomial

Iλ(G, t) =
∑

I∈I(G)

(∏

v∈I
λv

)
t|I|

is real-rooted.
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A full characterization of the graphs for which I(G, t) is real-rooted remains an open problem.
A natural multivariate analogue of the independence polynomial is given by

I(G,x) =
∑

I∈I(G)

∏

v∈I
xv.

Leake and Ryder [26] define a strictly weaker notion of stability which they call same-phase
stability. A polynomial p(z) ∈ R[z1, . . . , zn] is (real) same-phase stable if for every x ∈ Rn

+,
the univariate polynomial p(tx) is real-rooted. The authors prove that I(G,x) is same-phase
stable if and only if G is claw-free. In fact the same-phase stability of I(G,x) is an immediate
consequence of Theorem 3.1.

The added variables in a homogeneous multivariate independence polynomial should prefer-
ably have labels carrying combinatorial meaning in the graph. For line graphs it is addi-
tionally desirable to maintain a natural correspondence with the homogeneous multivariate
matching polynomial µ(G,x⊕w). Unfortunately we have not found a hyperbolic definition
that satisfies both of the above properties. We have thus settled for the following definition.

Definition 3.2. Let x = (xv)v∈V and t be indeterminates. Define the homogeneous multi-
variate independence polynomial I(G,x⊕ t) ∈ R[x, t] by

I(G,x⊕ t) =
∑

I∈I(G)

(−1)|I|
(∏

v∈I
x2v

)
t2|V (G)|−2|I|.

Lemma 3.3. If G is a claw-free graph, then I(G,x⊕t) is a hyperbolic polynomial with respect
to e = (0, . . . , 0, 1) ∈ RV (G) × R.

Proof. First note that I(G, e) = 1 6= 0. Let x⊕ t ∈ RV (G) ×R and λv = x2v for all v ∈ V (G).
Then

I(G, se− x⊕ t) = (s− t)2|V (G)|Iλ(G,−(s− t)−2).
By Theorem 3.1 the polynomial Iλ(G, s) is real-rooted. Clearly all roots are negative which
implies Iλ(G,−s−2) is real-rooted. Hence the univariate polynomial s 7→ I(G, se− x⊕ t) is
real-rooted which shows that I(G,x⊕ t) is hyperbolic with respect to e.

�
An induced clique K in G is called a simplicial clique if for all u ∈ K the induced subgraph
N [u] ∩ (G \K) of G \K is a clique. In other words the neighbourhood of each u ∈ K is a
disjoint union of two induced cliques in G. Furthermore, a graph G is said to be simplicial
if G is claw-free and contains a simplicial clique.

In this section we prove Conjecture 1.6 for the polynomial I(G,x⊕ t) when G is simplicial.
The proof unfolds in a parallel manner to Theorem 2.16 by considering a different kind of
path tree. Before the results can be stated we must outline the necessary definitions from
[26].

A connected graph G is a block graph if each 2-connected component is a clique. Given a
simplicial graph G with a simplicial clique K we recursively define a block graph T�(G,K)
called the clique tree associated to G and rooted at K (see Figure 4).

We begin by adding K to T�(G,K). Let Ku = N [u] \ K for each u ∈ K. Attach the
disjoint union

⊔
u∈K Ku of cliques to T�(G,K) by connecting u ∈ K to every v ∈ Ku. Finally

recursively attach T�(G \K,Ku) to the clique Ku in T�(G,K) for every u ∈ K. Note that
the recursion is made well-defined by the following lemma.
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df

e

f

e

df
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d

ee

T�(G, {a, b, c})

Figure 4. A simplicial graph G and its associated relabelled clique tree
T�(G,K) rooted at K = {a, b, c} (highlighted in red).

Lemma 3.4 (Chudnovsky-Seymour [10]). Let G be a clawfree graph and let K be a simplicial
clique in G. Then N [u] \K is a simplicial clique in G \K for all u ∈ K.

It is well-known that a graph is the line graph of a tree if and only if it is a claw-free
block graph [19, Thm 8.5]. In [26] it was demonstrated that the block graph T�(G,K) is the
line graph of a certain induced path tree T∠(G,K). Its precise definition is not important
to us, but we remark that it is a subtree of the usual path tree defined in Section 2 that
avoids traversed neighbours. This enables us to find a definite determinantal representation
of I(T�(G,K),x ⊕ t) via Lemma 2.14. The second important fact is that I(G,x) divides
I(T�(G,K),x) where T�(G,K) is relabelled according to the natural graph homomorphism
φK : T�(G,K)→ G. Hence using the recursion provided by the simplicial structure of G we
have almost all the ingredients to finish the proof of Conjecture 1.6 for I(G,x⊕ t).
Lemma 3.5 (Leake-Ryder [26])).
For any simplicial graph G, and any simplicial clique K ≤ G, we have

L(T∠(G,K)) ∼= T�(G,K).
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The following theorem is a generalization of Godsil’s divisibility theorem for matching poly-
nomials. It can be proved in a similar manner by induction using the recursive structure of
simplicial graphs and removing cliques instead of vertices. For the proof to go through in
the homogeneous setting we must replace the usual recursion by

I(G,x⊕ t) = t2|K|I(G \K,x⊕ t)−
∑

v∈K
t2|N(v)|x2vI(G \N [v],x⊕ t).

Theorem 3.6 (Leake-Ryder [26])). Let K be a simplicial clique of the simplicial graph G.
Then

I(G,x⊕ t)
I(G \K,x⊕ t) =

I(T�(G,K),x⊕ t)
I(T�(G,K) \K,x⊕ t) ,

where T�(G,K) is relabelled according to the natural graph homomorphism φK : T�(G,K)→
G. Moreover I(G,x⊕ t) divides I(T�(G,K),x⊕ t).

The following lemma ensures the hyperbolicity cones behave well under vertex deletion.

Lemma 3.7. Let v ∈ V (G). Then Λ++(I(G,x⊕ t)) ⊆ Λ++(I(G \ v,x⊕ t)).

Proof. Let x ⊕ t ∈ RV (G) × R and e = (0, . . . , 0, 1). By Lemma 3.3 the polynomials s 7→
I(G, se − x ⊕ t) and s 7→ I(G \ v, se − x ⊕ t) are both real-rooted. Denote their roots by
α1, . . . , α2n and β1, . . . , β2n−2 respectively where n = |V (G)|. We claim that

min
i
αi ≤ min

i
βi ≤ max

i
βi ≤ max

i
αi

by induction on the number of vertices of G. Indeed the claim is vacuously true if |V (G)| = 1.
Suppose therefore |V (G)| > 1. If G is not connected, then G = G1 tG2 for some non-empty
graphs G1, G2. Without loss assume v ∈ G1. Then G \ v = (G1 \ v) t G2. By induction
the claim holds for the pair G1 and G1 \ v. This implies the claim for G and G \ v since
I(G,x ⊕ t) is multiplicative with respect to disjoint union. We may therefore assume G is
connected. Thus G \N [v] is of strictly smaller size than G \ v. We have

I(G,x⊕ t) = t2I(G \ v,x⊕ t)− x2vt2|N(v)|I(G \N [v],x⊕ t). (3)

By induction, the maximal root γ of I(G\N [v], se−x⊕ t) is less than the maximal root β of
I(G \ v, se− x⊕ t). Since I(G \N [v], se− x⊕ t) is an even degree polynomial with positive
leading coefficient we have that I(G \N [v], se− x⊕ t) ≥ 0 for all s ≥ γ. By (3) this implies
that I(G, βe− x⊕ t) ≤ 0. Hence maxi βi ≤ maxi αi since I(G, se− x⊕ t)→∞ as s→∞.
Since each of the terms involved in the polynomials I(G, se−x⊕t) and I(G\v, se−x⊕t) have
even degree in s−t, their respective roots are symmetric about s = t. Hence mini αi ≤ mini βi
proving the claim. Finally if x0 ⊕ t0 ∈ Λ++(I(G,x ⊕ t)), then mini αi > 0 so by the claim
mini βi > 0 showing that x0 ⊕ t0 ∈ Λ++(I(G \ v,x⊕ t)). This proves the lemma.

�
Remark 3.8. Since

I(G,x⊕ t)
∣∣∣∣
xv=0

= t2I(G \ v,x⊕ t),

we see by Lemma 3.7 that setting vertex variables equal to zero relaxes the hyperbolicity
cone.

Theorem 3.9. If G is a simplicial graph, then the hyperbolicity cone of I(G,x⊕ t) is spec-
trahedral.
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Proof. Let K be a simplicial clique of G. Arguing by induction as in Theorem 2.16, using
the clique tree T�(G,K) instead of the path tree T (G, u), and invoking Theorem 3.6 we get
a factorization

qG,K(x⊕ t) = qG\K,Kv(x⊕ t)
∏

w∈K\v
qG\K,Kw(x⊕ t)I(G \K,x⊕ t), (4)

where v ∈ K is fixed, Kw = N [w] \K and

qG,K(x⊕ t)I(G,x⊕ t) = I(T�(G,K),x⊕ t),
qG\K,Kw(x⊕ t)I(G \K,x⊕ t) = I(T�(G \K,Kw),x⊕ t)

for w ∈ K. Repeated application of Lemma 3.7 gives

Λ++(I(G,x⊕ t)) ⊆ Λ++(I(G \K,x⊕ t)).
By the factorization (4) and induction we hence get the desired cone inclusion

Λ++(I(G,x⊕ t)) ⊆ Λ++(qG,K(x⊕ t)).
Since L(T∠(G,K)) ∼= T�(G,K) by Lemma 3.5 we see that

I(T�(G,K),x⊕ t) = µ(T∠(G,K), t1⊕ x).

Hence I(T�(G,K),x⊕ t) has a definite determinantal representation by Lemma 2.14 proving
the theorem.

�

4. Convolutions

If G is a simple undirected graph with adjacency matrix A = (aij), then we may associate
a signing s = (sij) ∈ {±1}E(G) to its edges. The symmetric adjacency matrix As = (asij) of
the resulting graph is given by asij = sijaij for ij ∈ E(G) and asij = 0 otherwise. Godsil and
Gutman [15] proved that

E
s∈{±1}E(G)

det (tI − As) = µ(G, t). (5)

In other words, the expected characteristic polynomial of an independent random signing of
the adjacency matrix of a graph is equal to its matching polynomial. Therefore the expected
characteristic polynomial is real-rooted. This was one of the facts used by Marcus, Spielman
and Srivastava [28] in proving that there exist infinite families of regular bipartite Ramanujan
graphs. Since then, several other families of characteristic polynomials have been identified
with real-rooted expectation (see e.g. [30][18]). Such families are called interlacing families,
based on the fact that there exists a common root interlacing polynomial if and only if every
convex combination of the family is real-rooted. The method of interlacing families have
been successfully applied to other contexts, in particular to the affirmative resolution of the
Kadison-Singer problem [29].

In this section we define a convolution of multivariate determinant polynomials and show
that it is hyperbolic as a direct consequence of a more general theorem by Brändén [6]. In
particular this convolution can be viewed as a generalization of the fact that the expectation
in (5) is real-rooted. Namely, we show that the expected characteristic polynomial over any
finite set of independent random edge weightings is real-rooted barring certain adjustments
to the weights of the loop edges.
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Recall that every symmetric matrix may be identified with the adjacency matrix of an
undirected weighted graph (with loops).

Definition 4.1. Let W ⊆ R be a finite set. Given a real symmetric matrix A and a vector

w ∈ W (n
2), define a weighting of A to be a symmetric matrix Aw = (awij ) given by

awij =

{
wijaij if i < j∑i

k=1 aik +
∑n

k=i+1w
2
ikaik if i = j

.

Definition 4.2. Let X = (xij)
n
i,j=1 and Y = (yij)

n
i,j=1 be symmetric matrices in variables

x = (xij)i≤j and y = (yij)i≤j respectively. Let W ⊆ R be a finite set. We define the
convolution

det(X) ∗W det(Y ) = E
w1,w2∈W(n

2)
det(Xw1 + Y w2) ∈ R[x,y].

We have the following general fact about hyperbolic polynomials.

Theorem 4.3 (Brändén [6]). Let h(x) be a hyperbolic polynomial with respect to e ∈ Rn,
let V1, . . . , Vm be finite sets of vectors of rank at most one in Λ+. For V = (v1, . . . ,vm) ∈
V1 × · · · × Vm, let

g(V; t) = h(te + u− α1v1 − · · · − αmvm)

where u ∈ Rn and (α1, . . . , αm) ∈ Rm. Then E
V∈V1×···×Vm

g(V; t) is real-rooted.

Proposition 4.4. Let W ⊆ R be a finite subset. Then det(X) ∗W det(Y ) is hyperbolic with
respect to e = I ⊕ 0 where I denotes the identity matrix.

Proof. Let h(X ⊕ Y ) = det(X) ∗W det(Y ). We note that h(e) = 1 6= 0. Let δ1, . . . , δn denote
the standard basis of Rn. Put

Vij = {vijw : w ∈ W}
where vijw = (δi + wδj)(δi + wδj)

T for i < j and w ∈ W . Note that vijw is a rank one
matrix belonging to the hyperbolicity cone of positive semidefinite matrices (with non-zero
eigenvalue w2 + 1). Letting u = 0 and αXij = xij, α

Y
ij = yij for i < j we see that

h(te−X ⊕ Y ) = E
w1,w2

det(tI −Xw1 − Y w2)

= E
vijw1

,vijw2
∈Vij

i<j

det

(
tI + u−

∑

i<j

(αXijvijw1 + αYijvijw2)

)
,

where the right hand side is a real-rooted polynomial in t by Theorem 4.3. Hence det(X) ∗W det(Y )
is hyperbolic with respect to e.

�
Remark 4.5. Taking W = {±1} we see that awii =

∑n
k=1 aik for all w ∈ W and i = 1, . . . , n.

Therefore setting u = diag(d1, . . . , dn) where di =
∑

j 6=i(xij + yij) in the proof of Proposition
4.4, we get that

E
s1,s2

det(Xs1 + Y s2) (6)
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is hyperbolic, where the expectation is taken over independent random signings of the ma-
trices X and Y as in (5) without weighting the diagonal. This shows in particular that the
expectation in (5) is real-rooted.

Corollary 4.6. Let W ⊆ R be a finite subset and A a real symmetric n× n matrix. Then

E
w∈W(n

2)
det(tI − Aw)

is real-rooted.

Proof. By Corollary 4.4 the polynomial det(Y ) ∗W det(X) is hyperbolic, so in particular t 7→
E
w

det(tI − Aw) is real-rooted with X = 0 and Y = A.

�
Next we see that the convolution (6) over independent random signings can be realized as
a convolution of multivariate matching polynomials. The proof is similar to that of the
univariate identity (5) (cf [15]). Let GX and GY denote the weighted graphs corresponding
to the symmetric matrices X and Y .

Proposition 4.7. Let X = (xij)
n
i,j=1 and Y = (yij)

n
i,j=1 be symmetric matrices in variables

x = (xij)i≤j and y = (yij)i≤j. Then

E
s(1),s(2)

det(Xs(1) + Y s(2))

=
∑

S⊆[n]
(−1)|S|/2

∏

i 6∈S
(xii + yii)

∑

S1tS2=S

µ(GX [S1],0⊕ x)µ(GY [S2],0⊕ y)

where the expectation is taken over independent random signings as in (5).

Proof. Expanding the convolution from the definition of the determinant we have

E
s(1),s(2)

det(Xs(1) + Y s(2))

= E
s(1),s(2)

∑

σ∈Sn

sgn(σ)
n∏

i=1

(
Xs(1) + Y s(2)

)
iσ(i)

= E
s(1),s(2)

∑

S⊆[n]

∏

i 6∈S
(xii + yii)

∑

σ∈Sym(S)
σ(j)6=j ∀j∈S

sgn(σ)
∏

j∈S

(
s
(1)
jσ(j)xjσ(j) + s

(2)
jσ(j)yjσ(j)

)

=
∑

S⊆[n]

∏

i 6∈S
(xii + yii)

∑

σ∈Sym(S)
σ(j)6=j ∀j∈S

sgn(σ)
∑

S1tS2=S

E
s(1)

∏

j∈S1

s
(1)
jσ(j)xjσ(j) E

s(2)

∏

j∈S2

s
(2)
jσ(j)yjσ(j)

Note the following regarding the random variables s
(k)
ij , k = 1, 2:

(i) s
(k)
ij appears with power at most two in each of the products.

(ii) The random variables s
(k)
ij are independent.

(iii) E s(k)ij = 0.

(iv) E(s
(k)
ij )2 = 1.

As a consequence, permutations with the following characteristics may be eliminated since

they produce factors s
(k)
ij of power one making the term vanish:
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(i) σ ∈ Sn having no factorization σ = σ1σ2 for σi ∈ Sym(Si), i = 1, 2.
(ii) σ ∈ Sn such that σ is not a complete product of disjoint transpositions.

This leaves us with products of fixed-point-free involutions in Sym(S1) and Sym(S2). Thus
the non-vanishing terms are those corresponding to perfect matchings on GX [S1] and GY [S2].
Hence

E
s(1),s(2)

det(Xs(1) + Y s(2)) =
∑

S⊆[n]

∏

i 6∈S
(xii + yii)

∑

S1tS2=S

P1(x)P2(y)

where

P1(x) =
∑

σ1∈Sym(S1)
σ1(j)6=j ∀j∈S1

sgn(σ1) E
s(1)

∏

i∈S1

s
(1)
iσ1(i)

xiσ1(i)

=
∑

M∈M(GX [S1])
M perfect

(−1)|S1|/2
∏

ij∈M
E
s(1)

(s
(1)
ij )2x2ij

= (−1)|S1|/2
∑

M∈M(GX [S1])
M perfect

∏

ij∈M
x2ij

= (−1)|S1|/2µ(GX [S1],0⊕ x)

and similarly for P2(y).
�

Remark 4.8. The expression in Proposition 4.7 may also be written

E
s(1),s(2)

det(Xs(1) + Y s(2)) =
∑

M∈M(Kn)

(−1)|M |
∏

i 6∈V (M)

(xii + yii)
∏

jk∈M
(x2jk + y2jk).

Example 4.9.

(i) Let A be the adjacency matrix of a simple undirected graph G. Under the special-
ization X = tI and Y = −A in Proposition 4.7 we recover the identity (5) of Godsil
and Gutman.

(ii) Let A and B both be adjacency matrices of the complete graph Kn. It is well-known
(see e.g. [13]) that the number of perfect matchings in Kn is given by (n − 1)!! if n
is even and 0 otherwise, where (n)!! = n(n− 2)(n− 4) · · · . By Proposition 4.7 and a
simple calculation it follows that

E
s(1),s(2)

det(tI + As(1) +Bs(2)) =

bn/2c∑

k=0

tn−2k(−1)k
(
n

2k

) ∑

i+j=k

(
2k

2i

)
(2i− 1)!!(2j − 1)!!

=

bn/2c∑

k=0

tn−2k(−1)k
(
n

2k

)
(2k − 1)!!

(
3

2

)k

= tnµ 3
2
1(Kn, t

−11).
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Final remarks

In Theorem 3.9 we proved Conjecture 1.6 for I(G,x⊕ t) whenever G is a simplicial graph.
An extension of the divisibility relation in Theorem 3.6 to all claw-free graphs would imme-
diately extend Theorem 3.9 to all claw-free graphs.

An interesting extension of this work would be to study a family of stable graph polynomials
introduced by Wagner [38] in a general effort to prove Heilmann-Lieb type theorems. Let
G = (V,E) be a graph. For H ⊆ E, let degH : V → N denote the degree function of the
subgraph (V,H). Furthermore let

u(v) = (u
(v)
0 , u

(v)
1 , . . . , u

(v)
d )

denote a sequence of activities at each vertex v ∈ V where d = degG(v). Define the polyno-
mial

Z(G,λ,u; x) =
∑

H⊆E
(−1)|H|λHudegHxdegH

where λ = {λe}e∈E are edge weights and

λH =
∏

e∈H
λe, udegH =

∏

v∈V
u
(v)
degH(v), xdegH =

∏

v∈.V
xdegH(v)
v .

Wagner proves that Z(G,λ,u,x) is stable whenever λe ≥ 0 for all e ∈ E and the univariate

key-polynomial Kv(z) =
∑d

j=0

(
d
j

)
u
(v)
j zj is real-rooted for all v ∈ V (cf [38, Thm 3.2]).

We note in particular that if u
(v)
0 = u

(v)
1 = 1, u

(v)
k = 0 for all k > 1 and v ∈ V , then

Z(G,λ,u; x) = µλ(G,x) where µλ(G,x) is the weighted multivariate matching polynomial
studied by Heilmann and Lieb [20]. An appropriate homogenization of Z(G,λ,u; x) could
be defined as

W (G,u; x⊕w) =
∑

H⊆E
(−1)|H|udegHw2HxdegG− degH .

Since W (G,u; x⊕w) = xdegGZ(G,w2,u; x−1) we see that W (G,u; x⊕w) is hyperbolic with
respect to e = 1⊕ 0 whenever Kv(z) is real-rooted for all v ∈ V . We also note the following
edge and node recurrences for e ∈ E and v ∈ V ,

W (G,u; x⊕w)

= xeW (G \ e,u; x⊕w)−w2eW (G \ e,u� e; x⊕w)

=
∑

S⊆N(v)

(−1)|S|u(v)|S|w
2E(S,v)xdegG(v)−|S|

v xN(v)\SW (G \ v,u� S; x⊕w)

where E(S, v) = {sv ∈ E : s ∈ S} and (u� S)(v) =

{
(u

(v)
1 , . . . , u

(v)
d ), v ∈ S

u(v), v 6∈ S
Although it is not clear in general how to find a definite determinantal representation of

W (G,u; x ⊕ w), it may be possible to consider special form activity vectors and obtain a
reduction by constructing divisibility relations in the spirit of Lemma 2.12 and Theorem
3.6. This may also be of independent interest for studying root bounds of their univariate
specializations.
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STABLE MULTIVARIATE GENERALIZATIONS OF MATCHING
POLYNOMIALS

NIMA AMINI

Abstract. The first part of this note concerns stable averages of multivariate matching
polynomials. In proving the existence of infinite families of bipartite Ramanujan d-coverings,
Hall, Puder and Sawin introduced the d-matching polynomial of a graph G, defined as
the uniform average of matching polynomials over the set of d-sheeted covering graphs of
G. We prove that a natural multivariate version of the d-matching polynomial is stable,
consequently giving a short direct proof of the real-rootedness of the d-matching polynomial.
Our theorem also includes graphs with loops, thus answering a question of said authors.
Furthermore we define a weaker notion of matchings for hypergraphs and prove that a family
of natural polynomials associated to such matchings are stable. In particular this provides
a hypergraphic generalization of the classical Heilmann-Lieb theorem.

1. Introduction

The real-rootedness of the matching polynomial of a graph is a well-known result in al-
gebraic graph theory due to Heilmann and Lieb [12]. Slightly less quoted is its stronger
multivariate counterpart (see [12]) which proclaims that the multivariate matching polyno-
mial is non-vanishing when its variables are restricted to the upper complex half-plane, a
property known as stability. Other stable polynomials occurring in combinatorics include
e.g. multivariate Eulerian polynomials [10], several bases generating polynomials of matroid-
s (including multivariate spanning tree polynomials) [6] and certain multivariate subgraph
polynomials [22]. In the present note we consider several different stable generalizations of
multivariate matching polynomials. Hall, Puder and Sawin prove in [11] that every connect-
ed bipartite graph has a Ramanujan d-covering of every degree for each d ≥ 1, generalizing
seminal work of Marcus, Spielman and Srivastava [16, 18] for the case d = 2. An important
object in their proof is a certain generalization of the matching polynomial of a graph G,
called the d-matching polynomial, defined by taking averages of matching polynomials over
the set of d-sheeted covering graphs of G. The authors prove (via an indirect method) that
the d-matching polynomial of a multigraph is real-rooted provided that the graph contains
no loops. We prove in Theorem 3.7 that the latter hypothesis is redundant by establishing a
stronger result, namely that the multivariate d-matching polynomial is stable for any multi-
graph (possibly with loops). In the final section we consider a hypergraphic generalization
of the Heilmann-Lieb theorem. The hypergraphic matching polynomial is not real-rooted in
general (see [24]) so it does not admit a natural stable multivariate refinement. However by
relaxing the notion of matchings in hypergraphs we prove in Theorem 5.6 that an associated
“relaxed” multivariate matching polynomial is stable.

2. Preliminaries

2.1. Graph coverings and group labelings. In this subsection we outline relevant def-
initions from [11]. Let G = (V (G), E(G)) be a finite, connected, undirected graph on [n].

1
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a

b

c d

σ1

σ2

σ3

σ4 σ5

Figure 1. A S4-labeling γ of a graph G with γ = (σ1, σ2, σ3, σ4, σ5) =
((1 2), (1 2)(3 4), (1 3 2), (1 2 3 4), (1 2 3)).

In particular we allow G to have multiple edges between vertices and contain edges from a
vertex to itself, i.e., G is a multigraph with loops.

A graph homomorphism f : H → G is called a local isomorphism if for each vertex v in
H, the restriction of f to the neighbours of v in H is an isomorphism onto the neighbours
f(v) in G. We call f a covering map if it is a surjective local isomorphism, in which case we
say that H covers G. If the image of H under the covering map f is connected, then each
fiber f−1(v) of v ∈ V (G) is an independent set of vertices in H of the same size d. If so, we
call H a d-sheeted covering (or d-covering for short) of G.

Although G is undirected we shall dually view it as an oriented graph, containing two
edges with opposite orientation for each undirected edge. We denote the edges with positive
(resp. negative) orientation by E+(G) (resp. E−(G)) and identify E(G) with the disjoint
union E+(G)tE−(G). If e ∈ E±(G), then we write −e for the corresponding edge in E∓(G)
with opposite orientation. Moreover we denote by h(e) and t(e), the head and tail of the edge
e ∈ E(G) respectively. A d-covering H of a graph G can be constructed via the following
model, introduced in [1, 7]. The vertices of H are defined by V (H) := {vi : v ∈ V (G), 1 ≤
i ≤ d}. The edges of H are determined, as described below, by a labeling σ : E(G) → Sd
(see Figure 1) satisfying σ(−e) = σ(e)−1. For notational purposes we write σ(e) = σe. For
every positively oriented edge e ∈ E+(G) we introduce d (undirected) edges in H connecting
h(e)i to t(e)σe(i) for 1 ≤ i ≤ d, that is, we replace each undirected edge e in G by the perfect
matching induced by σe, see Figure 2. We shall interchangeably refer to the map σ and the
covering graph H which it determines, as a covering of G. Let Cd,G denote the probability
space of all d-coverings of G endowed with the uniform distribution.

Instead of labeling each edge in G by a permutation in Sd we may label the edges with
elements coming from an arbitrary finite group Γ. A Γ-labeling of a graph G is a function γ :
E(G)→ Γ satisfying γ(−e) = γ(e)−1. Let CΓ,G denote the probability space of all Γ-labelings
of G endowed with the uniform distribution. Let π : Γ → GLd(C) be a representation of Γ.
For any Γ-labeling γ of G, let Aγ,π denote the nd× nd matrix obtained from the adjacency
matrix AG of G by replacing the (i, j) entry in AG with the d × d block

∑
e∈E(G) π(γ(e))

(where the sum runs over all oriented edges from i to j) and by a zero block if there are no
edges between i and j. The matrix Aγ,π is called a (Γ, π)-covering of G.

Consider the d-dimensional representation π : Sd → GLd(C) of the symmetric group Sd
mapping every σ ∈ Sd to its corresponding permutation matrix. The representation π is
reducible since the 1-dimensional space 〈1〉 ≤ Cd, where 1 = (1, . . . , 1), is invariant under
the action of π. The action of π on the orthogonal complement 〈1〉⊥ is an irreducible (d−1)-
dimensional representation called the standard representation, denoted std : Sd → GLd−1(C).
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a1

a2

a3

a4

b1 b2 b3 b4

c1

c2

c3

c4

d1

d2

d3

d4

Figure 2. The 4-sheeted covering graph H corresponding to the S4-labeling
γ of G in Figure 1.

As outlined in [11], every d-covering H of G corresponds uniquely to a (Sd, std)-covering of
G.

2.2. Stable polynomials. A polynomial f(x) ∈ C[x1, . . . , xn] is said to be stable if f(x1, . . . , xn) 6=
0 whenever Im(xj) > 0 for all j = 1, . . . , n. By convention we also regard the zero polynomial
to be stable. A stable polynomial with only real coefficients is said to be real stable. Note that
univariate real stable polynomials are precisely the real-rooted polynomials (i.e. real polyno-
mials in one variable with all zeros in R). Thus stability may be regarded as a multivariate
generalization of real-rootedness. Below we collect a few facts about stable polynomials which
are relevant for the forthcoming sections. For a more comprehensive background we refer to
the survey by Wagner [21] and references therein.

A common technique for proving that a polynomial f(x) is stable is to realize f(x) as
the image of a known stable polynomial under a stability preserving linear transformation.
Stable polynomials satisfy several basic closure properties, among them are diagonalization
f 7→ f(x)|xi=xj for i, j ∈ [n] and differentiation f 7→ ∂if(x) where ∂i := ∂

∂xi
. The following

theorem by Lieb and Sokal provides the construction for a large family of stability preserving
linear transformations.

Theorem 2.1 (Lieb-Sokal [14]). If f(x1, . . . , xn) ∈ C[x1, . . . , xn] is a stable polynomial, then
f (∂1, . . . , ∂n) is a stability preserving linear operator.

Borcea and Brändén [3] gave a complete characterization of the linear operators preserv-
ing stability. The following is the transcendental characterization of stability preservers on
infinite-dimensional complex polynomial spaces. Define the complex Laguerre-Pólya class to
be the class of entire functions in n variables that are limits, uniformly on compact sets of
stable polynomials in n variables. Throughout we will use the following multi-index notation

xS :=
n∏

i∈S
xi xα :=

n∏

i=1

xαi
i , α! :=

n∏

i=1

αi!,

where S ⊆ [n] and α = (αi) ∈ Nn.

Theorem 2.2 (Borcea-Brändén [3]). Let T : C[x1, . . . , xn]→ C[x1, . . . , xn] be a linear oper-
ator. Then T preserves stability if and only if either
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(i) T has range of dimension at most one and is of the form

T (f) = α(f)P,

where α is a linear functional on C[x1, . . . , xn] and P is a stable polynomial, or
(ii)

GT (x,y) :=
∑

α∈Nn

(−1)αT (xα)
yα

α!

belongs to the Laguerre-Pólya class.

A polynomial f(x1, . . . , xn) is said to be multiaffine if each variable xi occurs with degree at
most one in f(x1, . . . , xn), and is called symmetric if f(xσ(1), . . . , xσ(n)) = f(x1, . . . , xn) for
all σ ∈ Sn. The Grace-Walsh-Szegö coincidence theorem is a cornerstone in the theory of
stable polynomials frequently used to depolarize symmetries before checking stability. One
version of it is stated below, see [3, 21] for modern references and alternative proofs.

Theorem 2.3 (Grace-Walsh-Szegö [9, 20, 23]). Let f(x1, . . . , xn) ∈ C[x1, . . . , xn] be a sym-
metric and multiaffine polynomial. Then f(x1, . . . , xn) is stable if and only if f(x, . . . , x) is
stable.

3. Stability of multivariate d-matching polynomials

A matching of an undirected graph G is a subset M ⊆ E(G) such that no two edges in
M share a common vertex. Let V (M) :=

⋃
{i,j}∈M{i, j} denote the set of vertices in the

matching M . For d ∈ Z≥1, the d-matching polynomial of G is defined by

µd,G(x) := EH∈Cd,GµH(x),

where

µG(x) :=

bn/2c∑

i=0

(−1)imix
n−2i ∈ Z[x]

and mi denotes the number of matchings in G of size i with m0 = 1. In particular if d = 1,
then µd,G(x) coincides with the conventional matching polynomial µG(x). The following
results are proved in [11].

Theorem 3.1 (Hall-Puder-Sawin [11]). Let Γ be a finite group and π : Γ → GLd(C) be an
irreducible representation such that π(Γ) is a complex reflection group, i.e., π(Γ) is generated
by pseudo-reflections. If G is a finite connected multigraph, then

Eγ∈CΓ,G
det(xI − Aγ,π) = µd,G(x). (3.1)

Remark 3.2. Remarkably the expected characteristic polynomial in (3.1) depends only on
the dimension d of the irreducible representation π and not on the particular choice of group
Γ, nor the specifics of the map π. Real-rooted expected characteristic polynomials have seen
a surge of interest recently in light of the Kadison-Singer problem and Ramanujan coverings,
see e.g. [2, 11, 16, 17, 18, 19].
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σ1 σ2
ι

(1 2 3)

(1 3 2)

(1 2)
(1 3)

(2 3)

Figure 3. A S3-labeling γ = (σ1, σ2) = ((1 2 3), (1 2)) of the bouquet graph
B2 (left) and the Cayley graph of S3 with respect to {(1 2 3), (1 2)} (right).

Example 3.3. A classical result due to Godsil and Gutman [8] states that if A = (aij) is
the adjacency matrix of a finite simple undirected graph G, then

Es det(xI − As) = µG(x),

where As
ij := seaij for all e = {i, j} ∈ E(G) and s = (se)e∈E(G) ∈ {±1}E(G). In other words,

the expected characteristic polynomial over all signings of G equals the matching polynomial
of G. In the language of Hall, Puder and Sawin this corresponds to taking Γ = Z/2Z and
π = sgn : Z/2Z→ GL1(C) to be the sign representation in Theorem 3.1.

Generalizing and extending the following theorem will be the main focus of this section.

Theorem 3.4 (Hall-Puder-Sawin [11]). If G is a finite multigraph with no loops, then µd,G(x)
is real-rooted.

Remark 3.5. Hall, Puder and Sawin also showed that the roots of µd,G(x) are contained inside
the Ramanujan interval of G (see [11]).

Define the multivariate d-matching polynomial of G by

µd,G(x) := EH∈Cd,GµH(x),

where

µG(x) :=
∑

M

(−1)|M |
∏

i∈[n]\V (M)

xi,

and the sum runs over all matchings in G.
The real-rootedness of µd,G(x) was proved indirectly in [11] by considering a limit of in-

terlacing families converging to the left-hand side in Theorem 3.1. In this section we use a
more direct approach for proving the real-rootedness of µd,G(x). In fact we prove something
stronger, namely that µd,G(x) is stable. Our proof also holds for graphs with loop edges, thus
removing the redundant hypothesis in Theorem 3.4.

Coverings of graphs with loop edges have interesting properties. In particular, consider the
|Γ|-dimensional regular representation reg : Γ → GL|Γ|(C) sending an element g ∈ Γ to the
permutation matrix afforded by g acting on Γ through left translation h 7→ gh. The bouquet
graph Br is the graph consisting of a single vertex with r loop edges. A (Γ, reg)-covering
Aγ,reg of Br is equivalent to the Cayley graph of Γ with respect to the set γ(E(Br)). In this
sense (Γ, reg)-coverings of finite multigraphs with loops generalize Cayley graphs of finite
groups.
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Example 3.6. Let Γ = S3, G = B2 and π = reg : S3 → GL6(C). Consider the S3-labeling
γ = (σ1, σ2) = ((1 2 3), (1 2)) of B2 as in Figure 3 (left). Then

A := reg(σ1) + reg(σ2) =




ι (1 2) (1 3) (2 3) (1 2 3) (1 3 2)

ι 0 1 0 0 1 0
(1 2) 1 0 1 0 0 0
(1 3) 0 0 0 1 0 1
(2 3) 0 1 0 0 1 0
(1 2 3) 0 0 0 1 0 1
(1 3 2) 1 0 1 0 0 0



,

is the adjacency matrix of the Cayley graph of S3 with respect to the set {σ1, σ2}, see Figure
3 (right), and the (S3, reg)-covering Aγ,reg is given by A+ AT .

Choe, Oxley, Sokal and Wagner [6] (see also [4]) consider the multi-affine part operator

MAP : C[x1, . . . , xn]→ C[x1, . . . , xn]
∑

α∈Nn

a(α)xα 7→
∑

α:αi≤1,i∈[n]

a(α)xα

and note that it is a stability preserving linear operator. Indeed the symbol

GMAP(x,y) =
∑

α∈Nn

(−1)αMAP(xα)
yα

α!
=
∑

α∈Nn

αi≤1

(−1)αxαyα =
n∏

i=1

(1− xiyi),

is stable being a product of stable polynomials. Since the range of MAP has dimension
greater than one, it follows that MAP preserves stability by Theorem 2.2. Given the identity

PG(x) :=
∑

E⊆E(G)

(−1)|E|
n∏

i=1

x
degG[E](i)

i =
∏

{i,j}∈E(G)

(1− xixj), (3.2)

where G[E] is the subgraph of G induced by E ⊆ E(G) and degG[E](i) denotes the degree of
i in G[E], we have that

MAP[PG(x)] = µG(x),

and hence that µG(x) is stable being the image of a stable polynomial under MAP. This
result is also known as the Heilmann-Lieb theorem [12].

By using Theorem 2.3 and the stability preserving linear operator MAP we will show below
that µd,G(x) is stable.

Theorem 3.7. If G is a finite multigraph (possibly with loops), then µd,G(x) is stable for all
d ≥ 1.

Proof. For a d-covering σ : E(G)→ Sd, let

Pσ,G(x) :=


 ∏

e∈E+(G)\E+
◦ (G)

d∏

k=1

(1− xh(e)kxt(e)σe(k))


×


 ∏

e∈E+
◦ (G)

∏

k:σe(k)6=k
(1− xh(e)kxt(e)σe(k))


 ,
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where E+
◦ (G) := {e ∈ E+(G) : h(e) = t(e)} denotes the set of positively oriented loops in

G. Since no matching may contain loops we have excluded the factors (1 − x2
ik) from the

subgraph generating polynomial PH(x) in (3.2) where H is the covering graph corresponding
to σ. This explains the form of Pσ,G(x). It follows that

MAP[Pσ,G(x)] = µH(x).

We have

Eσ∈Cd,GPσ,G(x) =
∑

σ∈Cd,G

1

|Cd,G|
Pσ,G(x)

=
1

|Cd,G|


 ∏

e∈E+(G)\E+
◦ (G)

∑

σe∈Sd

d∏

k=1

(1− xh(e)kxt(e)σe(k))


×


 ∏

e∈E+
◦ (G)

∑

σe∈Sd

∏

k:σe(k)6=k
(1− xh(e)kxt(e)σe(k))


 .

For e ∈ E+(G) \ E+
◦ (G) the polynomials

fe(x) =
∑

σe∈Sd

d∏

k=1

(1− xh(e)kxt(e)σe(k)),

are symmetric and multiaffine polynomials in the two sets of variables

{xh(e)k : 1 ≤ k ≤ d} and {xt(e)k : 1 ≤ k ≤ d},

respectively. By Theorem 2.3 we have that fe(x) is stable if and only if

∑

σe∈Sd

d∏

k=1

(1− xy) = d!(1− xy)d,

is stable, the latter of which is clear. Similary if e ∈ E+
◦ (G), then fe(x) is symmetric

and multiaffine in the set of variables {xh(e)k : 1 ≤ k ≤ d}, so checking stability of fe(x)
reduces by Theorem 2.3 to checking the stability of d!(1− x2)d, which is again clear. Hence
Eσ∈CSd,G

Pσ,G(x) is stable being a product of stable polynomials. Finally we have

MAP
[
Eσ∈Cd,GPσ,G(x)

]
= Eσ∈Cd,GMAP[Pσ,G(x)]

= EH∈Cd,GµH(x)

= µd,G(x).

Hence µd,G(x) is stable. �

Corollary 3.8. If G is a finite multigraph (possibly with loops), then µd,G(x) is real-rooted
for all d ≥ 1.

Proof. Follows by putting x = (x, . . . , x) in Theorem 3.7 �
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4. Stable expected matching polynomials over induced subgraphs

In the previous section we considered stable averages of multivariate matching polynomials
over the set of d-sheeted covering graphs of G. In this section we consider stable averages
over (vertex-) induced subgraphs of G. To this end, if S ⊆ [n], let G[S] denote the subgraph
of G induced by the vertices in S. Let P be a probability distribution on the power set
P([n]) := {S : S ⊆ [n]}. The polynomial

ZP(x) =
∑

S⊆[n]

P(S)xS ∈ R[x1, . . . , xn],

is called the partition function of P. The probability distribution P is called Rayleigh if

ZP(x)
∂2ZP(x)

∂xi∂xj
≤ ∂ZP(x)

∂xi

∂ZP(x)

∂xj
(4.1)

for all x ∈ Rn
+, 1 ≤ i, j ≤ n and is called strong Rayleigh if (4.1) holds for all x ∈ Rn,

1 ≤ i, j ≤ n.

Theorem 4.1 (Brändén [5]). A probability distribution P is strong Rayleigh if and only if
ZP(x) is stable.

Proposition 4.2. Let G = (V (G), E(G)) be a finite undirected graph on [n] and let P be a
probability distribution on P([n]). If P is strong Rayleigh, then EP

S⊆[n]µG[S](x) is stable.

Proof. By Theorem 2.1 the linear operator

TG :=
∏

{i,j}∈E(G)

(1− ∂i∂j)

preserves stability. Moreover it is easy to see that for S ⊆ [n],

TG(xS) = µG[S](x).

If P is strong Rayleigh, then ZP(x) is stable by Theorem 4.1. Hence

TG(ZP(x)) =
∑

S⊆[n]

P(S)TG(xS)

=
∑

S⊆[n]

P(S)µG[S](x)

= EP
S∈⊆[n]µG[S](x),

is stable. �

Corollary 4.3. If P is a strong Rayleigh probability distribution, then EP
S⊆[n]µG[S](x) is real-

rooted.

Example 4.4. The following example demonstrates that the converse to Proposition 4.2
is false. Consider the graph G = •–• on two vertices and one edge. If P is a probability
distribution with P({1, 2}) = a, P({1}) = b, P({1, 2}) = c and P(∅) = d, then

EP
S⊆[2]µG[S](x) = aµG(x) + bµG[1](x) + cµG[2](x) + dµG[∅](x)

= a(−1 + x1x2) + bx1 + cx2 + d,
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which is stable if and only of bc− a(−a+ d) ≥ 0. On the other hand

ZP(x) = ax1x2 + bx1 + cx2 + d,

is stable if and only if bc− ad ≥ 0. Hence there exists probability distributions P which are
not strong Rayleigh for which EP

S⊆[n]µG[S](x) is stable. An interesting question would be to

characterize the probability distributions for which EP
S⊆[n]µG[S](x) is stable.

Example 4.5. A natural probability distribution P on the set of induced subgraphs of G is
the Bernoulli distribution B where a vertex i ∈ [n] is selected independently with probability
pi and not selected with probability 1 − pi. Note that B is a strong Rayleigh probability
distribution since

ZB(x) =
∑

S⊆[n]

B(S)xS =
∑

S⊆[n]

∏

i∈S
pi
∏

i∈[n]\S
(1− pi)xS =

n∏

i=1

((1− pi) + pixi),

is stable. Hence EB
S⊆[n]µG[S](x) is stable by Proposition 4.2.

Next we shall provide bounds for the real roots of EP
S⊆[n]µG[S](x).

Let i ∈ V (G) and define a graph Ui(G) with vertex set being the set of all non-backtracking
walks in G starting from i, i.e., sequences (i0, i1, . . . , ik) such that i0 = i, ir and ir+1 are
adjacent and ir+1 6= ir−1. Two such walks are connected by an edge in Ui(G) if one walk
extends the other by one vertex, i.e., (i0, . . . , ik, ik+1) is adjacent to (i0, . . . , ik). The graph
thus constructed is a tree that covers G. It is called the universal covering tree of G. The
universal covering tree Ui(G) of G is unique up to isomorphism and has the property that
it covers every other covering of G. Thus we henceforth remove reference to the root i and
write U(G) for the universal covering tree of G. The tree U(G) is countably infinite, unless
G is a finite tree, in which case U(G) = G.

The spectral radius r(G) of a finite graph G is the largest absolute eigenvalue of the
adjacency matrix AG of G. By a theorem of Mohar [15] the spectral radius of an infinite
graph U can be defined as follows,

r(U) := sup{r(G) : G is a finite induced subgraph of U}.
If G is a finite undirected graph, then let ρ(G) := r(U(G)) denote the spectral radius of its
universal covering tree. Say that a probability distribution P on P([n]) has constant parity
if the set {|S| : S ⊆ [n], P(S) > 0} consists of numbers with the same parity (i.e. are either
all odd or all even).

Proposition 4.6. Let G be a finite undirected graph with n vertices and P a probability
distribution on P([n]). Then the real roots of EP

S⊆[n]µG[S](x) are bounded above by ρ(G).

Moreover if P has constant parity, then the real roots of EP
S⊆[n]µG[S](x) are contained in

[−ρ(G), ρ(G)].

Proof. Let S ⊆ [n]. There is a clear injective embedding of U(G[S]) into U(G) such that any
finite induced subgraph of U(G[S]) is an induced subgraph of U(G). Therefore ρ(G[S]) ≤
ρ(G). Heilmann and Lieb [12] showed that for any finite graph G, the roots of µG(x) are
contained in [−ρ(G), ρ(G)]. Therefore EP

S⊆[n]µG[S](x) > 0 for all x ∈ (ρ(G),∞), being a
convex combination of monic polynomials with the same property. Hence the real roots of
the expectation are bounded above by ρ(G). If P also has constant parity, then EP

S⊆[n]µG[S](x)
is a convex combination of monic polynomials with same degree parity and are therefore, by
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above, strictly positive or strictly negative on the interval (−∞,−ρ(G)). Hence the real roots
are contained in [−ρ(G), ρ(G)]. �
Corollary 4.7. Let G be a finite undirected graph on n vertices and k ∈ [n]. Then the
uniform average of all matching polynomials over the set of induced size k-subgraphs of G is
a real-rooted polynomial with all roots contained in the interval [−ρ(G), ρ(G)].

Proof. Let P be the probability distribution on P([n]) with uniform support on
(

[n]
k

)
. Then

ZP(x) =
1(
n
k

)ek(x),

where ek(x) denotes the elementary symmetric polynomial of degree k. The polynomial ek(x)
is stable, e.g. by Theorem 2.3. Therefore P is a strong Rayleigh probability distribution by
Theorem 4.1, so the statement follows by Corollary 4.3 and Proposition 4.6. �

5. Stable relaxed matching polynomials

A hypergraph H = (V (H), E(H)) is a set of vertices V (H) = [n] together with a family of
subsets E(H) of V (H) called hyperedges (or edges for short). The degree of a vertex i ∈ V (H)
is defined as degH(i) := |{e ∈ E(H) : i ∈ e}|. In analogy with graph matchings, a matching
in a hypergraph consists of a subset of edges with empty pairwise intersection. Although
the matching polynomial µG(x) of a graph G is real-rooted, the analogous polynomial for
hypergraphs is not real-rooted in general, see e.g. [24]. From the point of view of real-
rootedness we consider a weaker notion of matchings that provide a natural generalization
of the real-rootedness property of µG(x) to hypergraphs.

Let H = (V (H), E(H)) be a hypergraph. Define a relaxed matching in H to be a collection
M = (Se)e∈E of edge subsets such that E ⊆ E(H), Se ⊆ e, |Se| > 1 and Se ∩ Se′ = ∅ for all
pairwise distinct e, e′ ∈ E (see Figure 4).

Remark 5.1. If H is a graph then the concept of relaxed matching coincides with the con-
ventional notion of graph matching. Note also that a conventional hypergraph matching is a
relaxed matching M = (Se)e∈E for which Se = e for all e ∈ E.

Remark 5.2. The subsets Se in the relaxed matching are labeled by the edge they are chosen
from in order to avoid ambiguity. However if H is a linear hypergraph, that is, the edges
pairwise intersect in at most one vertex, then the subsets uniquely determine the edges they
belong to and therefore no labeling is necessary. Graphs and finite projective geometries
(viewed as hypergraphs) are examples of linear hypergraphs.

Let V (M) :=
⋃
Se∈M Se denote the set of vertices in the relaxed matching. Moreover let

mk(M) := |{Se ∈ M : |Se| = k}| denote the number of subsets in the relaxed matching of
size k. Define the multivariate relaxed matching polynomial of H by

ηH(x) :=
∑

M

(−1)|M |W (M)
∏

i∈[n]\V (M)

xi,

where the sum runs over all relaxed matchings of H and

W (M) :=
n−1∏

k=1

kmk+1(M).

Let ηH(x) := ηH(x1) denote the univariate relaxed matching polynomial.
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Figure 4. A relaxed matching M = (Se1 , Se3 , Se4) in a hypergraph H with
Se1 = {1, 2}, Se3 = {4, 5} and Se4 = {6, 7, 8}.

Remark 5.3. Note that ηH(x) = µH(x) if H is a graph.

Our aim is to prove that ηH(x) is a stable polynomial. In fact we shall prove the stability
of a more general polynomial accommodating for arbitrary degree restrictions on each vertex.

Define a relaxed subgraph of H to be a hypergraph K = (E(K), V (K)) with edges E(K) :=
(Se)e∈E such that E ⊆ E(H), Se ⊆ e and |Se| > 1 for e ∈ E with V (K) :=

⋃
e∈E Se. Again if

H is a graph, then the notion of a relaxed subgraph coincides with the conventional notion
of a (edge-induced) subgraph of H. Let κ = (κ1, . . . κn) ∈ Nn. Define a relaxed κ-subgraph
of H to be a relaxed subgraph Kκ of H such that degKκ(i) ≤ κi for i ∈ V (Kκ). Let
mk(K

κ) := |{Se ∈ E(Kκ) : |Se| = k}| and let (n)k = n(n − 1) · · · (n − k + 1) denote the
Pochhammer symbol.

Define the multivariate relaxed κ-subgraph polynomial of H by

ηκH(x) :=
∑

Kκ

(−1)|E(Kκ)|W (Kκ)
∏

i∈[n]\V (Kκ)

x
κi−degKκ (i)
i ,

where the sum runs over all relaxed κ-subgraphs Kκ of H and

W (Kκ) :=
n−1∏

k=1

kmk+1(Kκ)
∏

i∈V (Kκ)

(κi)degKκ (i).

Remark 5.4. Note that a relaxed matching in H is the same as a relaxed (1, . . . , 1)-subgraph

of H and that η
(1,...,1)
H (x) = ηH(x).

In the rest of this section we will adopt the following notation,

∂S :=
∑

i∈S
∂i, ∂

S :=
∏

i∈S
∂i, ∂

α :=
n∏

i=1

∂αi
i ,

where S ⊆ [n] and α = (αi) ∈ Nn.
With abuse of notation we shall let the multiaffine part operator MAP act analogously on

polynomial spaces of differential operators as follows,

MAP : C[∂1, . . . , ∂n]→ C[∂1, . . . , ∂n]
∑

α∈Nn

a(α)∂α 7→
∑

α:αi≤1,i∈[n]

a(α)∂α.
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The following lemma follows from Theorem 2.1.

Lemma 5.5. If P (∂) ∈ C[∂1, . . . , ∂n] is a linear operator such that P (x) ∈ C[x1, . . . , xn] is
stable, then MAP [P (∂)] preserves stability.

Proof. Write P (∂) =
∑

α∈N a(α)∂α. Since MAP : C[x1, . . . , xn]→ C[x1, . . . , xn] is a stability

preserver we have that MAP
[∑

α∈Nn a(α)xα
]

=
∑

α:αi≤1,i∈[n] x
α is stable and hence by

Theorem 2.1 that
∑

α:αi≤1,i∈[n] ∂
α = MAP

[∑
α∈Nn a(α)∂α

]
is a stability preserving linear

operator. �

Theorem 5.6. Let H = (V (H), E(H)) be a hypergraph and κ = (κi) ∈ Nn. Then the
multivariate relaxed κ-subgraph polynomial ηκH(x) is stable with

ηκH(x) =
∏

e∈E(H)

MAP

[
(1− ∂e)

∏

i∈e
(1 + ∂i)

]
xκ.

Proof. Let e ∈ E(H). Then

(1− ∂e)
∏

i∈e
(1 + ∂i) = (1− ∂e)


1 +

∑

∅6=S⊆e
∂S




= 1 +
∑

∅6=S⊆e
|S|>1

∂S −
∑

∅6=S⊆e
∂e∂

S

= 1 +
∑

∅6=S⊆e
|S|>1

∂S −
∑

i∈e



∑

∅6=S⊆e
i∈S

∂i∂
S +

∑

∅6=S⊆e
i 6∈S

∂S∪i




= 1−
∑

∅6=S⊆e
|S|>1

(|S| − 1)∂S −
∑

i∈e

∑

∅6=S⊆e
i∈S

∂i∂
S.

Thus since

(
1−

∑

i∈e
xi

)∏

i∈e
(1 + xi),

is a stable polynomial, being a product of stable linear factors, it follows by Lemma 5.5 that

MAP

[
(1− ∂e)

∏

i∈e
(1 + ∂i)

]
= 1−

∑

∅6=S⊆e
|S|>1

(|S| − 1)∂S,
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is stability preserving. Hence

∏

e∈E(H)

MAP

[
(1− ∂e)

∏

i∈e
(1 + ∂i)

]
xκ =

∏

e∈E(H)


1−

∑

∅6=S⊆e
|S|>1

(|S| − 1)∂S


xκ

=
∑

E⊆E(H)

(−1)|E|
∑

(Se)e∈E
Se⊆e
|Se|>1

∏

e∈E
(|Se| − 1)∂Sexκ

=
∑

Kκ

(−1)|E(Kκ)|W (Kκ)
∏

i∈[n]\V (Kκ)

x
κi−degKκ (i)
i

= ηκH(x),

is a stable polynomial. �
The following corollary is immediate from Theorem 5.6.

Corollary 5.7. The multivariate relaxed matching polynomial ηH(x) is stable with

ηH(x) =
∏

e∈E(H)

(1− ∂e)
n∏

i=1

(1 + ∂i)
degH(i)x1.

In particular the univariate relaxed matching polynomial

ηH(x) =
∑

M

(−1)|M |W (M)xn−|V (M)|,

is a real-rooted polynomial for any hypergraph H.

Below follows a generalization of the standard identities for the multivariate matching poly-
nomial µG(x). Let i ∈ V (H). Recall that the (weak) vertex-deletion H \ i is the hypergraph
with vertex set V (H) \ i and edges {e ∩ (V (H) \ i) : e ∈ E(H)}. Let e ∈ E(H). The
edge-deletion H \ e is the subhypergraph of H with vertex set V (H) and edges E(H)\ e. Let
IH(i) := {e ∈ E(H) : i ∈ e} denote the incidence set of i ∈ V (H). The following identities
are straightforward to verify.

Proposition 5.8. Let H = (V (H), E(H)) be a hypergraph, i ∈ V (H) and e ∈ E(H). Then
ηH(x) satisfies the following identities:

(i) ηH(x) = ηH\e(x)−
∑

S⊆e
|S|>1

(|S| − 1)η(H\e)\S(x),

(ii) ηH(x) = xiηH\i(x)−
∑

e∈IH(i)

∑

S⊆e
i∈S
|S|>1

(|S| − 1)η(H\e)\S(x),

(iii) ηH1tH2(x) = ηH1(x)ηH2(x),
(iv) ∂iηH(x) = ηH\i(x).

It would be interesting to understand what parts of the matching theory for graphs can be
extended to relaxed matchings.

Acknowledgements: The author would like to thank Petter Brändén for helpful discussions
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and the anonymous referee for pointing out an issue with Theorem 3.7 in an earlier version
of this paper.
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EQUIDISTRIBUTIONS OF MAHONIAN STATISTICS OVER PATTERN
AVOIDING PERMUTATIONS

NIMA AMINI

Abstract. A Mahonian d-function is a Mahonian statistic that can be expressed as a linear
combination of vincular pattern functions of length at most d. Babson and Steingŕımsson
classified all Mahonian 3-functions up to trivial bijections and identified many of them with
well-known Mahonian statistics in the literature. We prove a host of Mahonian 3-function
equidistributions over permutations in Sn avoiding a single classical pattern in S3. Tools
used include block decomposition, Dyck paths and generating functions.
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1. Introduction

A combinatorial statistic on a set S is a map stat : S → N. The distribution of stat
over S is given by the coefficients of the generating function

∑
σ∈S q

stat(σ). Let Sn be the
set of permutations σ = a1a2 · · · an of the letters [n] = {1, 2, . . . , n} and let σ(k) denote the
entry ak. Let S =

⋃
n≥0 Sn. The inversion set of σ ∈ Sn is defined by Inv(σ) = {(i, j) :

i < j and σ(i) > σ(j)}. A particularly well-studied statistic on Sn is inv : Sn → N, given
by inv(σ) = | Inv(σ)|. An elegant formula for the distribution of the inversion statistic was
found in 1839 by Rodrigues [27] ∑

σ∈Sn
qinv(σ) = [n]q!,

where [n]q! = [1]q[2]q · · · [n]q and [n]q = 1 + q + q2 + · · · + qn−1. The descent set of σ is
defined by Des(σ) = {i : σ(i) > σ(i + 1)}. In 1915 MacMahon [25] showed that inv has
the same distribution as another statistic, now called the major index (due to MacMahon’s
profession as a major in the british army) [17], given by maj(σ) =

∑
i∈Des(σ) i. We also

write imaj(σ) = maj(σ−1). In honor of MacMahon any permutation statistic with the same
distribution as maj is called Mahonian. Mahonian statistics are well-studied in the literature.
Since MacMahon’s initial work, many new Mahonian statistics have been identified. Babson
and Steingŕımsson [1] showed that almost all (at the time) known Mahonian statistics can be
expressed as linear combinations of statistics counting occurrences of vincular patterns. They

1
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made several further conjectures regarding new vincular pattern-based Mahonian statistics.
These have since been proved and reproved at various levels of refinement by a number of
authors (see e.g., [4, 7, 18, 33]). Two sequences of integers a1a2 · · · an and b1b2 · · · bn are said
to be order isomorphic provided ai < aj if and only if bi < bj for all 1 ≤ i < j ≤ n. A
vincular pattern (also known as generalized pattern) of length m is a pair (π,X) where π is a
permutation in Sm and X ⊆ {0, 1, . . . ,m} is a set of adjacencies. Adjacencies are indicated
by underlining the adjacent entries in π (see Example 1.1). If 0 ∈ X (respectively, m ∈ X),
then we denote this by adding a square bracket at the beginning (respectively, end) of the
pattern π. If X = ∅, then (π,X) coincides with the definition of a classical pattern. A
permutation σ = a1a2 · · · an ∈ Sn contains the vincular pattern (π,X) if there is an m-tuple
1 ≤ i1 < i2 < · · · < im ≤ n such that the following criteria are satisfied

• ai1ai2 · · · aim is order-isomorphic to π,
• ij+1 = ij + 1 for each j ∈ X \ {0,m} and
• i1 = 1 if 0 ∈ X and im = n if m ∈ X.

We also say that ai1ai2 · · · aim is an occurrence of π in σ. We say that σ avoids π if σ contains
no occurrences of π. We denote the set of permutations in Sn avoiding the pattern π by
Sn(π). Moreover if Π is a set of patterns, then we set Sn(Π) =

⋂
π∈Π Sn(π).

In this paper we shall also need an additional generalization of vincular patterns, allowing
us to restrict occurrences to particular value requirements. Let υ = (υ1, . . . , υm) where
υi ∈ N t {-}. Define a value-restricted vincular pattern (π,X)

∣∣
υ

to be a triple (π,X, υ)

where (π,X) is a vincular pattern. We say that ai1ai2 · · · aim is an occurrence of (π,X)
∣∣
υ

in σ if it is an occurrence of the vincular pattern (π,X) and aij = υj whenever υj ∈ N for

j = 1, . . . ,m. Note in particular that (π,X)
∣∣
(-,...,-)

= (π,X). Every value-restricted vincular

pattern (π,X)
∣∣
υ

gives rise to a permutation statistic (π,X)
∣∣
υ

: Sn → N called a pattern

function counting the number of occurrences of (π,X)
∣∣
υ

in a given permutation σ ∈ Sn (see

Example 1.1). The length of (π,X)
∣∣
υ

: Sn → N is defined as the length of the underlying
vincular pattern (π,X).

Example 1.1. Let σ = 246153.

Pattern π X Occurrences in σ
231 ∅ 241, 261, 461, 463, 453
[231 {0} 241, 261
231 {1} 241, 461, 463
231 {2} 261, 461, 453
231 {1, 2} 461
231] {2, 3} 453
231
∣∣
(-,6,-)

{1} 461, 463

We also have (231)σ = 5, [231)σ = 2, (231)σ = 3, (231)σ = 3, (231)σ = 1, (231]σ = 1
and (231)

∣∣
(-,6,-)

σ = 2. On the other hand, the permutation σ = 215346 avoids the pattern

π = 231 (and hence all the patterns in the table above).

In this paper we mainly study equidistributions of the form
∑

σ∈Sn(Π1)

qstat1(σ) =
∑

σ∈Sn(Π2)

qstat2(σ) (1.1)
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where Π1,Π2 are sets of patterns and stat1, stat2 are permutation statistics. We will almost
exclusively focus on the case where Πi consists of a single classical pattern of length three and
stati is a Mahonian statistic. The equidistributions we prove are summarized in §5, Table 2.
Although Mahonian statistics are equidistributed over Sn, they need not be equidistributed
over pattern avoiding sets of permutations. For instance maj and inv are not equidistributed
over Sn(π) for any classical pattern π ∈ S3. Neither do the existing bijections in the literature
for proving equidistribution over Sn necessarily restrict to bijections over Sn(π) (cf. [1, 4,
7, 18, 33]). Therefore whenever such an equidistribution is present, we must usually seek
a new bijection which simultaneously preserves statistic and pattern avoidance. Another
motivation for studying equidistributions over permutations avoiding a classical pattern of
length three is that |Sn(π)| = Cn for all π ∈ S3 where Cn = 1

n+1

(
2n
n

)
is the nth Catalan

number (see [22]). Therefore equidistributions of this kind induce equidistributions between
statistics on other Catalan objects (and vice versa) whenever we have bijections where the
statistics translate in an appropriate fashion. We prove several results in this vein where an
exchange between statistics on Sn(π), Dyck paths and polyominoes takes place. In general,
studying the generating function (1.1) provides a rich source of interesting q-analogues to
well-known sequences enumerated by pattern avoidance and raises new questions about the
coefficients of such polynomials.

Equidistributions such as (1.1) has been studied in the past. For instance, Burstein and
Elizalde proved the following result involving the Mahonian Denert statistic

den(σ) = inv(Exc(σ)) + inv(NExc(σ)) +
∑

i∈[n]
σ(i)>i

i,

where Exc(σ) = (σ(i))σ(i)>i and NExc(σ) = (σ(i))σ(i)≤i.

Theorem 1.1 (Burstein-Elizalde [5]). For any n ≥ 1,
∑

σ∈Sn(231)

qmaj(σ) =
∑

σ∈Sn(321)

qden(σ).

Two sets of patterns Π1 and Π2 are said to be Wilf-equivalent if |Sn(Π1)| = |Sn(Π2)| for all
n ≥ 0. Sagan and Savage [28] coined a q-analogue of this concept. Two sets of patterns
Π1 and Π2 are said to be st-Wilf equivalent with respect to the statistic st : S → N if (1.1)
holds with stat1 = st = stat2 for any n ≥ 0. Let [Π]st denote the st-Wilf class of the set
Π. This concept have been studied at several places in the literature. An overview of the
st-Wilf classification of single and multiple classical patterns of length three can be found in
the table below.

st Reference
maj, inv Dokos-Dwyer-Johnson-Sagan-Selsor [14]

charge Killpatrick [20]

fp, exc, des Elizalde [15, 16]

peak, valley Baxter [2]

peak, valley, head, last, lir, rir,
lrmin, rank, comp, ldr

Claesson-Kitaev [11]

In particular it was shown in [14] that In(132; q) = In(213; q) = Cn(q) and In(231; q) =
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In(312; q) = C̃n(q) where

In(π; q) =
∑

σ∈Sn(π)

qinv(σ),

Cn(q) =
n−1∑

k=0

q(k+1)(n−k)Ck(q)Cn−k−1(q), C0(q) = 1,

C̃n(q) =
n−1∑

k=0

qkC̃k(q)C̃n−k−1(q), C̃0(q) = 1.

The polynomial Cn(q) is known as the Carlitz-Riordan q-analogue of the Catalan numbers
and have been studied by numerous authors (though no explicit formula is known). Similar
recursions for maj have been studied in [8, 14].

To decompose pattern avoiding permutations we will require some notation. Given per-
mutations τ ∈ Sk and σ1, σ2 . . . , σk ∈ S, the inflation of τ by σ1, σ2 . . . , σk is the permutation
τ [σ1, σ2, . . . , σk] obtained by replacing each entry τ(i) by a block of length |σi| order isomor-
phic to σi for i = 1, . . . , k such that the blocks are externally order-isomorphic to τ .

Example 1.2. 231[21, 1, 213] = 546213.

Let σ ∈ Sn. Recall that the descent set of σ is given by Des(σ) = {i : σ(i) > σ(i + 1)}.
The set of descent bottoms (resp. descent tops) of σ is given by DB(σ) = {σ(i + 1) : i ∈
Des(σ)} (resp. DT(σ) = {σ(i) : i ∈ Des(σ)}). Likewise the ascent set of σ is given by
Asc(σ) = {i : σ(i) < σ(i + 1)} and we define the set of ascent bottoms (resp. ascent tops)
of σ to be AB(σ) = {σ(i) : i ∈ Asc(σ)} (resp. AT(σ) = {σ(i + 1) : i ∈ Asc(σ)}). An
entry σ(j) is called a left-to-right maxima if σ(j) > σ(i) for all i < j. Let LRMax(σ) denote
the set of left-to-right maxima in σ and let lrmax(σ) = |LRMax(σ)|. Similarly an entry
σ(j) is called a left-to-right minima if σ(j) < σ(i) for all i < j. Let LRMin(σ) denote the
set of left-to-right minima in σ and let lrmin(σ) = |LRMin(σ)|. We call σ(i) a pinnacle if
σ(i− 1) < σ(i) > σ(i+ 1) and σ(i) a trough if σ(i− 1) > σ(i) < σ(i+ 1).

Example 1.3. Let σ = 271985346. Then Des(σ) = {2, 4, 5, 6}, DB(σ) = {1, 3, 5, 8},
DT(σ) = {5, 7, 8, 9}, Asc(σ) = {1, 3, 7, 8}, AB(σ) = {1, 2, 3, 4}, AT(σ) = {4, 6, 7, 9}, LRMax(σ) =
{2, 7, 9}, LRMin(σ) = {2, 1}. The pinnacles of σ are given by {7, 9} and the troughs of σ by
{1, 3}.

If σ = a1a2 · · · an−1an, then the reverse of σ is given by σr = anan−1 · · · a2a1 and the
complement of σ by σc = (n− a1 + 1)(n− a2 + 1) · · · (n− an−1 + 1)(n− an + 1). The inverse
of σ (in the group theoretical sense) is denoted by σ−1. The operations complement, reverse
and inverse are often referred to as trivial bijections and together they generate a group
isomorphic to the Dihedral group D4 of order 8 acting on Sn. If π is a classical pattern and
g ∈ D4, then it is not difficult to see that σ ∈ Sn(π) if and only if σg ∈ Sn(πg). However if π is
a non-classical pattern, then avoidance is not necessarily closed under inverse in any similar
way. E.g. σ = 6274251 avoids the vincular pattern π = 123, but σ−1 = 7254613 avoids no
vincular pattern (π,X) of length three with X = {1} or X = {2}. Therefore taking the
inverse should not be viewed as a ‘trivial bijection’ in the same sense as complement and
reverse when it comes to vincular patterns.

In Table 1 we list the vincular pattern definitions of the Mahonian statistics that we shall
consider from [1]. The references in Table 1 indicate where the Mahonian nature of the
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Name Vincular pattern definition Reference

maj (132) + (231) + (321) + (21) MacMahon [25]

inv (231) + (312) + (321) + (21) MacMahon [25]

mak (132) + (312) + (321) + (21) Foata-Zeilberger [19]

makl (132) + (231) + (321) + (21) Clarke-Steingŕımsson-Zeng [13]

mad (231) + (231) + (312) + (21) Clarke-Steingŕımsson-Zeng [13]

bast (132) + (213) + (321) + (21) Babson-Steingŕımsson[1]

bast′ (132) + (312) + (321) + (21) Babson-Steingŕımsson[1]

bast′′ (132) + (312) + (321) + (21) Babson-Steingŕımsson[1]

foze (213) + (321) + (132) + (21) Foata-Zeilberger [18]

foze′ (132) + (231) + (231) + (21) Foata-Zeilberger [18]

foze′′ (231) + (312) + (312) + (21) Foata-Zeilberger [18]

sist (132) + (132) + (213) + (21) Simion-Stanton [28]

sist′ (132) + (132) + (231) + (21) Simion-Stanton [28]

sist′′ (132) + (231) + (231) + (21) Simion-Stanton [28]

Table 1. Mahonian 3-functions.

statistics was first proved. Some of these statistics where originally defined in a slightly
different form. See [1] for their translation into vincular pattern functions.

For example, Foata and Zeilberger introduced the Mahonian statistic mak in [18] where it
was essentially defined as

mak(σ) =
∑

α∈DB(σ)

α + (312)σ. (1.2)

It is easy to see that ∑

α∈DB(σ)

α = ((132) + (321) + (21))σ.

The statistic mad introduced by Clarke-Steingŕımsson-Zeng in [13] is defined similarly by
replacing the sum of descent bottoms by the sum of descent differences, i.e., the sum of the
differences between the two letters of a descent.

According to [1], Table 1 is the complete list of Mahonian 3-functions (up to trivial bijec-
tions), i.e., Mahonian statistics that can be written as a sum of vincular pattern functions of
length at most three. Since some of these statistics have received no conventional name in
the literature, we will take the liberty of naming them according to the initials of the authors
who first proved their Mahonian nature.

2. Equidistributions via direct bijection

The equidistributions proved in this section are shown by directly exhibiting a bijection.
The bijections are based on standard decompositions of pattern avoiding permutations, or
rely on specifying data by which pattern avoiding permutations are uniquely determined. In
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many cases we are able to find a more refined equidistribution. We begin by proving that maj
and mak are related via the inverse map over certain pattern avoiding sets of permutations.
This may seem unexpected given that vincular patterns do not behave as straightforwardly
under the inverse map as they do under complement and reverse.

Proposition 2.1. Let σ ∈ Sn(π) where π ∈ {132, 213, 231, 312}. Then

mak(σ) = imaj(σ).

Moreover for any n ≥ 1,
∑

σ∈Sn(π)

qmaj(σ)tdes(σ) =
∑

σ∈Sn(π−1)

qmak(σ)tdes(σ).

Proof. Let σ ∈ Sn(231). If Des(σ) = {i1, . . . , ik}, then by [32, Lemma 3.1] we have that

Des(σ−1) = {σ(i1)− 1, . . . , σ(ik)− 1}.
In particular des(σ) = des(σ−1). Note that

σ(ij) = σ(ij + 1) + (312)
∣∣
(σ(ij),σ(ij+1),-)

σ + 1, (2.1)

for j = 1, . . . , k. Indeed if σ(ij + 1) < α < σ(ij), then α must appear to the right of
the descent ij in σ, otherwise ασ(ij)σ(ij + 1) is an occurrence of 231 (which is forbidden).
Therefore σ(ij)σ(ij + 1)α is an occurrence of (312)

∣∣
(σ(ij),σ(ij+1),-)

in σ for every α such that

σ(ij + 1) < α < σ(ij). Thus (2.1) follows.
Hence by (2.1) and (1.2) we have

imaj(σ) =
k∑

j=1

(σ(ij)− 1)

=
k∑

j=1

(
σ(ij + 1) + (312)

∣∣
(σ(ij),σ(ij+1),-)

)

=
∑

α∈DB(σ)

α + (312)σ

= mak(σ).

The statement is proved similarly for remaining choices of π and those analogous arguments
are omitted. �

Remark 2.2. By Proposition 2.1 and [32, Corollary 4.1] it follows that
∑

σ∈Sn(231)

qmaj(σ)+mak(σ) =
1

[n+ 1]q

[
2n

n

]

q

(2.2)

where
[
n
k

]
q

= [n]q !

[n−k]q ![k]q !
. The right hand side of (2.2) is known as MacMahon’s q-analogue of

the Catalan numbers [26].

The following lemma regarding the structure of Sn(321) is part of the folklore of pattern
avoidance (see e.g., [22]).

Lemma 2.3. We have σ ∈ Sn(321) if and only if the elements of [n] \ LRMax(σ) form an
increasing subsequence of σ.
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Theorem 2.4. For any n ≥ 1,
∑

σ∈Sn(321)

qmaj(σ)xDB(σ)yDT(σ) =
∑

σ∈Sn(321)

qmak(σ)xDB(σ)yDT(σ),

∑

σ∈Sn(123)

qmaj(σ)xAB(σ)yAT(σ) =
∑

σ∈Sn(123)

qmak(σ)xAB(σ)yAT(σ).

Proof. Let σ ∈ Sn(321). By Lemma 2.3 we may decompose σ as

σ = u1v1u2v2 · · ·utvt,
where u1, . . . , ut are non-empty factors of left-to-right maxima in σ and v1, . . . , vt are non-
empty factors (except possibly vt) such that v1v2 · · · vt is an increasing subword. Assume first
that vt 6= ∅. Let Mi = max(ui) and mi = min(vi) for i = 1, . . . , t. Clearly DB(σ) = {mi :
1 ≤ i ≤ t} and DT(σ) = {Mi : 1 ≤ i ≤ t}. Let ūi = ui \Mi and v̄i = vi \mi for i = 1, . . . , t.
Write ū = ū1 · · · ūt and v̄ = v̄1 · · · v̄t.

We now define an involution

φ : Sn(321)→ Sn(321) (2.3)

such that maj(φ(σ)) = mak(σ), preserving all pairs of descent top and descent bottoms. For
convenience, set M0 = −∞ and Mt+1 =∞. Let u′k denote the unique increasing word of the
letters in the set

{α ∈ v̄ : Mk−1 < α < Mk} ,
with Mk adjoined at the end and let v′k denote the unique increasing word of the letters in
the set

{β ∈ ū : mk < β < Mk+1} ,
with mk adjoined at the beginning for k = 1, . . . , t. Define

φ(σ) =

{
u′1v

′
1 · · ·u′tv′t if vt 6= ∅

φ(u1v1 · · ·ut−1vt−1)ut if vt = ∅ .

Thus φ effectively swaps ū = LRMax(σ) \DT(σ) with v̄ = [n] \ (LRMax(σ)∪DB(σ)) (when
vt 6= ∅) and DB(φ(σ)) = DB(σ), DT(φ(σ)) = DT(σ). Hence φ is an involution. We have

(231)σ =
∑

β∈ū
(231)

∣∣
(β,-,-)

σ

=
∑

β∈ū
(max{k : mk < β} −min{k : Mk > β}+ 1)

=
∑

β∈ū
(max{k : mk < φ(β)} −min{k : Mk > φ(β)}+ 1)

=
∑

β∈ū
(312)

∣∣
(-,-,φ(β))

φ(σ)

= (312)φ(σ),

since under the involution φ, each β ∈ LRMax(σ) \ DT(σ) precisely passes the number of
descent bottoms that are less than it to its right. Therefore β is involved in the same number
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of 231 occurrences in σ as φ(β) is involved in 312 occurrences in φ(σ). Hence

mak(φ(σ)) = ((132) + (321) + (21))φ(σ) + (312)φ(σ)

=
∑

α∈DB(φ(σ))

α + (312)φ(σ)

=
∑

α∈DB(σ)

α + (231)σ

= maj(σ).

The statement is proved analogously over S(123). �
Example 2.1. Let φ be the involution (2.3) in Theorem 2.4 and let σ = 561237948 ∈ S9(321).
Then

561237948
φ

236189457,

where the black letters indicate the fixed pairs of descent tops and descent bottoms, red let-
ters denote non-descent top left-to-right maxima and blue letters denote non-descent bottom
non-left-to-right maxima. The involution swaps the role of red and blue letters while keeping
consecutive pairs of black letters together in the same relative order.

Proposition 2.5. We have

[123]mak = {123},
[321]mak = {321},
[132]mak = {132, 312} = [312]mak,

[213]mak = {213, 231} = [231]mak.

Proof. As shown in [14, Theorem 2.6] the map φ : Sn(132)→ Sn(231) recursively defined by

φ(231[σ1, 1, σ2]) = 132[φ(σ1), 1, φ(σ2)],

is a descent preserving bijection implying that [132]maj = [231]maj. Thus by Proposition 2.1
we have ∑

σ∈Sn(132)

qmak(σ) =
∑

σ∈Sn(132)

qmaj(σ) =
∑

σ∈Sn(231)

qmaj(σ) =
∑

σ∈Sn(312)

qmak(σ).

Hence [132]mak = [312]mak. The remaining mak-Wilf equivalence is proved similarly invoking
Proposition 2.1. The inequivalences between the four classes is easily verified by hand or
with computer. �
Remark 2.6. The charge statistic is also a Mahonian statistic related to maj via trivial
bijections by maj(σ) = charge(((σr)c)−1) (see [20]). It is worth noting that the mak-Wilf
classes in Proposition 2.5 coincide with the charge-Wilf classes identified in [20].

Remark 2.7. It can be checked that maj, inv and mak are the only statistics in Table 1 with
non-singleton st-Wilf classes for single classical patterns of length three.

The bijection (2.3) in Theorem 2.4 induces an interesting equidistribution on shortened
polyominoes. A shortened polyomino is a pair (P,Q) of N (north), E (east) lattice paths
P = (Pi)

n
i=1 and Q = (Qi)

n
i=1 satisfying

(i) P and Q begin at the same vertex and end at the same vertex.
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(ii) P stays weakly above Q and the two paths can share E-steps but not N -steps.

Denote the set of shortened polyominoes with |P | = |Q| = n by Hn. For (P,Q) ∈ Hn, let

ProjQP (i) denote the step j ∈ [n] of P that is the projection of the ith step of Q on P . Let

Valley(Q) = {i : QiQi+1 = EN}
denote the set of indices of the valleys in Q and let nval(Q) = |Valley(Q)|. Moreover for
each i ∈ [n] define

area(P,Q)(i) = #squares between the ith step of Q and the jth step of P,

where j = ProjQP (i). Consider the statistics valley-column area and valley-row area of (P,Q)
given by

vcarea(P,Q) =
∑

i∈Valley(Q)

area(P,Q)(i),

vrarea(P,Q) =
∑

i∈Valley(Q)

area(P,Q)(i+ 1).

Q

P

(a) vcarea(P,Q) = 2 + 3 + 2 = 7

Q

P

(b) vrarea(P,Q) = 2 + 4 + 3 = 9

1

2

3 4 5

6 7

8

9

3 4
1

6

2

5
9

7

8

Q

P

The bijection Υ. Here Υ(P,Q) = 341625978 ∈ S9(321).

Theorem 2.8. For any n ≥ 1,
∑

(P,Q)∈Hn

qvcarea(P,Q)tnval(Q) =
∑

(P,Q)∈Hn

qvrarea(P,Q)tnval(Q).

Proof. We begin by recalling a bijection Υ : Hn → Sn(321) due to Cheng-Eu-Fu [9]. Given

(P,Q) ∈ Hn, set LabelP (i) = i and LabelQ(i) = LabelP (ProjQP (i)). Then

Υ(P,Q) = LabelQ(1) · · ·LabelQ(n) ∈ Sn(321)

is a bijection.
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Let (P,Q) ∈ Hn and i ∈ Valley(Q). The definition of Υ immediately gives

Valley(P,Q) = Des(Υ(P,Q)).

In particular LabelQ(i+ 1) < LabelQ(i). Let s = ProjQP (i+ 1) and t = ProjQP (i). Then s < t
and

area(P,Q)(i) = |{j : Pj = N, s ≤ j ≤ t}|
= |{j : LabelQ(i+ 1) ≤ LabelQ(j) < LabelQ(i), j > i}|
= 1 + (312)

∣∣
(LabelQ(i),LabelQ(i+1), -)

Υ(P,Q).

Similarly,

area(P,Q)(i+ 1) = |{j : Pj = E, s ≤ j ≤ t}|
= |{j : LabelQ(i+ 1) < LabelQ(j) ≤ LabelQ(i), j ≤ i}|
= 1 + (231)

∣∣
(-,LabelQ(i),LabelQ(i+1))

Υ(P,Q).

Let φ : Sn(321)→ Sn(321) be the bijection (2.3) from Theorem 2.4. Recall that (312)φ(σ) =
(231)σ and des(φ(σ)) = des(σ) for all σ ∈ Sn(321). Let Φ : Hn → Hn be the bijection

Φ = Υ−1 ◦ φ ◦Υ,

and set (P ′, Q′) = Φ(P,Q). Then

vcarea(Φ(P,Q)) =
∑

i∈Valley(Q′)

area(P ′,Q′)(i)

=
∑

i∈Valley(Q′)

(
1 + (312)

∣∣
(LabelQ′ (i),LabelQ′ (i+1), -)

Υ(P ′, Q′)
)

=
∑

i∈Des(φ(Υ(P,Q)))

(
1 + (312)

∣∣
(φ(LabelQ(i)), φ(LabelQ(i+1)), -)

φ(Υ(P,Q))
)

= (des +(312))φ(Υ(P,Q))

= (des +(231))Υ(P,Q)

=
∑

i∈Valley(Q)

(
1 + (231)

∣∣
(-,LabelQ(i),LabelQ(i+1))

Υ(P,Q)
)

=
∑

i∈Valley(Q)

area(P,Q)(i+ 1)

= vrarea(P,Q).

Since Valley(P,Q) = Des(Υ(P,Q)) and des(φ(σ)) = des(σ) it follows that nval(Q′) =
nval(Q). This concludes the proof. �

Below we provide a brief account for a well-known lemma due to Simion and Schmidt which
will be used to justify the bijection in the next theorem.

Lemma 2.9 (Simion-Schmidt [29]). A permutation σ ∈ S(132) is uniquely determined by
the values and positions of its left-to-right minima.
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Proof. It is clear that the left-to-right minima are positioned in decreasing order relative to
each other. Now fill in the remaining numbers from left to right, for each empty position i
choosing the smallest remaining entry that is larger than the closest left-to-right minima m
in position before i. If the remaining numbers are not entered in this unique way and y is
placed before x where y > x, then myx is an occurrence of the pattern 132. �

Theorem 2.10. For any n ≥ 1,

∑

σ∈S(132)

qmaj(σ)xLRMin(σ) =
∑

σ∈S(132)

qfoze(σ)xLRMin(σ)

Proof. Let σ ∈ Sn(132). It is not difficult to see that LRMin(σ) = DB(σ)∪{σ(1)}. Indeed if
σ(i) ∈ DB(σ) and σ(j) < σ(i) for some j < i, then σ(j)σ(i− 1)σ(i) is an occurrence of 132.
Hence by Lemma 2.9 we have that σ is uniquely determined equivalently by its first letter,
Des(σ) and DB(σ). We define a map φ : Sn(132)→ Sn(132) by requiring

φ(σ)(1) = σ(1),

DB(φ(σ)) = DB(σ),

Des(φ(σ)) = {n− σ(i) + 1 : i ∈ Des(σ)}.

We claim that a permutation φ(σ) ∈ Sn(132) with the above requirements exists. If the
claim holds, then the image of σ is uniquely determined by the data above and therefore φ
is well-defined. It also immediately follows that φ is a bijection.

Let i1 < · · · < im be the descents of σ. Suppose

n− σ(ij1) + 1 < · · · < n− σ(ijm) + 1.

To show that φ is well-defined we show that the insertion procedure from Lemma 2.9 is always
valid. Given a descent bottom (i.e. left-to-right minima) σ(ik + 1) in position n− σ(ijk) + 2
we must show that there exists enough remaining numbers greater than σ(ik + 1) to fill in
the gap to the next descent bottom σ(ik+1 + 1). Within the filling procedure, next after the
descent bottom σ(ik + 1), there exists

n− σ(ik + 1)− (n− σ(ijk) + 1) = σ(ijk)− σ(ik + 1)− 1

numbers remaining that are greater than σ(ik + 1). There are

(n− σ(ijk+1
) + 2)− (n− σ(ijk) + 2)− 1 = σ(ijk)− σ(ijk+1

)− 1

positions to fill in the gap between the descent bottoms σ(ik + 1) and σ(ik+1 + 1). By
minimality

σ(ijk)− σ(ijk+1
) ≤ σ(ijk)− σ(ik) ≤ σ(ijk)− σ(ik + 1),
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so there are enough numbers remaining to fill in the gap. Hence φ is well-defined. Finally,

maj(φ(σ)) =
∑

i∈Des(φ(σ))

i

=
∑

i∈Des(σ)

(n− σ(i) + 1)

=
∑

α∈DT(σ)

(n− α) + des(σ)

= ((213) + (321))σ + (21)σ

= foze(σ).

Since also φ(LRMin(σ)) = LRMin(σ), the theorem follows. �
Below we provide an additional list of information uniquely determining permutations in
Sn(231).

Lemma 2.11. A permutation σ ∈ Sn(231) is uniquely determined by any of the following
data:

(i) The values and positions of right-to-left minima.
(ii) The last letter, ascents and ascent bottoms.

(iii) The pairs P (σ) = {(p, t) : p pinnacle and t its following trough}.
(iv) The pairs Q(σ) = {(α, β) : α descent top and β its following descent bottom}.
(v) The pairs R(σ) =

{(
α, (132)

∣∣
(-,α,-)

σ
)

: α descent top
}

.

Proof.

(i) Suppose the values and positions of right-to-left minima are fixed in σ. Then σr ∈
Sn(132) and the values and positions of the left-to-right minima in σr are fixed. By
Lemma 2.9 this information uniquely determines σr. Hence σ is uniquely determined.

(ii) Follows directly from (i) since the positions and values of right-to-left minima are
given by the positions and values of the ascents and ascent bottoms together with
the last letter.

(iii) Consider the pinnacle-trough decomposition

σ = a1p1d1t1 · · · am−1pm−1dm−1tm−1ampkdm

where pi and ti are pinnacles resp. troughs and ai and di are (possibly empty)
increasing resp. decreasing words for i = 1, . . . ,m.

We claim that the pairs in P are relatively positioned in increasing order of the
valleys. Indeed let (p, t), (p′, t′) ∈ P (σ). Without loss assume t < t′. Suppose (for a
contradiction) that (p′, t′) is ordered before (p, t) in σ. Note that t′ < p, otherwise
t′αp is an occurrence of 231, where α is the ascent top following t′. This in turn
implies that t′pt is an occurrence of 231 giving a contradiction. Therefore (p, t) is
ordered before (p′, t′) proving the claim.

Next we claim that the decreasing words dj are uniquely determined. Going from
right to left, let dj be the unique decreasing word of all remaining letters (in value)
between pj and tj for j = m, . . . , 1. If we do not insert the letters this way and
tj < σi < pj, where σi is positioned before pj (and hence tj) then σipjtj is an
occurrence of 231 which is forbidden.
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Finally we show that the increasing words aj are uniquely determined. Suppose
aj contains a letter α such that α > tj. Since α < pj it follows that αpjtj is an
occurrence of 231. Therefore all letters of ai are smaller than tj. Hence aj is given by
the unique increasing word of all letters α such that tj−1 < α < tj for j = 1, . . . ,m.
Hence σ is uniquely determined.

(iv) Partition the letters in DB(σ)∪DT(σ) into maximal consecutive decreasing subwords
d1, . . . , dm based on the pairs in Q(σ). The top element of each decreasing subword
di must be a pinnacle and the bottom element trough. This information uniquely
determines σ as per part (iii).

(v) Note that α ∈ DT(σ) is the largest letter in an occurrence of 132 in σ if and only if α
is a pinnacle. Therefore the pinnacles are the descent tops α with (132)

∣∣
(-,α,-)

σ > 0.

Given a pinnacle p and the closest trough t to its right, any letter σi such that
t < σi < p must be in position after v, otherwise σipt is an occurrence of 231. Hence
(132)

∣∣
(-,p,-)

σ precisely represents the difference between p and t. In other words

t = p− (132)
∣∣
(-,p,-)

σ. Hence σ is uniquely determined by part (iii).

�

Theorem 2.12. For n ≥ 1,
∑

σ∈Sn(231)

qmak(σ)tdes(σ) =
∑

σ∈Sn(231)

qfoze(σ)tdes(σ).

Proof. Let σ ∈ Sn(231). Note that for α ∈ DT(σ) we have (132)
∣∣
(-,α,-)

σ ≤ α − 2 since

there are at most α− 2 numbers between α and its immediately preceding ascent bottom (if
present). Thus the function

fσ : DT(σ)→ [n]

α 7→ (n− α + 2) + (132)
∣∣
(-,α,-)

σ

is well-defined.
We claim that fσ is injective by induction on n. Consider the inflation form σ = 132[σ1, 1, σ2]

where σ1 ∈ Sk(231) and σ2 ∈ Sn−k−1(231). Let DT≤k(σ) = {α ∈ DT(σ) : α ≤ k} and
DT>k(σ) = {α ∈ DT(σ) : α > k}. By induction fσ1 : DT(σ1) → [k] is injective and
fσ(α) = n − k + fσ1(α) for every α ∈ DT≤(σ). Hence fσ

∣∣
DT≤k(σ)

is injective. By induction

fσ2 : DT(σ2) → [n − k − 1] is injective and fσ(α) = 1 + fσ2(α − k) for every α ∈ DT>k(σ).
Hence fσ

∣∣
DT>k(σ)

is injective. Finally note that fσ(n) = 2 + |σ2| if σ1 6= ∅ and fσ(n) = 2 if

σ1 = ∅. Therefore for all α ∈ DT≤k(σ) and β ∈ DT>k(σ) we have

fσ(α) ≥ (n− k + 2) > fσ(n) > n− k ≥ fσ(β),

if σ1 6= ∅ and

fσ(α) ≥ (n− k + 2) > fσ(β) > 2 = fσ(n),

if σ1 = ∅. Hence fσ is injective on all of DT(σ).
Define a map φ : Sn(231) → Sn(231) by setting the pairs of descent tops and descent

bottoms in φ(σ) to Q(φ(σ)) = {(fσ(α), n − α + 1) : α ∈ DT(σ)}. By Lemma 2.11 (iv) this
data uniquely determines φ(σ). Note that the pairs are well-defined since fσ is injective and
fσ(α) > n− α + 1 for all α ∈ DT(σ).
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We claim that φ is a bijection. By Lemma 2.11 (iv) we may uniquely associate σ with a

set of pairs R(σ) =
{(
α, (132)

∣∣
(-,α,-)

σ
)

: α ∈ DT(σ)
}

. It suffices to show that φ is injective.

Let π1, π2 ∈ Sn(231) such that π1 6= π2. If DT(π1) 6= DT(π2), then DB(φ(π1)) 6= DB(φ(π2)),
so φ(π1) 6= φ(π2). Assume therefore DT(π1) = DT(π2). Since π1 6= π2 we have by uniqueness
that R(π1) 6= R(π2). Therefore there exists α ∈ DT(π1) = DT(π2) such that fπ1(α) 6= fπ2(α).
Thus Q(φ(π1)) 6= Q(φ(π2)) which again implies that φ(π1) 6= φ(π2). Hence φ is injective and
therefore a bijection.

It remains to show that mak(φ(σ)) = foze(σ). Note that

((132) + (321) + (21))σ =
∑

β∈DB(σ)

β.

Since there are no occurrences of 231 in σ by assumption, the letters between each pair of
descent top and descent bottom occur to the right of the pair. Therefore the number of
occurrences of 312 in σ is given precisely by

∑

(α,β)∈Q(σ)

(α− β − 1).

Hence
mak(σ) =

∑

α∈DT(σ)

(α− 1).

On the other hand note that

((213) + (321) + (21))σ =
∑

α∈DT(σ)

(n− α + 1).

Thus

foze(σ) =
∑

α∈DT(σ)

(n− α + 1) + (132)σ

=
∑

α∈DT(σ)

(
n− α + 1 + (132)

∣∣
(-,α,-)

σ
)

=
∑

α∈DT(σ)

(fσ(α)− 1).

Hence
mak(φ(σ)) =

∑

α′∈DT(φ(σ))

(α′ − 1) =
∑

α∈DT(σ)

(f(α)− 1) = foze(σ).

Finally since des(φ(σ)) = des(σ), the theorem follows. �

Remark 2.13. By combining Theorem 2.12 with Proposition 2.1 we may deduce further
equidistributions between maj and foze, see Table 2 in §5 for a summary.

3. Equidistributions via Dyck paths

A Dyck path of length 2n is a lattice path in Z2 between (0, 0) and (2n, 0) consisting of
up-steps (1, 1) and down-steps (1,−1) which never go below the x-axis. For convenience we
denote the up-steps by U and the down-steps by D enabling us to encode a Dyck path as
a Dyck word (we will refer to the two notions interchangeably). Let Dn denote the set of
all Dyck paths of length 2n and set D =

⋃
n≥0Dn. For P ∈ Dn, let |P | = 2n denote the
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length of P . There are many statistics associated with Dyck paths in the literature. Here we
will consider several Dyck path statistics that are intimately related with the inv statistic on
pattern avoiding permutations.

Let P = s1 · · · s2n ∈ Dn. A double rise in P is a subword UU and a double fall in P
a subword DD. Let dr(P ) (resp. df(P )) denote the number of double rises (resp. double
falls) in P . A peak in P is an up-step followed by a down-step, in other words, a subword
of the form UD. Let Peak(P ) = {p : spsp+1 = UD} denote the set of indices of the
peaks in P and npea(P ) = |Peak(P )|. For p ∈ Peak(P ) define the position of p, posP (p),
resp. the height of p, htP (p), to be the x resp. y-coordinate of its highest point. A valley
in P is a down step followed by an up step, in other words, a subword of the form DU .
Let Valley(P ) = {v : svsv+1 = DU} denote the set of indices of the valleys in P and
nval(P ) = |Valley(P )|. For v ∈ Valley(P ) define the position of v, posP (v), resp. the height
of v, htP (v), to be the x resp. y-coordinate of its lowest point. For each v ∈ Valley(P ), there
is a corresponding tunnel which is the subword si · · · sv of P where i is the step after the first
intersection of P with the line y = htP (v) to the left of step v (see Figure 2). The length,
v − i, of a tunnel is always an even number. Let Tunnel(P ) = {(i, j) : si · · · sj tunnel in P}
denote the set of pairs of beginning and end indices of the tunnels in P . Cheng et.al. [8]
define the statistics sumpeaks and sumtunnels given respectively by

spea(P ) =
∑

p∈Peak(P )

(htP (p)− 1),

stun(P ) =
∑

(i,j)∈Tunnel(P )

(j − i)/2.

Let Up(P ) = {i : si = U} denote the indices of the set of U -steps in P and Down(P ) = {i :
si = D} the set of indices of the D-steps in P . Given i ∈ [2n] define the height of the step
i in P , htP (i), to be the y-coordinate of its lowest point. Define the statistics sumups and
sumdowns by

sups(P ) =
∑

i∈Up(P )

dhtP (i)/2e

sdow(P ) =
∑

i∈Down(P )

bhtP (i)/2c

Define the area of P , denoted area(P ), to be the number of complete
√

2×
√

2 tiles that fit
between P and the x-axis (cf [21]).

Figure 1. area(P ) = 8.

Burstein and Elizalde [5] define a statistic which they call the ‘mass’ of P . We will define
two versions of it, one pertaining to the U -steps and one to the D-steps. For each i ∈ Up(P )
define the mass of i, massP (i), as follows. If si+1 = D, then massP (i) = 0. If si+1 = U ,
then P has a subword of the form siUP1DP2D where P1, P2 are Dyck paths and we define
massP (i) = |P2|/2. In other words, the mass is half the number of steps between the matching
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D-steps of two consecutive U -steps. The part of the Dyck path P contributing to the mass
of each of the first three U -steps is highlighted with matching colours in Figure 2. Define

massU(P ) =
∑

i∈Up(P )

massP (i).

The statistic massU coincides with the mass statistic defined by Burstein and Elizalde [5].
Analogously if i ∈ Down(P ), define massP (i) = 0 if si−1 = U . If si−1 = D, then P has a
subword of the form UP1UP2Dsi where P1, P2 are Dyck paths and we define massD(s) =
|P1|/2. In other words, the mass is half the number of steps between the matching U -steps
of two consecutive D-steps. Define

massD(P ) =
∑

i∈Down(P )

massP (i).

Figure 2. The tunnel lengths of a Dyck path (indicated with dashes) and
the mass associated with the first three up-steps is highlighted with matching
colours.

Next we give a description of the various Dyck path bijections that will be referenced. The
standard bijection ∆ : Sn(231)→ Dn can be defined recursively by

∆(σ) = U∆(σ1)D∆(σ2),

where σ = 213[1, σ1, σ2]. We will also (with abuse of notation) define the standard bijection
∆ : Sn(312)→ Dn recursively by

∆(σ) = ∆(σ1)U∆(σ2)D,

where σ = 132[σ1, σ2, 1]. There is also a non-recursive description of ∆ due to Krattenthaler,
see [23].

We now define another well-known map Γ : Sn(321) → Dn due to Krattenthaler [23]
which also appears in a slightly different form in the work of Elizalde [15]. Let σ ∈ Sn(321)
and consider an n × n array with crosses in positions (i, πi) for 1 ≤ i ≤ n, where the first
coordinate is the column number, increasing from left to right, and the second coordinate is
the row number, increasing from bottom to top. Consider the path with north and east steps
from the lower-left corner to the upper-right corner of the array, whose right turns occur at

Figure 3. The Dyck path Γ(σ) corresponding to σ = 341625978.
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the crosses (i, σi) with σi ≥ i. Define Γ(σ) to be the Dyck path obtained from this path
by reading a U -step for every north step and a D-step for every east step of the path. The
bijection is illustrated in Figure 3.

Theorem 3.1 (Krattenthaler [23], Elizalde [15]).
For each n ≥ 1 the map Γ : Sn(321)→ Dn is a bijection.

Theorem 3.2 (Cheng-Elizalde-Kasraoui-Sagan [8]).
We have inv(σ) = spea(Γ(σ)) and lrmax(σ) = npea(Γ(σ)) for all σ ∈ Sn(321).

Next we define a Dyck path bijection Ψ : Dn → Dn due to Cheng et.al. [8] that is weight
preserving between the statistics spea and stun.

First we define a bijection δ :
⊔n−1
k=0 Dk×Dn−k−1 → Dn as follows. Given two Dyck paths

Q = Ua1Db1Ua2Db2 · · ·UasDbs ∈ Dk and R = U c1Dd1U c2Dd2 · · ·U ctDdt ∈ Dn−k−1

where all exponents are positive, define δ(Q,R) by

δ(Q,R) = Ua1+1Db1+1Ua2Db2 · · ·UasDbs ,

if R = ∅ and define

δ(Q,R) = Ua1+1DUa2Db1Ua3Db2 · · ·UasDbs−1U c1Dbs+d1U c2Dd2 · · ·U ctDdt ,

if R 6= ∅. If Q = ∅ the same definition works with the convention that a1 = b1 = 0.
Let P ∈ Dn and (Q,R) = δ−1(P ). Define Ψ(∅) = ∅ and for n ≥ 1

Ψ(P ) =





UDΨ(Q) if R = ∅
UΨ(R)D if Q = ∅,
UΨ(Q)DΨ(R) otherwise.

Theorem 3.3 (Cheng-Elizalde-Kasraoui-Sagan [8]). The map Ψ : Dn → Dn is a bijection
such that spea(P ) = stun(Ψ(P )) and npea(P ) = n−nval(Ψ(P )) for all P ∈ Dn. In particular

∑

P∈Dn
qspea(P )tnpea(P ) =

∑

P∈Dn
qstun(P )tn−nval(P )

for all P ∈ Dn.

We will now interpret mad over both Sn(231) and Sn(312) in terms of Dyck path statistics
under ∆. The following theorem is a straightforward modification of Theorem 3.11 in [5].

Theorem 3.4. For all σ ∈ Sn(231), π ∈ Sn(312) and P ∈ Dn we have

(i) mad(σ) = massU(∆(σ)) + dr(∆(σ)),
(ii) mad(π) = 2 massD(∆(π)) + df(∆(π)),

(iii) a bijection Θ : Dn → Dn such that sups(P ) = massU(Θ(P )) + dr(Θ(P )).

Proof.

(i) Let σ ∈ Sn(231) and decompose σ = 213[1, σ1, σ2]. If we assume σ1 6= ∅, then
we may further decompose σ1 and write σ = 42135[1, 1, σ3, σ4, σ2]. In particular
(312)

∣∣
(σ(1),σ(2),-)

σ = |σ4|. Since

∆(σ) = UU∆(σ3)D∆(σ4)D∆(σ2),
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we have by induction that

massU(∆(σ)) = massU(∆(σ3)) + massU(∆(σ4)) + massU(∆(σ2)) + |∆(σ4)|/2
= (312)σ3 + (312)σ4 + (312)σ2 + |σ4|
= (312)σ.

and

dr(∆(σ)) = dr(∆(σ1)) + dr(∆(σ2)) + 1

= des(σ1) + des(σ2) + 1

= des(σ).

Hence massU(∆(σ)) + dr(∆(σ)) = mad(σ).
(ii) Let π ∈ Sn(312) and decompose π = 132[π1, π2, 1]. Assuming π2 6= ∅ we may write

π = 13542[π1, π3, π4, 1, 1]. In particular (231)
∣∣
(-,π(n−1),π(n))

π = |π3|. Since

∆(π) = ∆(π1)U∆(π3)U∆(π4)DD,

it follows by an induction similar to part (i) that massD(∆(π)) = (231)π and
df(∆(π)) = des(π). Hence 2 massD(∆(π)) + df(∆(π)) = mad(π).

(iii) Construct a recursive bijection Θ : Dn → Dn as follows. Let P ∈ Dn. If P = P1 · · ·Pr
where Pi is a Dyck path returning to the x-axis for the first time at its endpoint,
then define Θ(P ) = Θ(P1) · · ·Θ(Pr). Assume therefore r = 1 and write

P = UUQ1DUQ2D · · ·UQsDD,

provided P 6= UD, where Q1, . . . , Qs are Dyck paths. Define

Θ(P ) =





∅ if P = ∅,
UD if P = UD,

U s+1DΘ(Q1)DΘ(Q2)D · · ·Θ(Qs)D otherwise.

The map Θ is clearly a bijection. Note that

sups(P ) =
s∑

i=1

sups(Qi) +
1

2

s∑

i=1

|Qi|+ s,

massU(Θ(P )) + dr(Θ(P )) =
s∑

i=1

(massU(Θ(Qi)) + dr(Θ(Qi)) +
1

2

s∑

i=1

|Θ(Qi)|+ s.

Hence by induction it follows that massU(Θ(P )) + dr(Θ(P )) = sups(P ).

�

Theorem 3.5. There exists a bijection Φ : Dn → Dn such that stun(P ) = massU(Φ(P )) +
dr(Φ(P )). In particular, for any n ≥ 1,

∑

P∈Dn
qstun(P ) =

∑

P∈Dn
qmassU(P )+dr(P ).

Proof. Let P ∈ Dn and consider the decomposition

P = UP1D · · ·UPm−1DUPmD,
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where P1, . . . , Pm−1, Pm are (possibly empty) Dyck paths. Define Φ : Dn → Dn recursively
by

Φ(P ) =





∅, if P = ∅
UDΦ(P1), if m = 1

UUUm−2Dm−2DΦ(P1) · · ·Φ(Pm−1)DΦ(Pm), if m > 1

It is not difficult to verify by induction that Φ is a bijection from the recursion. It remains to
show that stun(P ) = massU(Φ(P )) + dr(Φ(P )). We argue by induction on n. The statement
holds for P = ∅. If m = 1, then by induction

stun(P ) = stun(P1)

= massU(Φ(P1)) + dr(Φ(P1))

= massU(UDΦ(P1)) + dr(UDΦ(P1))

= massU(Φ(P )) + dr(Φ(P )).

Suppose m > 1. Note that

massU(UUP0DP1 · · ·Pm−1DPm) =
m∑

i=0

massU(Pi) +
m−1∑

i=1

|Pi|/2

and that massU(UkDk) = 0 for all k ≥ 0. Hence by induction

stun(P ) = stun(Pm) +
m−1∑

i=1

(stun(Pi) + (|Pi|+ 2)/2)

= massU(Φ(Pm)) + dr(Φ(Pm)) +
m−1∑

i=1

[(massU(Φ(Pi)) + dr(Φ(Pi)) + (|Pi|+ 2)/2)]

=

(
massU(Um−2Dm−2) +

m∑

i=1

massU(Φ(Pi)) +
m−1∑

i=1

|Φ(Pi)|/2
)

+

(
(m− 1) +

m∑

i=1

dr(Φ(Pi))

)

= massU(Φ(P )) + dr(Φ(P )),

as required. �

Corollary 3.6. For any n ≥ 1,
∑

σ∈Sn(231)

qmad(σ) =
∑

σ∈Sn(321)

qinv(σ).

Proof. By Theorem 3.1, Theorem 3.2, Theorem 3.3, Theorem 3.4 (i) and Theorem 3.5 we
have the following diagram of weight preserving bijections

(Sn(321), inv) (Dn, spea) (Dn, stun)

(Sn(231),mad) (Dn,massU + dr)

Γ

φ

Ψ

Φ

∆
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Thus
φ = ∆−1 ◦ Φ ◦Ψ ◦ Γ

is our sought bijection with inv(σ) = mad(φ(σ)) for all σ ∈ Sn(321). �
The following corollary answers a question of Burstein and Elizalde in [5].

Corollary 3.7. There exists a bijection Λ : Dn → Dn such that spea(P ) = sups(Λ(P )). In
particular for any n ≥ 1, ∑

P∈Dn
qspea(P ) =

∑

P∈Dn
qsups(P ).

Proof. By Theorem 3.3, Theorem 3.4 (iii) and Theorem 3.5 we have the following diagram
of weight preserving bijections

(Dn, spea) (Dn, stun)

(Dn, sups) (Dn,massU + dr)

Ψ

Λ Φ

Θ

Hence
Λ = Θ−1 ◦ Φ ◦Ψ

is the required bijection. �
Example 3.1. The below diagram shows an example of the intermediate images under the
bijections φ and Λ from Corollary 3.6 and Corollary 3.7.

451623897

615324978

φ

Γ

Λ

Ψ

Φ

Θ−1

∆−1

For each Dyck path P ∈ Dn, Kim et.al. [21] construct two bijections DTS(P, ·) and
DTR(P, ·) from the set of linear extensions of the chord poset of P to the set of cover-
inclusive Dyck tilings with lower path P (see [21] for terminology). In the special case
where P = (UD)n and the set of linear extensions is restricted to Sn(312), it follows from
[21, Theorem 2.3] that DTS(P, ·) and DTR(P, ·) induce bijections θDTS : Sn(312)→ Dn and
θDTR : Sn(312)→ Dn. We remark that the restriction is over Sn(231) in [21] due to difference
in notation. By [21, Theorem 2.4] and [21, Theorem 6.1] it moreover follows that

inv(σ) = area(θDTS(σ)), (3.1)

mad(σ) = area(θDTR(σ)) (3.2)

for all σ ∈ Sn(312). Therefore we get a bijection θ : Sn(312)→ Sn(312) given by

θ = θ−1
DTS ◦ θDTR,
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satisfying mad(θ(σ)) = inv(σ). Hence we obtain the following theorem.

Theorem 3.8 (Kim-Mésáros-Panova-Wilson [21]).
For any n ≥ 1, ∑

σ∈Sn(312)

qmad(σ) =
∑

σ∈Sn(312)

qinv(σ).

Corollary 3.9. For any n ≥ 1,
∑

P∈Dn
qarea(P ) =

∑

P∈Dn
q2 massD(P )+df(P ).

Proof. Combine Theorem 3.4 (ii) with (3.2). �
Below we find an interpretation of Theorem 1.1 in terms of Dyck path statistics. Part of the
answer is given by a bijection Ω : Sn(231) → Dn due to Stump [32] which we now define.
Let σ ∈ Sn(231). Suppose Des(σ) = {i1, . . . , ik} and iDes = {i′j ∈ Des(σ−1)} such that

i1 < · · · < ik and i′1 < · · · < i′k (recall that des(σ) = des(σ−1) via e.g. the argument in
Proposition 2.1). For notational purposes set ik+1 = n = i′k+1. Define a Dyck path Ω(σ)
by starting with i′1 U -steps, followed by i1 D-steps, followed by i′2 − i′1 U -steps, followed by
i2− i1 D-steps, followed by i′3− i′2 U -steps, and so on, ending with ik+1− ik D-steps. Define
the statistic

β(P ) =
∑

v∈Valley(P )

|{j ≤ posP (v) : sj = D}|,

for each Dyck path P = s1 · · · s2n ∈ Dn.

Theorem 3.10 (Stump [32]). The map Ω : Sn(231) → Dn is a well-defined bijection such
that maj(σ) = β(Ω(σ)) for all σ ∈ Sn(231).

Proposition 3.11. For all σ ∈ Sn(231) and π ∈ Sn(321) we have

maj(σ) =
∑

v∈Valley(Ω(σ))

posΩ(σ)(v)− htΩ(σ)(v)

2
,

den(π) = npea(Γ(π)) +
∑

p∈Peak(Γ(π))

posΓ(π)(p)− htΓ(π)(p)

2
.

Proof. As in [5, Theorem 2.5], observe that

den(π) =
∑

i∈[n]
π(i)>i

i,

for all π ∈ Sn(321). In the definition of Krattenthaler’s bijection Γ, each i ∈ [n] such that
π(i) > i corresponds to a column i in the array containing a box above the main diagonal.
In other words it corresponds to the number of east steps in the lattice path that occur to
the left of the box. In the Dyck path Γ(π) = s1 · · · s2n this is reflected in the statistic

|{j ≤ posΓ(π)(p) : sj = D}|+ 1,

associated with each p ∈ Peak(Γ(π)). We have the following two obvious relations

|{j ≤ posΓ(π)(p) : sj = U}| − |{j ≤ posΓ(π)(p) : sj = D}| = htΓ(π)(p),

|{j ≤ posΓ(π)(p) : sj = U}|+ |{j ≤ posΓ(π)(p) : sj = D}| = posΓ(π)(p),
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for each p ∈ Peak(Γ(π)). Hence

den(π) =
∑

p∈Peak(Γ(π))

(|{j ≤ posΓ(π)(p) : sj = D}|+ 1)

= npea(Γ(π)) +
∑

p∈Peak(Γ(π))

posΓ(π)(p)− htΓ(π)(p)

2
.

The first statement in the proposition follows from Theorem 3.10 and a similar observation
to above. �
Remark 3.12. By Theorem 1.1, the Dyck path statistics in Proposition 3.11 are equidistribut-
ed over Dn.

4. Equidistributions via generating functions

In this section we use generating functions to derive the equidistributions (albeit non-
bijectively) between Mahonian statistics over Sn(π). We also provide a recursion for a more
general statistic involving arbitrary linear combinations of vincular pattern functions of length
three. This recursion generalizes for instance the recursions in [14].

Theorem 4.1. We have
∑

σ∈S(231)

qmad(σ)z|σ| =
∑

σ∈S(132)

qsist(σ)z|σ| =
1

1− z

1− qz

1− qz

1− q2z

1− q2z

. . .

(4.1)

∑

σ∈S(312)

qmad(σ)z|σ| =
∑

σ∈S(213)

qsist(σ)z|σ| =
1

1− z

1− qz

1− q2z

1− q3z

1− q4z

. . .

. (4.2)

Proof. Note that over S(231) we have mad = (312) + (21). The reverse of sist (i.e. the
statistic obtained by reversing all vincular patterns) is given by rsist = (312) + (12). Hence
(4.1) is equivalent to proving

∑

σ∈S(231)

qmad(σ)z|σ| =
∑

σ∈S(231)

qrsist(σ)z|σ|.

Let σ ∈ S(231) and decompose σ = 213[1, σ1, σ2]. Then we obtain the recursion

rsist(σ) = [12)σ1 + δσ2 6=∅ + rsist(σ1) + rsist(σ2),

[12)σ = |σ2|,
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where δ denotes the Kronecker delta. Let

F (q, t, z) =
∑

σ∈S(231)

qrsist(σ)t[12)σz|σ|.

Then

F (q, t, z) = 1 + z


 ∑

σ1∈S(231)

qrsist(σ1)q[12)σ1z|σ1|




+ qz


 ∑

σ1∈S(231)

qrsist(σ1)q[12)σ1z|σ1|




 ∑

σ2∈S(231)

qrsist(σ2)(zt)|σ2| − 1




= 1 + zF (q, q, z) + qzF (q, q, z)(F (q, 1, zt)− 1).

Substituting t = 1 and t = q we obtain the equation system
{
F (q, 1, z) = 1 + zF (q, q, z) + qzF (q, q, z)(F (q, 1, z)− 1)

F (q, q, z) = 1 + zF (q, q, z) + qzF (q, q, z)(F (q, 1, qz)− 1)

Eliminating F (q, q, z) and solving for F (q, 1, z) we obtain

F (q, 1, z) =
1

1− z

1− qzF (q, 1, qz)

,

which gives the continued fraction in the theorem. Similarly letting

G(q, z, t) =
∑

σ∈S(231)

qmad(σ)t[12)z|σ|,

then we obtain the recursive relation

G(q, t, z) = 1 + zG(q, 1, zt) + qzG(q, 1, zt)(G(q, q, z)− 1).

Substituting t = 1 and t = q as before and solving for G(q, 1, z) we obtain the same continued
fraction expansion as above, proving the desired equidistribution.

The second statement in the theorem is proved similarly. Over S(312) we have mad =
(231) + (231) + (21). Let σ ∈ S(312) and decompose σ = 132[σ1, σ2, 1]. Then we obtain the
recursion

mad(σ) = 2 · (12]σ2 + δσ2 6=∅ + mad(σ1) + mad(σ2),

(12]σ = |σ1|.

Letting F (q, t, z) =
∑

σ∈S(312) q
mad(σ)t(12]σz|σ| we thus obtain

F (q, t, z) = 1 + zF (q, 1, zt) + qzF (q, 1, zt)(F (q, q2, z)− 1).

Putting t = 1 and t = q2, eliminating F (q, q2, z) from the resulting equation system and
solving for F (q, 1, z) we obtain the continued fraction expansion in the theorem.

A similar argument for rsist over S(312) gives a matching continued fraction expansion.
We leave the details to the reader. �
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Remark 4.2. In [8, Corollary 8.6] it was proved that the continued fraction expansion of the
generating function of inv over S(321) matches that of (4.1). This gives an alternative proof
of Corollary 3.6.

Remark 4.3. For mad, the continued fractions (4.1) and (4.2) may also be deduced from the
following more refined continued fraction in [12, Theorem 22] by specializing (x, y, p, q) =
(1, q, 0, q) = 1 resp. (x, y, p, q) = (1, p, p2, 0) and using the fact that σ ∈ S(231) if and only if
σ ∈ S(231) (see [10, Lemma 2]),

∑

σ∈S
xδσ 6=∅+(12)σy(21)σp(231)σq(312)σz|σ| =

1

1− x[1]p,qz

1− y[1]p,qz

1− x[2]p,qz

1− y[2]p,qz

1− x[3]p,qz

. . .

where [n]p,q = qn−1 + pqn−2 + · · ·+ pn−2q + pn−1 and δ denotes the Kronecker delta.

Using almost identical arguments to Theorem 4.1 we may moreover prove the following
equidistributions.

Theorem 4.4. For any n ≥ 1
∑

σ∈Sn(231)

qmad(σ) =
∑

σ∈Sn(132)

qsist′(σ) =
∑

σ∈Sn(231)

qsist′′(σ),

∑

σ∈Sn(312)

qmad(σ) =
∑

σ∈Sn(132)

qfoze′(σ) =
∑

σ∈Sn(231)

qsist′(σ) =
∑

σ∈Sn(132)

qsist′′(σ).

By combining Theorem 4.1 and Theorem 4.4 with Theorem 3.8 and Corollary 3.6 we may
deduce further equidistributions between inv and the statistics foze′, sist, sist′ and sist′′, see
Table 2 in §5 for a summary.

For each k ≥ 1, let ιk−1 = (12 · · · k) denote the statistic that counts the number of
increasing subsequences of length k in a permutation. Define ι−1 by ι−1(σ) = 1 for all σ ∈ S
(i.e. we declare all permutations to have exactly one subsequence of length 0). We will now
find a statistic expressed as a linear combination of ιk’s which is equidistributed with the
continued fraction (4.1). We will derive this statistic using the Catalan continued fraction
framework of Brändén-Claesson-Steingŕımsson[3]. Let

A = {A : N× N→ Z : Ank = 0 for all but finitely many k for each n}
be the ring of infinite matrices with a finite number of non-zero entries in each row. Note in
particular that the matrices in A are indexed starting from 0. With each A ∈ A associate a
family of statistics {〈ι, Ak〉}k≥0 where ι = (ι0, ι1, . . . ), Ak is the kth column of A, and

〈ι, Ak〉 =
∞∑

i=0

Aikιi.
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Let q = (q0, q1, . . . ), where q0, q1, . . . are indeterminates. For each A ∈ A define

FA(q) =
∑

σ∈S(132)

∏

k≥0

q
〈ι,Ak〉(σ)
k ,

CA(q) =
1

1−
∏
qA0k
k

1−
∏
qA1k
k

1−
∏
qA2k
k

1−
∏
qA3k
k

1−
∏
qA4k
k

. . .

Theorem 4.5 (Brändén-Claesson-Steingŕımsson[3]). Let A ∈ A and B =
((

i
j

))
i,j≥0

. Then

FA(q) = CBA(q),

and conversely

CA(q) = FB−1A(q).

In particular, all continued fractions CA(q) are generating functions of statistics on S(132)
expressed as (possibly infinite) linear combinations of ιk’s.

Define the permutation statistic

inc = ι1 +
∞∑

k=2

(−1)k−12k−2ιk.

Note that inc is not a Mahonian statistic.

Proposition 4.6. We have

∑

σ∈S(132)

qinc(σ)z|σ| =
1

1− z

1− qz

1− qz

1− q2z

1− q2z

. . .

(4.3)

Proof. Comparing (4.3) with the definition of CA(q) we get

A =




0 1 0 0 . . .
1 1 0 0 . . .
1 1 0 0 . . .
2 1 0 0 . . .
2 1 0 0 . . .
...

...
...

...
. . .



.
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Note that B−1 =
(

(−1)i−j
(
i
j

))
i,j≥0

. In B−1A we see that columns 2, 3, . . . are zero columns

and that column 1 is equal to (1, 0, 0, . . . )T since
∑

k≥0(−1)n−k
(
n
k

)
= δn0 where δij denotes

the Kronecker delta. The entries (B−1A)k0 in column 0 are given by

(B−1A)n0 =
∑

i≥0

b(i+ 1)/2c(−1)k−i
(
k

i

)
=





0, if k = 0

1, if k = 1

(−1)k−12k−2, if k > 1.

Hence the proposition follows from Theorem 4.5. �
Remark 4.7. Applying the same argument to the continued fraction (4.2) it is easy to see
that Theorem 4.5 gives equidistribution with

∑

σ∈S(132)

qι1(σ)z|σ| =
∑

σ∈S(312)

qinv(σ)z|σ|.

Corollary 4.8. For any n ≥ 1,
∑

σ∈Sn(132)

qinc(σ) =
∑

σ∈Sn(321)

qinv(σ)

Proof. Follows by combining Corollary 3.6, Theorem 4.1 and Proposition 4.6. �
Proposition 4.9. Let ∆ : S(132) → D denote the standard bijection defined by ∆(σ) =
U∆(σ1)D∆(σ2) where σ = 231[σ1, 1, σ2] ∈ S(132). Then

inc(σ) = sdow(∆(σ))

for all σ ∈ S(132).

Proof. In [23] (see also [3]) Krattenthaler shows that

ιk(σ) =
∑

i∈Down(∆(σ))

(
ht∆(σ)(i)− 1

k

)
,

for all σ ∈ S(132). Hence

inc(σ) =
∑

i∈Down(∆(σ))

((
ht∆(σ)(i)− 1

1

)
+
∞∑

k=2

(−1)k−12k−2

(
ht∆(σ)(i)− 1

k

))

=
∑

i∈Down(∆(σ))

bht∆(σ)(i)/2c

= sdow(∆(σ)),

for all σ ∈ S(132). �
Since the Mahonian statistics in Table 1 are linear combinations of vincular patterns of

length at most three, it is natural to consider the following more general statistic.

Definition 4.1. Let P = {abc : abc ∈ S3} ∪ {abc : abc ∈ S3} ∪ {21} and α = (αρ) ∈ NP .
Define the statistic statα : S → N by

statα(σ) =
∑

ρ∈P
αρ(ρ)σ,

for all σ ∈ S.
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Let head and last be the statistics defined by head(σ) = σ(1) and last(σ) = σ(n) for all
σ ∈ Sn. We associate to statα the following generating function for each set Π of patterns

Fn(Π,α; q, t, u, v) =
∑

σ∈Sn(Π)

qstatα(σ)tdes(σ)uhead(σ)vlast(σ).

Theorem 4.10. We have

Fn(312,α; q, t, u, v)

= qC(0)uvFn−1

(
312,α; q, qA2(0)t, qB2 , v

)
+ qC(n−1)tuvFn−1

(
312,α; q, qA1(n−1)t, u, qB1

)

+
n−2∑

k=1

qC(k)tuvkFk
(
312,α; q, qA1(k)t, u, qB1

)
Fn−k−1

(
312,α; q, qA2(k)t, qB2 , v

)
,

where

A1(k) = α321 − α231 + (n− k − 1) (α213 − α123) ,

A2(k) = (k + 1) (α132 − α123) ,

B1 = α231 − α321,

B2 = α132 − α123,

C(k) = (kα123 − α213)(n− k − 1)− δk<n−1α132 + δk>0(n− k − 1)α213

+ δk>0(k − 1)α231 + δk<n−1(k + 1)(n− k − 2)α123

+ δk<n−1kα213 − δk>0α231 + kα321 + δk>0α21,

and δ denotes the Kronecker delta.

Proof. Let σ ∈ Sn(312) and consider the inflation form σ = 213[σ1, 1, σ2] where σ1 ∈ Sk(312)
and σ2 ∈ Sn−k−1(312). Then for each ρ ∈ P we get the recursive relations

(ρ)σ = (ρ)σ1 + (ρ)σ2 +mρ,

where

m123 = [12)σ2 + |σ2|(12)σ1, m123 = (|σ1|+ 1)(12)σ2,

m132 = [21)σ2, m132 = (|σ1|+ 1)(21)σ2,

m213 = ((21) + δσ1 6=∅)|σ2|, m213 = |σ1|δσ2 6=∅,
m231 = (12)σ1, m231 = (12]σ1,

m321 = (21)σ1, m321 = (21]σ1

and m21 = δσ1 6=∅. It follows that statα satisfies the following recursion

statα(σ) = statα(σ1) + statα(σ1) +
∑

ρ∈P
mρ.

We note that |σ1| = k, |σ2| = n−k−1, (21)σ = des(σ), (12)σ = δσ 6=∅(|σ|−1)−des(σ), [21)σ =
head(σ)− δσ 6=∅, [12)σ = |σ|−head(σ), (12]σ = last(σ)− δσ 6=∅ and (21]σ = |σ|− last(σ) for all
σ ∈ Sn(312). Converting these statements into generating functions proves the theorem. �
Remark 4.11. If α231 = α312 = α321 = α21 = 1 and αρ = 0 otherwise, then statα = inv

and F (312,α; q, 1, 1, 1) = In(q) = C̃n(q). Similarly if we choose α such that statα = maj,
then we recover the recursion in [14, Theorem 3.4] via the recursion for F (312,α; q, t, 1, 1) in
Theorem 4.10.
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Recall the Simion-Schmidt bijection φ : Sn(123) → Sn(132) which maps σ ∈ Sn(123) to
the unique permutation in Sn(132) with the same left-to-right minima in the same positions
as σ (cf Lemma 2.9). As explicitly noted by Claesson and Kitaev [11] this bijection clearly
preserves the head statistic and hence [123]head = [132]head. Although head is not a Mahonian
statistic we complete its st-Wilf classification below for all subsets of S3 of size at most
three. Equivalences for subsets of larger size can easily be found using similar analysis on the
inflation forms. These are less interesting and omitted for brevity. We note in particular that
the single pattern distributions with respect to the head statistic are given by well-known
refinements of the Catalan numbers.

Proposition 4.12. We have

[123]head = {123, 132} = [132]head,

[321]head = {321, 312} = [312]head,

[231]head = {213, 231} = [213]head

[123, 213]head = {{123, 213}, {132, 213}, {132, 231}}
[231, 321]head = {{231, 321}, {213, 312}, {231, 312}}

[213, 231, 321]head = {{213, 231, 321}, {213, 231, 312}}
[132, 213, 231]head = {{132, 213, 231}, {123, 213, 231}}
[132, 213, 321]head = {{132, 213, 321}, {132, 213, 312}, {132, 231, 321},

{132, 231, 312}, {123, 213, 312}}.
Remaining subsets Π ⊆ S3 of size at most three have singleton head-Wilf class. Moreover for
any n ≥ 1

∑

σ∈Sn(123)

qhead(σ) =
n∑

k=1

Cn−1,k−1q
k,

∑

σ∈Sn(213)

qhead(σ) =
n∑

k=1

Ck−1Cn−kq
k,

∑

σ∈Sn(123,213)

qhead(σ) = q +
n∑

k=2

2k−2qk.

where Cn = 1
n+1

(
2n
n

)
and Cn,k = n−k+1

n+1

(
n+k
n

)
(A009766 [31]).

Proof. The map ψ : Sn(321)→ Sn(312) given by ψ(σ) = φ(σc)c, where φ : Sn(123)→ Sn(132)
is the Simion-Schmidt bijection, clearly satisfies head(ψ(σ)) = head(σ). Hence [321]head =
[312]head. Let σ = a1a2 · · · an ∈ Sn(132). According to the non-recursive description of the
standard bijection ∆ : Sn(132) → Dn (due to Krattenthaler [23]), when ai is read from left
to right we adjoin as many U -steps as necessary to the path obtained thus far to reach height
hj +1, followed by a D-step to height hj. Here hj is the number of letters in aj+1 · · · an which
are larger than aj. As such, the number of permutations σ ∈ Sn(132) with head(σ) = k is
given by the number of Dyck paths starting with exactly n−k+ 1 number of U -steps. These
are equivalently enumerated by the number of lattice paths with steps (1, 0) and (0, 1) from
(1, n − k + 1) to (n, n) staying weakly above the line y = x. By [24, Theorem 10.3.1] the
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number of such paths are given by
(
n+ n− 1− (n− k + 1)

n− (n− k + 1)

)
−
(
n+ n− 1− (n− k + 1)

n− 1 + 1

)
= Cn−1,k−1.

The map ϕ : Sn(231)→ Sn(213) recursively defined by

ϕ(213[1, σ1, σ2]) = 231[1, ϕ(σ1), ϕ(σ2)],

where σ1 ∈ Sk−1(231) and σ2 ∈ Sn−k(231), is clearly a head-preserving bijection. Hence
[231]head = [213]head. Since |Sk(231)| = Ck it follows from the inflation form that there are
Ck−1Cn−k permutations σ ∈ Sn(231) with head(σ) = k.

If σ ∈ Sn(132, 231), then σ is either decomposed as 12[σ1, 1] or as 21[1, σ1] where σ1 ∈
Sn−1(132, 231). Thus the letters 1, 2, . . . , n are in reverse order recursively placed at the
beginning or at the end of the permutation. For σ to have head(σ) = k, the letters k+1, . . . , n
must be placed in increasing order at the end and k at the beginning. Remaining k−1 letters
may be placed on either end giving two choices each (except for the last letter). Hence there
exists 2k−2 permutations σ ∈ Sn(132, 231) with head(σ) = k for k > 1.

Let ιk = 12 · · · k and δk = k · · · 21 for k ≥ 1. If σ ∈ Sn(123, 213) and head(σ) = k, then
σ = 231[1, δn−k, σ1] for some σ1 ∈ Sk−1(123, 213). It is easy to see that |Sk(123, 213)| = 2k−1

by induction. Hence [132, 231]head = [123, 213]head.
If σ ∈ Sn(132, 213), then σ = 231[1, ιn−k, σ1] where σ1 ∈ Sk−1(132, 213). The map χ :

Sn(132, 213)→ Sn(123, 213) recursively given by

χ(231[1, ιn−k, σ1]) = 231[1, δn−k, χ(σ1)],

is clearly a head-preserving bijection. Hence [132, 213]head = [123, 213]head. Remaining equiv-
alences and their distributions may be deduced from the fact that head(σc) = n−head(σ)+1.
The equivalences between the size three subsets can be proved similarly via bijections be-
tween their corresponding inflation forms (the inflation forms can be referenced in [14]). The
details for these are left to the reader. �

5. Summary and conjectures

In Table 2 we summarize the equidistributions proved in this paper (highlighted in black).
In a given cell corresponding to statrow and statcol, a pair of patterns π1, π2 denotes the
equidistribution ∑

σ∈Sn(π1)

qstatrow(σ)
∑

σ∈Sn(π2)

qstatcol(σ).

The equidistributions in Table 2 highlighted in blue were established in [14, 21]. The e-
quidistributions between maj, bast′ and bast′′ can be proved in a similar way to Proposition
2.1, since the inverse map is the right bijection in two of the cases and the rest can be
deduced via the maj-Wilf equivalences from [14]. Remaining equidistributions were either
proved directly or follow by combining equidistributions proved in this paper. For instance∑

σ∈Sn(213) q
maj(σ) =

∑
σ∈Sn(231) q

foze(σ) is deduced by combining Proposition 2.1 and Theorem
2.12.

Conjecture 5.1. Table 2 is the complete table of Mahonian 3-function equidistributions over
permutations avoiding a single classical pattern of length three.
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We have verified all entries in Table 2 by computer for n ≤ 10. Other than than the entries
in Table 2 there are no additional equidistributions (over permutations avoiding a single
classical pattern of length three) between the statistics in Table 1.

maj inv mak makl mad bast bast′ bast′′ foze foze′ foze′′ sist sist′ sist′′

maj
132, 231
213, 312

123, 123
132, 132
132, 312
213, 213
213, 231
231, 132
231, 312
312, 213
312, 231
321, 321

132, 231
213, 312
231, 231
312, 312
321, 321

132, 213
213, 231
231, 213
312, 231

132, 132
231, 132

213, 231
312, 231

132, 132
213, 231
231, 132
312, 231

inv • 132, 213
231, 312

231, 312
312, 312
321, 231

231, 132
312, 132
321, 213

231, 132
312, 132
321, 213

231, 213
312, 213
321, 132

231, 231
312, 231
321, 132

231, 132
312, 132
321, 231

mak • • 132, 312
213, 231

132, 231
213, 312
231, 312
312, 231
321, 321

132, 213
213, 231
231, 231
312, 213

132, 132
312, 132

213, 231
231, 231

132, 132
213, 231
231, 231
312, 132

makl • • •
132, 132
231, 213
312, 231

231, 132 312, 231
132, 213
231, 132
312, 231

mad • • • • 231, 213
312, 132

231, 213
312, 132

231, 132
312, 213

132, 213
231, 132
312, 231

213, 213
231, 231
312, 132

bast • • • • • 213, 132 231, 231

123, 123
213, 132
132, 213
231, 231
312, 312
321, 321

bast′ • • • • • • 132, 132
bast′′ • • • • • • • 231, 231

foze • • • • • • • •
foze′ • • • • • • • • • 132, 132

213, 213
132, 213
213, 132

132, 231
213, 132

132, 132
213, 231

foze′′ • • • • • • • • • • 213, 132
132, 213

213, 132
132, 231

132, 132
213, 231

sist • • • • • • • • • • •
132, 132
213, 231
312, 312

132, 231
213, 132
231, 312

sist′ • • • • • • • • • • • • 132, 231
231, 132

sist′′ • • • • • • • • • • • • •

Table 2. Previously established equidistributions in blue, equidistributions
proved in this paper in black and conjectured equidistributions in red.

Note. The conjectured equidistributions in Table 2 between maj and bast (and conse-
quently between mak and bast) were recently established by J. N. Chen [6].

Acknowledgements. The author is grateful to Petter Brändén, Samu Potka and Bruce
Sagan for comments and discussions.
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[3] P. Brändén, A. Claesson, E. Steingŕımsson, Catalan continued fractions and increasing subsequences in
permutations, Discrete Math. 258 (2002), 275–287.

[4] A. Burstein, On joint distribution of adjacencies, descents and some Mahonian statistics, Discrete Math.
Theor. Comp. Sci. AN (2010), 601–612.

[5] A. Burstein, S. Elizalde, Total occurrence statistics on restricted permutations, Pure Math. Appl. 24
(2013), 103–123.

[6] J. N. Chen, Equidistributions of MAJ and STAT over pattern avoiding permutations, Preprint: arX-
iv:1707.07195 (2017).

[7] J. N. Chen, S. Li, A new bijective proof of Babson and Steingŕımsson’s conjecture, Electron. J. Combin.
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THE CONE OF CYCLIC SIEVING PHENOMENA

PER ALEXANDERSSON AND NIMA AMINI

Abstract. We study cyclic sieving phenomena (CSP) on combinatorial objects from an
abstract point of view by considering a rational polyhedral cone determined by the linear
equations that define such phenomena. Each lattice point in the cone corresponds to a
non-negative integer matrix which jointly records the statistic and cyclic order distribution
associated with the set of objects realizing the CSP. In particular we consider a universal
subcone onto which every CSP matrix linearly projects such that the projection realizes a CSP
with the same cyclic orbit structure, but via a universal statistic that has even distribution
on the orbits.

Reiner et.al. showed that every cyclic action give rise to a unique polynomial (mod qn− 1)
complementing the action to a CSP. We give a necessary and sufficient criterion for the
converse to hold. This characterization allows one to determine if a combinatorial set with
a statistic give rise (in principle) to a CSP without having a combinatorial realization of
the cyclic action. We apply the criterion to conjecture a new CSP involving stretched Schur
polynomials and prove our conjecture for certain rectangular tableaux. Finally we study
some geometric properties of the CSP cone. We explicitly determine its half-space description
and in the prime order case we determine its extreme rays.
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1. Introduction

1.1. Background on cyclic sieving phenomena. The cyclic sieving phenomenon was
introduced by Reiner, Stanton and White in [RSW04]. For a survey, see [Sag].

Definition 1.1. Let Cn be a cyclic group of order n generated by σn, X a finite set on which
Cn acts and f(q) ∈ N[q]. Let Xg := {x ∈ X : g · x = x} denote the fixed point set of X under
g ∈ Cn. We say that the triple (X,Cn, f(q)) exhibits the cyclic sieving phenomenon (CSP) if

f(ωkn) = |Xσkn|, for all k ∈ Z, (1.1)
where ωn is any fixed primitive nth root of unity.

Since f(1) is always the cardinality of X, it is common that f(q) is given as fτ (q) :=∑
x∈X q

τ(x) for some statistic on X. With this in mind, we say that the triple (X,Cn, τ)
exhibits CSP if (X,Cn, fτ (q)) does.

Here is a short list of cyclic sieving phenomena found in the literature (see [RSW04, Sag]
for a more comprehensive list):

• Words X = Wn,k of length n over an alphabet of size k, Cn acting via cyclic shift,

f(q) :=
[
n+ k − 1

k

]

q

=
∑

w∈Wn,k

qmajw.

• Standard Young tableaux X = SYT(λ) of rectangular shape λ = (nm), Cn acting via
jeu-de-taquin promotion [Rho10],

f(q) := [n]q!∏
(i,j)∈λ[hi,j]q

= q−n(
m
2 ) ∑

T∈SYT(λ)
qmaj(T ),

this expression being the q-hook-length formula [Sta71].
• Triangulations X of a regular (n+2)-gon, Cn+2 acting via rotation of the triangulation,
f(q) := 1

[n+1]q

[
2n
n

]
q
, MacMahon’s q-analogue of the Catalan numbers [Mac16]. Note

that through well-known bijections (see [Sta15]) we get induced CSPs with the sets
X = Dyck(n), the set of Dyck paths of semi-length n, and X = Sn(231), the set of
permutations in Sn avoiding the classical pattern 231. Moreover one has

f(q) := 1
[n+ 1]q

[
2n
n

]

q

=
∑

P∈Dyck(n)
qmaj(P ) =

∑

π∈Sn(231)
qmaj(π)+maj(π−1),

where the last equality is due to Stump [Stu09].

1.2. Outline of the paper. The examples presented in the previous subsection have one or
more of the following pair of common features:

• The action of Cn on X has a natural definition.
• The polynomial f(q) is generated by a natural statistic on X.

What is natural largely lies in the eyes of the beholder, but broadly it could be taken to mean
a definition with combinatorial substance.
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The following equivalent condition for a triple (X,Cn, f(q)) to exhibit the cyclic sieving
phenomenon was given by Reiner–Stanton–White in [RSW04]:

f(q) ≡
∑

O∈OrbCn (X)

qn − 1
qn/|O| − 1 (mod qn − 1), (1.2)

where OrbCn(X) denotes the set of orbits of X under the action of Cn.
Therefore the coefficient of qi in f(q) (mod qn − 1) is generically interpreted as the number

of orbits whose stabilizer-order divides i. This alternative condition also means that every
cyclic action of Cn on a finite set X give rise to a (not necessarily natural) polynomial f(q),
unique modulo qn − 1, such that (X,Cn, f(q)) exhibits the cyclic sieving phenomenon.

In this paper we consider when the converse of the above property holds. Given a combina-
torial set X with a natural statistic τ : X → N, when does it give rise to a (not necessarily
natural) action of Cn on X such that (X,Cn, τ) exhibits the cyclic sieving phenomenon?

Having a necessary and sufficient criteria for the existence of such a CSP adds a couple of
benefits:

• Given a polynomial f(q) = ∑
x∈X q

τ(x) generated by a natural statistic τ : X → N, we
can determine if a CSP exists in principle without knowing a combinatorial realization
of the cyclic action. The criteria thus serves as a tool for confirming or refuting the
existence of cyclic sieving phenomena involving a candidate polynomial.
• Generic evidence that a CSP exists provides motivation to search for a combinatorially
meaningful cyclic action on the set X.

The main result in Section 2 is the following: Theorem 2.7 provides the necessary and
sufficient conditions for (X,Cn, f(q)) to exhibit CSP. The natural (necessary) condition is
that f(q) ∈ Z[q] take non-negative integer values at all nth roots of unity, which is evident
from the definition of a cyclic sieving phenomena.

We prove the following: Define
Sk :=

∑

j|k
µ(k/j)f(ωjn), where k|n.

Then (X,Cn, f(q)) exhibits CSP for some Cn acting on X if and only if Sk ≥ 0 for all k|n.
We warn that merely having a polynomial f(q) ∈ N[q] that takes non-negative integer values
at all nth roots of unity is no guarantee for the existence of a cyclic action complementing
f(q) to a CSP. A polynomial demonstrating this is given in Example 2.9.

In Section 3, we conjecture a new cyclic sieving phenomena involving stretched Schur
polynomials. In a special case, we prove this conjecture by applying Theorem 2.7, see
Theorem 3.7 below. That is, we prove existence of CSP without having to provide a natural
cyclic group action.

Section 4 and onwards treat the cyclic sieving phenomenon from a more geometric per-
spective. We record the joint cyclic order and statistic distribution of the elements of X
in a matrix and reformulate the CSP condition in terms of linear equations in the matrix
entries. The set of matrices that satisfy these linear equations we call CSP matrices and we
prove via Theorem 7.1 that they form a convex rational polyhedral cone whose integer lattice
points correspond to realizable instances of CSP. Inspired by [AS17], we further proceed
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to identify a certain subcone which we call the universal CSP cone containing all matrices
corresponding to realizable instances of CSP with evenly distributed statistic on all its orbits.
We prove that all integer CSP matrices can be obtained from a universal CSP matrix through
a sequence of swaps without going outside of the CSP cone (Proposition 6.4). The swaps
can be interpreted as a sequence of statistic interchanges between pairs of elements in the
corresponding CSP-instance.

Finally we explicitly determine all extreme rays of the universal CSP cone (Corollary 7.4)
and in Section 5 we prove some general properties for all CSP cones.

1.3. Notation. The following notation will be used throughout the paper.

• [n] := {1, . . . , n}.
• R≥0 denotes the set of non-negative real numbers.
• Kn×n denotes the set of n× n matrices over the set K.

• µ(n) :=




0, if n is not square-free,
(−1)r, if n is a product of r distinct primes,

denotes the classical Möbius function.
• ωn denotes a primitive nth root of unity.
• Φn(q) :=

∏

1≤k≤n
gcd(n,k)=1

(q − ωkn) denotes the nth cyclotomic polynomial.

• [n]q := qn − 1
q − 1 , [n]q! := [n]q[n− 1]q · · · [1]q,

[
n

k

]

q

:= [n]q!
[k]q![n− k]q!

,

denotes the q-integer, q-factorial and q-binomial coefficients respectively.

2. Integer-valued polynomials at roots of unity

In the context of discovering cyclic sieving phenomena, one may sometimes have a candidate
polynomial (e.g. a natural q-analogue of the enumeration formula for the underlying set) that
takes integer values at all roots of unity, but the cyclic action complementing it to a CSP
is unknown. In such situations one may like to know if a CSP could exist even in principle.
In this section we characterize the set polynomials f(q) ∈ Z[x] of degree less than n such
that f(ωjn) ∈ Z for all j = 1, . . . , n and show that they are indeed Z-linear combinations of
polynomials of the form

qn − 1
qn/d − 1 =

n/d−1∑

i=0
qdi for d|n.

Using the characterization one can quickly determine if a CSP is present and get the count of
the number of elements of each order in terms of evaluations of the polynomial at roots of
unity. Often it is much simpler to determine the evaluations at roots of unity than it is to
write the polynomial in terms of the above basis.

Finally note that not all polynomials f(q) ∈ N[q] such that f(ωjn) ∈ N for all j = 1, . . . , n
may necessarily be paired with a cyclic action to produce a CSP, see Example 2.9.

The set
M(n) := {f(q) ∈ Z[q] : deg(f) < n, f(ωjn) ∈ Z for j = 1, . . . , n}
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forms a Z-module. First we identify two useful bases for M(n) using the following proposition
and Lemma 2.2.
Proposition 2.1 (Désarménien [Dé89]). Let f(q) ∈ Z[q] be a polynomial of degree less than
n. Then the following two properties are equivalent:

(i) For every d|n,
f(q) ≡ rd (mod Φd(q)) for some rd ∈ Z,

where Φd(q) denotes the dth cyclotomic polynomial.
(ii) The polynomial f(q) has the form

f(q) =
n−1∑

j=0
ajq

j, where aj = agcd(n,j). (2.1)

Lemma 2.2. For each n ∈ N, the following sets form Z-bases for M(n):

(i) B1(n) = {gd(q) : d|n} where
gd(q) =

∑

0≤j<n
gcd(j,n)=d

qj,

(ii) B2(n) = {hd(q) : d|n} where

hd(q) =
n/d−1∑

j=0
qdj.

Proof. Let f(q) ∈ M(n) and suppose d|n. Then ωn/dn is a dth root of unity. Note that
f(q)− f(ωn/dn ) vanishes at q = ωn/dn so it is divisible by the minimal polynomial of ωn/dn over
Z, that is, Φd(q). Hence f(q) ≡ rd (mod Φd(q)) where rd = f(ωn/dn ) ∈ Z. By Proposition 2.1
it follows that f(q) has the form (2.1). Such polynomials are clearly spanned by B1(n).

Now, the elements in B2(n) are linearly independent, since the lowest-degree terms of
hd(q)− 1 are all different. By inclusion-exclusion we see that for each d|n,

gd(q) =
∑

d|r
µ(r/d)hr(q)

and hence B1(n) and B2(n) both form bases of M(n). �

We may in fact extend the characterization in Lemma 2.2 to multivariate polynomials
f ∈ Z[q1, . . . , qm] of degree less than ni in variable qi for i = 1, . . . ,m taking integer values at
all points (ωj1n1 , . . . , ω

jm
nm) ∈ Cm for ji = 1, . . . , ni, i = 1, . . . ,m.

Theorem 2.3. Let M(n1, . . . , nm) = {f ∈ Z[q1, . . . , qm] : degif < ni, f(ωj1n1 , . . . , ω
jm
nm) ∈

Z for ji = 1, . . . , ni, i = 1, . . . ,m} where n1, . . . , nm ∈ N and degif denotes the degree of xi
in f . Then the following sets form Z-bases for M(n1, . . . , nm):

(i) B1(n1, . . . , nm) =
{∏m

i=1 g
(i)
di

(qi) : di|ni, i = 1, . . . ,m
}
where

g
(i)
di

(qi) =
∑

0≤j<ni
gcd(j,ni)=di

qji ,
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(ii) B2(n1, . . . , nm) =
{∏m

i=1 h
(i)
di

(qi) : di|ni, i = 1, . . . ,m
}
where

h
(i)
di

(qi) =
ni/di−1∑

j=0
qdiji .

Proof. We prove that B1(n1, . . . , nm) is a Z-basis of M(n1, . . . , nm) by induction on m. The
proof for B2 is similar and therefore omitted. The base case m = 1 follows from Lemma 2.2.
Let f ∈M(n1, . . . , nm+1). Write

f = fnm+1−1(q1, . . . , qm)qnm+1−1
m+1 + · · ·+ f1(q1, . . . , qm)qm+1 + f0(q1, . . . , qm),

where f0, f1, . . . , fnm+1−1 ∈ Z[q1, . . . , qm] with fk(ωj1n1 , . . . , ω
jm
nm) ∈ Z for all k = 0, . . . , nm+1−1,

ji = 1, . . . , ni and i = 1, . . . ,m. The univariate polynomials

F
ω
j1
n1 ,...,ω

jm
nm

(qm+1) = f(ωj1n1 , . . . , ω
jm
nm , qm+1) ∈ Z[qm+1],

take integer values at qm+1 = ωjnm+1 for all j = 1, . . . , nm+1. By Proposition 2.1 we therefore
have that

fk(ωj1n1 , . . . , ω
jm
nm) = fgcd(nm+1,k)(ωj1n1 , . . . , ω

jm
nm),

for all (ωj1n1 , . . . , ω
jm
nm) ∈ Cm. Since the ∏m

i=1 ni points (ωj1n1 , . . . , ω
jm
nm) ∈ Cm lie in general

position the polynomials must coincide on all points in Cm. Hence

fk(q1, . . . , qm) = fgcd(nm+1,k)(q1, . . . , qm)

for all k = 0, . . . , nm+1 − 1. It follows that f is uniquely spanned by B1(nm+1) over
Z[q1, . . . , qm]. By induction fk(q1, . . . , qm) is uniquely spanned by B1(n1, . . . , nm) over Z for
all k = 0, . . . , nm+1 − 1. Hence f is uniquely spanned by B1(n1, . . . , nm+1) over Z completing
the induction. �

Lemma 2.4. Let f(q) ∈ Z[q] such that f(ωjn) ∈ Z for all j = 1, . . . , n. Then for each
m, p, e ∈ N where p is prime we have

f(ωmpen ) ≡ f(ωmpe−1

n ) (mod pe).

In particular if p 6 |n, then f(ωmpe−1
n ) = f(ωmpen ).

Proof. Since we are only concerned with evaluations of f(q) at nth roots of unity, we may
assume f(q) ∈ M(n). Furthermore by Lemma 2.2 and linearity it suffices to show the
statement for the basis elements B2 of M(n). For each d|n and k ∈ Z we have

hd(ωkn) =
n/d−1∑

j=0
(ωkn/d)j =




n/d, if k ≡ 0 (mod n/d),
0, otherwise.

Now suppose k = mpe for some m, p, e ∈ N with p prime, and consider the different cases:
Suppose first mpe−1 ≡ 0 (mod n/d). This implies that mpe ≡ 0 (mod n/d), so hd(ωmp

e

n ) =
n/d = hd(ωmp

e−1
n ). Secondly, suppose mpe−1 6≡ 0 (mod n/d). If mpe 6≡ 0 (mod n/d), then

hd(ωmp
e

n ) = 0 = hd(ωmp
e−1

n ). On the other hand if mpe ≡ 0 (mod n/d), then n/d = pfa for
some f ≥ e and a ∈ N. Therefore hd(ωmp

e

n )− hd(ωmpe−1
n ) = pfa− 0 ≡ 0 (mod pe). Hence the

lemma follows. �
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Lemma 2.5. Let f(q) ∈ Z[q] such that f(ωjn) ∈ Z for all j = 1, . . . , n. Then for each
k = 1, . . . , n we have that ∑

j|k
µ(k/j)f(ωjn) ≡ 0 (mod k).

Moreover if k 6 |n, then ∑j|k µ(k/j)f(ωjn) = 0.

Proof. Let 1 ≤ k ≤ n and write k = mpe where p,m ∈ N, p prime and p 6 |m. By Lemma 2.4
we have

∑

j|k
µ(k/j)f(ωjn) =

∑

j|m
µ(k/(jpe−1))f(ωjpe−1

n ) +
∑

j|m
µ(k/(jpe))f(ωjpen )

≡
∑

j|m
µ(k/(jpe−1))f(ωjpe−1

n ) +
∑

j|m
µ(k/(jpe))f(ωjpe−1

n ) (mod pe)

≡ 0 (mod pe).
If k 6 |n, then we may write k = mpe for some m, p ∈ N with p prime such that p 6 |n. Then
by the second assertion in Lemma 2.4 the congruences above hold with equality and we are
done. �
Construction 2.6. Let X = O1 t O2 t · · · t Om be a partition of a finite set X into m
parts such that |Oi| divides n for i = 1, . . . ,m. Fix a total ordering on the elements of Oi for
i = 1, . . . ,m. Let Cn act on X by permuting each element x ∈ Oi cyclically with respect to
the total ordering on Oi for i = 1, . . . ,m.

This ad-hoc cyclic action in Construction 2.6 lacks combinatorial context and depends only
on the choice of partition and total order.

Theorem 2.7. Let f(q) ∈ N[q] and suppose f(ωjn) ∈ N for each j = 1, . . . , n. Let X be any
set of size f(1). Then there exists an action of Cn on X such that (X,Cn, f(q)) exhibits CSP
if and only if for each k|n,

∑

j|k
µ(k/j)f(ωjn) ≥ 0. (2.2)

Proof. The forward direction follows from [RSW04, Prop. 4.1]. Conversely if we put
Sk =

∑

j|k
µ(k/j)f(ωjn) (2.3)

for each k = 1, . . . , n and consider X of size f(1), then by Möbius inversion
|X| = f(ωnn) =

∑

j|n
Sj.

Thus by hypothesis and Lemma 2.5, we may partition X into orbits, such that for each k|n,
there are 1

k
Sk orbits of size k. We then let Cn act on X as in Construction 2.6. The fixed

points of X under σkn ∈ Cn are given by the elements of order dividing k. This gives (by
Möbius inversion)

|Xσkn| =
∑

j|k
Sj = f(ωkn).

Hence (X,Cn, f(q)) exhibits CSP. �
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Remark 2.8. The sums Sk in (2.3) represent the number of elements with order k under the
action of Cn.

Example 2.9. The following example demonstrates that even if f(q) ∈ N[q] satisfies f(ωjn) ∈
N for all j = 1, . . . , n, there might not be an associated cyclic action complementing f(q) to a
CSP.

Let f(q) = q5 + 3q3 + q + 10. Then f(ωj6) takes values 8, 12, 5, 12, 8, 15 for j = 1, . . . , 6. On
the other hand Sk = ∑

j|k µ(k/j)f(ωj6) takes values 8, 4,−3, 0, 0, 6 for k = 1, . . . , 6. Since we
cannot have a negative number of elements of order 3, there is no action of C6 on a set X of
size f(1) = 15 such that (X,C6, f(q)) is a CSP-triple.

Rao and Suk [RS17] generalized the notion of cyclic sieving to arbitrary groups with finitely
generated representation ring, so called G-sieving. In particular, Berget, Eu and Reiner
[BER11] considered the case where G is an Abelian group, whence G ∼= Cn1 × · · · × Cnm ,
acting pointwise on a set X1 × · · · × Xm. Unfortunately G-sieving depends in general on
the particular choices of representations ρi of G over C generating the representation ring.
However, given the characterization in Theorem 2.3 it would be interesting to understand
what conditions are necessary and sufficient for a polynomial f ∈ M(n1, . . . , nm) to be
complemented to a G-sieving phenomenon for an Abelian group G ∼= Cn1 × · · · × Cnm with
respect to the canonical representations sending the generator σni of Cni to ωni .

3. Applications

In this section we demonstrate how one can use Theorem 2.7 to find new cyclic sieving
phenomena arising from natural polynomials.

By Theorem 2.7 any polynomial f(q) ∈ N[q] such that f(ωjn) ∈ N for j = 1, . . . , n satisfying
the positivity condition (2.2), can be completed to a CSP with an ad-hoc cyclic action.
Although this action lacks combinatorial context, it often helps to know that a CSP can
exist even in principle, particularly if one is considering a combinatorial set where the cyclic
action is not immediately apparent. The following example illustrates this point for the
polynomial Cn(q) := 1

[n+1]q

[
2n
n

]
q
which is generated by statistics on multiple combinatorial

(Catalan) objects, but where the naturalness of the action varies depending on the object
under consideration.

Example 3.1. Stump [Stu09] showed that Cn(q) = ∑
σ∈Sn(231) q

maj(σ)+maj(σ−1). There is no
obvious natural cyclic action on Sn(231) that is compatible with Cn(q). However we can check
the positivity condition (2.2) in Theorem 2.7 to reveal that a CSP is nevertheless present for
Cn(q) with an ad-hoc cyclic action on Sn(231). Indeed rewriting Cn(q) = 1

[2n+1]q

[
2n+1
n+1

]
q
and

using [RSW04, Prop. 4.2 (iii)] we have for j|n,

Cn(ωjn) =




(
2j
j

)
, if j < n,

1
n+1

(
2n
n

)
, if j = n.
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By Wallis formula, ∏∞n=1

(
1− 1

4n2

)
= 2

π
, the sequences

2n
((

2n
n

)
1
4n

)2

= 1
2

n∏

j=2

(
1 + 1

4j(j − 1)

)
,

(2n+ 1)
((

2n
n

)
1
4n

)2

=
n∏

j=1

(
1− 1

4j2

)

monotonically increase and decrease respectively towards 2
π
as n→∞. Thus

4n√
π(n+ 1/2)

≤
(

2n
n

)
≤ 4n√

πn
.

A trivial bound for the number of divisors of n, excluding n, is given by 2
√
n− 1. Hence for

each divisor k < n we have
∑

j|k
µ(k/j)Cn(ωjn) =

∑

j|k
µ(k/j)

(
2j
j

)

≥
(

2k
k

)
−
∑

j|k
j<k

(
2j
j

)

≥ 4k√
π(k + 1/2)

− (2
√
k − 1) 4k/2

√
π(k/2)

≥ 0.

Moreover for k = n we have by a similar calculation that
∑

j|n
µ(n/j)Cn(ωjn) ≥ 4n

(n+ 1)
√
π(n+ 1/2)

− (2
√
n− 1) 4n/2

√
π(n/2)

≥ 0,

for n ≥ 5. The required inequality can be verified explicitly by hand for n < 5. Hence Cn(q)
exhibits CSP with an ad-hoc cyclic action on Sn(231).

With this evidence one could now either proceed to search for a natural cyclic action on
Sn(231) matching the orbit structure of the ad-hoc cyclic action, or find a natural cyclic action
on an object in bijection with Sn(231). In this case there happens to exist known candidates
e.g. the set of Dyck paths Dyck(n) of semi-length n where Cn acts by changing peaks to
valleys (and vice versa) from left to right whenever possible, or the set of triangulation of a
regular (n+2)-gon where Cn+2 acts by rotating the triangulation. In the latter case we instead
lack a simple natural statistic (as opposed to a natural action) on the set of triangulations
that generates Cn(q).

3.1. A new CSP with stretched Schur polynomials. In this section we conjecture a new
cyclic sieving phenomenon involving stretched Schur polynomials. We prove our conjecture in
the case of certain rectangular shapes for which it is straightforward to explicitly compute the
data needed to verify the positivity condition (2.2) in Theorem 2.7. We begin by recalling
the basic definitions required to state the conjecture.

A partition λ = (λ1, . . . , λr) is a finite weakly decreasing sequence of non-negative integers
λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0. The parts of λ are the positive entries and the number of positive
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Figure 1. The abacus representation of λ = (5, 32, 2, 13) with m = 7 beads
and d = 3 runners, next to the Young diagram representation of λ.

parts is the length of λ, denoted l(λ). The quantity |λ| := λ1 + · · · + λr is called the size
of λ. The empty partition ∅ is the partition with no parts. We use exponents to denote
multiplicities e.g. λ = (5, 3, 3, 2, 1, 1, 1) = (5, 32, 2, 13). Scalar multiplication on partitions is
performed elementwise e.g. with n ∈ N and λ as above we have nλ = (5n, (3n)2, 2n, n3). If
µ = (µ1, . . . , µr) is a partition such that λi ≥ µi for all i = 1, . . . , r then we say that µ ⊆ λ.
This is called the inclusion order on partitions.

Partitions are commonly visualized in at least two different ways. The first and most common
way to represent a partition is via its Young diagram. A skew Young diagram of shape λ/µ is
an arrangement of boxes in the plane with coordinates given by {(i, j) ∈ Z2 : µi ≤ j ≤ λi}.
The first coordinate represents the row and the second coordinate the column. If µ = ∅,
then we simply write λ instead of λ/µ and refer to the corresponding skew Young diagram
as the (regular) Young diagram of λ. A border strip (or rim hook) of size d is a connected
skew Young diagram consisting of d boxes and containing no 2× 2 square. The height of a
border strip is one less than its number of rows. A border strip tableau of shape λ/µ and type
α = (α1, . . . , αd) is a sequence µ = λ1 ⊂ λ2 ⊂ · · · ⊂ λr = λ such that λi/λi−1 is a border strip
of size αi.

A second way to visually represent a partition λ is via an abacus with m ≥ r beads: Let
d ∈ N. For i = 1, . . . ,m, write λi +m− i = s+ dt, with 0 ≤ s ≤ d− 1, and place a bead on
the sth runner in the tth row. The operation of sliding a bead one row upwards on its runner
into a vacant position corresponds to removing a border strip of size d from λ. Sliding all
beads up as far as possible produces an abacus representation of the d-core partition of λ, a
partition from which no further border strip tableaux of size d can be removed. It is worth
mentioning that the d-core of λ is independent of the way in which border strip tableaux are
removed. For i = 0, 1, . . . , d − 1, let λ(i)

j be the number of unoccupied positions on the ith

runner above the jth bead from the bottom. Then λi = (λ(i)
1 , λ

(i)
2 , . . . , λ

(i)
d ) is a partition and

the d-tuple [λ(0), λ(1), . . . , λ(d−1)] is called the d-quotient of λ.
A semi-standard Young tableau (SSYT) is a Young diagram whose boxes are filled with

non-negative integers, such that each row is weakly increasing and each column is strictly
increasing. Denote the set of SSYT of shape λ with entries in {0, . . . ,m− 1} by SSYT(λ,m).
Given T ∈ SSYT(λ,m), the type of T is the vector α(T ) = (α0(T ), α1(T ), . . . , αm−1(T )) where
αk(T ) counts the number of boxes of T containing the number k.

The Schur polynomial is defined as

sλ(x0, . . . , xm−1) =
∑

T∈SSYT(λ,m)
x
α0(T )
0 x

α1(T )
1 · · ·xαm−1(T )

m−1 .
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The polynomial sλ(x0, . . . , xm−1) is symmetric and has several alternative definitions, see
[Sta99]. The principal specialization of sλ(x0, . . . , xm−1) is given by

sλ(1, q, q2, . . . , qm−1) =
∑

T∈SSYT(λ,m)
q|T |,

where |T | denotes the sum of all entries in T . The following explicit formula is referred to as
the q-hook-content formula and is due to Stanley (see [Sta99, Thm 7.21.2]),

sλ(1, q, q2, . . . , qm−1) = qb(λ) ∏

(i,j)∈λ

[m+ ci,j]q
[hi,j]q

, (3.1)

where b(λ) = ∑r
i=1(i − 1)λi, ci,j = j − i (the content) and hi,j is defined as the number of

boxes in λ to the right of (i, j) in row i plus the number of boxes below (i, j) in column j
plus 1 (the hook length). In particular

|SSYT(λ,m)| = sλ(1m) =
∏

(i,j)∈λ

m+ ci,j
hi,j

. (3.2)

If G is a group and V a (finite-dimensional) vector space over C, then a representation of
G is a group homomorphism ρ : G→ GL(V ) where GL(V ) is the group of invertible linear
transformations of V . A representation ρ : G → GL(V ) is irreducible if it has no proper
subrepresentation ρ|W : G→ GL(W ), 0 < W < V closed under the action of {ρ(g) : g ∈ G}.
The character of G on V is a function χ : G → C defined by χ(g) = tr(ρ(g)). Note that
characters are invariant under conjugation by G. A character χ is said to be irreducible if
the underlying representation is irreducible. If G = Sm, then the irreducible characters χλ of
Sm are indexed by partitions λ of weight m and may be computed combinatorially (on each
conjugacy class of type α in Sm) using the Murnaghan–Nakayama rule [Sta99, Thm 7.17.3]

χλα =
∑

T∈BST(λ,α)
(−1)ht(T ), (3.3)

where the sum runs over all border strip tableaux BST(λ, α) of shape λ and type α and ht(T )
is the sum of all heights of the border strips in T . In particular this implies χλ takes integer
values.

The following theorem provides an expression for the root of unity evaluation of the principal
specialization sλ(1, q, . . . , qm−1).

Theorem 3.2 (Reiner–Stanton–White [RSW04]). Let d|m and ωd be a primitive dth root of
unity. Then sλ(1, ωd, . . . , ωm−1

d ) is zero unless the d-core of λ is empty, in which case

sλ(1, ωd, ω2
d, . . . , ω

m−1
d ) = sgn(χλd|λ|/d)

d−1∏

i=0
sλ(i)(1m/d),

where χλ is the irreducible character of the symmetric group S|λ| indexed by λ.

Lemma 3.3. Suppose ωd is a primitive dth root of unity with d|m,n, then

snλ(1, ωd, ω2
d, . . . , ω

m−1
d ) =

d−1∏

i=0
s(nλ)(i)(1m/d) ∈ N.
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Proof. By Theorem 3.2 we only need to verify that χnλ
dn|λ|/d ≥ 0. A result by White [Whi83,

Cor. 10] (see also [Pak00, Thm. 3.3]), implies that the Murnaghan–Nakayama rule (3.3) is
cancellation-free in this instance. Furthermore, it is clear that there is a border-strip tableau
of shape nλ with border-strips of size d with positive sign. For example, take all strips to be
horizontal — this is possible since d|n. �

We are now ready to state our conjecture.

Conjecture 3.4. Let n,m ∈ N and let λ be a partition. Then the triple
(SSYT(nλ,m), Cn, snλ(1, q, q2, . . . , qm−1))

exhibits a CSP for Cn acting on SSYT(nλ,m) in some fashion.

We believe that a natural action is realized by some type of promotion on semi-standard
Young tableaux similar to [Rho10]. In the case λ = (1) we have

snλ(1, q, q2, . . . , qm) =
[
n+m− 1

n

]

q

and this polynomial exhibits a cyclic sieving phenomenon under Cn, see [RSW04].
We have verified Conjecture 3.4 using Theorem 2.7 for all partitions λ such that |λ| ≤ 6,

all m ≤ 6 and all n ≤ 12.
Below we prove the conjecture for certain rectangular shapes λ.

Lemma 3.5. The n-quotient of the rectangular shape (na)nb+r with 0 ≤ r < n is given by

[ab, ab, . . . , ab︸ ︷︷ ︸
n− r times

, ab+1, ab+1, . . . , ab+1
︸ ︷︷ ︸

r times

].

Proof. The abacus representation of λ = (na)nb+r with m = nb+ r beads and d = n runners
is given via

na+ (nb+ r)− i = s+ nt,

for i = 1, . . . , nb + r where 0 ≤ s ≤ n − 1, see Figure 2. Thus we see that each of the n
runners have no bead in the first a rows. Since all parts of λ are the same, we also note that
the nb + r beads are distributed evenly from right to left on the n runners with no vacant
positions in between the beads on each runner. Thus there are b beads on the first n − r
runners and b + 1 beads on the last r runners. Moreover each bead have exactly a vacant
positions above it on its runner, so the n-quotient is given as in the lemma. �

Lemma 3.6. We have

s(ab)(1m) =
a−1∏

j=0

(
m+ j

b

)(
b+ j

b

)−1

Proof. By the hook-content formula (3.2) we have

s(ab)(1m) =
∏

(i,j)∈(ab)

m+ j − i
(a− j) + (b− i) + 1 ,
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a

b

n− r r

Figure 2. The abacus representation of λ = (na)nb+r with m = nb+ r beads
and d = n runners.

which after rearrangement equals
a−1∏

j=0

b−1∏

i=0

m+ j − i
b+ j − i =

a−1∏

j=0

(m+ j)!
(m− b+ j)!

j!
(b+ j)! =

a−1∏

j=0

(
m+ j

b

)(
b+ j

b

)−1

.

�

Theorem 3.7. Let n,m, a, b ∈ N with b < m and n|b,m. If λ = (ab), then the triple

(SSYT(nλ,m), Cn, snλ(1, q, q2, . . . , qm−1))

exhibits a CSP for some ad-hoc action of Cn on SSYT(λ,m).

Proof. By Lemma 3.3 it follows that snλ(1, ωjn, ω2j
n , . . . , ω

(m−1)j
n ) ∈ N for all j = 1, . . . , n. By

Theorem 2.7 it therefore remains to show that for all k|n,
∑

j|k
µ(k/j)snλ(1, ωjn, ω2j

n , . . . , ω
(m−1)j
n ) ≥ 0. (3.4)

Note that ωjn is a (n/j)th root of unity. By Lemma 3.3 and Lemma 3.5 the left hand side of
(3.4) rewrites as

∑

j|k
µ(k/j)

n/j−1∏

i=0
s(ja)bj/n(1mj/n)
︸ ︷︷ ︸

independent of i

=
∑

j|k
µ(k/j)

(
s(ja)bj/n(1mj/n)

)n/j
. (3.5)

Using Lemma 3.6, this equals

∑

j|k
µ(k/j)



ja−1∏

i=0

(
mj/n+ i

bj/n

)(
bj/n+ i

bj/n

)−1


n/j

, (3.6)

which is greater or equal to


ka−1∏

i=0

(
mk/n+ i

bk/n

)(
bk/n+ i

bk/n

)−1



n
k

−
∑

j|k
j<k



ja−1∏

i=0

(
mj/n+ i

bj/n

)(
bj/n+ i

bj/n

)−1



n
j

. (3.7)
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By Lemma 8.4 and the fact that the number of divisors of k, excluding k, is bounded above
by 2
√
k − 1 we get that (3.7) is greater than or equal to


ka−1∏

i=k′a

(
mk/n+i
bk/n

)n/k

(
bk/n+i
bk/n

)n/k − (2
√
k − 1)






k′a−1∏

i=0

(
mk/n+i
bk/n

)n/k

(
bk/n+i
bk/n

)n/k −
k′a−1∏

i=0

(
mk′/n+i
bk′/n

)n/k′

(
bk′/n+i
bk′/n

)n/k′


 , (3.8)

where k′ = bk/2c. The remaining steps needed are given in the appendix Section 8, where it
is shown that the left factor in (3.8) is non-negative by Lemma 8.6 and the right factor is
non-negative by Lemma 8.4 for all k|n. This concludes the proof of the theorem. �

4. The CSP cone

In the following sections we offer a geometric perspective on the cyclic sieving phenomenon
by associating a polyhedral cone that captures joint information about the cyclic action and
statistics on the object X. The cone has the property that all cyclic sieving phenomena with
a polynomial generated by a choice of statistic (modulo n) on the set X corresponds to a
lattice point in the cone.

As presented in the introduction, the polynomial f(q) is often given by some natural
statistic τ : X → N on X. Define

fτ (q) :=
∑

x∈X
qτ(x).

Moreover for each n ∈ N, define τn : X → Zn by

τn(x) := τ(x) (mod n).

More than understanding the individual components of the CSP triple (X,Cn, fτ (q)), one is
also interested in the behaviour and distribution of the statistic τ with respect to the cyclic
action. Given an action of Cn on X and a statistic τ : X → N, we can associate a n × n
matrix A(X,Cn,τ) = (aij) which keeps track of the coefficients of the generating function

∑

x∈X
qτn(x)to(x) :=

n−1∑

i=0

n∑

j=1
aijq

itj,

where o(x) := min{j ∈ [n] : σjn · x = x} denotes the order of x ∈ X under Cn. We remark
that the rows of A(X,Cn,τ) are indexed from 0 to n− 1.

We can now restate CSP as follows:

Proposition 4.1. Suppose X is a finite set on which Cn acts and let τ : X → N be a
statistic. Then the triple (X,Cn, fτ (q)) exhibits CSP if and only if A(X,Cn,τ) = (aij) satisfies
the condition that for each 1 ≤ k ≤ n,

∑

0≤i<n
1≤j≤n

aijω
ki
n =

∑

0≤i<n

∑

j|k
aij. (4.1)

where ωn is a primitive nth root of unity.
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Proof. For each 1 ≤ k ≤ n we have that

Xσkn =
n−1⋃

i=0
{x ∈ X : τn(x) = i, σkn · x = x}

=
n−1⋃

i=0

⋃

j|k
{x ∈ X : τn(x) = i, o(x) = j}.

Hence (X,Cn, fτ (q)) exhibits CSP if and only if for each 1 ≤ k ≤ n,
∑

0≤i<n
1≤j≤n

aijω
ki
n = fτn(ωkn) = |Xσkn| =

∑

0≤i<n

∑

j|k
aij. (4.2)

�

This motivates the following definition.

Definition 4.2. A n × n-matrix A = (aij) ∈ Rn×n
≥0 is called a CSP-matrix if it fulfills the

conditions in Equation (4.1). Let CSP(n) denote the set of all n × n CSP-matrices and
CSPZ(n) := CSP(n) ∩ Zn×n the set of integer CSP-matrices.

Example 4.3. Consider all binary words of length 6, with group action being shift by 1 and
τ being the the major index statistic. Then




2 1 0 0 0 11
0 0 2 0 0 7
0 0 0 0 0 11
0 1 2 0 0 7
0 0 0 0 0 11
0 0 2 0 0 7




is the corresponding CSP matrix. The entry in the upper left hand corner correspond to
the two binary words 000000 and 111111. These have major index 0 and are fixed under a
single shift. The words corresponding to the second column are 010101 and 101010. These
have major index 6 ≡ 0 (mod 6) and 9 ≡ 3 (mod 6) respectively and are fixed under two
consecutive shifts etc.

By linearity of the CSP-condition (4.1), it follows that for all A,B ∈ CSP(n) we have
sA + tB ∈ CSP(n) for any s, t ≥ 0. Hence CSP(n) forms a real convex cone. In fact by
Theorem 7.1 in Section 7 we have the following corollary.

Corollary 4.4. The set CSP(n) forms a real convex rational polyhedral cone.

5. General properties of the CSP cone

Since CSP(n) is a rational cone by Corollary 4.4, its extreme rays are spanned by integer
matrices. Every element in CSP(n) is therefore a conic combination of elements in CSPZ(n).
In particular, properties of CSPZ(n) closed under conic combinations can be lifted to CSP(n).

A priori an integer lattice point A ∈ CSPZ(n) need not be realizable by a cyclic sieving
phenomenon with CSP-matrix A. However thanks to Lemma 5.1 we shall see that this
property does indeed hold.
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Lemma 5.1. Let A = (aij) ∈ CSPZ(n). Then there exists a CSP-triple (X,Cn, τ) with
A(X,Cn,τ) = A.

Proof. According to (4.1), the polynomial f(q) = ∑n−1
i=0 riq

i where ri = ∑n
j=1 aij for i =

0, . . . , n − 1 defines a polynomial such that f(ωkn) = ∑
j|k Sj ∈ N for k = 1, . . . , n, where

Sj = ∑n−1
i=0 aij for j = 1, . . . , n. By Möbius inversion as in Theorem 2.7 we have Sk =∑

j|k µ(k/j)f(ωjn). Hence by Lemma 2.5, k|Sk. Therefore a CSP-instance having CSP-matrix
A can be realized through any triple (X,Cn, τ) with Cn acting in an ad-hoc manner on a set
X with ∑i,j aij elements divided into Sk/k orbits of size k for each k|n where τ : X → N is
any statistic distributed according to A. �

Let {Eij : 0 ≤ i < n, 1 ≤ j ≤ n} denote the standard basis of Rn×n.

Definition 5.2. Call a matrix δa(u,v) ∈ Rn×n a swap if
δa(u,v) := a(Eu1u2 + Ev1v2 − Ev1u2 − Eu1v2),

where a ∈ R.

Lemma 5.3. Let A ∈ CSP(n) and suppose δa(u,v)+A ∈ Rn×n
≥0 . Then δa(u,v)+A ∈ CSP(n).

Proof. Since adding δa(u,v) does not alter column nor row-sums we have that the CSP-
condition (4.1) remains intact. Hence δa(u,v) + A ∈ CSP(n). �

The next lemma follows by repeated applications of Lemma 5.3.

Lemma 5.4. Let A = (aij) ∈ CSP(n). Suppose i and i′ are two row indices such that∑n
j=1 aij = ∑n

j=1 ai′j. If A′ is the matrix obtained from A by interchanging rows i and i′, then
A′ ∈ CSP(n).

Remark 5.5. The corresponding statement of Lemma 5.4 also holds for the column indices
instead of row indices.

Proposition 5.6. Let n ∈ N and suppose i and i′ are row indices such that gcd(n, i) =
gcd(n, i′). If A ∈ CSP(n), then A′ ∈ CSP(n) where A′ is obtained from A by interchanging
rows i and i′.

Proof. Let A ∈ CSPZ(n). Then the polynomial f(q) = ∑n−1
i=0 ciq

i ∈ N[q], where ci = ∑n
j=1 aij,

satisfies f(ωjn) ∈ N for all j = 1, . . . , n. By Lemma 2.2 it follows that ci (mod n) = cgcd(n,i) for
all i = 1, . . . , n. Hence A′ ∈ CSPZ(n) by Lemma 5.4. Moreover from above, row i and i′

clearly have the same row sum in sA+ tB for any A,B ∈ CSPZ(n) and s, t ≥ 0. Hence the
property can be lifted to all matrices in CSP(n). �

6. The universal CSP cone

Let Wα be the set of words with content α, that is, αi is the number of occurrences of
the letter i in the words, and let n be the length of the words. Then Cn acts on such words
by cyclic shift. In [AS17], the authors construct a statistic, flex(·), which is equidistributed
modulo n with major index on Wα. Furthermore, flex has the property that for every orbit
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O, the triple (O, Cn, flex) exhibits the cyclic sieving phenomenon. They show that flex is
universal in the following sense:

Definition 6.1. A cyclic sieving phenomena (X,Cn, τ) is called universal if (O, Cn, τ) exhibits
the cyclic sieving phenomenon for every orbit Cn-orbit O of X. This is shown in [AS17] to be
equivalent with the property that for every Cn-orbit O ⊆ X with length k, the sets

{τn(x) : x ∈ O} and
{

0, n
k
,
2n
k
, . . . ,

(k − 1)n
k

}

coincide. In other words, the statistic τ is “evenly distributed” on each Cn-orbit modulo n.
We also refer to τ as being a universal statistic (with respect to X and Cn).

Clearly a universal statistic is uniquely determined modulo n by the orbit structure of X
under Cn (up to a choice of total order on the orbits). We remark that most cyclic sieving
phenomena in the literature are not universal. We shall see below how a non-universal statistic
can be turned into a universal one without changing the generating polynomial.

Definition 6.2. A matrix A = (aij) ∈ CSP(n) is called universal if there are constants
K1, . . . , Kn ∈ R≥0 such that

aij =



Kj, if i ≡ 0 (mod n

j
),

0, otherwise.

for all 1 ≤ i, j ≤ n. Let C̃SP(n) denote the subset of all universal CSP-matrices. Moreover if
s = (S1, . . . , Sn) ∈ Nn is a sequence such that j|Sj for j = 1, . . . , n and Sj = 0 for j 6 |n, then
we let U(s) ∈ C̃SP(n) denote the unique universal CSP-matrix with column sums given by
S1, . . . , Sn.

Remark 6.3. Note that C̃SP(n) forms a subcone of CSP(n) and that the lattice points
C̃SPZ(n) are realized by universal cyclic sieving phenomena.

Every CSP-matrix can be linearly projected onto a universal CSP-matrix. Indeed the map

P : CSP(n)→ C̃SP(n)

aij 7→




1
j

∑n
i=1 aij, if i ≡ 0 (mod n

j
),

0, otherwise,

is clearly linear in each entry with P 2 = P . By Proposition 5.1 the projection P restricts to a
map P : CSPZ(n)→ C̃SPZ(n).

If A ∈ CSPZ(n), then δ1(u,v) +A corresponds to swapping statistic between two elements
belonging to orbits of different size.

Next we show that every CSP matrix A ∈ CSPZ(n) can be obtained from a universal
CSP-matrix with the same column sums via a sequence of such swaps while keeping inside
CSPZ(n). We prove this fact by showing a slightly more general result over the class of
non-negative integer matrices with matching row and column sums.
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Proposition 6.4. Let A = (aij) and B = (bij) be integer n× n matrices with non-negative
entries having matching row and column sums i.e. ∑n

i=1 aij0 = ∑n
i=1 bij0 and ∑n

j=1 ai0j =∑n
j=1 bi0j for 1 ≤ i0, j0 ≤ n. Then there exists swaps δ1(ur,vr) for r = 1, . . . , t such that

A = B +
t∑

r=1
δ1(ur,vr). (6.1)

Moreover the swaps δ1(ur,vr) can be chosen such that B +∑t0
r=1 δ1(ur,vr) has non-negative

entries for all 1 ≤ t0 ≤ t.

Proof. Define ∆(A) to be the quantity
∆(A) := ||A−B||

where ||A|| = ∑
i,j |aij|. We say that an entry aij is in deficit if aij < bij and in surplus if

aij > bij. We argue by induction on ∆(A). If ∆(A) = 0, then clearly A = B since A and B
both have non-negative entries. Suppose ∆(A) > 0. Then there exists indices i and j such
that aij − bij 6= 0. If aij is in surplus, then there must exists some row index i′ such that ai′j
is in deficit, otherwise the sum of column j in A is strictly greater than sum of column j
in B which leads to a contradiction. Therefore we may assume aij is in deficit. Since aij is
in deficit there exists j′ 6= j such that aij′ is in surplus, otherwise the sum of row i in B is
strictly greater than the sum of row i in A. Similarly, there exists a row index i′ 6= i such
that ai′j is in surplus. It follows that

A′ := A− δ1((i, j′), (i′, j))
has non-negative entries by construction with row and column sums matching that of A (and
hence that of B). Moreover

∆(A′) =




∆(A)− 4, if ai′j′ is in deficit,
∆(A)− 2, otherwise.

.

Hence by induction
A = A′ + δ1((i, j′), (i′, j))

= B +
t∑

r=1
δ(ur,vr) + δ1((i, j′), (i′, j)).

�
Corollary 6.5. Let A = (aij) ∈ CSPZ(n). Write Sj = ∑n−1

i=0 aij for the column sums of A for
j = 1, . . . , n and set s = (S1, . . . , Sn). Then there exists swaps δ1(ur,vr) for r = 1, . . . , t such
that

A = U(s) +
t∑

r=1
δ1(ur,vr). (6.2)

Moreover U(s) +∑t0
r=1 δ1(ur,vr) ∈ CSPZ(n) for all 1 ≤ t0 ≤ t.

Proof. Let Ri = ∑n
j=1 aij denote the row sums of A for i = 0, 1, . . . , n− 1. Note that the row

sums of A are determined uniquely by the column sums of A via

Ri =
∑

j:n
j
|i

1
j
Sj, for i = 0, . . . , n− 1,
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since both sides count the number of orbits whose stabilizer-order divides i in the corre-
sponding CSP-instance, according to (1.2) and Remark 2.8. Since A and U(s) have the same
column sums they must therefore have the same row sums. The corollary now follows from
Proposition 6.4 and Lemma 5.3. �
Remark 6.6. Proposition 6.4 shows that every A ∈ CSPZ(n) can be uniquely expressed as
U(s)+B where B = (bij) ∈ Zn×n is a matrix with zero row and column-sums and non-negative
values in all entries bk` unless (k, `) = (ni

j
, j) where 0 ≤ i < j and j|n.

Construction 6.7. If (Cm, X, f(q)) and (Cn, Y, g(q)) are two CSP-triples, then we can
construct a new CSP-triple of the form (Cmn, X × Y, h(q)) where h(q) is a polynomial of
degree less than mn which may be expressed as certain convolution of f and g.

Let (x, y) ∈ X × Y and suppose o(x) = i, o(y) = j with respect to the actions of Cm on X
and Cn on Y respectively. Let Cmn act on (x, y) via

σis+tmn · (x, y) := (σtm · x, σsn · y)
where 0 ≤ t < i and s ∈ Z. Note that (x, y) has order ij under the above action. By Remark
2.8, the number of elements of order i and j with respect to the actions of Cm on X and Cn
on Y are given respectively by

Si =
∑

`|i
µ(`/i)f(ω`m), Tj =

∑

`|j
µ(`/j)g(ω`n).

Therefore the action of Cmn on X × Y has
∑

ij=k
SiTj,

elements of order k. By (1.2) the coefficients cr of the unique polynomial h(q) = ∑mn−1
r=0 crq

r

(mod qmn − 1) complementing the action of Cmn on X × Y to a CSP is given by the number
of orbits whose stabilizer-order divides r, that is,

cr =
∑

k:mn
k
|r

∑

ij=k

1
k
SiTj.

The above construction gives rise to a natural product on universal CSP-matrices. Given a
vector s = (Sd), we define its number-theoretical series as the formal power-series

NS(s) :=
∑

1≤d
Sdx

e1
p1 . . . x

e`
p`

(6.3)

where d = pe1
1 . . . pe`` is the prime factorization of d.

Given two vectors s and t of length m and n, respectively, define the vector s � t of length
mn via the identity

NS(s � t) = NS(s) ·NS(t).
In other words, coordinate k in s� t is given by ∑SiTj , where the sum ranges over all natural
numbers i, j such that ij = k. Note that � is symmetric and transitive, and |s � t| = |s| · |t|
where | · | denotes the sum of the entries.

Proposition 6.8. Let U(s) ∈ C̃SP(m) and U(t) ∈ C̃SP(n). Then
U(s) � U(t) := U(s � t) ∈ C̃SP(mn).
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Proof. We have that i|Si and j|Tj for i = 1, . . . ,m, j = 1, . . . , n and Si, Tj = 0 for i 6 |m, j 6 |n.
It follows that

(s � t)k =
∑

ij=k
i|m,j|n

SiTj,

with k|(s � t)k for k = 1, . . . ,mn and (s � t)k = 0 if k 6 |mn. �

7. Geometry of the CSP cone

The below theorem provides the half-space description of CSP(n), showing that it is indeed
a rational convex polyhedral cone.

Theorem 7.1. Let n ∈ N \ {0} and A = (aij) ∈ Rn×n. Let the divisors of n be given by
1 = c1 < c2 < · · · < cd = n.

Let
Hk(x) :=

n−1∑

i=0

d∑

j=2
αijkxij ∈ Z[x],

where

αijk :=





−n+ n
cj
, if i = k and k ≡ 0 (mod n

cj
),

−n if i = k and k 6≡ 0 (mod n
cj

),
n
cj
, if i 6= k and k ≡ 0 (mod n

cj
),

0 if i 6= k and k 6≡ 0 (mod n
cj

).
Then A is a CSP matrix if and only if

A = (a1|a2| · · · |an),
where

a1 = (x01, H1(x), . . . , Hn−1(x))t,

ac =




(nx0c, nx1c, . . . , nx(n−1)c)t, if c|n,
0, otherwise,

for c = 2, . . . , n with Hk(x) ≥ 0 and xij ≥ 0 for all i, j, k.

Proof. For z ∈ Cn−1, let

V (z) :=




z1 z2
1 . . . zn−1

1
z2 z2

2 . . . zn−1
2

...
...

...
zn−1 z2

n−1 . . . zn−1
n−1



.

Let ω := (ωn, ω2
n, . . . , ω

n−1
n ) and set

Bj := (1t|V (ω))− Jcj
for j = 1, . . . , d where 1 := (1, . . . , 1) ∈ Rn−1 and

Jcj(k, `) :=




1 if cj|k,
0 otherwise
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for 1 ≤ k ≤ n− 1 and 1 ≤ ` ≤ n. Consider the matrix

B := [B1|B2| · · · |Bd] .

Then A = (aij) ∈ Rn×n
≥0 satisfies (4.1) if and only if

Ba = 0, (7.1)

where a = (a1| · · · |ad)t and aj = (a1cj , . . . , ancj) for j = 1, . . . , d. Note that the defining
CSP-equations (4.1) immediately give that aij = 0 for all 1 ≤ i ≤ n and j - n. We claim that
the real solutions to (7.1) are of the form

a1 =




x01
H1(x)
...

Hn−1(x)



, aj =




nx0j
nx1j
...

nx(n−1)j




(7.2)

where x01, xij ∈ R for 0 ≤ i ≤ n− 1, 2 ≤ j ≤ d and

Hk(x) =
n−1∑

i=0

d∑

j=2
αijkxij

for some αijk ∈ Z, k = 1, . . . , n− 1. Since B has full rank n− 1, the solutions (7.2) make up
the whole null space of B for dimensional reasons. Thus we only need to concern ourselves
with the existence of solutions of the form (7.2).

Given (7.1) and supposing (7.2) we thus require

(V (ω)− J1)α(ij) = u(ij), (7.3)

for i = 0, . . . , n− 1 and j = 2, . . . , d where

α(ij) :=




αij1
αij2
...

αij(n−1)



, u(ij) :=




u
(ij)
1
u

(ij)
2
...

u
(ij)
n−1



, u

(ij)
k :=




−nωikn + n, if cj|k,
−nωikn , otherwise

.

Note that

(V (ω)− J1)−1 = 1
n
V (ω).

Therefore

α(ij) = 1
n
V (ω)u(ij),
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which gives

αijk =
n−1∑

`=1

ωk`n
n

(−nωi`n ) +
n−1∑

`=1
cj |`

ωk`n
n
n

= −
n−1∑

`=0
(ω(i−k)

n )` +

n
cj
−1
∑

s=0
((ωcjn )k)s

=





−n+ n
cj
, if i = k and k ≡ 0 (mod n

cj
),

−n if i = k and k 6≡ 0 (mod n
cj

),
n
cj
, if i 6= k and k ≡ 0 (mod n

cj
),

0 if i 6= k and k 6≡ 0 (mod n
cj

).

Hence the theorem follows. �

The following corollary follows immediately from Theorem 7.1.

Corollary 7.2. Let n ∈ N \ {0} and d := |{c ∈ N : c|n}| denote the number of divisors of n.
Then CSP(n) has dimension n(d− 1) + 1.

Recall that a polyhedral cone is given by P = {x ∈ Rn : Ax ≥ b} for some n × n matrix
A. A non-zero element x of a polyhedral cone P is called an extreme ray if there are d− 1
linearly independent constraints that are active at x (i.e. hold with equality at x). If x is an
extreme ray, then λx is also an extreme ray for λ > 0. Two extreme rays that are positive
multiples of each other are called equivalent. Equivalent extreme rays correspond to the same
d− 1 active constraints. Extreme rays can also be defined as points in x ∈ P that cannot be
expressed as a convex combination of two points in the interior of P .

Below we give an explicit description of a subset of the extreme rays of CSP(n). This
subset includes all extreme rays of the universal CSP-cone C̃SP(n) (see Corollary 7.4). When
n = p for some prime number p, then we get all the extreme rays (see Corollary 7.5).

Theorem 7.3. Let n ∈ N \ {0} and suppose
1 = c1 < c2 < · · · < cd−1 < cd = n

are the divisors of n. Let `0 ∈ [d]. Then r = (rij) ∈ Rn×n is an extreme ray of CSP(n) if

rij =





1, if (i, j) = (0, c`0),
1

c`0−|I|
, if i ∈ I and j = c`0 ,

0, otherwise
for 0 ≤ i ≤ n− 1 and 1 ≤ j ≤ n where I ⊆ {t n

c`0
∈ N : 1 ≤ t < c`0}. In particular the number

of extreme rays of CSP(n) is at least
1
2

d∑

`=1
2c` .

Proof. By Theorem 7.1, CSP(n) is isomorphic to the polyhedral cone
{x ∈ Rn(r−1)+1 : nx ≥ 0 and Hk(x) ≥ 0 for all k = 1, . . . , n− 1}.
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Let r = (rij) ∈ Rn×n be an extremal ray of CSP(n) such that rij = 0 if j 6= c`0 . Note that
the defining inequalities of CSP(n) imply in particular that rij ≥ 0 for all 0 ≤ i < n and
1 ≤ j ≤ d.

Suppose first that r0c`0 = 0. Let k ∈ [n − 1] be such that rkc`0 ≥ ric`0 for all i ∈ [n − 1].
Suppose for a contradiction that rkc`0 > 0. The maximality of rkc`0 implies

ric`0
rkc`0

≤ 1. The
defining inequalities of the polyhedral cone CSP(n) gives −nric`0 ≥ 0 for i 6≡ 0 (mod n

c`0
),

which implies that ric`0 = 0 for i 6≡ 0 (mod n
c`0

). Thus we may assume k ≡ 0 (mod n
c`0

). Now,
Hk(x) ≥ 0 gives

0 ≤ −n+ n

c`0
+

∑

i∈[n−1]\k
n
c`0
|i

ric`0
rkc`0

≤ −n+ n

c`0
+ c`0 − 2,

which holds if and only if c`0 ≤ n+2
2 −∆ or c`0 ≥ n+2

2 + ∆ where ∆ =
((

n+2
2

)2 − n
)1/2

. Since
n+2

2 −∆ < 1 and n+2
2 + ∆ > n for n > 0 whereas 1 ≤ cj0 ≤ n this gives a contradiction.

Hence we may assume r0c`0 > 0. Let

M` :=
{
t
n

c`
∈ N : 1 ≤ t < c`

}
.

Suppose I ⊆ Mc`0
such that ric`0 > 0 for i ∈ I and ric`0 = 0 for i ∈ Mc`0

\ I. Since r is
an extreme ray there are by definition n(d− 1) linearly independent constraints active at r.
Since rij = 0 for j 6= c`0 and ric`0 = 0 for i ∈ [n− 1] \ I there are n(d− 2) + 1 + (n− 1)− |I|
active constraints covered. Note that we have (−n+ n

c`0
)rkc`0 +∑

i 6=k
n
c`0
ric`0 > 0 for k 6∈ I and

nrkc`0 > 0 for k ∈ Mc`0
\ I. Hence the remaining |I| inequalities must be active at r which

gives
(
−n+ n

c`0

)
rkc`0 +

∑

i 6=k

n

c`0
ric`0 = 0 (7.4)

for k ∈ I. If I = ∅, then the only non-zero entry of r is r0c`0 . Suppose I 6= ∅. Summing the
equations (7.4) and dividing by n

c`0
r0c`0 , we get

0 = c`0
nr0c`0

∑

i∈I



(
−n+ n

c`0

)
ric`0 +

∑

k 6=i

n

c`0
rkc`0


 = (−c`0 + |I|)

∑

i∈I

ric`0
r0c`0

+ |I|.

Hence we get the average ratio

1
|I|

∑

i∈I

ric`0
r0c`0

= 1
c`0 − |I|

(7.5)

Suppose
rkc`0
r0c`0

>
1

c`0 − |I|
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for some k ∈ I. Then by dividing (7.4) with n
c`0
r0c`0 and using (7.5) we have

0 = (−c`0 + 1)
rkc`0
r0c`0

+ 1 +
∑

i∈I

ric`0
r0c`0

−
rkc`0
r0c`0

= −c`0
rkc`0
r0c`0

+ 1 + |I|
c`0 − |I|

<
−c`0

c`0 − |I|
+ 1 + |I|

c`0 − |I|
= 0,

which gives a contradiction. Hence by (7.5) we have that

ric`0 =
r0c`0

c`0 − |I|
for all i ∈ I proving the theorem.

�
Corollary 7.4. Let n ∈ N \ {0} and suppose 1 = c1 < c2 < · · · < cd−1 < cd = n are the
divisors of n. Let M` = {t n

c`
: 0 ≤ t < c`} and define r(`) = (r(`)

ij ) ∈ Rn×n by

r
(`)
ij =





1, if i ∈M` and j = c`,

0, otherwise,

for 1 ≤ ` ≤ d. Then the extreme rays of C̃SP(n) are given by {r(`) : 1 ≤ ` ≤ d}.

Proof. By Theorem 7.3 the set {r(`) : 1 ≤ ` ≤ d} are indeed extreme rays and they clearly
generate all universal CSP matrices (cf. Definition 6.2). �
Corollary 7.5. Let p ∈ N be a prime number. Then the extreme rays of CSP(p) are given
by E01 ∈ Rp×p and r = (rij) ∈ Rp×p such that

rij =





1, if (i, j) = (0, p),
1

p−|I| , if i ∈ I and j = p,

0, otherwise,

where I ⊆ {1, . . . , p − 1}. In particular the number of extreme rays of CSP(p) is given by
2p−1 + 1.

By adding a size restriction on the set X we can also talk about a natural family of polytopes
associated with cyclic sieving phenomena.

Definition 7.6. Let m ∈ N. The mth CSP-polytope is the convex rational polytope defined
by

CSP(n,m) := {A ∈ CSP(n) : ||A|| = m} .
Let CSPZ(n,m) := CSP(n,m) ∩ Zn×n denote the set of integer lattice points in CSP(n,m).

Once again, in the case where n = p for some prime number p ∈ N we are able to make
explicit computations. In the following two propositions we compute the vertices and the
number of integer lattice points of CSP(n,m).
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Proposition 7.7. Let p ∈ N be a prime number and m ∈ N. Then the vertices of CSP(p,m)
are given by mE01 ∈ Rp×p and v = (vij) ∈ Rp×p such that

vij =





C, if (i, j) = (0, p),
C

p−|I| , if i ∈ I and j = p,

0, otherwise,
where I ⊆ {2, . . . , p} and

C = m

2p− 1 + (p−1)|I|
p−|I|

.

In particular the number of vertices of CSP(p,m) is given by 2p−1 + 1.

Proof. Suppose v = (vij) ∈ Rp×p is a vertex of CSP(p,m).
If v0p = 0, then arguing as in the first part of the proof of Theorem 7.3 gives that

v0p = v1p = · · · = vp−1p = 0. Therefore vij = 0, unless j = 1 by Lemma 5.1. The additional
constraint ||v|| = m thus gives

m =
∑

0≤i<p
1≤j≤p

vij =
p∑

j=1
v0j = x01 +

p−1∑

k=1
Hk(x), (7.6)

which is the same as
x01 + (2p− 1)x0p + (p− 1)x1p + · · ·+ (p− 1)xp−1p = m. (7.7)

Since xip = vip for i = 0, 1 . . . , p− 1 we get that v01 = x01 = m, so that v = mE01.
Therefore suppose v0p > 0. Moreover suppose I ⊆ {1, . . . , p− 1} such that vip > 0 for i ∈ I

and vip = 0 for i ∈ {1, . . . , p− 1} \ I. Since v is a vertex, there are by definition p+ 1 linearly
independent constraints active at v. Since p of these constraints arise from the polyhedral
description of CSP(p) in Theorem 7.1 it follows, as in Corollary 7.5, that

vip =





C, if (i, j) = (0, p),
C

p−|I| , if i ∈ I,
0, if i ∈ {1, . . . , p− 1} \ I,

for some C > 0. The remaining active constraint is Equation (7.7). Inserting the above into
Equation (7.7) and solving for C yields

C = m

2p− 1 + (p−1)|I|
p−|I|

,

from which the proposition follows. �
Proposition 7.8. Let p,m ∈ N where p is a prime number. The number of lattice points in
CSP(p,m) is given by

|CSPZ(p,m)| =
m∑

j=0

∑

r∈[ 2j
2p−1 ,

j
p−1 ]∩Z

C (r(2p− 1)− 2j, p− 1, br − j/pc) ,

where
C(n, k, w) =

k∑

j=0
(−1)j

(
k

j

)(
n− jw − 1
k − 1

)
.
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Proof. Let x = x0p, y = x1p + · · ·+ xp−1p and z = x01. According to the constraint ||A|| = m
we seek non-negative integer solutions to

(2p− 1)x+ (p− 1)y + z = m,

(cf. Equation (7.7)) satisfying Hk(x) ≥ 0. We therefore consider the Diophantine equations
(2p− 1)x+ (p− 1)y = j,

for j = 0, . . . ,m which have the non-negative integer solutions
x = j − r(p− 1) and y = −2j + r(2p− 1),

for r ∈
[

2j
2p−1 ,

j
p−1

]
∩ Z. The constraints Hk(x) ≥ 0 for k = 1, . . . , p− 1 give

x− (p− 1)xkp + (y − xkp) ≥ 0,
which implies

xkp ≤ r − j

p
for k = 1, . . . , p− 1. Hence the lattice points in CSP(p,m) are in one-to-one correspondence
with weak compositions of y = −2j + r(2p− 1) into p− 1 parts of size at most br− j/pc. By
[Abr76] the number of such compositions are given by C(r(2p− 1)− 2j, p− 1, br− j/pc). �

8. Appendix

In this appendix we prove inequalities needed for the estimations in Theorem 3.7. The
first inequality below gives a sufficient condition for a Riemann sum to be monotonically
increasing. A slightly weaker result appears in [BJ00, Theorem 3A].
Proposition 8.1. Let f(x) be a decreasing convex1 function on R≥0, let p be a positive
integer and r ≥ 0. Then

1
p

p∑

`=1
f

(
`+ r

p

)
≤ 1
p+ 1

p+1∑

`=1
f

(
`+ r

p+ 1

)
. (8.1)

Proof. Let xi := (i+ r)/p and yi := (i+ r)/(p+ 1) and note that

xi =
(

1− i

p

)
yi + i

p
yi+1 + r

p(p+ 1) . (8.2)

Since f is decreasing and convex, we have that

f(xi) ≤ f

[(
1− i

p

)
yi + i

p
yi+1

]
≤
(

1− i

p

)
f(yi) + i

p
f(yi+1)

Now let ai := f(xi) and bi := f(yi) and note that the decreasing property implies

ai ≤
(

1− i

p

)
bi + i

p
bi+1 ≤

(
1− i

p+ 1

)
bi + i

p+ 1bi+1 for i = 1, . . . , p.

We add all these inequalities and obtain
p∑

i=1
ai ≤

1
p+ 1

p∑

i=1
(p+ 1− i)bi + 1

p+ 1

p∑

i=1
ibi+1.

1For all a, b we have f( a+b
2 ) ≤ f(a)+f(b)

2 , or equivalently for twice differentiable functions, f ′′ ≥ 0.
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We then have

(p+ 1)(a1 + · · ·+ ap) ≤
p∑

i=1
(p+ 1− i)bi +

p+1∑

i=2
(i− 1)bi

≤ p
p∑

i=1
bi +

p∑

i=1
(1− i)bi + pbp+1 +

p∑

i=2
(i− 1)bi

≤ p(b1 + · · ·+ bp+1).

This implies (8.1). �

Corollary 8.2. Let r, s ≥ 0 and p ∈ N. Then the expression

g(p) = 1
p

p∑

`=1

1
s+ (r + `)/p (8.3)

is increasing with p.

Proof. Choosing the decreasing convex function f(x) = 1/(s+ x) in Proposition 8.1 together
with the given r yields

1
p

p∑

`=1

1
s+ (r + `)/p ≤

1
p+ 1

p+1∑

`=1

1
s+ (r + `)/(p+ 1) .

�

Corollary 8.3. If a, t, i, j and k are non-negative integers such that a ≤ t and j ≤ k, then
ka−1∑

`=0

1
kt+ i− ` ≥

ja−1∑

`=0

1
jt+ i− `. (8.4)

Proof. Choosing p = ak, s = (t− a)/a and r = i in (8.3) gives that

f(ak) = 1
ka

ak∑

`=1

1
s+ (i+ `)/(ak) =

ka∑

`=1

1
kt− ka+ i+ `

=
ka−1∑

`=0

1
kt+ i− `.

The fact that f(ka) ≥ f(kj) if k ≥ j now gives the desired inequality. �

Lemma 8.4. If a, b, i, j and k are non-negative integers such that a ≤ b and j ≤ k, then
(
kb+i
ka

)1/k

(
ka+i
ka

)1/k ≥
(
jb+i
ja

)1/j

(
ja+i
ja

)1/j . (8.5)

Proof. The inequality can be rewritten as f(b) ≥ f(a), where

f(t) :=

(
kt+i
ka

)j

(
jt+i
ja

)k . (8.6)

Thus, it suffices to show that f(t) is increasing. Computing the derivative and factoring out
positive terms reduces to Equation (8.4). �
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Remark 8.5. In the case where j|k, the binomial inequality (8.5) admits the following
combinatorial interpretation. A certain organization wants ka members to sit on its executive
committee and ja members to sit on the committee for each of its k/j factions. Then
the number of possible committee constellations with kb + i candidates for the executive
committee and ja + i candidates for each of the factions, is greater than the number of
committee constellations with ka + i candidates for the executive committee and jb + i
candidates for each faction.

Lemma 8.6. If a, b and k are non-negative integers such that b > a, then for each 0 ≤ i ≤ ka
we have (

kb+ i

ka

)(
ka+ i

ka

)−1

≥
(
b+ a

2a

)ka

Proof. If B > A, then the function f(x) = B+x
A+x is decreasing as x increases. Thus for

0 ≤ i ≤ ka we have
(
kb+ i

ka

)(
ka+ i

ka

)−1

= (kb+ i)(kb+ i− 1) · · · (kb+ i− ka+ 1)
(ka+ i)(ka+ i− 1) · · · (i+ 1)

≥
(
kb+ i

ka+ i

)ka

≥
(
b+ a

2a

)ka

�
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