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6 §1 INTRODUCTION

L’itération des applications en dimension un a une longue histoire. La méthode de
Newton-Raphson pour déterminer les zéros d’une fonction en est un exemple vieux de plus
de trois siècles. En essayant de trouver des méthodes effectives de calcul des itérées des
fonctions rationnelles, Schröder introduit la notion de conjugaison conforme. Toujours vers
la fin du XIXème, siècle Poincaré étudie les propriétés des homéomorphismes du cercle.
Au début du XXème siècle, en utilisant le théorème de Montel, Julia et Fatou étudient
de façon plus systématique l’itération des applications rationnelles. Ils partitionnent la
sphère de Riemann en deux ensembles d’après le comportement des itérées de l’application.
Ainsi l’ensemble de Fatou est l’ensemble des points qui possèdent un voisinage sur lequel
les itérées de l’application forment une famille normale. On appelle son complémentaire
l’ensemble de Julia. L’ensemble de Fatou est ouvert et invariant. L’ensemble de Julia est
soit toute la sphère, soit d’intérieur vide et il est lui aussi invariant. Son caractère fractal
a été mis en évidence dès cette époque.

Les images obtenues à l’aide de l’ordinateur par Mandelbrot de l’ensemble des pa-
ramètres c pour lesquels l’ensemble de Julia du polynôme z2 + c est connexe a attiré l’at-
tention de la communauté mathématique par leur complexité et par leur beauté. L’étude
de la dynamique complexe et spécialement de la famille quadratique s’est intensifiée depuis
le début des années 80, en commençant par les travaux de Douady et Hubbard. Toujours
dans les années 80, Sullivan montre que l’ensemble de Fatou n’a pas de composantes er-
rantes et par la suite on obtient une classification de ses composantes connexes. En même
temps la dynamiques des applications de l’intervalle est le sujet de nombreux travaux.
Milnor et Thurston élaborent une théorie combinatoire des application unimodales. Collet
et Eckmann introduisent une condition sur la croissance de la dérivée sur l’orbite critique
pour ces applications. À partir des années 80 la dynamique en dimension un connâıt un
développement impressionnant. Par la suite on se focalise sur les propriétés topologiques
et analytiques des orbites critiques et leur conséquences.

Les orbites critiques

Soit f une application rationnelle de degré d ≥ 2 et J son ensemble de Julia. L’en-
semble de Julia est l’adhérence des orbites périodiques répulsives et l’ensemble de Fatou
contient toutes les orbites périodiques attractives et leurs bassins d’attraction. Tout bassin
d’attraction d’une orbite périodique attractive contient un point critique de f . Si f est un
polynôme, J est connexe si et seulement si toutes les orbites critiques sont bornées. On dit
que f est hyperbolique s’il existe des constantes C > 0 et λ > 1 telles que

∣

∣(fn)′ (z)
∣

∣ > Cλn pour tous z ∈ J et n ≥ 1.

Les dynamiques hyperboliques sont totalement comprises et la conjecture de Fatou affirme
que pour un degré d fixé, l’ensemble des applications rationnelles hyperboliques est dense
dans l’ensemble des applications rationnelles de degré d. C’est toujours un problème ouvert
sauf pour la famille quadratique réelle. On sait que f est hyperbolique si et seulement si
la fermeture de ses orbites critiques est disjointe de J . On peut aussi montrer que dans
ce cas J est de mesure de Lebesgue nulle. Il a été conjecturé que l’ensemble de Julia est
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soit toute la sphère soit il est de mesure nulle. On dispose aujourd’hui d’un contre-exemple
quadratique construit récemment par Buff et Chéritat, voir [1].

Dans le cas où l’ensemble de Julia contient des points critiques on peut se demander
si on peut obtenir une expansion uniforme sur des sous ensembles compacts invariants de
l’ensemble de Julia. Cela est vrai par exemple pour l’ensemble des points d’accumulation
ω(c) des orbites critiques O(c) tels que ω(c) est disjoint de l’ensemble des points critiques
Crit en l’absence d’orbite périodique parabolique (orbite périodique indifférente de mul-
tiplicateur rationnel). C’est la condition de Misiurewicz qui a été ensuite généralisée en
demandant seulement c /∈ ω(c) pour tout c ∈ Crit∩J en l’absence d’orbite périodique
parabolique. On appelle cette condition semi-hyperbolicité. En dynamique unimodale ou
quadratique la condition de Collet-Eckmann est impliquée par la semi-hyperbolicité. On
dit qu’un point critique c ∈ Crit satisfait à la condition de Collet-Eckmann s’il existe des
constantes C > 0 et λ > 1 telles que

∣

∣(fn)′ (f(c))
∣

∣ > Cλn pour tout n ≥ 1.

On dit que f satisfait à la condition de Collet-Eckmann si tous ses points critiques dans
J sont Collet-Eckmann en l’absence d’orbite périodique parabolique et on dénote cette
condition par CE. En dynamique réelle, au début des années 80, van Strien, Gucken-
heimer et Misiurewicz posent le problème de l’invariance topologique de la condition de
Collet-Eckmann pour les application unimodales avec dérivée Schwarzienne négative (S-
unimodales). Nowicki et Sands ([10]) démontrent vers la fin des années 90 que la condition
CE pour les applications S-unimodales est équivalente à la deuxième condition de Collet-
Eckmann (CE2) mais aussi à l’hyperbolicité uniforme sur les orbites périodiques. Soient g
une application S-unimodale et c son point critique. On dit qu’elle satisfait à la condition
CE2(c) s’il existe des constantes C > 0 et λ > 1 telles que pour toute préimage y ∈ g−n(c)
avec n > 0 du point critique on a

∣

∣(gn)′ (y)
∣

∣ > Cλn.

On dit que g est uniformément hyperbolique sur les orbites périodiques (UHP ) s’il existe
λ > 1 tel que pour tout point périodique x si gm(x) = x et m > 0 alors

∣

∣(gm)′ (x)
∣

∣ > λn.

On généralise cette définition pour les applications rationnelles en considérant seulement
les orbites périodiques dans l’ensemble de Julia. En introduisant une condition formulée
exclusivement en termes topologiques, la condition de Collet-Eckmann topologique (TCE),
et en démontrant qu’elle est aussi équivalente à CE2(c) et à UHP , Nowicki et Przytycki
montrent l’invariance topologique de CE dans le cas S-unimodal, voir [9]. On obtient
des contre-exemples S-multimodales (applications avec dérivée Schwarzienne négative sur
l’intervalle avec plusieurs points critiques) pour l’invariance topologique de CE. Tous ces
contre-exemples sont semi-hyperboliques et la question de l’invariance de CE pour les
points critiques récurrents persiste en dynamique S-multimodale à la fin des années 90, voir
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[15]. L’étude de la condition CE pour les applications rationnelles a commencé seulement
dans les années 90 dans l’article [12] de Przytycki.

L’étude de la régularité des composantes de l’ensemble de Fatou a été initiée par
Carleson, Jones et Yoccoz dans l’article [2]. Ils démontrent qu’un polynôme est semi-
hyperbolique si et seulement si le bassin d’attraction de l’infini est un domaine de John.
Graczyk et Smirnov montrent plus tard dans [6] que les composantes de l’ensemble de
Fatou sont des domaines de Hölder pour les applications rationnelles CE, voir aussi [7]
pour une généralisation de la condition de Collet-Eckmann. Przytycki, Rivera-Letelier et
Smirnov établissent en [13] l’équivalence entre TCE, UHP , CE2(z0) pour un z0 ∈ C et
la décroissance exponentielle du diamètre des composantes (ExpShrink). On dit que l’ap-
plication rationnelle f satisfait à ExpShrink s’il existe r > 0 et λ > 1 tels que pour tout
z ∈ J et n > 0

diam Comp f−n (B(z, r)) < λ−n.

En utilisant aussi le résultat de Graczyk et Smirnov, en présence des cycles attractifs,
la regularité Hölder des domaines de l’ensemble de Fatou devient équivalente a toutes
ces conditions. Carleson, Jones et Yoccoz ([2]) montrent aussi que les polynômes semi-
hyperboliques satisfont à ExpShrink et donc à toutes ces conditions équivalentes. La
réciproque n’est pas vraie, voir [13]. Également, la condition CE pour les applications
rationnelles n’est pas impliquée par ces conditions, sauf pour le cas où l’application a
un seul point critique, voir [11]. Une application rationnelle satisfaisant à ces conditions
équivalentes a une dynamique presque hyperbolique, par exemple la dimension de Hausdorff
de l’ensemble de Julia est strictement inférieure à 2 dans le cas polynomial, voir [6]. De
plus, de telles dynamiques sont abondantes dans l’espace des paramètres, voir [16], [17],
[14] et [8].

La condition de Collet-Eckmann pour les orbites critiques récurrentes

Cette thèse etudie une condition plus générale que la semi-hyperbolicité et que la condi-
tion de Collet-Eckmann. On l’appelle Collet-Eckmann pour les orbites critiques récurrentes
(RCE) et son étude a été inspirée par les résultats de [2] et [6]. Une application rationnelle
f satisfait à cette condition si elle ne possède pas d’orbite périodique parabolique et tout
point critique récurrent dans l’ensemble de Julia est Collet-Eckmann. On démontre qu’elle
a comme conséquence la régularité Hölder des composantes de l’ensemble de Fatou. On
construit aussi un contre-exemple pour la réciproque.

La condition CE pour les orbites critiques récurrentes a été déjà formulée dans le
cas S-multimodal, voir [15]. Disposant seulement de contre-exemples semi-hyperboliques
pour l’invariance topologique de CE pour ces applications, Świa̧tek conjecture l’invariance
topologique de RCE pour les applications S-multimodales. Les techniques développées
dans le troisième chapitre pour construire un polynôme ExpShrink qui ne satisfait pas à
RCE produisent aussi un contre-exemple pour cette conjecture.

Cette thèse comporte trois chapitres. Dans les sections 1.1, 1.2 et 1.3 ci-dessous nous
décrivons les résultats de chacun de ces trois chapitres et l’essentiel des méthodes utilisées.
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1.1 La condition de Collet-Eckmann pour les orbites

critiques récurrentes implique l’hyperbolicité uni-

forme sur les orbites périodiques répulsives

Le deuxième chapitre est dédié exclusivement à la preuve du théorème suivant.

Théorème 1. Les composantes de l’ensemble de Fatou de toute application rationnelle qui
satisfait à la condition de Collet-Eckmann pour les orbites critiques récurrentes sont des
domaines de Hölder.

Soient f une application rationnelle RCE, J son ensemble de Julia et C > 0, λ > 1
tels que tout point critique récurrent c ∈ J satisfait

∣

∣(fn)′ (f(c))
∣

∣ > Cλn pour tout n > 0.

Nous démontrons que f satisfait à la condition de décroissance exponentielle du diamètre
des composantes.

Une étape importante avant de démontrer la décroissance exponentielle est la stabilité
en arrière (BS, backward stability).

Definition 2.1.4. On dit que f est stable en arrière si pour tout ε > 0 il existe δ > 0 tel
que pour tout z ∈ J et n ≥ 0

diam Comp f−n (B(z, δ)) < ε.

Dans le cas semi-hyperbolique, la stabilité en arrière garantit que le degré sur les
préimages des petits disques reste borné. Dans l’article [2] Carleson, Jones et Yoccoz
montrent que dans ce cas la distorsion en termes de diamètres est bornée, ce qui im-
plique une décroissance uniforme des diamètres des préimages. Grâce à la même borne
de la distorsion on peut itérer cette décroissance uniforme pour obtenir la décroissance
exponentielle du diamètre.

Graczyk et Smirnov ([6]) utilisent aussi une construction du type télescope mais ils
calculent la dérivée sur une orbite en arrière au lieu de considérer le diamètre des disques.
Ils obtiennent une borne explicite de la distorsion en utilisant la méthode des voisinages
embôıtés. Ils récupèrent ainsi la croissance exponentielle de la dérivée sur une orbite en
arrière en enchâınant trois types de tubes du télescope. À chaque étape ils considèrent des
préimages univalentes.

Un outil employé pour développer la technique de voisinages embôıtés mais aussi fort
utile dans la preuve de la proposition 2.2.3 est le lemme de Koebe. C’est essentiellement une
borne de la variation de la dérivée d’une application holomorphe loin des points critiques
qui engendre aussi une borne pour la déformation des disques.

Lemme de Koebe. Soit g : B → C une application holomorphe univalente du disque
unité dans le plan complexe. L’image g(B) contient le disque B

(

g(0), 1
4
|g′(0)|

)

et pour
tout z ∈ B on a

(1 − |z|)
(1 + |z|)3 ≤ |g′(z)|

|g′(0)| ≤
(1 + |z|)
(1 − |z|)3
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et

|g(z) − g(0)| ≤ |g′(z)| |z|(1 + |z|)
1 − |z| .

Pour démontrer le théorème 1 on construit un télescope avec trois types de tubes. Nous
avons choisi de considérer les diamètres des préimages au lieu de la dérivée sur une orbite
en arrière à cause des orbites critiques qui ne satisfont pas la condition de Collet-Eckmann.
Après avoir démontré la stabilité en arrière, en l’absence des orbites Collet-Eckmann on
obtient une majoration du degré. On obtient une estimation explicite de la distorsion en
termes de diamètre dans ce cas. Toutes les distances sont considérées dans la métrique
sphérique.

Lemme 2.2.1. Soient g une application rationnelle, z ∈ C et 0 < r < R < 1. Soient W
et W ′ deux composantes connexes de g−1 (B(z, R)) et de g−1 (B(z, r)) respectivement, avec
W ′ ⊆ W et diam W < 1. Si degW g ≤ µ alors

diam W ′

diam W
< 64

( r

R

)
1
µ

.

On peut ainsi utiliser les techniques de [2] et [6] ensemble, a priori de natures très
différentes. Il faut remarquer que dans le cas rationnel, les préimages des disques ne sont
plus nécessairement simplement connexes. Grâce à la stabilité en arrière on peut quand
même choisir une échelle où les préimages de composantes simplement connexes sont sim-
plement connexes. Toujours grâce à BS le télescope peut admettre des tubes avec un degré
arbitraire. C’est le cas des tubes qui contiennent des orbites critiques Collet-Eckmann. La
proposition suivante montre que leur diamètre décrôıt exponentiellement. On définit un voi-
sinage Ω de J stable par préimage et qui ne rencontre pas d’orbite critique dans l’ensemble
de Fatou.

Proposition 2.2.3. Pour tout 1 < λ0 < λ et θ < 1 il existe δ > 0 avec la propriété
suivante. Soient N > 0 et W une composante connexe de f−N(B(z, R)) avec B(z, R) ⊆ Ω
et diam fn(W ) ≤ δ pour tout n = 0, . . . , N , si f−N−1(W ) contient un point critique Collet-
Eckmann et ∪N−1

i=0 f i(W ) contient aussi un point critique, alors

diam W < θRλ−N
0 .

Comme dans [2] on obtient une décroissance uniforme du diamètre quand le degré est
borné. On l’utilise en l’absence de points critiques Collet-Eckmann dans une suite donnée
de préimages.

Proposition 2.2.2. Pour tous β > 1, µ ≥ 1 il existe δ > 0 tel que pour tous 0 < r <
R < δ

β
il existe N > 0 avec la propriété suivante. Pour tout z ∈ J avec B(z, βR) ⊆ Ω et

n ≥ N si W ′ et W sont deux composantes connexes de f−n(B(z, R)) et de f−n(B(z, βR))
respectivement telles que W ′ ⊆ W et degW (fn) ≤ µ alors

diam W ′ < r.
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Une première difficulté rencontrée est le fait que sans disposer de la stabilité en arrière
on doit travailler avec des préimages qui ne sont pas nécessairement simplement connexes.
Par conséquent on considère des anneaux et on les découpe pour éviter les valeurs critiques.
La preuve du lemme 2.2.1 utilise les propriétés de module des anneaux parmi lesquelles le
problème extrémal de Teichmüller.

Une deuxième difficulté majeure de la preuve est la construction du télescope qui doit
comprendre des tubes de degré arbitraire. En utilisant le diamètre au lieu de la dérivée sur
une orbite en arrière, on ne peut pas multiplier les estimées trouvées. Cela se fait en utilisant
le lemme 2.2.1 pour lire la contraction au bout du télescope. Par contre le lemme s’applique
seulement quand le degré est borné. La proposition 2.2.3 fonctionne dès que les diamètres
des préimages ne dépassent pas une borne fixée, ce qui permet de multiplier les estimées
sur des tubes consécutifs qui contiennent des orbites critiques CE. Ces deux méthodes
permettent de démontrer la décroissance exponentielle du diamètre des composantes.

1.2 Exemples et contre-exemples

On se pose le problème de la réciproque du théorème 1. En utilisant le lemme de Koebe
ou l’inegalité (3.27) on observe que si W est ouvert et connexe et W−1 est une composante

connexe de f−1(W ) tels que
dist(W−1,Crit)

diamW−1 est grand alors diam W
diamW−1 est comparable avec

|f ′(z)| pour tout z ∈ W−1, voir aussi le lemme 3.4.3. Cela implique une certaine équivalence
entre des conditions sur la dérivée et des conditions exprimées en termes de diamètre de
composantes connexes. Par contre, dans le cas contraire, |f ′(z)| peut être beaucoup plus
petit que diamW

diamW−1 . L’inégalité (3.28) affirme qu’il existe M > 0 tel que si le diamètre de
W est suffisamment petit alors pour tout z ∈ W−1 on a

diam W−1 ≤ M |f ′(z)|−1
diam W. (2.17)

Le terme de droite peut être beaucoup plus grand que celui de gauche et cela est précisé-
ment le motif pour lequel il existe une application rationnelle ExpShrink qui ne satisfait
pas à RCE.

On développe une technique basée sur les propriétés combinatoires des applications
multimodales pour construire un contre-exemple pour la réciproque du théorème 1. C’est
un polynôme de degré 3 très proche du deuxième polynôme de Chebyshev, on le dénote
par g. Le premier point critique c1 est envoyé en 1 qui est un point fixe répulsif. Przytycki
montre en [11] que tout point critique d’une application rationnelle TCE qui ne s’accumule
pas sur d’autres points critiques est CE. On doit alors rendre la deuxième orbite critique
récurrente mais il faut aussi qu’elle s’accumule sur c1. Ce sont exactement aux temps pi où
cette orbite se rapproche de c1 que sa dérivée

∣

∣(gpi)′ (g(c2))
∣

∣ peut être rendue plus petite que
1, pour que c2 ne soit pas CE. On construit g de telle façon que sur les segments d’orbites
qui ne comportent pas de tels moments pi la croissance de la dérivée soit exponentielle. En
utilisant ensuite les outils développés pour démontrer le théorème 1 et une analyse plus
fine lorsqu’une préimage est très proche de c1, on montre que g satisfait à ExpShrink.
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Pour pouvoir construire l’application g en suivant cette schéma de preuve on doit dis-
poser déjà de plusieurs constantes - notamment les échelles - qui a priori dépendent de g.
Pour résoudre ce problème on démontre des versions uniformes des résultats de contraction
utilisés dans la preuve du théorème 1. Comme g est une limite d’une suite décroissante de
familles de polynômes, on peut utiliser ces résultats - corollaire 3.4.2 et proposition 3.4.4 -
pour montrer le théorème suivant.

Théorème 2. Il existe un polynôme ExpShrink qui ne satisfait pas à RCE.

Les techniques développées pour construire ce contre-exemple produisent aussi une paire
d’applications polynomiales 2-modales h et h̃ conjuguées et avec dérivées Schwarzienne
négatives telles qu’une seule des deux satisfait à RCE. C’est un contre-exemple pour la
conjecture de Świa̧tek, [15].

Théorème 3. La propriété RCE n’est pas topologiquement invariante dans la classe des
applications S-multimodales.

En changeant le degré du point critique c1 on obtient des phénomènes différents pour
h et h̃ aux moments où la deuxième orbite critique approche c1. On peut remarquer que
cette stratégie ne peut pas être employée pour infirmer l’invariance topologique de RCE
complexe, où le degré des points critiques est preservé par conjugaison topologique.

Un exemple de polynône RCE

En utilisant le même type de construction on peut obtenir un polynôme 2-modal semi-
hyperbolique tel que c2 ne soit pas CE. On choisit aussi une dynamique quadratique réelle
avec l’orbite critique récurrente et CE et on colle les deux dynamiques pour produire
un exemple de polynôme RCE qui n’est pas semi-hyperbolique ni CE. On peut réaliser
cela grâce à la théorie générale des application multimodales. Elle garantit l’existence
d’un polynôme 3-modal de degré 4 qui réalise le triplet des itinéraires critiques (kneading
sequences) de l’application 3-modale continue qu’on vient de décrire. Toutes les racines de
sa dérivée sont réelles, par conséquent le polynôme obtenu a dérivée Schwarzienne négative.
Comme il n’a pas d’orbite attractive, on peut conjuguer ses restrictions aux dynamiques
initiales et démontrer les propriétés annoncées.

1.3 Sur la dimension de Hausdorff des attracteurs

fractals des applications unimodales

Cette annexe présente un travail qui n’est pas lié à la condition RCE. On y étudie les
applications unimodales infiniment renormalisables. Le motivation principale est le résultat
suivant obtenu par Graczyk et Kozlovski dans l’article [4].

Théorème. Il existe une constante universelle σ < 1 telle que tout attracteur d’une ap-
plication C4 unimodale dont le point critique est non-dégénéré a dimension de Hausdorff
plus petite que σ ou est une réunion finie d’intervalles fermés et non-dégénérés.
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Fig. 1.1 – Les attracteurs dans la famille quadratique

Ce théorème a été généralisé par Li et Shen ([3]) pour les applications multimodales
dont les points critiques sont non-plats.

Des phénomènes universels ont été observés au début des années 80 dans plusieurs
familles d’applications parmi lesquelles la famille quadratique fa(x) = ax(1 − x) pour
0 < a ≤ 4. Un de ces phénomènes est la convergence exponentielle des bifurcations. Plus
précisément, soit an le plus petit paramètre pour lequel fan

a une orbite périodique d’ordre
2n. On obtient une convergence an→a∞ mais aussi

lim
n→∞

an+1 − an

an+2 − an+1
= 4, 6692 . . .

qui est universelle. La figure 1.1 représente les attracteurs dans la famille quadratique.
Les orbites périodiques attractives constituent l’exemple le plus simple d’attracteur.

Un attracteur est un ensemble invariant sur lequel s’accumulent une partie importante
des orbites de la dynamique, minimal pour cette propriété. On peut alors considérer une
définition topologique ou métrique de l’attracteur, voir la section A.1. Graczyk, Sands
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et Świa̧tek montrent que pour les applications C3 unimodales dont le point critique est
non-dégénéré les deux notions d’attracteurs cöıncident, voir [5].

L’application fa∞
est appelée application de Feigenbaum et c’est un premier exemple

d’application infiniment renormalisable. De façon générale, on dit que f est renormalisable
si elle possède un intervalle restrictif J sur lequel une itérée fn avec n > 1 est unimodale,
voir aussi la définition A.3.1. Une application infiniment renormalisable possède une infinité
d’intervalles restrictifs. Les applications S-unimodales ont exactement un attracteur. Si fa

n’est pas infiniment renormalisable son attracteur est soit une orbite périodique soit une
réunion finie d’intervalles fermés. Par conséquent, du point de vue de la dimension de Haus-
dorff de l’attracteur, seules les applications infiniment renormalisables sont intéressantes.
On appelle ces attracteurs fractals.

On démontre le théorème suivant qui caractérise les applications quadratiques infi-
niment renormalisables et leur type de renormalisation en termes d’itinéraires critiques
(kneading sequences). On dénote par If(J) l’itinéraire fini de l’intervalle restrictif J de f
et par R l’opérateur de renormalisation.

Theorem 4. Si f est une application quadratique et Kf son itinéraire critique alors f est
infiniment renormalisable si et seulement si Kf est une composition infinie d’itinéraires
finis maximaux non-triviaux.

Pour toute suite (Kn)n≥1 d’itinéraires maximaux finis non-décomposables non-trivials
il existe une unique application quadratique g telle que

Kg = K1 ∗ K2 ∗ . . .

et
IRi−1(g) (Ji) = K i pour tout i ≥ 1

où Ji est l’intervalle restrictif maximal associé à la i-ème renormalisation de g.

La preuve est basée sur l’identification des permutations unimodales non-renormali-
sables à des itinéraires maximaux finis non-décomposables.

En utilisant ce théorème et la théorie de Milnor et Thurston sur la monotonie de
l’itinéraire critique dans la famille quadratique on obtient un algorithme qui pour tout
type de renormalisation (σ1, σ2, . . .) produit une suite convergente à a ∈ (0, 4] tel que fa

est infiniment renormalisable du type (σ1, σ2, . . .). Jusqu’à présent, les seules applications
infiniment renormalisables accessibles numériquement étaient celles qui possèdent une re-
normalisation conjuguée à l’application de Feigenbaum. Ces applications se trouvent aux
limites supérieures des fenêtres de bifurcations, voir la figure 1.1. On estime numériquement
la dimension de Hausdorff de plusieurs types d’attracteurs. La plus grande valeur obtenue
est la dimension de l’attracteur de Feigenbaum.
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Abstract. We prove that the Collet-Eckmann condition for recurrent critical orbits inside

the Julia set of a rational map with no parabolic periodic orbits implies uniform hyperbolicity on

periodic orbits.

2.1 Introduction

Let f be a rational map, J its Julia set and Crit the set of critical points. We know
that J is hyperbolic if and only if the closure of the postcritical set O(Crit) is disjoint
from J . If we let some critical points with finite orbit be in the Julia set it becomes sub-
hyperbolic. The next step is to allow infinite critical orbits in J as long as they do not
accumulate on any critical point and rule out parabolic periodic orbits, the Misiurewicz
condition. Semi-Hyperbolicity is even weaker, it requires that critical orbits should not be
recurrent, in the absence of parabolic periodic points. Under this assumption Carleson,
Jones and Yoccoz show that the Fatou components are John domains for polynomials (see
[4]). Every John domain is a Hölder domain. The property that all Fatou components are
Hölder is equivalent to uniform hyperbolicity on periodic orbits (see [5] and [10]). Another
advance in this direction was done by Graczyk and Smirnov (initiated in [5] and developed
in [6]) by allowing recurrent critical points in the Julia set. If all the critical points in J
are Collet-Eckmann then all Fatou components are Hölder. We propose a new sufficient
condition for Uniform Hyperbolicity on Periodic Orbits. It allows for both non-recurrent
and Collet-Eckmann critical points in the Julia set, in the absence of parabolic periodic
orbits.

It is known that a semi-hyperbolic rational map is not necessarily Collet-Eckmann and
vice-versa, see Section 6.1.1 in [10] and Section 1.2 in [7]. Therefore Uniform Hyperbolicity
on Periodic Orbits does not imply Collet-Eckmann nor Semi-Hyperbolicity. For unicritical
polynomials however, the Collet-Eckmann condition is equivalent to Uniform Hyperbolicity
on Periodic Orbits, see [5] and [9]. To our knowledge there is no counterexample to the
converse of our main theorem.

A related problem is the invariance of such regularity or growth conditions under topo-
logical conjugacy. Semi-Hyperbolicity (by definition) and Uniform Hyperbolicity on Peri-
odic Orbits (see [10]) are topologically invariant but the Collet-Eckmann condition is not
topological, except for unicritical polynomials, see Appendix C in [10]. In [2] the expansion
along every orbit in the Julia set is estimated with respect to the distance to critical points
and to the growth of the derivative along the critical orbits. Therefore the recurrence of
critical points and the growth of the derivative along their orbits play an important role
in the understanding of the dynamics.

Definition 2.1.1. We say that c ∈ Crit satisfies the Collet-Eckmann condition (c ∈ CE)
if |(fn)′(f(c))| > Cλn for all n > 0 and some constants C > 0, λ > 1. We say that f has
the Collet-Eckmann property if all critical points in J are CE.

Given c ∈ Crit we say that it is non-recurrent (c ∈ NR) if c /∈ ω(c), where ω(c) is the ω-
limit set, the set of accumulation points of the orbit (fn(c))n>0. We call f semi-hyperbolic
if all critical points in J are NR and f has no parabolic periodic orbits.
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Our new condition on critical orbits is weaker than Collet-Eckmann and Semi-Hyper-
bolicity.

Definition 2.1.2. We say that f satisfies the Recurrent Collet-Eckmann (RCE) condition
if every critical point in the Julia set is either CE or NR and f has no parabolic periodic
orbits.

Let us remark that a RCE rational map may have critical points in J that are Collet-
Eckmann and non-recurrent in the same time. Moreover any critical orbit may accumulate
on the other critical points.

Several standard conditions are equivalent to Uniform Hyperbolicity on Periodic Orbits
(UHP ), see [10]. Therefore any of them may be considered as a definition. Among these
conditions we recall Topological Collet-Eckmann condition (TCE), Exponential Shrinking
of components (ExpShrink) and Backward Collet-Eckmann condition at some z0 ∈ C
(CE2(z0)).

Definition 2.1.3. We say that f satisfies the Exponential Shrinking of components condi-
tion if there are λ > 1, r > 0 such that for all z ∈ J, n > 0 and every connected component
W of f−n(B(z, r))

diam W < λ−n.

If not stated explicitly all the distances and derivatives are considered with respect
to the spherical metric. We denote by Be (z, R), diste (z, W ) and diame W the Euclidean
balls, distances and diameters respectively.

Theorem 1. The Recurrent Collet-Eckmann condition implies Uniform Hyperbolicity on
Periodic orbits for rational maps.

We show that the Recurrent Collet-Eckmann implies the equivalent condition Expo-
nential Shrinking of components. An intermediary step to ExpShrink is to show that
arbitrary pullbacks of small balls stay small. This property is called Backward Stability in
[8].

Definition 2.1.4. We say that a rational map f has Backward Stability (BS) if for any
ε > 0 there exists δ > 0 such that for all z ∈ J , n ≥ 0 and every connected component W
of f−n(B(z, δ))

diam W < ε.

Inevitably, we borrow some ideas from [4], [5] and [10] to prove our theorem.
In [4], Carleson, Jones and Yoccoz prove the Backward Stability property in the Semi-

Hyperbolic case. Then there is r > 0 such that the degree of any pullback of a ball
B(x, r), with x ∈ J , is bounded, as the critical points are non-recurrent. They use a
telescope construction which we sketch to prove the Exponential Shrinking of components
condition. There is n0 > 0 such that any pullback of length n0 of some B(x, r) with x ∈ J
is contracting. So it can be nested inside some B(y, r) with y ∈ J and inductively build
the telescope. A bounded degree distortion argument yields an exponential contraction of
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pullbacks of B(x, r) of arbitrary length. We should remark that this is done for polynomials,
a fact that guarantees that pullbacks of balls are simply connected.

We refine the distortion argument and obtain some specific bound for the distortion in
Lemma 2.2.1. Proposition 2.2.2 proves the contraction of long bounded degree pullbacks.

In [5], Graczyk and Smirnov prove the Backward Collet-Eckmann condition for some
z0 ∈ C. They also pull back balls around the backward orbit of z0, considering only
univalent pullbacks. Depending on the presence of critical points close to the backward
orbit of z0, there are three types of pullback. Using distortion arguments (the method
of shrinking neighborhoods) and the Collet-Eckmann property, they obtain exponential
growth of the derivative on the backward orbit.

Among our new methods we may count a precise bound for the distortion in a bounded
degree setting (Lemma 2.2.1) and a way to deal with non-simply connected pullbacks, using
rings. We build a telescope and show the Exponential Shrinking of components condition.
Although the idea of a telescope is not new, its originality consists in combining bounded
degree and unbounded degree segments. For a precise description of its construction one
may refer to Section 2.4. The general picture is that we modified the techniques of [4], [5]
and [10] to make them work together. As in [5], we distinguish three types of pullback. A
pullback of the first type does not have a bounded degree so Proposition 2.2.3, which deals
with this case, is crucial. Note that the Backward Stability property is needed to apply
Proposition 2.2.3 and it is proved in Section 2.3. In the absence of Collet-Eckmann critical
points, the Backward Stability property gives a bound for the degree of a pullback, as in
the semi-hyperbolic case. This case defines the second type of pullback. The third type
has a bound for the degree in the presence of Collet-Eckmann critical points. We obtain
exponential contraction along every block of the telescope, with the eventual exception of
the last one. Lemma 2.2.1 helps assemble all these estimates to obtain the Exponential
Shrinking of components condition.

2.2 Preliminaries

Without loss of generality we may assume that critical orbits (fn(c))n≥1 with c ∈ Crit ∩ J
do not contain critical points, needed in the proof of Proposition 2.2.3. Indeed, suppose
some critical orbit contains a critical point inside the Julia set. Then we consider the iter-
ate of f that connects the critical points as one iterate of the dynamics. The critical points
that are on the same orbit collapse into a critical “block” for the new local dynamics. As
there are only finitely many such situations, our procedure does not affect global compact-
ness properties of the dynamics. The multiplicity of the critical block is the product of
multiplicities of critical points involved. This is a standard construction, see for example
[5] or [10].

Notation. For B ⊆ C connected we write B−n or f−n(B) for some connected compo-
nent of f−n(B), 0 ≤ n. When z ∈ B and some backward orbit zn ∈ f−n(z) are fixed, B−n

is the connected component of f−n(B) that contains zn.

Let us recall that we denote by Be (z, R), diste (z, W ) and diame W the Euclidean
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balls, distances and diameters respectively. We also recall some classical properties of the
spherical metric and of the modulus of an annulus (or ring or doubly connected region).
The spherical metric dσ satisfies

dσ =
2|dz|

1 + |z|2

so on Be(0, 1) we have
|dz| ≤ dσ ≤ 2|dz|.

Thus for every W ⊆ Be(0, 1)

diame W ≤ diam W ≤ 2 diame W. (2.1)

Moreover for 0 6= z ∈ Be(0, 1) and 0 < α < 1 we have

dist (0, z)

dist (0, αz)
<

1

α
=

diste (0, z)

diste (0, αz)
.

Let A(r, R) = B(0, R) \ B(0, r) and Ae(r, R) = Be(0, R) \ Be(0, r) for 0 < r < R. If
A(r, R) = Ae(r

′, R′) with R′ < 1, by the previous inequality we obtain

R

r
<

R′

r′
.

As mod Ae(r
′, R′) = log(R′/r′)

2π
(modulus of Ae(r

′, R′)),

mod A(r, R) >
log(R/r)

2π
, 0 < r < R < 1. (2.2)

Let g : A → A′ be a conformal proper map of degree d and A, A′ two doubly connected
regions. Then

mod A =
1

d
modA′. (2.3)

In particular, the modulus is a conformal invariant.
Let A be an annulus and B1, B2 the two connected components of C\A. If A1, . . . , Ak ⊆

A are disjoint annuli that separate B1 from B2 then

mod A ≥
n
∑

i=1

modAi. (2.4)

For any connected open U ⊆ C, every connected component of C\U is simply connected.
If diam U ≤ 1 then there is only one component of C \ U with diameter greater than 1.
Denote it by ext (U). Let fill (U) = C \ ext (U). It is a simply connected open with
diam U = diam(fill (U)) and diame U = diame(fill (U)).

Let us also recall the Teichmüller extremal problem - Theorem 4-7 and relation (4-21)
in [1].
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Proposition 2.2.1. Let T > 0,

Λ(T ) = mod
(

C \ ([−1, 0] ∪ [T,∞])
)

,

and A some annulus that separates {−1, 0} from {ω0,∞} with |ω0| = T . Then modA ≤
Λ(T ),

16T ≤ exp (2πΛ(T )) ≤ 16 (T + 1) . (2.5)

and

Λ(T )Λ(T−1) =
1

4
.

Therefore

lim
T→∞

Λ(T ) = ∞ and lim
T→0

Λ(T ) = 0. (2.6)

We are ready to prove our first lemma. It provides a way to control distortion in terms
of diameters of a bounded degree pullback.

Lemma 2.2.1. Let g be a rational map, z ∈ C and 0 < r < R < 1. Let W = B(z, R)−1

and W ′ = B(z, r)−1 with W ′ ⊆ W and diam W < 1. If degW (g) ≤ µ then

diam W ′

diam W
< 64

( r

R

)
1
µ

.

Proof. Let A1, . . . , Am be disjoint concentric annuli inside A(z, r, R) that avoid critical
values of g|W and such that ∪m

i=1Ai = A(z, r, R). In this setting

m
∑

i=1

modAi = mod dA(z, r, R). (2.7)

It is easy to check that g : A−1
i → Ai is a finite proper cover for all i = 1, . . . , m and

A−1
i ⊆ W a connected component of g−1(Ai). Then A−1

i is a doubly connected region and
by equality (2.3)

modA−1
i =

1

degA−1
i

(g)
mod Ai ≥

1

µ
mod Ai. (2.8)

For every w ∈ ∂W and every Ai there exists some A−1
i ⊆ W that separates W ′ from

w. Suppose there is not. Then W ′ could be joined to w by a path γ ⊆ W \ g−1(Ai), as W
connected. Then g(γ) joins B(z, r) to ∂B(z, R) and g(γ) ∩ Ai = ∅, a contradiction.

We may suppose 0 ∈ W so W ⊆ B(0, 1). Let U = fill (W ) and U ′ = fill (W ′). Let
a ∈ ∂U ′ and w ∈ ∂U with |a − w| = diste (∂U ′, ∂U). Let also b ∈ ∂U ′ be such that
|b − a| = supx∈∂U ′ |x − a|. The linear map h : z → z−a

a−b
sends a to 0, b to −1 and w to

ω0 = w−a
a−b

.
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Let A′ be the annulus U \ U ′. For all 1 ≤ i ≤ m there exists an A−1
i which separates

W ′ from w. Denote it A′
i. As W ′ ∩ A′

i = ∅, A′
i separates U ′ from w, inside W . Therefore

A′
i ⊆ A′. Using inequalities (2.4), (2.8), (2.7) and (2.2), we may immediately compute

mod A′ ≥
m
∑

i=1

mod A′
i ≥

1

µ
mod A(z, r, R) >

log(R/r)

2πµ
.

Let us remark that h(A′) satisfies the hypothesis of the Teichmüller extremal problem.
Combining the previous inequality with inequality (2.5), we obtain

(

R

r

)
1
µ

< exp(2π mod A′) ≤ exp(2πΛ(|ω0|)) ≤ 16(|ω0| + 1),

as modA′ = mod h(A′). Therefore

(

R

r

)
1
µ

< 32
diame U

diame U ′ = 32
diame W

diame W ′ , (2.9)

as

|ω0| + 1 =
|w − a| + |a − b|

|a − b| ≤ 2
diame W

2|a − b| ≤ 2
diame W

diame W ′ .

Combining inequalities (2.1) and (2.9) we may conclude that

(

R

r

)
1
µ

< 64
diam W

diamW ′ .

Lemma 2.2.2. Let g be a rational map, z ∈ C and R > 0. Let W = B (z, R)−1 and
µ = degW (g). If g has no critical points on ∂W then the number of components of C \W
satisfies

# Comp
(

C \ W
)

≤ µ.

Proof. It is easy to check that ∂W is a disjoint union of smooth closed paths. Moreover,
if γ is such a path then

g(γ) = ∂B (z, R) . (2.10)

Let D1, . . . , Ds be the connected components of C \W . As ∪s
i=1∂Di = ∂W and (∂Di)1≤i≤s

are disjoint
s ≤ # Comp ∂W.

For some x ∈ ∂B (z, R) consider {x1, . . . , xk} = g−1(x) ∩ ∂W . On a neighborhood of x on
which g−1 can be defined we see that k = µ. By equality (2.10), any component of ∂W
contains at least one xi with 1 ≤ i ≤ µ. We conclude that
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# Comp
(

C \ W
)

= s ≤ # Comp ∂W ≤ µ.

If A is an annulus and C1, C2 are the connected components of C \ A then we denote

dist
(

C \ A
)

= dist (C1, C2) .

Lemma 2.2.3. Let A ⊆ C be an annulus and C1, C2 the components of C \ A, with
diam C1 ≤ diam C2. For each α > 0 there exists δα > 0 that depends only on α such that
if modA ≥ α then

dist
(

C \ A
)

≥ δα diam C1.

Proof. Let a ∈ ∂C1 and w ∈ ∂C2 with dist (a, w) = dist
(

C \ A
)

< 1. By rotation we may
assume that a = 0. If C1 ⊆ Be (0, 1) let b ∈ ∂C1 with dist (0, b) = maxx∈∂C1 dist (0, x). If
C1 * Be (0, 1) let b ∈ C1 ∩ ∂Be (0, 1). In either case we may assume b ∈ [−1, 0), again
by rotation. The linear map h : z → −z

b
sends b to −1 and w to ω0. The Teichmüller

extremal problem, combined with equality (2.6), gives

α ≤ Λ(|ω0|) and lim
ε→0

Λ(ε) = 0.

Thus, there exists δ′α > 0 a lower bound for |ω0|. So, by inequality (2.1)

δ′α ≤ |ω0| =
|w|
|b| ≤ dist (0, w)

|b| .

If |b| < 1 then C1 ⊆ Be (0, 1) and |b| ≥ diame(C1)/2. Moreover, by inequality (2.1) we
have |b| ≥ diam(C1)/4. If |b| = 1 then |b| ≥ diam(C1)/π as diam C = π. In either case

|b| ≥ diam(C1)

4
.

We choose δα = δ′α/4. As dist (0, w) = dist
(

C \ A
)

, we conclude that

δα diam(C1) =
δ′α
4

diam(C1) ≤ dist
(

C \ A
)

.

Let I ⊆ C be an infinite set. Then for every m > 0, there is d′
m > 0 such that I

cannot be covered by m balls of radius d′
m. Moreover, if B1, . . . , Bm ⊆ C are balls of radius

dm(I) = d′
m/2 there is x ∈ I such that

(

m
⋃

i=1

Bi

)

∩ B (x, dm(I)) = ∅. (2.11)

We use the construction developed in the proof of Lemma 2.2.1 to obtain the next
corollary.
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Corollary 2.2.1. Let f a rational map, β > 1 and µ ≥ 1 be fixed. For all z ∈ C, n ≥ 0
and 0 < R < min(1, diamJf/2), let W ′ = B (z, R)−n and W = B (z, βR)−n with W ′ ⊆ W .
There is ∆β,µ > 0 that depends only on β, µ and f such that if degW (fn) ≤ µ then at least
one of the following conditions is satisfied

1. There exists an annulus A ⊆ W \ W ′ with dist
(

C \ A
)

≥ ∆β,µ diam W ′. Moreover,
fn(A) ⊆ B (z, βR) separates z from ∂B (z, βR).

2. There is z0 ∈ Jf ∩ W such that B (z0, ∆β,µ) ⊆ W .

In particular, if diam W < 1 then the first condition is satisfied.

Proof. By inequality (2.2)

mod A(z, R, βR) >
log β

2π
and this is the only way β enters in the following estimates. So we may decrease β to some
β ′ and still have

modA(z, R, β ′R) >
log β

2π
.

So, without loss of generality, we may assume that fn has no critical values on ∂B (z, βR).
By Lemma 2.2.2, the number of components of C \W is bounded by µ. As degW (fn) ≤ µ
there are at most µ − 1 critical points of fn in W . So we may decompose, as in Lemma
2.2.1, the annulus A(z, R, βR) into A1, . . . , Am concentric and disjoint annuli, with m ≤ µ.
By equality (2.7) there is Ai0 with

mod Ai0 >
log β

2πµ
.

Moreover, using inequality (2.8), for all A′
i0 ∈ f−n(Ai0) with A′

i0 ⊆ W

modA′
i0 >

log β

2πµ2
. (2.12)

Let d = dµ(Jf) be the positive number defined by the equality (2.11).
Suppose that

diam D < d, ∀D ∈ Comp
(

C \ W
)

.

Then every such component D is contained in a ball of radius d. There exists z0 ∈ Jf such
that B (z0, d) ⊆ W . It is enough to choose ∆β,µ ≤ d to satisfy the second condition of the
corollary.

Suppose now that there is D0 ∈ Comp
(

C \ W
)

with

diam D0 ≥ d.

Note that this is true if diam W < 1. Proceeding as in Lemma 2.2.1 we find an annulus
A′

i0 ∈ f−n(Ai0) with A′
i0 ⊆ W that separates W ′ and D0. We may apply Lemma 2.2.3 and

obtain δ = δβ,µ that depends only on modA′
i0 > log β

2πµ2 with the following property

dist
(

C \ A′
i0

)

≥ δβ,µ min(diamW ′, diam D0).
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If diam W ′ ≤ diam D0, choosing ∆β,µ ≤ δβ,µ satisfies the first condition of the Corollary. If
diam W ′ > diam D0 ≥ d, we may choose any ∆β,µ ≤ δβ,µ

d
π

< δβ,µ as the previous inequality
becomes

dist
(

C \ A′
i0

)

≥ δβ,µd ≥ ∆β,µπ ≥ ∆β,µ diam W ′.

Finally, independently of the existence of D0, if we choose

∆β,µ = δβ,µ
d

π
< d,

then at least one of the two conditions of the conclusion holds.

Our first goal is to prove contraction of a long, bounded degree pullback. This is true
only in a neighborhood Ω of the Julia set J . We define Ω with the following properties

1. f−1(Ω) ⊆ Ω,

2. (Ω ∩ Crit) \ J = ∅ and

3. Ω does not intersect attracting periodic orbits.

Let us fix a RCE rational map f . All the following statements apply to f . In the
absence of parabolic periodic orbits, the critical orbits in the Fatou set F do not accumulate
on J . Indeed, any critical point c ∈ Crit ∩ F is sent to a periodic Fatou component which
is not parabolic. By Sullivan’s classification of Fatou components, the orbit of c stays away
from J . Let O(Crit ∩ F ) = {fn(c)|n ≥ 0, c ∈ Crit ∩ F}. Then

d1 = dist (J, O(Crit ∩ F )) > 0.

There is an open neighborhood V of the attractive periodic orbits such that V ⊆ F and
f(V ) ⊆ V . So

d2 = dist (J, V ) > 0.

Let 0 < η < min(d1, d2) and U the η-neighborhood of J . Then

U ∩ (O(Crit ∩ F ) ∪ V ) = ∅.

We define

Ω =
⋃

0≤n

f−n(U).

Then Ω ∩ O(Crit) = O(Crit ∩ J), Ω ∩ V = ∅ and f−1(Ω) ⊆ Ω. We prove a variant of
Mañé’s lemma. Loosely speaking, the diameter of bounded degree pullbacks of small balls
in Ω stays small. It is stated for a fixed RCE rational map but it applies to all rational
maps with no parabolic orbits.
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Lemma 2.2.4. Let ε ∈ (0, 1), β > 1 and µ ≥ 1 be fixed. For all z ∈ Ω, R > 0 such that
B(z, βR) ⊆ Ω and n ≥ 0, let W ′ = B(z, R)−n and W = B(z, βR)−n with W ′ ⊆ W . There
is δε,β,µ > 0 that depends only on ε, β and µ such that if βR ≤ δε,β,µ and degW (fn) ≤ µ
then

diam W ′ < ε.

Proof. Suppose the statement does not hold. Then there exist sequences (zi)0<i ⊆ Ω,
(Ri)0<i decreasing to 0 and (ni)0<i ⊆ N increasing such that degWni

(fni) ≤ µ and

diam W ′
ni

≥ ε.

We apply Corollary 2.2.1 and we get ∆ = ∆β,µ/4 > 0 such that for all i > 0 there is
ai ∈ Wni

with

B (ai, ε∆) ⊆ Wni
. (2.13)

Indeed, suppose that only the first condition of the conclusion of Corollary 2.2.1 is satisfied.
As dist

(

C \ Ai

)

> ∆β,µ diam W ′
ni

, we may choose ai ∈ Ai ⊆ Wni
such that

dist
(

ai, C \ Ai

)

>
∆β,µ

4
diam W ′

ni
≥ ε∆. (2.14)

Let a be an accumulation point of (ai)0<i. By (2.13) there exists a subsequence (nj)0<j

of (ni)0<i such that

B
(

a,
ε

2
∆
)

⊆ Wnj
, ∀j > 0.

So fn
(

B
(

a, ε
2
∆
))

⊆ Ω for any n ≥ 0 and

diam fnj

(

B
(

a,
ε

2
∆
))

→ 0 as j → ∞. (2.15)

B
(

a, ε
2
∆
)

cannot intersect J because of the “eventually onto” property of the Julia set. It
cannot be in the basin of attraction of a periodic orbit as all of its images stay in Ω. As
there are no parabolic components, some image has to land inside a Siegel disk or inside a
Herman ring. But this contradicts (2.15).

Let us state inequality (2.14) in a more general form.

Lemma 2.2.5. Let A be an annulus with diam A < 1 and dist
(

C \ A
)

≥ 4α. Then there

is an annulus A′ ⊆ A with dist
(

C \ A′) ≥ 2α and

dist
(

A′, C \ A
)

≥ α.

Moreover, A′ separates the two connected components of C \ A.
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Proof. For any set E ⊆ C, let us define the α-neighborhood of E by

E+α = B (E, α) = {x ∈ C| dist (x, E) < α}.

Analogously, we define the α-cut of E by

E−α = E \ (C \ E)+α = {x ∈ C| dist
(

x, C \ E
)

> α}.

The α-neighborhood of E and the α-cut of E are open sets. If E is connected then
E+α is connected. Moreover, if E is simply connected then every connected component of
E−α is simply connected.

Let U = fill (A) and U ′ = U \A. Then U ′ ⊆ U and U, U ′ are simply connected open sets.
Let V ′ = fill

(

U ′
+α

)

which is a simply connected open set. Moreover, as dist
(

U ′, C \ U
)

≥
4α

dist
(

V ′, C \ U
)

≥ 3α.

Let also V = U−α. Then there is at most one connected component V of U−α that intersects
V ′. This open V is simply connected. It is also easy to check that V ′ ⊆ V and

dist
(

V ′, C \ V
)

≥ 2α.

Finally, we may set A′ = V \ V ′. Then dist
(

C \ A′) ≥ 2α and

dist
(

A′, C \ A
)

≥ α.

There could be no path disjoint from A′ that connects ∂A.

Now we have the tools needed to prove our first contraction result.

Proposition 2.2.2. Let β > 1, µ ≥ 1. There exists δ = δβ,µ > 0 such that for all
0 < r < R < δ

β
there exists N = Nβ,µ,r,R > 0 such that the following statement holds. For

all z ∈ J with B(z, βR) ⊆ Ω and for all n ≥ N , let W ′ = B(z, R)−n and W = B(z, βR)−n

with W ′ ⊆ W . If degW (fn) ≤ µ then

diam W ′ < r.

Proof. There are finitely many Herman rings in the Fatou set. Let us denote them by
H1, ..., Hm. Let h = min

{

diam Comp
(

C \ Hi

)

|i = 1, . . . , m
}

. Let also

0 < δ < min

{

δ1,
√

β,µ,
diam J

2
,
h

2
,
1

2

}

,

where δ1,
√

β,µ is provided by Lemma 2.2.4.
Let W ′′ = B(z,

√
βR)−n with W ′ ⊆ W ′′ ⊆ W . Thus as βR < δ and degW (fn) ≤ µ

diam W ′ ≤ diam W ′′ < 1.
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Now suppose that the conclusion of the proposition does not hold for the chosen δ.
Then there are sequences (ni)0<i increasing and (zi)0<i ⊆ J such that for all i > 0, W ′

ni

and Wni
satisfy the hypothesis but

diam W ′
ni

≥ r.

Let ∆ = ∆√
β,µ > 0 and the annulus Ai ⊆ W ′′

ni
\ W ′

ni
be provided by Corollary 2.2.1.

Then dist
(

C \ Ai

)

≥ ∆r and we may apply Lemma 2.2.5 for α = ∆ r
4

and obtain A′
i ⊆ Ai

with dist
(

C \ A′
i

)

≥ 2α and
B (x, α) ⊆ Ai, ∀x ∈ A′

i.

At least one of the following conditions holds for infinitely many i > 0

1. A′
i ∩ J 6= ∅,

2. A′
i ∩ J = ∅.

So, taking a subsequence, we may assume at least one condition holds for all i > 0. That
could not be condition 1 as the compactness argument used in Lemma 2.2.4 would yield
a ∈ J such that for i sufficiently big

diam fni

(

B
(

a,
α

2

))

≤ 2βR < 2δ < diam J.

Thus no image of B (a, α) could contain J . This contradicts the “eventually onto” property
of the Julia set.

The only possibility is that the second condition holds for all i, so A′
i ⊆ F . We apply

Lemma 2.2.5 to check that A′
i contains some ball B (ai, α/2). If a is an accumulation point

of (ai)0<i then, taking a subsequence,

B
(

a,
α

4

)

⊆ A′
i ⊆ Ω so fni(a) ∈ Ω.

Thus a cannot be contained in the basin of attraction of some periodic orbit. There are
no parabolic components. So a is sent to a rotation domain P , a Siegel disk or a Hermann
ring. We fix some big i and omit it from notations.

Recall that we assumed the first condition of the conclusion of Corollary 2.2.1, as
diam W ′ < diam W ′′ < 1. Thus fn(A) separates z from ∂B (z, βR). We show that fn(A′)
has the same property. Suppose this is false. Then there is a path γ that joins the two
components of ∂fn(A) which does not intersect fn(A′). Then there is some pullback of
γ that connects ∂A and does not intersect A′. This contradicts Lemma 2.2.5. We may
conclude that

z ∈ fill (fn(A′)) .

Let us also recall that z ∈ J , diam fn(A′) < 2δ < diam J and fn(A′) ⊆ fn−k0(P ) for
some 0 ≤ k0 < n, where P is a rotation domain. Thus fn(A′) separates the Julia set and
H = fn−k0(P ) is a Hermann ring. But this contradicts

diam fn(A′) < 2δ < h.
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Let us recall some general distortion properties of rational maps.

Distortion. This is a reformulation of the classical Koebe distortion lemma in the complex
case, see for example Lemma 2.5 in [2]. For all D > 1 there exists ε > 0 such that if
the connected open W satisfies

diam W ≤ ε dist (W, Crit) (2.16)

then the distortion of f in W is bounded by D, that is

sup
x,y∈W

∣

∣

∣

∣

f ′(x)

f ′(y)

∣

∣

∣

∣

≤ D.

Pullback. Once a small r > 0 is fixed, there exists M ≥ 1 such that for any connected
open W with diam W ≤ r and for all z ∈ W−1

diam W−1 ≤ M |f ′(z)|−1 diam W. (2.17)

We shall use this estimate for W−1 close to Crit.

The second goal of this section is to obtain contraction when there is no bound for the
degree of the pullback. This can be done only in the presence of Collet-Eckmann critical
points. In the next section we show that if the pullback does not meet CE points then the
degree is bounded.

Proposition 2.2.3. For any 1 < λ0 < λ and θ < 1 there exists δ = δλ0,θ > 0 such that
for all N > 0 and for any ball B = B(z, R) ⊆ Ω with diam B−n ≤ δ for all 0 ≤ n ≤ N , if
B−N−1 ∩ CE 6= ∅ and ∪N

i=1B
−i ∩ Crit 6= ∅ then

diam B−N < θRλ−N
0 . (2.18)

Note that the hypothesis does not involve any condition on the length N of the orbit.
Instead, there is additional information on critical points. This situation occurs naturally
in our construction.

Proof. Let us fix z ∈ C and D ∈ (1, λ/λ0). Let ε > 0 be provided by inequality (2.16).
Let also r > 0 be small and M ≥ 1 defined by the inequality (2.17). Let l ≥ 1 such that

2M j/lC−1Djλ−j ≤ θλ−j
0 for all j ≥ l. (2.19)

Let us recall that no critical point is sent to another critical point. Then there is r1 < r
such that for any c ∈ Crit, B(c, 2r1)

−k satisfies the inequality (2.16) for all 0 < k ≤ l. Let
us define

δ = εr1.
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By hypothesis, diam B(z, R)−n ≤ εr1 < r for all 0 ≤ n ≤ N .
Let c0 ∈ B(z, R)−N−1 ∩ CE. Denote xk = fN+1−k(c0) ∈ Wk = B−k. By hypothesis,

there exists 0 < k′ ≤ N with Wk′ ∩ Crit 6= ∅. Let 0 < k0 < k1 < . . . < kt ≤ N be all the
integers 0 < k ≤ N such that Wk does not satisfy the inequality (2.16). As εr1 ≥ diam Wki

,
we have r1 > dist (Wki

, Crit) for all 0 ≤ i ≤ t. Then for all 0 ≤ i ≤ t there is ci ∈ Crit such
that Wki

⊆ B(ci, 2r1). By the definition of r1

ki+1 − ki > l, ∀ 0 ≤ i ≤ t, (2.20)

where kt+1 = N + 1. In fact WN+1 cannot satisfy inequality (2.16), as c0 ∈ WN+1.
We may begin estimates. For all 0 < j ≤ N with j 6= ki for all 0 ≤ i ≤ t, Wj satisfies

the inequality (2.16) so the distortion on Wj is bounded by D. Thus

diam Wj ≤ D|f ′(xj)|−1 diam Wj−1. (2.21)

If j = ki for some 0 ≤ i ≤ t we use inequality (2.17) to obtain

diam Wj ≤ M |f ′(xj)|−1 diam Wj−1. (2.22)

Let us recall that xN = f(c0) with c0 ∈ CE and that W0 = B so diam W0 = 2R.
Inequality (2.20) yields t + 1 < N/l. Multiplying all the relations (2.21) and (2.22) for all
0 < j ≤ N we obtain

diam WN ≤ M t+1DN−t−1|(fN)′(xN )|−1 diam W0

< 2MN/lDNC−1λ−NR
≤ θRλ−N

0 .

The last inequality is inequality (2.19).

2.3 Backward Stability

As we have already announced, an important intermediary step to NUH is BS, see page
19. It is a generalization of Lemma 2.2.4. Basically, the diameter of any pullback of
a small ball is small. The first condition in the hypothesis of Proposition 2.2.3 will be
satisfied automatically, thanks to BS. So the only hypothesis of Proposition 2.2.3 will be
the presence of critical points in some pullbacks.

All the following constructions take place inside Ω, the neighborhood of J constructed
in the previous section. Therefore critical point in the Fatou set do not play any role in the
sequel. For transparency we introduce additional notation CritJ = Crit∩J , NRJ = NR∩J
and CEJ = Crit \ NR. So NRJ , CEJ ⊆ J form a partition of CritJ . For any c ∈ Crit let
µc be the multiplicity of c, that is the degree of f at c. Let µmax = max{µc|c ∈ CritJ},
µf =

∏

c∈CritJ
µc, µ0 = µ2

f and µ1 =
(
∏

c∈NRJ
µc

)

· max{µc|c ∈ CEJ}. Let us observe that

µmax < µ1 ≤ µf < µ0.
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Proposition 2.3.1. RCE implies BS.

Proof. Let 0 < ε1 = min{dist (c, c′) |c 6= c′; c, c′ ∈ CritJ} be the smallest distance between
two critical points.

Let us remark that there exists ε2 > 0 such that every connected component U of
f−1(V ) is simply connected provided V is simply connected and diam V < ε2. We may
assume that ε2 is so small that diam B−1(z, ε2) < ε1 for all z ∈ C. By the choice of ε1,
U contains at most 1 critical point. Hence, f : U → V is univalent if Crit∩U = ∅ or its
degree is equal to µc if c ∈ Crit∩U .

Let 0 < ε3 = min{dist (c, O(c)) |c ∈ NRJ)} be the smallest distance of a non-recurrent
critical point to its orbit.

Fix some λ0 ∈ (1, λ) and consider δλ0,1/2 > 0 supplied by Proposition 2.2.3. Choose
ε > 0 such that

100µ0ε ≤ ε0 = min(ε1, ε2, ε3, δλ0,1/2). (2.23)

Let δε,2,µ0 > 0 be supplied by Lemma 2.2.4 and δ = δε,2,µ0/2. We call B (z, r) admissible if
B (z, 4r) ⊆ Ω. By diminishing δ, we may suppose that any ball with radius at most δ that
intersects J is admissible.

Suppose BS is not satisfied. Consider n0 the smallest n with the property that there
is an admissible ball B (z, r) with r ≤ δ such that diam B (z, r)−n ≥ ε. Let us denote
B (z, r)−n0 = W ′ ⊆ W = B (z, 2r)−n0. By Lemma 2.2.4, this choice of constants implies
that degW (fn0) > µ0.

Remark 2.3.1. This is the only exception to our construction of blocks of critical points,
developed in the first part of Section 2.2, in order to ensure that critical orbits avoid critical
points. Here n0 and m (to be defined) are the “original” lengths of the orbits. Note that a
CEJ critical point cannot be sent to CritJ . Thus Proposition 2.2.3 still applies as it does
not assume anything on N , the length of the orbit.

We may cover ∂B (z, 2r) with less than 100 balls Bi = B (z′i, r/2) centered on ∂B (z, 2r).
They are admissible as B (z, r) is admissible. Therefore diam B−n

i < ε for all n < n0. Thus
for all n < n0

diam B (z, 2r)−n < 100ε degB(z,2r)−n(fn). (2.24)

Let us denote Wk = fn0−k(W ) for all 0 ≤ k ≤ n0. In particular W0 = B (z, 2r)
and Wn0 = W . Let also dk = degWk

(fk) for all 0 ≤ k ≤ n0. Thus dn0 > µ0 and
dk+1 = dk degWk+1

(f) for all 0 ≤ k < n0. Let m = max {0 ≤ k < n0 | dk ≤ µ0}. Inequalities
(2.23) and (2.24) show that

diam Wk < ε0, for all k ≤ m. (2.25)

Recall that ε0 ≤ ε1, by its definition (2.23). Thus Wk contains at most one critical
point for all k ≤ m. Equally by (2.23), ε0 ≤ ε2. Therefore diam Wm+1 < ε1 so Wm+1

contains at most one critical point also. For k ≤ m + 1, degWk
(f) = µc if c ∈ Wk ∩ CritJ
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and degWk
(f) = 1 if otherwise. Thus for all n ≤ m + 1

dn =
∏

c∈Wk∩Crit
0<k≤n

µc,k (2.26)

counted with multiplicity if some c ∈ CritJ ∩ Wk1 ∩ Wk2, with 0 < k1 < k2 ≤ m. By
the definition of m, dm ≤ µ0 < dm+1. Thus Wm+1 contains exactly one critical point so
1 < degWm+1

(f) ≤ µmax. Therefore µ0/µmax < dm. By definition µ0 = µ2
f and µmax < µf

thus
µ1 ≤ µf < µ0/µmax < dm. (2.27)

Moreover, ε0 ≤ ε3 thus

NRJ ∩ Wk1 ∩ Wk2 = ∅, for all 0 < k1 < k2 ≤ m.

Otherwise there is c ∈ NRJ with c, fk2−k1(c) ∈ Wk1 and diam Wk1 < ε3, a contradiction.
Thus, in the product (2.26) that defines dm, non-recurrent critical points are counted at
most once. Since µ1 < dm by inequality (2.27), there are at least two integers 0 < m0 <
m1 ≤ m such that each Wm0 and Wm1 contains exactly one Collet-Eckmann critical point.
As ε0 ≤ δλ0,1/2 by inequality (2.23) and for all k ≤ m diam Wk < ε0 by inequality (2.25),
we are in position to apply Proposition 2.2.3 for N = m1 − 1. Thus

diam WN <
2r

2
λ−N

0 < r ≤ δ.

As WN+1 = Wm1 contains a critical point, WN contains a critical value v inside Ω. As
Ω does not intersect critical orbits in the Fatou set, v ∈ J . So WN ⊆ B (v, r) ⊆ B (v, δ),
thus B (v, r) is admissible. Therefore

ε ≤ diam W ′ ≤ diam Wn0 ≤ diam
(

B (v, r)−(n0−N)
)

,

which contradicts the minimality of n0 and hence proves the proposition.

In the previous section we fixed f a RCE rational map. We also defined Ω, a neigh-
borhood of J = Jf . Let us also define some constants using Proposition 2.3.1. They will
be used in the next section, in the proof of the main Theorem. They are also used to state
the following corollary.

Let β = 2, µ = µ1, λ0 ∈ (1, λ) and θ = 1
2
64−µ. Proposition 2.2.2 provides δβ,µ > 0 and

Proposition 2.2.3 provides δλ0,θ > 0 that depend only on β, µ, λ0 and θ. Let

ε = min(ε1, ε2, ε3, δβ,µ, δλ0,θ).

Proposition 2.3.1 provides δ such that the diameter of any pullback of a ball of radius at
most δ centered on J is smaller than ε. We may assume that ε and δ are small δ ≤ ε <
diam J/10 < 1/2 and that any ball of radius δ that intersects J is contained in Ω. We set

R = δ/4.
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Corollary 2.2.1 and Propositions 2.2.2, 2.2.3 and 2.3.1 apply for pullbacks of balls centered
on J of radius R′ ≤ 2R. Moreover, if we set r0 < θR, Proposition 2.2.2 yields N0 =
Nβ,µ,r0,R ≥ 1, the minimum length of the orbits on which it applies.

If W is an open set and fk(W ) contains at most one critical point for all 0 ≤ k < n,
let us define

degW (fn) =
∏

c∈fk(W )∩Crit
0≤k<n

µc,k. (2.28)

Corollary 2.3.1. For all z ∈ J , 0 < r ≤ 2R and (Wk)k≥0 a backward orbit of B (z, r),
if dn > µ, where dk = degWk

fk for all k ≥ 0, then there is 0 < nCE ≤ n such that

WnCE
∩ CE 6= ∅ and dnCE−1 > 1.

Proof. This is a reformulation of the definition of m0 and m1 in the end of the proof of the
previous proposition.

2.4 RCE implies UHP

We have discussed in the introduction some telescope-like constructions in the literature
and we also have announced that our proof uses one of its own. We do not give any general
definition of a telescope, instead we provide a self-contained description of the one we use.
We consider a pullback of an arbitrary ball B (z, R) with z ∈ J , of length N . We prove the
Exponential Shrinking of components condition. We show that there are constants C1 > 0
and λ1 > 1 that do not depend on z nor on N such that

diam B (z, R)−N ≤ C1λ
−n
1 .

It is easy to check that the previous inequality for all z ∈ J and N > 0 implies the
ExpShrink condition.

Let us describe the construction. We nest B(z, R) inside a ball B(z, R′
0) with R′

0 ≤ 2R
and consider its preimages up to time N . We show that there is some moment N ′

0 when
the pullback observes a strong contraction. Then B(z, R′

0)
−N ′

0 can be nested inside some
ball B(zN ′

0
, R′

1) where zN ′

0
∈ f−N ′

0 and R′
1 ≤ 2R. This new ball is pulled back and the con-

struction is achieved inductively. The pullbacks B(z, R′
0), B(z, R′

0)
−1 . . . B(z, R′

0)
−N ′

0 form
the first block of the telescope. The pullbacks B(zN ′

0
, R′

1), B(zN ′

0
, R′

1)
−1 . . . B(zN ′

0
, R′

1)
−N ′

1

form the second block and so on. Lemma 2.2.1 is essential to manage the passage between
two such consecutive telescope blocks. We show contraction for every block using either
Proposition 2.2.2 or Proposition 2.2.3. This leads to a classification of blocks depending
on the presence and on the type of critical points inside them.

Let us recall that β, µ, λ0, θ, ε, R, r0 and N0 were defined at the end of the previous
section. Let R′ be the radius of the initial ball of some block and N ′ be its length. Let
r′ ≤ R be the diameter of the last pullback of the previous block. It is a lower bound for
R′ thus consecutive blocks are nested. Recall that (zn)1≤n≤N is a fixed backward orbit of
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z, contained in the pullback. A block that starts at time n is defined by the choice of R′

with r′ ≤ R′ ≤ 2R and of N ′ with 1 ≤ N ′ ≤ N − n. It is the pullback of length N ′ of
B(zn, R′). For all n, t ≥ 0 and r > 0 we denote

d(n, r, t) = degB(zn,r)−t (f t) and

d(n, r, t) = degB(zn,r)−t (f t) .

Fix n ≥ 0 and t ≥ 1 and consider the maps d and d defined on [r′, 2R]. They are increasing
and d ≤ d. The set

{

r ∈ [r′, 2R] | d(n, r, t) < d(n, r, t)
}

is the common set of discontinuities

of d and d. Note also that d is lower semi-continuous and d is upper semi-continuous.
For transparency, we also denote

Wk = B(zn, R′)−k.

Let us define three types of block before we make any further considerations.

Type 1 Blocks with R′ = r′ and N ′ such that d(n, R′, N ′) > 1 and WN ′+1 ∩ CE 6= ∅.

Type 2 Blocks with R′ = R, N ′ = min(N0, N − n) and d(n, 2R, N − n) ≤ µ.

Type 3 Blocks with d(n, R′, N ′) > 1, WN ′+1 ∩ CE 6= ∅ and d(n, R′, N − n) ≤ µ.

The proof of the theorem has two parts. The first part is the construction of the
telescope. That is, every pullback of some B (z, R) with z ∈ J of length N , can be nested
inside a telescope built of blocks of the three types. We show that diam B(zni

, R′
i)
−N ′

i < R,
that is, the contraction along the i-th block is strong enough and that there is at least one
type of block to continue with. An upper bound C1λ

−N
1 for the diameter of the pullback

of length N of B(z, R′
0) completes the proof of the theorem.

Theorem 1. A rational map that satisfies the Recurrent Collet-Eckmann condition is
Uniformly Hyperbolic on Periodic orbits.

Proof. We shall reuse the notations zn, r′, R′, N ′, d, d and Wk described before the definition
of the three types of pullback.

For the first block of the telescope we set r′ = R. If d(0, r′, N +1) > µ then by Corollary
2.3.1 there is 1 ≤ N ′ ≤ N that defines a type 1 pullback for R′ = r′. If d(0, 2R, N) ≤ µ
then we define a type 2 block, as d ≤ d. If d(0, 2R, N + 1) > µ there is a smallest R′, with
r′ < R′ ≤ 2R, such that d(0, R′, N + 1) > µ. Thus R′ is a point of discontinuity of d so
d(0, R′, N + 1) < d(0, R′, N + 1), so d(0, R′, N) ≤ d(0, R′, N + 1) ≤ µ. Then by Corollary
2.3.1 there is 1 ≤ N ′ ≤ N that defines a type 3 pullback.

In the general case we replace 0 by n and N by N −n in the previous construction. Let
us be more precise with our notations. We denote by n′

i, N ′
i , r′i and R′

i the parameters n,
N ′, r′ and R′ of the i-th block. Let also Wi,k be Wk in the context of the i-th block with
i ∈ {0, . . . , b}, where b + 1 is the number of blocks of the telescope. So n′

0 = 0, r′0 = R,
n′

1 = N ′
0 and r′1 = diam W0,N ′

0
. In the general case i > 0, we have

n′
i = n′

i−1 + N ′
i−1 and

r′i = diam Wi−1,N ′

i−1
.
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Let us also denote by Ti ∈ {1, 2, 2′, 3} the type of the i-th block. The type 2′ is a particular
case of the second type, when N ′ < N0. This could only happen for the last block, when
N − n′

b < N0. So Ti ∈ {1, 2, 3} for all 0 ≤ i < b. We may code our telescope by the type
of its blocks, from right to left

Tb . . . T2T1T0.

Our construction shows that

r′i+1 < R for all 0 ≤ i < b (2.29)

is a sufficient condition for the existence of the telescope that contains the pullback of
B(z, R) of length N . If Ti ∈ {1, 3} we apply Proposition 2.2.3 and find that

diam Wi,N ′

i
< θR′

iλ
−N ′

i

0 <
2R

2
, (2.30)

as θ < 1
2
, R′

i ≤ 2R and λ
−N ′

i

0 < 1. If Ti = 2 we apply Proposition 2.2.2 so

diam Wi,N ′

i
< r0 < θR < R. (2.31)

In either case, r′i+1 = diam Wi,N ′

i
satisfies inequality (2.29). Thus the telescope is well

defined.
We may start estimates. First note that if Ti = 1 then, using Proposition 2.2.3

r′i+1 < θr′iλ
−N ′

i

0 < r′iλ
−N ′

i

0 . (2.32)

Recall also that if there are λ1 > 1 and C1 > 0 such that

diam B(z, R)−N ≤ diam W0,N < C1λ
−N
1 (2.33)

then the theorem holds. We may already set

λ1 = min

(

2
1

µN0 , λ
1
µ

0

)

. (2.34)

As inequality (2.32) provides an easy way to deal with the first type of block, we
compute estimates only for sequences of blocks of types 1 . . . 1, 1 . . . 12 and 1 . . . 13, as the
sequence Tb . . . T2T1T0 can be decomposed in such sequences. Sequences with only one
block of type 2 or 3 are allowed as long as the following block is not of type 1. For a
sequence of blocks Ti+p . . . Ti, let

N ′
i,p = N ′

i+p + . . . + N ′
i

be its length.
A sequence 1 . . . 1 may only occur as the first sequence of blocks, thus i = 0. As r′0 = R,

iterating inequality (2.32) for such a sequence
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r′p+1 < θp+1Rλ
−N ′

0,p

0

< 2θR′
0λ

−µN ′

0,p

1 .
(2.35)

Combining inequalities (2.32), (2.31) and the definition (2.34) of λ1, for a sequence
1 . . . 12

r′i+p+1 < r′i+1λ
−N ′

i+1,p−1

0

< 2θR2−1λ
−N ′

i+1,p−1

0

≤ 2θR′
iλ

−µN ′

i,p

1 ,

(2.36)

as N ′
i = N0, N ′

i,p = N ′
i + N ′

i+1,p−1 and R′
i = R.

For a sequence 1 . . . 13, inequalities (2.32) and (2.30) yield

r′i+p+1 < r′i+1λ
−N ′

i+1,p−1

0

< θR′
iλ

−N ′

i,p

0

< 2θR′
iλ

−µN ′

i,p

1 .

(2.37)

We also find a bound for r′b+1 in the case Tb = 2′. Let us remark that R′
b = R therefore

r′b+1 < ε = εR−1R′
b

= (εR−1λ
N ′

b

1 )R′
bλ

−N ′

b

1 .
(2.38)

We decompose the telescope into m+1 sequences 1 . . . 1, 1 . . . 12, 1 . . . 13 and eventually
2′ on the leftmost position

Sm . . . S2S1S0.

Consider a sequence of blocks

Sj = Ti+p . . . Ti.

Denote n′′
j = n′

i, N ′′
j = N ′

i,p, r′′j = r′i and R′′
j = R′

i. Let also

∆j = diamWi,N−n′

i

be the diameter of the pullback of the first block of the sequence up to time −N .
With the eventual exception of Sm, inequalities (2.35), (2.36) and (2.37) provide good

contraction estimates for each sequence Sj

r′′j+1 < 2θR′′
j λ

−µN ′′

j

1 .

If Tb = 2′ then inequality (2.38) yields a constant εR−1λ
N ′

b

1 < C1 = εR−1λ
N ′

0
1 such that

r′′m+1 < C1R
′′
mλ

−N ′′

m

1 ,

as R′′
m = R′

b and N ′′
m = N ′

b. Note that the previous inequality also holds if Tb ∈ {1, 2, 3}.
We cannot simply multiply these inequalities as R′′

j > r′′j for all 0 < j ≤ m.
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By the definitions of types 2 and 3, the degree d(n′′
j , R

′′
j , N −n′′

j ) is bounded by µ in all
cases. So Lemma 2.2.1 provides a bound for the distortion of pullbacks up to time −N

∆j−1

∆j
< 64

(

r′′j
R′′

j

)
1
µ

< 64
(

2θλ
−µN ′′

j−1

1

R′′

j−1

R′′

j

)
1
µ

= λ
−N ′′

j−1

1

(

R′′

j−1

R′′

j

)
1
µ

,

for all 0 < j ≤ m. Therefore

∆0

∆m
< λ

−N+N ′′

m

1

(

R′′
0

R′′
m

)
1
µ

.

Recall that R′′
j ≤ 2R < 1 for all 0 ≤ j ≤ m and ∆m = r′′m+1, so

∆0 < λ
−N+N ′′

m

1 C1R
′′
mλ

−N ′′

m

1

(

2R
R′′

m

)
1
µ

< λ−N
1 C1(R

′′
m)1− 1

µ

< C1λ
−N
1 .

By definition ∆0 = diam W0,N , therefore the previous inequality combined with inequality
(2.33) completes the proof of our theorem.
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Abstract. We find a counterexample to the converse of Theorem 1, that is a polynomial with

Uniform Hyperbolicity on repulsive Periodic orbits (UHP ) that is not Recurrent Collet-Eckmann

(RCE). Using the same techniques we also show that the Collet-Eckmann property of recurrent

critical orbits is not topological for real polynomials with negative Schwarzian derivative.

3.1 Introduction

We studied the Collet-Eckmann condition for the Recurrent critical orbits RCE in the
complex setting in an attempt to characterize the Topological Collet-Eckmann condition
TCE in terms of properties of critical orbits. The results obtained by Carleson, Jones and
Yoccoz in [2], by Graczyk and Smirnov in [4] and by Przytycki, Rivera-Letelier and Smirnov
in [9] inspired the proof of Theorem 1 which states that RCE implies the equivalent
conditions TCE and UHP . Finally we found that TCE does not imply RCE as recurrent
critical orbits may approach other critical points and lose the expansion of the derivative,
see also [8]. The diameters of pullbacks of small components may still decay exponentially
in a similar fashion to semi-hyperbolic dynamics which are not CE. This property that
we call Exponential Shrinking of components is again equivalent to TCE, see [9].

The first part of this chapter describes a technique of building real polynomials with
prescribed topological and analytical properties by specifying their combinatorial proper-
ties. By combinatorial properties we understand symbolic dynamics induced by means of
discretization of the phase space [0, 1]. This is done using the partition induced by the
critical points. It turns out that it is enough to consider only the dynamics of critical
orbits. The sequences of symbols associated to the points of the critical orbits are called
kneading sequences and they are central objects in our study. Using the monotonicity of
the multimodal map on each interval of this partition we may define an order on the space
of itinerary sequences. The theory of multimodal maps and kneading sequences is well
understood but it is related mostly to topological properties of the dynamics. In Section
3.3 we develop a special theory of one parameter families of 2-modal polynomials which
provides the tools to obtain a prescribed growth of the derivative on the second critical
orbit.

The main idea of Theorem 2 is very simple but the construction of the counterexample
and the proof that it has UHP are rather technical. In the vicinity of critical points the
diameter of a small domain decreases at most in the power rate while the derivative can
approach 0 as fast as one wants. This important difference in the behavior of derivative
and diameter is used to produce an aforementioned counterexample.

Using careful estimates of the derivative on the critical orbits we construct two polyno-
mials with negative Schwarzian derivative with the same combinatorics thus topologically
conjugated such that only one is RCE. An important feature of our counterexample is
that the corresponding critical points of this two polynomials are of different degree. We
rely on the tools developed in Section 3.3.

All our examples of dynamics in this chapter are polynomial therefore all distances and
diameters are considered with respect to the Euclidean metric.
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3.2 Preliminaries

Let us define multimodal maps and state some classical theorems about their dynamics.
This results will be used in the construction of a counterexample.

Definition 3.2.1. Let I be the compact interval [0, 1] and f : I → I a piecewise strictly
monotone continuous map. This means that f has a finite number of turning points 0 <
c1 < . . . < cl < 1, points where f has a local extremum, and f is strictly monotone on
each of the l + 1 intervals I1 = [0, c1), I2 = (c1, c2), . . . , Il+1 = (cl, 1]. Such a map is called
l-modal if f(∂I) ⊆ ∂I. If l = 1 then f is called unimodal. If f is C1 + r with r ≥ 0 it is
called a smooth l-modal map if f ′ has no zeros outside {c1, . . . , cl}.

If f is a l-modal map, let us denote by Critf the set of turning points - or critical points

Critf = {c1, . . . , cl} .

For all x ∈ I we denote by O(x) or O+(x) its forward orbit

O(x) = (fn(x))n≥0.

Analogously, let O−(x) = {y ∈ f−n(x) | n ≥ 0} and O±(x) = {y ∈ fn(x) | n ∈ Z}. We also
extend these notations to orbits of sets. For S ⊆ I let O+(S) = {fn(x) | x ∈ S, n ≥ 0},
O−(S) = {y ∈ f−n(x) | x ∈ S, n ≥ 0} and O±(S) = O+(S) ∪ O−(S).

One of the most important questions in all areas of dynamics is when two systems
have similar underlaying dynamics. A natural equivalence relation for multimodal maps is
topological conjugacy.

Definition 3.2.2. We say that two multimodal maps f, g : I → I are topologically conju-
gate or simply conjugate if there is a homeomorphism h : I → I such that

h ◦ f = g ◦ h.

We may remark that if f and g are conjugate by h then h(fn(x)) = gn(h(x)) for all
x ∈ I and n ≥ 0 so h maps orbits of f onto orbits of g. It is easy to check that h is a
monotone bijection form the critical set of f to the critical set of g. We may also consider
combinatorial properties of orbits and use the order of the points of critical orbits to define
another equivalence relation between multimodal maps. Theorem II.3.1 in [5] tells us that
it is enough to consider only the forward orbit of the critical set.

Theorem 3.2.1. Let f, g be two l-modal maps with turning points c1 < . . . < cl respectively
c̃1 < . . . < c̃l. The following properties are equivalent.

1. There exists an order preserving bijection h from O+(Critf ) to O+(Critg) such that

h(f(x)) = g(h(x)) for all x ∈ O+(Critf).
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2. There exists an order preserving bijection h̃ from O±(Critf ) to O±(Critg) such that

h̃(f(x)) = g(h̃(x)) for all x ∈ O±(Critf).

If f and g satisfy the properties of the previous theorem we say that they are combinato-
rially equivalent. Note that if f and g are conjugate by an order preserving homeomorphism
h then the restriction of h to O+(Critf) is an order preserving bijection onto O+(Critg)
so f and g are combinatorially equivalent. The converse is true only in the absence of
homtervals. It is the case of all the examples in this chapter. There is a very convenient
way to describe the combinatorial type of a multimodal map using symbolic dynamics.
We associate to every point x ∈ I a sequence of symbols i(x) that we call the itinerary of
x. The itineraries k1, . . . , kl of the critical values f(c1), . . . , f(cl) are called the kneading
sequences of f and the ordered set of kneading sequences the kneading invariant. Combi-
natorially equivalent multimodal maps have the same kneading invariants but the converse
is true only in the absence of homtervals. We use the kneading invariant to describe the
dynamics of multimodal maps in one-dimensional families. We build sequences (Fn)n≥0 of
compact families of C1 multimodal maps with Fn+1 ⊆ Fn for all n ≥ 0 and obtain our
examples as the intersection of such sequences.

When not specified otherwise, we assume f to be a multimodal map.

Definition 3.2.3. Let O(p) be a periodic orbit of f . This orbit is called attracting if its
basin

B(p) =
{

x ∈ I | fk(x) → O(p) as k → ∞
}

contains an open set. The immediate basin B0(p) of O(p) is the union of connected com-
ponents of B(p) which contain points from O(p). If B0(p) is a neighborhood of O(p) then
this orbit is called a two-sided attractor and otherwise a one-sided attractor. Suppose f
is C1 and let m(p) = |(fn)′(p)| where n is the period of p. If m(p) < 1 we say that O(p) is
attracting respectively super-attracting if m(p) = 0. We call O(p) neutral if m(p) = 1 and
we say it is repulsive if m(p) > 1.

Let us denote by B(f) the union of the basins of periodic attracting orbits and by
B0(f) the union of immediate basins of periodic attractors. The basins of attracting
periodic contain intervals on which all iterates of f are monotone. Such intervals do not
intersect O−(Critf) and they do not carry too much combinatorial information.

Definition 3.2.4. Let us define a homterval to be an interval on which fn is monotone
for all n ≥ 0.

Homtervals are related to wandering intervals and they play an important role in the
study of the relation between conjugacy and combinatorial equivalence.

Definition 3.2.5. An interval J ⊆ I is wandering if all its iterates J, f(J), f 2(J), . . . are
disjoint and if (fn(J))n≥0 does not tend to a periodic orbit.
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Homtervals have simple dynamics described by the following lemma, Lemma II.3.1 in
[5].

Lemma 3.2.1. Let J be a homterval of f . Then there are two possibilities:

1. J is a wandering interval;

2. J ⊆ B(f) and some iterate of J is mapped into an interval L such that f p maps L
monotonically into itself for some p ≥ 0.

Multimodal maps satisfying some regularity conditions have no wandering intervals.
Let us say that f is non-flat at a critical point c if there exists a C2 diffeomorphism
φ : R → I with φ(0) = c such that f ◦ φ is a polynomial near the origin.

The following theorem is Theorem II.6.2 in [5].

Theorem 3.2.2. Let f be a C2 map that is non-flat at each critical point. Then f has no
wandering intervals.

Guckenheimer proved this theorem in 1979 for unimodal maps with negative Schwarzian
derivative with non-degenerate critical point, that is with |f ′′(c)| 6= 0. The Schwarzian
derivative was first used by Singer to study the dynamics of quadratic unimodal maps
x → ax(1 − x) with a ∈ [0, 4]. He observed that this property is preserved under iteration
and that is has important consequences in unimodal and multimodal dynamics.

Definition 3.2.6. Let f : I → I be a C3 l-modal map. The Schwarzian derivative of f at
x is defined as

Sf(x) =
f ′′′(x)

f ′(x)
− 3

2

(

f ′′(x)

f(x)

)2

,

for all x ∈ I \ {c1, . . . , cl}.

We may compute the Schwarzian derivate of a composition

S(g ◦ f)(x) = Sg(f(x)) · |f ′(x)|2 + Sf(x), (3.1)

therefore if Sf < 0 and Sg < 0 then S(f ◦ g) < 0 so negative Schwarzian derivative is
preserved under iteration. Let us state an important consequence of this property for C3

maps of the interval proved by Singer (see Theorem II.6.1 in [5]).

Theorem 3.2.3 (Singer). If f : I → I is a C3 map with negative Schwarzian derivative
then

1. the immediate basin of any attracting periodic orbit contains either a critical point of
f or a boundary point of the interval I;

2. each neutral periodic point is attracting;

3. there are no intervals of periodic points.
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Combining this result with Theorem 3.2.2 and Lemma 3.2.1 we obtain the following

Corollary 3.2.1. If f is C3 multimodal map with negative Schwarzian derivative that is
non-flat at each critical point and which has no attracting periodic orbits then it has no
homterval. Therefore O−(Critf ) is dense in I.

The following corollary is a particular case of the corollary of Theorem II.3.1 in [5].

Corollary 3.2.2. Let f, g and h be as in Theorem 3.2.1. If f and g have no homtervals
then they are topologically conjugate.

All our examples of multimodal maps in this chapter are polynomials with negative
Schwarzian derivative and without attracting periodic orbits. We prefer however to use
slightly more general classes of multimodal maps, as suggested by the previous two corol-
laries. As combinatorially equivalent multimodal maps have the same monotony type we
only use maps that are increasing on the leftmost lap I1, that is exactly the multimodal
maps f with f(0) = 0. Let us define some classes of multimodal maps

Sl = {f : I → I | f is a smooth l-modal map with f(0) = 0} ,

S ′
l =

{

f ∈ Sl | f is C3 and Sf < 0
}

,

Pl = {f ∈ S ′
l | f non-flat at each critical point} and

P ′
l = {f ∈ Pl | all periodic points of f are repulsive} .

We have seen that in the absence of homtervals combinatorially equivalent multimodal
maps are topologically conjugate. Using symbolic dynamics we find a more convenient way
to describe the combinatorial properties of forward critical orbits. Let AI = {I1, . . . , Il+1}
and Ac = {c1, . . . , cl} be two alphabets and A = AI ∪Ac. Let

Σ = AN

I ∪
⋃

n≥0

(An
I ×Ac)

be the space of sequences of symbols of A with the following property. If i ∈ Σ and
m = |i| ∈ N is its length then m = ∞ if and only if i consists only of symbols of AI .
Moreover, if m < ∞ then i contains exactly one symbol of Ac on the rightmost position.
Let Σ′ = Σ \ Ac be the space of sequences i ∈ Σ with |i| > 1. Let us define the shift
transformation σ : Σ′ → Σ by

σ(i0i1 . . .) = i1i2 . . . .

If f ∈ Sl let i : I → Σ be defined by i(x) = i0(x)i1(x) . . . where in(x) = Ik if fn(x) ∈ Ik

and in(x) = ck if fn(x) = ck for all n ≥ 0. The map i relates the dynamics of f on
I \ {c1, . . . , cl} with the shift transformation σ on Σ′

i(f(x)) = σ(i(x)) for all x ∈ I \ {c1, . . . , cl} .

Moreover, we may define a signed lexicographic ordering on Σ that makes i increasing. It
becomes strictly increasing in the absence of homtervals.
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Definition 3.2.7. A signed lexicographic ordering ≺ on Σ is defined as follows. Let us
define a sign ǫ : A → {−1, 0, 1} where ǫ(Ij) = (−1)j+1 for all j = 1, . . . , l + 1 and ǫ(cj) = 0
for all j = 1, . . . , l. Using the natural ordering on A we say that x ≺ y if there exists n ≥ 0
such that xi = yi for all i = 0, . . . , n − 1 and

(

n−1
∏

i=0

ǫ(xi)

)

xn <

(

n−1
∏

i=0

ǫ(yi)

)

yn.

Let us observe that ≺ is a complete ordering and that ǫ · f ′ > 0 on I \ {c1, . . . , cl},
that is ǫ represents the monotony of f . The product

∏n−1
i=0 ǫ(xi) represents therefore the

monotony of fn. This is the main reason for the monotony of i with respect to ≺.

Proposition 3.2.1. Let f ∈ Sl for some l ≥ 0.

1. If x < y then i(x) � i(y).

2. If i(x) ≺ i(y) then x < y.

3. If f ∈ P ′
l then x < y if and only if i(x) ≺ i(y).

Proof. The first two points are Lemma II.3.1 in [5]. If f ∈ P ′
l then by Corollary 3.2.1

O−(Critf) is dense in I. Let us note that

O−(Critf) = {x ∈ I | |i(x)| < ∞} .

Moreover, O−(Critf ) is countable as f−1(x) is finite for all x ∈ I, therefore i is strictly
increasing.

Let us define the kneading sequences of f ∈ Sl by ki = i(f(ci)) for i = 1, . . . , l,
the itineraries of the critical values. The kneading invariant of f is the sequence K(f) =
(k1, . . . , kl). The last point of the previous lemma shows that if f, g ∈ P ′

l and K(f) = K(g)
then there is an order preserving bijection h : O+(Critf) → O+(Critg). Therefore, by
Corollaries 3.2.1 and 3.2.2, f and g are topologically conjugate.

Let us define one-dimensional smooth families of multimodal maps. It is the main tool
in our constructions of examples of multimodal maps.

Definition 3.2.8. We say that F : [α, β] → Sl is a family of l-modal maps if F is
continuous with respect to the C1 topology of Sl.

Note that we do not assume the continuity of critical points in such a family - as in the
general definition of a family of multimodal maps in [5] - as it is a direct consequence of
the smoothness conditions we impose.

When not stated otherwise we suppose F : [α, β] → Sl is a family of l-modal maps and
denote fγ = F(γ).

Lemma 3.2.2. The critical points ci : [α, β] → I of fγ are continuous maps for all
i = 1, . . . , l.



48 §3 COUNTEREXAMPLES

Proof. Fix γ0 ∈ [α, β] and ε > 0. Let A = {x ∈ [0, 1] | mini dist(x, ci(γ0)) ≥ ε} a finite
union of compact intervals and

θ = min
x∈A

|f ′
γ0

(x)| > 0

by Definition 3.2.1. Let δ > 0 be such that ||fγ−fγ0 ||C1 < θ
2

for all γ ∈ (γ0−δ, γ0+δ)∩[α, β].
Therefore the critical points ci(γ) satisfy

|ci(γ) − ci(γ0)| < ε

for all i = 1, . . . , l and γ ∈ (γ0 − δ, γ0 + δ) ∩ [α, β] as f ′
γ(x) · f ′

γ0
(x) > 0 for all x ∈ A.

Let us show that the C1 continuity of families of multimodal maps is preserved under
iteration.

Lemma 3.2.3. Let G, H : [a, b] → C1(I, I) be continuous. Then the map

c→G(c) ◦ H(c) is continuous on [a, b].

Proof. Fix c0 ∈ [a, b] and ε > 0. We show that there is δ > 0 such that

||G(c) ◦ H(c) − G(c0) ◦ H(c0)||C1 < ε for all c ∈ (c0 − δ, c0 + δ) ∩ [a, b].

For transparency we denote gc = G(c) and hc = H(c) for all c ∈ [a, b]. Let

M = max {||gc||C1 , ||hc||C1 , 1 | c ∈ [a, b]} .

By the compactness of I, g′
c0

is uniformly continuous therefore there is δ′ > 0 such that

|g′
c0(x) − g′

c0(y)| <
ε

4M
for all x, y ∈ I with |x − y| < δ′.

Let δ > 0 such that

sup {||gc − gc0||C1 , ||hc − hc0 ||C1 | c ∈ (c0 − δ, c0 + δ) ∩ [a, b]} < min
( ε

4M
, δ′
)

.

We compute a bound for ||gc ◦ hc − gc0 ◦ hc0 ||C1 for all c ∈ (c0 − δ, c0 + δ) ∩ [a, b]

||gc ◦ hc − gc0 ◦ hc0||∞ ≤ ||gc ◦ hc − gc ◦ hc0||∞ + ||gc ◦ hc0 − gc0 ◦ hc0||∞
≤ M ε

4M
+ ε

4M

< ε.

Analogously

||g′
c ◦ hc · h′

c − g′
c0 ◦ hc0 · h′

c0 ||∞ ≤ ||g′
c ◦ hc · h′

c − g′
c0 ◦ hc · h′

c||∞+
||g′

c0
◦ hc · h′

c − g′
c0
◦ hc0 · h′

c||∞+
||g′

c0
◦ hc0 · h′

c − g′
c0
◦ hc0 · h′

c0
||∞

≤ ε
4M

M + ε
4M

M + M ε
4M

< ε

as ||hc − hc0||∞ < δ′.
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We may remark that by iteration γ→fn
γ is continuous for all n ≥ 1. This property is

therefore assumed in the sequel for all families of multimodal maps.
The following proposition shows that pullbacks of given combinatorial type of contin-

uous maps are continuous in a family of multimodal maps.

Proposition 3.2.2. Let y : [α, β] → I be continuous and S ∈ An
I . The maximal domain

of definition of the map γ → xγ such that

fn
γ (xγ) = y(γ) and

i(xγ) ∈ S × Σ

is open and γ → xγ is unique and continuous.

Proof. Suppose that for some γ there are x1 < x2 ∈ I with fn
γ (x1) = fn

γ (x2) = y(γ) and
such that i(x1) = i(x2) = Si(y(γ)) for some γ ∈ [α, β]. But S ∈ An

I so fn is strictly
monotone on [x1, x2], which contradicts fn

γ (x1) = fn
γ (x2) so γ → xγ is unique.

Let xγ0 be as in the hypothesis and ε > 0. We show that there exists δ > 0 such that
γ → xγ is defined on (γ0 − δ, γ0 + δ) ∩ [α, β] and takes values in (xγ0 − ε, xγ0 + ε). Let

θ = (fn
γ0

)′(xγ0) 6= 0

and by eventually diminishing ε we may suppose that

|(fn
γ0

)′(x) − θ| <
θ

4
for all x ∈ (xγ0 − ε, xγ0 + ε).

Let 1 > δ1 > 0 be such that

||fn
γ − fn

γ0
||C1 <

θε

4
<

θ

4
for all γ ∈ (γ0 − δ1, γ0 + δ1) ∩ [α, β].

Let also δ2 > 0 be such that

|y(γ) − y(γ0)| <
θε

4
for all γ ∈ (γ0 − δ2, γ0 + δ2) ∩ [α, β].

We choose δ = min(δ1, δ2) and show that

y(γ) ∈ fn
γ ((xγ0 − ε, xγ0 + ε) ∩ I) for all γ ∈ (γ0 − δ, γ0 + δ) ∩ [α, β].

Indeed, fn
γ is monotone on (xγ0 − ε, xγ0 + ε) and

|fn
γ (xγ0 ± ε) − y(γ0)| >

θε

4

for all γ ∈ (γ0 − δ, γ0 + δ) ∩ [α, β] as |fn
γ (xγ0 ± ε) − y(γ0)| = |fn

γ (xγ0 ± ε) − fn
γ0

(xγ0 ± ε) +
fn

γ0
(xγ0 ± ε) − fn

γ0
(xγ0)| and |fn

γ0
(xγ0 ± ε) − fn

γ0
(xγ0)| > 3

4
θε.
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As an immediate consequence of the previous proposition and Lemma 3.2.2 we obtain
the following corollary.

Corollary 3.2.3. If F realizes a finite itinerary sequence i0 ∈ Σ, that is for all γ ∈ [α, β]
there is x(i0)(γ) ∈ I such that

i(x(i0)(γ)) = i0,

then x(i0) : [α, β] → I is unique and continuous.

We may observe that if x, y : [α, β] → I are continuous and for some k ≥ 0

(

fk
α(x(α)) − y(α)

)

·
(

fk
β (x(β)) − y(β)

)

< 0

then there exists γ ∈ [α, β] such that

fk
γ (x(γ)) = y(γ). (3.2)

Therefore if i(x(α)) 6= i(x(β)) then there exists γ ∈ [α, β] such that i(x(γ)) is finite.
Let m = min {k ≥ 0 | ∃γ ∈ [α, β] such that i(x(α))(k) 6= i(x(γ))(k)} then the itinerary
σmi(x(γ)) = i(fm

γ (x(γ))) changes the first symbol on [α, β]. Without loss of generality
we may assume that σmi(x(α)) ≺ σmi(x(β)). Therefore there exists i ∈ {1, . . . , l} such
that fm

γ (x(α)) ≤ ci(α) and fm
γ (x(β)) ≥ ci(α), which yields γ using the previous remark.

A simplified version of the proof of Proposition 3.2.2 shows that if F : [α, β] → C1(I)
is continuous, r0 ∈ I is a root of F (γ0) and (F (γ0))

′(r0) 6= 0 then there are J ⊆ [α, β] a
neighborhood of γ0 and r : J → I continuous such that F (γ)(r(γ)) = 0 for all γ ∈ J . For
F (γ)(x) = fn

γ (x) − x we obtain the following corollary.

Corollary 3.2.4. Let r0 be a periodic point of fγ0 of period n ≥ 1 that is not neutral. There
exists a connected neighborhood J ⊆ [α, β] of γ0 and r : J → I continuous such that r(γ)
is a non-neutral periodic point of fγ of period n. Moreover, if r(γ) is not super-attracting
for all γ ∈ J then the itinerary i(r(γ)) is constant.

Proof. As a periodic point, r(γ) exists and is continuous on a connected neighborhood J0

of γ0, using the previous remark. As |(fn
γ0

)′(r0)| 6= 1, there is a connected neighborhood J1

of γ0 such that

|(fn
γ )′(r(γ))| 6= 1 for all γ ∈ J1.

Let J = J0 ∩ J1 so r(γ) is a non-neutral periodic point of period n for all γ ∈ J . Suppose
that its itinerary i(r(γ)) is not constant, then there is γ1 ∈ J such that i(r(γ1)) is finite so
the orbit of r(γ1) contains a critical point thus it is super-attracting.

Let us define the asymptotic kneading sequences k−
j (γ) and k+

j (γ) for all γ ∈ [α, β]
and j = 1, . . . , l. When they exist, the asymptotic kneading sequences capture important
information about the local variation of the kneading sequences.
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Definition 3.2.9. Let j ∈ {1, . . . , l} and γ ∈ [α, β]. If γ > α and for all n ≥ 0 there
exists δ > 0 such that kj(γ − θ) ∈ Sn × Σ with Sn ∈ An

I for all θ ∈ (0, δ) then we set
k−

j (γ)(k) = Sn(k) for all 0 ≤ k < n. Analogously, if γ < β and for all n ≥ 0 there
exists δ > 0 such that kj(γ + θ) ∈ S ′

n × Σ with S ′
n ∈ An

I for all θ ∈ (0, δ) then we set
k+

j (γ)(k) = S ′
n(k) for all 0 ≤ k < n.

Let us define a necessary and sufficient condition for the existence of the asymptotic
kneading sequences for all γ ∈ [α, β].

Definition 3.2.10. We call a family F : [α, β] → Sl of l-modal maps natural if the set

k−1
j (i) =

{

γ ∈ [α, β] | kj(γ) = i
}

is finite for all i ∈ Σ finite.

This property does not hold in general for C1 families of multimodal maps, even poly-
nomial, as such a family could be reparametrized to have intervals of constance in the
parameter space. It is however generally true for analytic families such as the quadratic
family a→ax(1 − x) with a ∈ [0, 4].

One may easily check that the previous condition is necessary for the existence of all
asymptotic kneading sequences, considering an accumulation point of some k−1

j (i) with i
finite. The following proposition shows that it is also sufficient.

Proposition 3.2.3. Let F : [α, β] → Sl be a natural family of l-modal maps and j ∈
{1, . . . , l}. Then k−

j (γ) exists for all γ ∈ (α, β] and k+
j (γ) exists for all γ ∈ [α, β). More-

over, if kj(γ) ∈ A∞
I for some γ ∈ (α, β) then k−

j (γ) = kj(γ) = k+
j (γ). If kj(γ) = Sci with

S ∈ An
I for some n ≥ 0 and i ∈ {1, . . . , l} then k−

j (γ) = Sl1l2 . . . and k+
j (γ) = Sr1r2 . . .

with l1, r1 ∈ {Ii, Ii+1}.

Proof. If F is natural then the set of all γ ∈ [α, β] that have at least one kneading sequence
of length at most n for some 0 < n

Kn =
l
⋃

j=1

{

γ ∈ [α, β] | |kj(γ)| ≤ n
}

is finite. This is sufficient for the existence of all asymptotic kneading sequences.
If kj(γ0) ∈ S × Σ with S ∈ An

I and n ≥ 0, j ∈ {1, . . . , l} then by the continuity of
γ→fm

γ (cj) and of γ→ci for all m = 0, . . . , n − 1 and i = 1, . . . , l there exists δ > 0 such
that

kj(γ) ∈ S × Σ for all γ ∈ (γ0 − δ, γ0 + δ) ∩ [α, β].

Therefore if kj(γ) ∈ A∞
I then k−

j (γ) = kj(γ) = k+
j (γ). If kj(γ) = Sci for some i ∈ {1, . . . , l}

then k−
j (γ) = Sl1l2 . . . and k+

j (γ) = Sr1r2 . . .. Again by the continuity of γ→fn
γ (cj) and of

γ→ck for all k = 1, . . . , l
l1, r1 ∈ {Ii, Ii+1} .
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c1 c2v

Figure 3.1: 2-modal map with k2 = I1c1.

Note that we may omit the parameter γ whenever there is no danger of confusion but
cj , i and kj for some j ∈ {1, . . . , l} should always be understood in the context of some fγ .
However, the symbols of the itineraries of Σ are I1, . . . , Il+1, c1, . . . , cl and do not depend
on γ.

3.3 One-parameter families of 2-modal maps

In this section we consider a natural family G : [α, β] → P2 of 2-modal polynomials with
negative Schwarzian derivative satisfying the following conditions

0, 1 ∈ ∂I are fixed and repulsive for gα, (3.3)

gγ(c1) = 1 for all γ ∈ [α, β], (3.4)

gγ(c2) = 0 if an only if γ = α. (3.5)

Let us denote by vn = gn+1
γ (c2) for n ≥ 0 the points of the second critical orbit and let

k = k2(γ) = k0k1 . . .. If S ∈ Ak
I , k ≥ 1 and n ≥ 1 we write Sn for SS . . . S ∈ Akn

I repeated
n times and S∞ for SS . . . ∈ A∞

I .
Proposition 3.2.3 shows the existence of k+(α) = k(α) = I∞

1 therefore, there is δ0 > 0
such that

k ∈ I2
1 × Σ (3.6)

for all γ ∈ [α, α + δ0]. Figure 3.1 represents the graph of a 2-modal map with the second
kneading sequence I1c1 ≻ k(γ) for all γ ∈ [α, α + δ0].

Let us observe that O+(Critgα
) = {0, c1, c2, 1} and that by Singer’s Theorem 3.2.3, gα

has no homtervals. Therefore by Corollary 3.2.2 if H : [α′, β ′] → P2 is a natural family
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satisfying conditions (3.3) to (3.5) then gα and hα′ are topologically conjugate. Therefore
gα is conjugate to the second Chebyshev polynomial (on [−2, 2]) and topological properties
of its dynamics are universal. Let us study this dynamics and extend by continuity some
of its properties to some neighborhood of α in the parameter space.

We have seen that gα has no homtervals and that all its periodic points are repulsive.
Proposition 3.2.1 shows that the map

i(gα) : I → Σ is strictly increasing.

Let us denote by σ−(i) the set of all preimages of i by some shift

σ−(i) =
{

i′ ∈ Σ | ∃k ≥ 0 such that σk(i′) = i
}

.

As (0, 1) ⊆ gα(Ij) for all j = 1, 2, 3 and i(gα)(0) = I∞
1 , i(gα)(1) = I∞

3

i(gα) ((0, 1)) = Σ\
(

σ−(I∞
1 ) ∪ σ−(I∞

3 )
)

.

Let us denote by Σ0 = i(gα)(I). Then

i(gα) : I → Σ0 is an order preserving bijection.

As gα is decreasing on I2, gα(c1) > c1 and gα(c2) < c2 it has exactly one fixed point
r ∈ I2 and it is repulsive. Moreover, gα has no fixed points in I1 or I3 other than 0 and
1 as this would contradict the injectivity of i(gα). As 0 and 1 are repulsive fixed points
gα(x) > x for all x ∈ (0, c1) and gα(x) < x for all x ∈ (c2, 1). Then by the C1 continuity of
G and Corollary 3.2.4 we obtain the following lemma.

Lemma 3.3.1. There is δ1 > 0 such that gγ has exactly one fixed point r(γ) in (0, 1) and
all its fixed points 0, 1 and r(γ) are repulsive for all γ ∈ [α, α + δ1]. Moreover, the map
γ→r(γ) is continuous and i(r) = I∞

2 .

Let p be a periodic point of period 2 of gα. Then i(p) is periodic of period 2 and infinite
as the critical points are not periodic. So i(p) ∈ {(IjIk)

∞ | j, k = 1, 2, 3}. But i(gα) is
injective, i(gα)(0) = I∞

1 , i(gα)(r) = I∞
2 and i(gα)(1) = I∞

3 so

i(p) ∈ {(IjIk)
∞ | j 6= k and j, k = 1, 2, 3}⊆Σ0.

Therefore gα has exactly 3 periodic orbits of period 2 with itinerary sequences (I1I2)
∞,

(I1I3)
∞, (I2I3)

∞ and their shifts. Figure 3.2 illustrates the periodic orbits of period 2 of
gα. By the C1 continuity of g→g2

γ and Corollary 3.2.4 we obtain the following lemma.

Lemma 3.3.2. There is δ2 > 0 such that gγ has exactly 3 periodic orbits of period 2
with itinerary sequences (I1I2)

∞, (I1I3)
∞, (I2I3)

∞ and their shifts for all γ ∈ [α, α + δ2].
Moreover, the 6 periodic points of period 2 are repulsive and continuous with respect to γ
on [α, α + δ2].
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p1 p2 p3

Figure 3.2: gα and its periodic orbits of period 2, p1 with i(p1) = (I1I2)
∞, p2 with i(p2) =

(I1I3)
∞ and p3 with i(p3) = (I2I3)

∞.

Let us define
β ′ = α + min{δ0, δ1, δ2} (3.7)

so that G satisfies equality (3.6), Lemma 3.3.1 and the previous lemma for all γ ∈ [α, β ′].
Let us consider the dynamics of all maps gγ with γ ∈ [α, β ′] from the combinatorial

point of view. We observe that if x ≥ v = gγ(c2) then gn
γ (x) ≥ v for all n ≥ 0. This means

that any itinerary of gγ is of the form iγ = Ik
1 a . . . ∈ Σ0 with k ≥ 0, a 6= I1 and such that

σk+piγ � k for all p ≥ 0. Let Σ(k) denote the set of itineraries satisfying this condition.
We observe that (v, 1)⊆gγ(Ij) for j = 1, 2, 3 and c1, c2 ∈ (v, 1) for all γ ∈ [α, β ′] by relation
(3.6) so we obtain the following lemma. The continuity is an immediate consequence of
Proposition 3.2.2.

Lemma 3.3.3. Let γ0 ∈ [α, β ′] and k = k2(gγ0). Then every finite itinerary

i0 ∈ {i ∈ Σ(k) | |i| < ∞}
is realized by a unique point x(i) ∈ I and γ→x(i) is continuous on a neighborhood of γ0.

A kneading sequence k ∈ Σ(k) satisfies the following property.

Definition 3.3.1. We call m ∈ Σ0 minimal if

m � σkm for all 0 ≤ k < |m|.
The following proposition shows that the minimality an almost sufficient condition for

an itinerary to be realized as the second kneading sequence in the family G. This is very
similar to the realization of maximal kneading sequences in unimodal families but the proof
involves some particularities of our family G. For the convenience of the reader, we include
a complete proof.
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Proposition 3.3.1. Let α ≤ α0 < β0 ≤ β ′ and m be a minimal itinerary such that

k(α0) ≺ m ≺ k(β0).

Then there exists γ ∈ (α0, β0) such that

k(γ) = m.

Proof. Suppose that k(γ) 6= m for all γ ∈ (α0, β0). Let γ0 = sup {γ ∈ [α0, β0] | k(γ) � m}
so n = min {j ≥ 0 | k(γ0)(j) 6= m(j)} < ∞. Then, using the continuity of gn

γ , c1 and c2

one may check that
kn = k(γ0)(n) ∈ Ac,

otherwise the maximality of γ0 is contradicted as k(0), . . . , k(n − 1) and k(n) would be
constant on an open interval that contains γ0. There are two possibilities

1. kn = c1 so gn
γ0

(c2) = c1 therefore c2 is preperiodic.

2. kn = c2 so gn
γ0

(c2) = c2 therefore c2 is super-attracting.

Therefore γ0 > α and γ0 ≤ β ′ < β. Let us recall that G is a natural family so the
asymptotic kneading sequences k−(γ0) and k+(γ0) do exist and are infinite. Then the
definition of γ0 shows that

min(k(γ0), k
−(γ0)) � m � k+(γ0). (3.8)

Let m = m0m1 . . .mn . . . and S = m0 . . . mn−1 ∈ An
I be the maximal common prefix

of k(γ0) and m, so k(γ0) = Scj with j ∈ {1, 2}. Therefore, using Proposition 3.2.3,
mn ∈ Ij , Ij+1.

Suppose kn = c1 so gn
γ0

= c1. Lemma 3.3.3 and property (3.6) show that the sequences
I1I

k
3 c2 and I2I

k
3 c2 are realized as itineraries by all gγ with γ ∈ [α, β ′] for all k ≥ 0. Moreover

x(I1I
k
3 c2) is strictly increasing in k for all γ ∈ [α, β ′] and it is continuous in γ. Analogously,

x(I2I
k
3 c2) is strictly decreasing in k for all γ ∈ [α, β ′] and it is continuous in γ. Then by

compactness and by the continuity of γ→gn
γ and of γ→c1

k−(γ0), k
+(γ0) ∈ S × {I1, I2} × I∞

3 .

Therefore inequality (3.8) shows that

min(c1, I1I
∞
3 ) = I1I

∞
3 � σnm � I2I

∞
3 = max(c1, I2I

∞
3 ).

But m ∈ Σ0 so
I1I

∞
3 ≺ σnm ≺ I2I

∞
3

therefore mn = c1 as I1I
∞
3 = max I1 × Σ and I2I

∞
3 = min I2 × Σ, a contradiction.

Consequently k(γ0) = Sc2 so c2(γ0) is super-attracting. Then by Corollary 3.2.4 there is
a neighborhood J of γ0 such that a(γ) is a periodic attracting point of period n for all γ ∈ J ,
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γ→a(γ) is continuous and a(γ0) = c2(γ0). By Singer’s Theorem 3.2.3, c2 is contained in the
immediate basin of attraction B0(a(γ)) for all γ ∈ J , which is disjoint from c1. Therefore,
considering the local dynamics of gn

γ on a neighborhood of a(γ), k(γ) = i(gγ(a)) is also
periodic of period n or finite of length n for all γ ∈ J . As the family G is natural, there
exists ε > 0 such that c2 is not periodic for all γ ∈ (γ0−ε, γ0+ε)\{γ0}. Again by Corollary
3.2.4, k(γ) = k−(γ0) for all γ ∈ (γ0− ε, γ0) and k(γ) = k+(γ0) for all γ ∈ (γ0, γ0 + ε). Then
Proposition 3.2.3 shows that

k−(γ0), k
+(γ0) ∈ {(SI2)

∞, (SI3)
∞}.

Let m1 = min((SI2)
∞, (SI3)

∞) and m2 = max((SI2)
∞, (SI3)

∞) and

K = {i ∈ Σ | i minimal and m1 ≺ i ≺ m2} .

As the sequences Sc2, k−(γ0) and k+(γ0) are all realized as a kneading sequence k(γ) with
γ ∈ [α, β ′], using inequality (3.8) it is enough to show that

K = {Sc2}.

Let i ∈ K\{Sc2} so
i ∈ S × {I2, I3} × Σ.

Suppose ǫ(S) = 1 so m1 = (SI2)
∞ and m2 = (SI3)

∞. Suppose i(n) = I2, then as
ǫ(SI2) = −1 and i is minimal

i � σn(i) ≺ (SI2)
∞ = σn(m1),

so i ∈ (SI2)
2 × Σ. Therefore

σ2n(m1) = (SI2)
∞ ≺ σ2n(i) � σn(i) ∈ SI2 × Σ,

so i ∈ (SI2)
3 × Σ and by induction i = m1 /∈ K. Suppose i(n) = I3, then

i � σn(i) ≺ (SI3)
∞ = σn(m2),

as ǫ(SI3) = 1 and i minimal, so i ∈ (SI3)
2 × Σ. For the same reason

i � σ2n(i) ≺ (SI3)
∞ = σ2n(m2),

so i ∈ (SI3)
3 × Σ and by induction i = m2 /∈ K.

The case ǫ(S) = −1 is symmetric so we may conclude that K = {Sc2} which contradicts
our initial supposition.

Let us prove a complementary combinatorial property.

Lemma 3.3.4. Let S ∈ An
I with k(α) � SI∞

2 � k(β ′) and such that SI∞
2 is minimal. If

i1i2 . . . ∈ Σ and i1, i2, . . . ∈ A\{I1} then

SIk
2 i1i2 . . . ∈ Σ is minimal for all k ≥ |S|.
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Proof. Let i = SIk
2 i1i2 . . . ∈ Σ, n = |S| and k ≥ n. Suppose there exists j > 0 such that

σj(i) ≺ i.

As SI∞
2 � k(β ′) = I1 . . .

i ∈ I1 × Σ.

Then j < n and we set m = min {p ≥ 0 | σj(i)(p) 6= i(p)}. Therefore m ≤ n − 1 so

σj(SI∞
2 ) ≺ SI∞

2

as i coincides with SI∞
2 on the first 2n symbols, a contradiction.

Using relation (3.6), k(γ) = I1 . . . so Ik
2 cj ∈ Σ(k(γ)) for all k ≥ 0, j = 1, 2 and

γ ∈ [α, β ′]. Then by Lemma 3.3.3 the maps

γ→pk(γ) = x(Ik
2 c1)(γ) and γ→qk(γ) = x(Ik

2 c2)(γ)

are uniquely defined and continuous on [α, β ′] for all k ≥ 0. Let us recall that gγ is
decreasing on I2 so

c1 ≺ I2c2 ≺ I2
2c1 ≺ I3

2 c2 ≺ . . . ≺ I∞
2 ≺ . . . ≺ I3

2c1 ≺ I2
2 c2 ≺ I2c1 ≺ c2,

therefore

c1 = p0 < q1 < p2 < q3 < . . . < r < . . . < p3 < q2 < p1 < q0 = c2

for all γ ∈ [α, β ′].
Let us show that pk→r and qk→r as k→∞ for all γ ∈ [α, β ′]. Let

r− = lim
k→∞

p2k = lim
k→∞

q2k+1 and

r+ = lim
k→∞

q2k = lim
k→∞

p2k+1.

Suppose that r− < r+ then by continuity gγ(r
−) = r+ and gγ(r

+) = r−, as gγ(pk+1) = pk

and gγ(qk+1) = qk for all k ≥ 0. Then r− and r+ are periodic points of period 2 and with
itinerary sequence I∞

2 , which contradicts Lemma 3.3.2. By compactness

pk, qk→r uniformly as k→∞. (3.9)

The following proposition shows that these convergences have a counterpart in the
parameter space.

Proposition 3.3.2. Let S ∈ An
I for some n ≥ 0 be such that SI∞

2 is minimal and k−1(SI∞
2 )

is finite. Let α ≤ α0 < β0 ≤ β ′ be such that k(α0) ≺ SI∞
2 ≺ k(β0) and S ′ = SIk+1

2 with
k ≥ 0 and such that ǫ(S ′) = 1. If i1 = S ′c1, i2 = S ′c2 and k is sufficiently big then we may
define

γ1 = max
(

k−1(i1) ∩ (α0, β0)
)

and
γ2 = min

(

k−1(i2) ∩ (γ1, β0)
) (3.10)

and then
lim
k→∞

(γ2 − γ1) = 0.
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Proof. First let us remark that the condition ǫ(S ′) = 1 guarantees that

i1 ≺ SI∞
2 ≺ i2.

Using for example convergences (3.9) and the bijective map i(gα) there exists N0 > 0 such
that for all k ≥ N0, k(α0) ≺ i1 ≺ i2 ≺ k(β0). Moreover, if k ≥ n then i1 and i2 are
minimal, using Lemma 3.3.4.

Therefore for k ≥ max(N0, n) we may apply Proposition 3.3.1 to show that there exist
γ1 ∈ k−1(i1) ∩ (α0, β0) and γ2 ∈ k−1(i2) ∩ (γ1, β0). As i1 and i2 are finite and the family G
is natural, k−1(i1) and k−1(i2) are finite.

We may apply again Proposition 3.3.1 to see that γ1 is increasing to a limit γ− as
k→∞. Again by Proposition 3.3.1 and by the finiteness of k−1(SI∞

2 ) there exists

γ0 = max
(

k−1(SI∞
2 ) ∩ (α0, β0)

)

< β0 and γ− ≤ γ0.

For the same reasons there is N > 0 such that γ2 > γ0 for all k ≥ N , therefore γ2 becomes
decreasing and converges to some γ+ ≥ γ0.

Suppose that the statement does not hold, that is

γ− < γ+.

The map i(gα) : I → Σ0 is bijective and order preserving and pi→r, qi→r as i→∞ therefore

{i ∈ Σ0 | i1 � i � i2 for all k > 0} = {SI∞
2 }.

Then the definitions of γ− and γ+ imply that

k(γ) = SI∞
2 for all γ ∈ [γ−, γ+]

which contradicts the hypothesis.

From the previous proof we may also retain the following Corollary.

Corollary 3.3.1. Assume the hypothesis of the previous proposition. Then

lim
k→∞

γ1 = lim
k→∞

γ2 = γ0

and k(γ0) = SI∞
2 .

We may also control the growth of the derivative on the second critical orbit in the
setting of the last proposition. In fact, letting k→∞, the second critical orbit spends most
of its time very close to the fixed repulsing point r. Therefore the growth of the derivative
along this orbit is exponential.

Let us also compute some bounds for the derivative along two types of orbits.
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Lemma 3.3.5. Let [γ1, γ2]⊆[α, β ′], n ≥ 0, S ∈ An
I and i1, i2 ∈ S ×Σ with i1 ≺ i2 be finite

or equal to I∞
1 , I∞

2 or I∞
3 . If i1, i2 are realized on [γ1, γ2] then there exists θ > 0 such that

θ <
∣

∣

∣

(

gj
γ

)′
(x)
∣

∣

∣
< θ−1

for all γ ∈ [γ1, γ2], x ∈ [x(i1), x(i2)] and j = 1, . . . , n.

Proof. Let us remark that i(x) ∈ S × Σ therefore
(

gj
γ

)′
(x) 6= 0 for all γ ∈ [γ1, γ2], x ∈

[x(i1), x(i2)] and j = 1, . . . , n. As x(i1) and x(i2) are continuous by Lemmas 3.3.1 and
3.3.3, the set

{

(γ, x) ∈ R2 | γ ∈ [γ1, γ2], x ∈ [x(i1), x(i2)]
}

is compact. Therefore the continuity of (γ, x)→
(

gj
γ

)′
(x) for all j = 1, . . . , n implies the

existence of θ.

The previous lemma helps us estimate the derivative of gn
γ (x) on a compact interval of

parameters if i(x) ∈ In
j × Σ and n is sufficiently big. Let us denote

Ij(n)(γ) =
{

x ∈ Ij | gk
γ(x) ∈ Ij for all k = 1, . . . , n

}

for j=1,2,3, the interval of points of Ij that stay in Ij under n iterations. Let also sj be
the unique fixed point in Ij .

Lemma 3.3.6. Let [γ1, γ2]⊆[α, β ′], j ∈ {1, 2, 3} and ε > 0. Let also

λ1 = min
γ∈[γ1,γ2]

∣

∣g′
γ(sj)

∣

∣ ,

λ2 = max
γ∈[γ1,γ2]

∣

∣g′
γ(sj)

∣

∣ .

There exists N > 0 such that for all k > 0

λ
k(1−ε)
1 <

∣

∣

∣

(

gk
γ

)′
(x)
∣

∣

∣
< λ

k(1+ε)
2

for all γ ∈ [γ1, γ2] and x ∈ Ij(m) where m = max(k, N).

Proof. Let us first observe that by the definition (3.7) of β ′

1 < λ1 < λ2.

Lemma 3.3.3 shows that the itinerary sequences In
j c1, In

j c2 are realized on [α, β ′] for all
n ≥ 0. We may easily obtain analoguous convergences to (3.9) if j ∈ {1, 3} therefore

x(In
j c1), x(In

j c2)→sj uniformly as n→∞.

Moreover ∂Ij(n)⊆{x(In
j c1), x(In

j c2), sj} for all γ ∈ [γ1, γ2] and n ≥ 0. Using the continuity
of sj and of (γ, x)→g′

γ(x) there exists N0 > 0 such that

λ
1− ε

2
1 <

∣

∣g′
γ(x)

∣

∣ < λ
1+ ε

2
2
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for all γ ∈ [γ1, γ2] and x ∈ Ij(N0).
Using Lemma 3.3.5 there exists θ > 0 such that

θ <
∣

∣

∣

(

gm
γ

)′
(x)
∣

∣

∣
< θ−1

for all γ ∈ [γ1, γ2] , x ∈ Ij(N0) and 1 ≤ m ≤ N0. Let N1 > 0 be such that

λ
N1

ε
2

1 > θ−1λ
N0(1+ε)
2

and set N = N0 + N1. Let k > N1 and n = max(N1, k − N0) then

θλ
n(1− ε

2)
1 <

∣

∣

∣

(

gk
γ

)′
(x)
∣

∣

∣
< θ−1λ

n(1+ ε
2)

2

for all γ ∈ [γ1, γ2] and x ∈ Ij(m). As n ≥ N1 and 1 < λ1 < λ2

λ
k(1−ε)
1 <

∣

∣

∣

(

gk
γ

)′
(x)
∣

∣

∣
< λ

k(1+ε)
2

for all γ ∈ [γ1, γ2] and x ∈ Ij(m). If k ≤ N1 then gn
γ (x) ∈ Ij(N0) for all n = 0, . . . , k − 1 so

λ
k(1−ε)
1 < λ

k(1− ε
2)

1 <
∣

∣

∣

(

gk
γ

)′
(x)
∣

∣

∣
< λ

k(1+ ε
2)

2 < λ
k(1+ε)
2

for all γ ∈ [γ1, γ2] and x ∈ Ij(m).

We may remark that if we assume the hypothesis of the previous lemma then gk
γ is

monotone on Ij(m) therefore

λ
−k(1+ε)
2 < |Ij(m)| < λ

−k(1−ε)
1 . (3.11)

Let dn : [α, β ′] → R+ be defined by

dn(γ) =
∣

∣

∣

(

gn
γ

)′
(v)
∣

∣

∣
,

where v = gγ(c2) the second critical value. As γ→v is continuous and γ→gn
γ is C1 con-

tinuous, dn is continuous. The family G is natural so dn has finitely many zeros for all
n ≥ 0.

Corollary 3.3.2. Assume the hypothesis of Proposition 3.3.2 and let λ0 = |g′
γ0

(r)| > 1.
For all 0 < ε < 1 there exists N > 0 such that if k ≥ N then

λ
(n+k)(1−ε)
0 < dn+k(γ) < λ

(n+k)(1+ε)
0 for all γ ∈ [γ1, γ2].

Proof. Let us remark that |k(γ)| > n for all γ ∈ [γ1, γ2] therefore there exists θ > 0 such
that

θ < dn(γ) < θ−1 for all γ ∈ [γ1, γ2].

Using the previous lemma and Corollary 3.3.1 there exists N0 > 0 such that if k ≥ N0 then

λ
k(1− ε

2)
0 <

∣

∣

∣

(

gk
γ

)′
(vn)

∣

∣

∣
< λ

k(1+ ε
2)

0 for all γ ∈ [γ1, γ2].

Therefore it is enough to choose N ≥ N0 such that

λ
N ε

2
0 > θ−1λ

n(1−ε)
0 .
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3.4 UHP does not imply RCE

In this section we consider a family G : [α, β] → P2 satisfying all properties (3.3) to (3.6)
and Lemmas 3.3.1 and 3.3.2 for all γ ∈ [α, β]. We build a decreasing sequence of families
Gn : [αn, βn] → P2 with G0 = G, αn ր γ0 and βn ց γ0 as n → ∞. This means that
Gn(γ) = G(γ) for all n ≥ 0 and γ ∈ [αn, βn]. We obtain our counterexample as a limit
gγ0 = G(γ0) = Gn(γ0) for all n ≥ 0. For all n ≥ 0 we choose two finite minimal itinerary
sequences i1(n + 1) and i2(n + 1) as in Proposition 3.3.2 such that

k2(αn) ≺ i1(n + 1) ≺ i2(n + 1) ≺ k2(βn).

We set αn+1 = γ1 and βn+1 = γ2 and choosing sufficient long sequences i1(n + 1) and
i2(n + 1) we obtain the convergences αn→γ0 and βn→γ0 as n→∞.

Let T2(x) = x3 − 3x be the second Chebyshev polynomial. Observe that −2, 0 and 2
are fixed and that the critical points c1 = −1 and c2 = 1 are sent to 2 respectively −2.
Its Schwarzian derivative S(T2)(x) = − 4x2+1

(x2−1)2
is negative on R \ {c1, c2}. Let h > 0 small

and for each γ ∈ [0, h] two order preserving linear maps Pγ(x) = x(4 + γ) − 2 − γ and

Qγ(y) = y−T2(−2−γ)
2−T2(−2−γ)

that map [0, 1] onto [−2 − γ, 2] respectively [T2(−2 − γ), T2(2)] onto

[0, 1]. Let then
gγ = Qγ ◦ T2 ◦ Pγ (3.12)

be a 2-modal degree 3 polynomial. As S(Pγ) = S(Qγ) = 0 for all γ ∈ [0, h], using equality
(3.1), one may check that

S(gγ) < 0 on I \ {c1(γ), c2(γ)} for all γ ∈ [0, h].

If we write

gγ(x) =

3
∑

k=0

ak(γ)xk (3.13)

it is not hard to check that γ → ak(γ) is continuous on [0, h] for k = 0, . . . , 3 therefore
γ → gγ is continuous with respect to the C1 topology on I. By the definition of P2 (see
page 46), as gγ(0) = 0 for all γ ∈ [0, h], G : [0, h] → P2 with G(γ) = gγ for all γ ∈ [0, h] is
a family of 2-modal maps with negative Schwarzian derivative. Observe that 0 and 1 are
fixed points for all γ ∈ [0, h] and that they are repulsive for g0, with g′

0(0) = g′
0(1) = 9,

which is condition (3.3). Moreover, gγ(c1) = 1 for all γ ∈ [0, h] thus G satisfies also (3.4).
Observe that if γ ∈ [0, h] then Qγ(−2) = 0 if and only if γ = 0 so G satisfies also condition
(3.5). We show that G is also natural and that any minimal sequence SI∞

2 with S ∈ An
I

and n ≥ 0 equals the second kneading sequence k(γ) for at most finitely many γ ∈ [0, h].
This allows us to use all the results of the previous section for the family G.

Let G : [0, h] × [0, 1] → R be defined by

G(γ, x) = gγ(x) for all γ ∈ [0, h] and x ∈ [0, 1].

Then

G(γ, x) =
P1(γ, x)

P2(γ)
,
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where P1 and P2 are polynomials. Using definition (3.12), we may compute P2 easily

P2(γ) = 2 − T2(−2 − γ) = (γ + 1)2(γ + 4).

We may therefore extend G analytically on a neighborhood Ω⊆R2 of [0, h] × [0, 1]. The
critical points c1 and c2 are continuously defined on [0, h] by Lemma 3.3.3. They are also
analytic in γ as a consequence of the Implicit Functions Theorem for real analytic maps
applied to ∂G

∂x
. Therefore for all n ≥ 0 the map gn

γ (c2) is analytic on a neighborhood of
[0, h] so

cj(γ) − gn
γ (c2) has finitely many zeros in [0, h]

for all j ∈ {1, 2} and n ≥ 0 as gn
0 (c2) = 0 and c1(γ), c2(γ) ∈ (0, 1) for all γ ∈ [0, h]. The

family G is therefore natural so by eventually shrinking h we may also suppose that G
satisfies property (3.6) and Lemmas 3.3.1 and 3.3.2 for all γ ∈ [0, h]. Then the repulsive
fixed point r is continuously defined on [0, h] and again by the Implicit Functions Theorem
applied to G(γ, x) − x, it is analytic on a neighborhood of [0, h]. Then

r(γ) − gn
γ (c2) has finitely many zeros in [0, h]

for all n ≥ 0 as r(0) − gn
0 (c2) = 1

2
.

Let then G0 = G so α0 = 0 and β0 = h. Our counterexample gγ0 should be UHP but not
RCE. Its first critical point is non-recurrent as gγ(c1) = 1 and 1 is fixed for all γ ∈ [α0, β0].
Therefore the second critical point c2 should be recurrent and not Collet-Eckmann. We
let c2 accumulate on c1 also to control the expansion of the derivative along its orbit. In
order to obtain UHP we build gγ0 such that its second critical orbit spends most of the
time near r or 1 so its derivative accumulates sufficient expansion.

3.4.1 A construction

The construction of the sequence (Gn)n≥0 is realized by imposing at the n-th step the
behavior of the second critical orbit for a time span tn−1 + 1, tn−1, . . . , tn. This is achieved
specifying the second kneading sequence and using Proposition 3.3.2. We set t0 = 0.

We have seen that k+(0) = I∞
1 and that gγ(x) > x for all x ∈ (0, c1) and all γ ∈ [0, h]

as 0 is repulsive and gγ has no fixed point in (0, c1). Therefore the backward orbit of c1 in
I1 converges to 0 and by compactness the convergence is uniform. Then

k−1
(

Ik
1 c1

)

→0 as k→∞,

using Proposition 3.3.1 for their existence. Then for any ε0 > 0 there is k0 > 0 such that
Ik0
1 c1 ≺ k(β0) and ||g0 − gγ||C1 < ε0 for all γ ∈ [0, k−1(Ik0

1 c1)]. In particular, if

1 < λ < λ′ < |g′
0(r)| = 3 < |g′

0(0)| = |g′
0(1)| = 9

then for ε0 sufficiently small

λ′ <
∣

∣g′
γ(r)

∣

∣ , λ′ <
∣

∣g′
γ(0)

∣

∣ and λ′ <
∣

∣g′
γ(1)

∣

∣ (3.14)



63

for all γ ∈ [0, k−1(Ik0
1 c1)]. Let S0 = Ik0+1

1 ∈ Ak0+1
I so i ≺ Ik0

1 c1 for all i ∈ S0×Σ. Moreover,
S0I

∞
2 is minimal. Using Proposition 3.3.2 we find α0 < γ1 < γ2 < β0 such that

k(α0) ≺ k(γ1) ≺ S0I
∞
2 ≺ k(γ2) ≺ k(β0)

with k(γ1), k(γ2) ∈ S0I2 × Σ and

|γ2 − γ1| < 2−1.

We set α1 = γ1 and β1 = γ2 and define G1 : [α1, β1] → P2 by G1(γ) = G(γ) = gγ for all
γ ∈ [α1, β1]. Moreover, let t1 = k + |S0| and S1 = S0I

k
2 , where k is specified by Proposition

3.3.2, then
k(γ) ∈ S1I2 × Σ (3.15)

for all γ ∈ [α1, β1], and using Corollary 3.3.2 we may also suppose that

dm(γ) > λm (3.16)

for all γ ∈ [α1, β1], where m = t1 = |S1|. Let us recall that dn(γ) =
∣

∣

∣

(

gn
γ

)′
(v)
∣

∣

∣
.

Then we build inductively the decreasing sequence of families (Gn)n≥0 such that for all
n ≥ 1, Gn satisfies

|k(αn)|, |k(βn)| < ∞, (3.17)

|βn − αn| < 2−n, (3.18)

k(αn) ≺ SnI∞
2 ≺ k(βn) (3.19)

and conditions (3.14) to (3.16) for all γ ∈ [αn, βn], for some Sn ∈ Am
I with SnI∞

2 minimal,
where m = tn. As the sequence (Gn)n≥0 is decreasing, inequality (3.14) is satisfied by all
Gn with n ≥ 1. For transparency we denote

dn,p(γ) =
∣

∣

∣

(

gp
γ

)′
(vn)

∣

∣

∣

which also equals dn+p(γ)d−1
n (γ) whenever |k(γ)| > n so dn(γ) 6= 0.

Let us describe two types of steps, one that takes the second critical orbit near c1 to
control the growth of the derivative and the other that takes it near c2 to make the second
critical point c2 recurrent. We alternate the two types of steps in the construction of the
sequence (Gn)n≥0 to obtain our counterexample.

The following proposition describes the passage near c1.

Proposition 3.4.1. Let the family Gn with n ≥ 1 satisfy conditions (3.14) to (3.19) and

0 < λ1 < λ2 < λ.

Then there exists a subfamily Gn+1 of Gn satisfying the same conditions and such that there
exists 2tn < p < tn+1 with the following properties
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1. max
γ∈[αn+1,βn+1]

∣

∣

∣
log
∣

∣g′
γ(r)

∣

∣− 1
p−1

log dp−1(γ)
∣

∣

∣
< log λ2 − log λ1.

2. λp
1 < dp(γ) < λp

2 for all γ ∈ [αn+1, βn+1].

3. dtn,l(γ) > λl for all γ ∈ [αn+1, βn+1] and l = 1, . . . , p − 1 − tn.

4. dp,l(γ) > λl for all γ ∈ [αn+1, βn+1] and l = 1, . . . , tn+1 − p.

5. dtn,tn+1−tn(γ) > λtn+1−tn for all γ ∈ [αn+1, βn+1].

Proof. This proof follows a very simple idea, to define the family Gn+1 with

Sn+1 = SnIk1
2 Ik2

3 Ik3
2 ,

as described by properties (3.15) and (3.19). For k1 and k3 sufficiently big there exist k2

such that the conclusion is satisfied for p = tn + k1.
Let us apply Proposition 3.3.2 to Sn, αn and βn. Let k1 = k + 1, λ0 =

∣

∣g′
γ0

(r)
∣

∣ and

λ3 =
∣

∣g′
γ0

(1)
∣

∣. By inequality (3.14)

0 < λ1 < λ2 < λ < λ0

therefore there exists ε0 ∈ (0, 1) such that

(1 + ε0) log λ0 − log λ2

(1 − ε0) log λ3

<
(1 − ε0) log λ0 − log λ1

(1 + ε0) log λ3

.

We choose 0 < ε < ε0 such that

ε <
log λ2 − log λ1

8 log λ0
.

Let us recall that

k(γ1) = SnIk1
2 c1 ≺ Sn+1 × Σ ≺ k(γ2) = SnIk1

2 c2. (3.20)

Using Lemma 3.3.6 and Corollaries 3.3.1 and 3.3.2 there exists N0 such that if k1 > N0

then the first and the third conclusions are satisfied provided [αn+1, βn+1]⊆[γ1, γ2].
Let y(γ) ∈ I with i(y) ∈ I2I

k2
3 I2 × Σ and y′ = gγ(x). By Corollary 3.3.1, Lemma 3.3.6

and inequality (3.11) there exist N1, N
′
0 > 0 such that if k1 > N1 and k2 > N ′

0 then for all
γ ∈ [γ1, γ2]

λ
−k2(1+ε)
3 < |1 − y′| < λ

−(k2−1)(1−ε)
3 , (3.21)

as y ∈ I3(k2 − 1)\I3(k2).
Let us recall that gγ(x) =

∑3
k=0 ak(γ)xk with ai continuous and g′

γ(c1) = 0, g′′
γ(c1) 6= 0

for all γ ∈ [α, β ′] and c1 is continuous. Therefore there exist constants M > 1, δ > 0 and
N2 > 0 such that if k1 > N2 and γ ∈ [γ1, γ2] then

M−1(x − c1)
2 < |1 − gγ(x)| < M(x − c1)

2 and
M−1(x − c1) <

∣

∣g′
γ(x)

∣

∣ < M(x − c1)
(3.22)
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for all x ∈ (c1 − δ, c1 + δ). Using inequality (3.21) there exists N ′
1 such that if k2 > N ′

1 then
|1 − y′| < M−1δ2 therefore

M− 3
2 λ

− k2
2

(1+ε)

3 <
∣

∣g′
γ(y)

∣

∣ < M
3
2 λ

− k2−1
2

(1−ε)

3 .

Let k1 > max(tn, N0, N1, N2) and k2 > max(N ′
0, N

′
1). Lemma 3.3.4 shows that Sn+1I

∞
2

is minimal. We may therefore apply Proposition 3.3.2 with S = SnIk1+1
2 Ik2

3 using also
inequality (3.20). Let k3 = k and αn+1 and βn+1 be the new bounds for γ provided by
Proposition 3.3.2. Let us recall that p = tn + k1 and vn = gn+1

γ (c2) for all n ≥ 0, therefore

i(vp) ∈ I2I
k2
3 × Σ so we may set y = vp and y′ = vp+1. Let us remark that

dp(γ) = dp−1(γ) ·
∣

∣g′
γ(y)

∣

∣ for all γ ∈ [αn+1, βn+1].

By the choice of k1 and k2, for all γ ∈ [αn+1, βn+1]

M− 3
2 λ

(p−1)(1−ε)
0 λ

− k2
2

(1+ε)

3 < dp(γ) < M
3
2 λ

(p−1)(1+ε)
0 λ

− k2−1
2

(1−ε)

3 .

Therefore the second conclusion is satisfied if

p log λ1 < −3

2
log M + (p − 1)(1 − ε) log λ0 −

k2

2
(1 + ε) log λ3

and

p log λ2 >
3

2
log M + (p − 1)(1 + ε) log λ0 −

k2 − 1

2
(1 − ε) log λ3.

We may let p→∞ and k2

2p
→η so it is enough to find η > 0 such that

log λ1 < (1 − ε) log λ0 − η(1 + ε) log λ3 and
log λ2 > (1 + ε) log λ0 − η(1 − ε) log λ3.

The existence of η is guaranteed by the choice of ε < ε0.
Again by inequality (3.14), Lemma 3.3.6 and Corollary 3.3.2, if k2 and k3 are sufficiently

big then the last two conclusions are satisfied. If k3 is sufficiently big then by Corollary
3.3.1 inequality (3.18) is also satisfied.

The following proposition describes the passage near c2.

Proposition 3.4.2. Let the family Gn with n ≥ 1 satisfy conditions (3.14) to (3.19) and

∆ > 0.

Then there exists a subfamily Gn+1 of Gn satisfying the same conditions and such that there
exists tn < p < tn+1 with the following properties

1.
∣

∣gp
γ(c2) − c2

∣

∣ < ∆ for all γ ∈ [αn+1, βn+1].

2. dtn,l(γ) > λl for all γ ∈ [αn+1, βn+1] and l = 1, . . . , tn+1 − tn.
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3. dp,tn+1−p(γ) > λtn+1−p for all γ ∈ [αn+1, βn+1].

Proof. Once again, we build the family Gn+1 using the prefix of the kneading sequence

Sn+1 = SnIk1
2 SnIk2+1

2 I3I
k3
2

and show that we may choose k2 such that if k1 and k3 are sufficiently big then the
conclusion is satisfied for p = tn + k1.

We apply Proposition 3.3.2 to Sn, αn and βn. Let k1 = k + 2, λ0 =
∣

∣g′
γ0

(r)
∣

∣ > λ′ and

S ′ = SnIk2+1
2 I3.

In the sequel k2 is chosen such that ǫ(S ′) = 1 therefore k(γ0) = SnI∞
2 ≺ S ′ . . . so

Sn+1I
∞
2 is minimal if k1 − 1 > k2 > tn.

Indeed, suppose that there exists j > 0 such that σj (Sn+1I
∞
2 ) ≺ Sn+1I

∞
2 . Let us recall

that tn = |Sn| and SnI∞
2 is minimal, using property (3.19) of Gn. A similar reason to the

proof of Lemma 3.3.4 shows that j can only be equal to tn + k1 so

S ′ . . . ≺ SnIk1
2 . . .

which contradicts SnI∞
2 ≺ S ′ . . . as k1 ≥ k2 + 2. Moreover

k(γ1) = SnIk1−1
2 c1 ≺ Sn+1I

∞
2 ≺ k(γ2) = SnIk1−1

2 c2

and i′ = I2
2S

′c1 ≺ I2
2S

′c2 = i′′ ≺ c2 are realized for all γ ∈ [γ1, γ2], using Lemma 3.3.3. Let
us remark that gγ0 has no homterval as vtn = r, using Singer’s Theorem 3.2.3. Therefore

lim
k2→∞

gγ0(x(i′′)) = c2

as gγ0(x(i′′)) = x(σi′′) < c2 is increasing with respect to k2 and

{i ∈ Σ0 | I2S
′c2 ≺ i ≺ c2 for all k2 > 0} = ∅.

Let k2 be such that |c2 − (x(σi′′))| < ∆. Using Corollary 3.3.1 and the continuity of c2 and
of x(σi′′) < x(σi′) < c2 there exists N0 > 0 such that if k1 > N0 then

|c2 − x| < ∆

for all γ ∈ [γ1, γ2] and x ∈ [x(σi′′), x(σi′)]. Lemma 3.3.5 applied to i′ and i′′ yields θ > 0
such that if l = tn + k2 + 4 then

θ <
∣

∣

∣

(

gj
γ

)′
(x)
∣

∣

∣
< θ−1 (3.23)

for all γ ∈ [γ1, γ2], x ∈ [x(i′), x(i′′)] and j = 1, . . . , l. Lemma 3.3.6 provides N1 > 0 such
that if k1 > N1 then

(λ′)
j
< dtn,j(γ) for all γ ∈ [γ1, γ2] for all j = 1, . . . , k2 − 2. (3.24)
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As λ′ > λ there exists also N2 > 0 such that

θ−1λN2−2+l < (λ′)N2−2.

Let k1 > max(k2 + 1, N0, N1, N2) and S ′′ = SnIk1
2 S ′. Let us remark that S ′′I∞

2 = Sn+1I
∞
2

thus we may apply Proposition 3.3.2 to S ′′, γ1 and γ2. Let αn+1 and βn+1 be the new
bounds for γ provided by Proposition 3.3.2 and k3 = k.

As gp
γ(c2) = vp−1 and σp−1

(

S ′′Ik3
2 . . .

)

= I2S
′I2 . . .

gp
γ(c2) ∈ [x(σi′′), x(σi′)]

for all γ ∈ [αn+1, βn+1] thus the first conclusion is satisfied. Moreover, using inequalities
(3.23) and (3.24)

λj < dtn,j(γ) for all γ ∈ [αn+1, βn+1] and j = 1, . . . , |S ′′| = k1 − 2 + l.

Using Lemma 3.3.6 and Corollary 3.3.2, for k3 sufficiently big the last two conclusions are
satisfied. If k3 is sufficiently big then by Corollary 3.3.1 inequality (3.18) is also satisfied.

3.4.2 Some properties of polynomial dynamics

Let us recall some notation introduced in the previous chapter. For any set E ⊆ C, we
defined the α-neighborhood of E by

E+α = B (E, α) = {x ∈ C| dist (x, E) < α}.

One may easily check that if f, g : Ω → C with Ω⊆C and δ > ||f − g||∞ then for all B⊆C

g−1(B)⊆f−1(B+δ). (3.25)

Using this simple observation we show that in a neighborhood of an ExpShrink polynomial
(see Definition 2.1.3) some weaker version of Backward Stability (see Definition 2.1.4) is
satisfied, see Proposition 3.4.3. Let us first show that the Julia set is continuous in the
sense of Lemma 3.4.1. For transparency we introduce additional notations. We denote by
Cd[z] the space of complex polynomials of degree d. If f(z) =

∑d
i=0 aiz

i ∈ Cd[z] let us also
denote

|f | = max
0≤i≤d

|ai|.

By convention, when f ∈ Cd[z] and we compare it to another polynomial g writing |f − g|
we also assume that g ∈ Cd[z].

Let us observe that the coefficients of fn = f ◦ f ◦ . . . ◦ f , the n-th iterate of f , are
continuous with respect to (a0, a1, . . . , ad) ∈ Rd+1 for all n > 0. Therefore given f ∈ Cd[z],
m > 0 and ε > 0 there exists δ > 0 such that if |f − g| < δ then

∣

∣f i − gi
∣

∣ < ε for all i = 1, . . . , m.
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Given a compact K⊆C, the map Rd+1 ∋ (a0, a1, . . . , ad)→f ∈ Cd[z] is continuous with
respect to the topology of C(K, C). Therefore for all f ∈ Cd[z], ε > 0 and m > 0 there
exists δ > 0 such that if |f − g| < δ then

∣

∣

∣

∣f i − gi
∣

∣

∣

∣

∞,K
< ε for all i = 1, . . . , m. (3.26)

Lemma 3.4.1. Let f ∈ Cd[z] with d ≥ 2 and such that its Fatou set is connected and let
J be its Julia set. For all ε > 0 there exists δ > 0 such that if |f − g| < δ then

Jg⊆J+ε.

Proof. The Fatou set of f is the basin of attraction of ∞ and J is compact and invariant.
Let |J | = max

z∈J
|z|, then for all M ≥ |J |

J = {z ∈ C | |fn(z)| ≤ M for all n ≥ 0} .

Let f(z) =
∑d

i=0 aiz
i ∈ Cd[z]. There exists R > 1 such that if |f − g| < 1

2
|ad| then

|Jg| ≤ R.

Indeed, it is enough to choose

R > 4d + 2|ad|−1

(

1 +

d−1
∑

i=0

|ai|
)

and check that if |z| > R then |g(z)| > |z| + 1.
Let T =

{

z ∈ C | dist(z, J) ≥ ε
}

. As T is compact and contained in the basin of
attraction of ∞, there is m > 0 such that

|fm(z)| > R + 1 for all z ∈ T.

Let K = B(0, R + 1) a compact such that J+ε, Jg⊆K if |f − g| < 1
2
|ad|. Inequality (3.26)

yields 0 < δ < 1
2
|ad| such that if |f − g| < δ then

∣

∣

∣

∣f i − gi
∣

∣

∣

∣

∞,K
< 1 for all i = 1, . . . , m.

Therefore by the definitions of R and m, if |f − g| < δ then

|gm(z)| > R for all z ∈ T

thus Jg ∩ T = ∅.

Remark 3.4.1. The hypothesis f polynomial and its Fatou set connected are somewhat
artificial, introduced for the elegance of the proof. It may be easily generalized to rational
maps with no parabolic periodic points and no rotation domains.
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Proposition 3.4.3. Let f be an ExpShrink polynomial satisfying the hypothesis of Lemma
3.4.1. There exists δ > 0 such that for all 0 < r < δ there exist N > 0 and d > 0 such that
for all g with |f − g| < d and z ∈ Jg

diam Comp g−N(B(z, δ)) < r.

Proof. Let us denote J the Julia set of f . Let r0 > 0 and λ0 > 1 be provided by Definition
2.1.3 such that for all z ∈ J

diam Comp f−n (B(z, r0)) < λ−n
0 for all n ≥ 0.

Let δ = r0

4
and choose N ≥ 1 such that

λ−N
0 < r.

Inequality (3.26) provides d0 such that if |f − g| < d0 then

∣

∣fN(z) − gN(z)
∣

∣ < δ for all z ∈ J+r0.

Lemma 3.4.1 yields d1 > 0 such that if |f − g| < d1 and z ∈ Jg then there exists z′ ∈ J
such that |z − z′| < 2δ therefore

B (z, 2δ)⊆B (z′, r0) .

We choose d = min(d0, d1) and g ∈ Cd[z] with |f − g| < d. Using inequality (3.25)

diam Comp g−N (B(z, δ)) < λ−N
0 < r for all z ∈ Jg.

Corollary 3.4.1. Let f satisfy the hypothesis of Proposition 3.4.3 and ε > 0. There exist
d, δ > 0 such that if |f − g| < d then for all z ∈ Jg and n ≥ 0

diam Comp g−n(B(z, δ)) < ε.

Proof. Let us use the notations defined by the proof of Proposition 3.4.3. It is straight-
forward to check that f has Backward Stability and that, by eventually decreasing r0, we
may also suppose

diam Comp f−n (B(z, r0)) < ε for all z ∈ J and n ≥ 0.

Let m ≥ 1 such that
λ−m

0 < δ.

Inequality (3.26) provides d0 such that if |f − g| < d0 then

∣

∣f i(z) − gi(z)
∣

∣ < δ for all z ∈ J+r0 and i = 1, . . . , m.
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Let d1, d and g be as in the proof of Proposition 3.4.3. By inequality (3.25), for all z ∈ Jg

diam Comp g−m (B(z, δ)) < δ

and
diam Comp g−i (B(z, δ)) < ε for all i = 0, . . . , m.

For some z ∈ Jg, let W ∈ Comp g−m (B(z, δ)) and z1 ∈ W ∩ Jg. Then

W⊆B(z1, δ)

and the proof is completed by induction.

Let us show that the hypothesis of Lemma 3.4.1 is easy to check for polynomials in G0.

Lemma 3.4.2. If gγ ∈ G0 and its second critical orbit (vn)n≥0 accumulates on a repulsive
periodic orbit then gγ satisfies the hypothesis of Lemma 3.4.1. Moreover, if (vn)n≥0 is
preperiodic then gγ has ExpShrink.

Proof. By Theorems III.2.2 and III.2.3 in [1] the immediate basin of attraction of an
attracting or parabolic periodic point contains a critical point. But c1 is preperiodic and
(vn)n≥0 accumulates on a repulsive periodic orbit thus it cannot converge to some attracting
or parabolic periodic point. Using Theorem V.1.1 in [1] we rule out Siegel disks and Herman
rings as their boundary should be contained in the closure of the critical orbits which is
contained in [0, 1] for all gγ ∈ G0. Using Sullivan’s classification of Fatou components,
Theorem IV.2.1 in [1], the Fatou set equals the basin of attraction of infinity which is
connected for all polynomials by the maximum principle.

If (vn)n≥0 is preperiodic then gγ is Semi-Hyperbolic therefore by Theorem 1 it has
ExpShrink.

3.4.3 A counterexample

Using Propositions 3.4.1 and 3.4.2 we build a sequence of families (Gn)n≥1 which converge to
a 2-modal polynomial g that is Uniformly Hyperbolic on repulsive Periodic orbits (UHP ).
Its first critical point c1 is non-recurrent as g(c1) = 1 and 1 is a repulsive fixed point. The
second critical point c2 is recurrent and it does not satisfy the Collet-Eckmann condition.
Therefore g does not satisfy the Recurrent Collet-Eckmann condition (RCE).

We obtain the following theorem which states that the converse of Theorem 1 does not
hold.

Theorem 2. There exists an UHP polynomial that is not RCE.

The proof that g has UHP is analogous to that of Theorem 1. As g is not RCE we
have to modify some of our tools like Propositions 2.2.2, 2.2.3 and 2.3.1. The polynomial
g0 is Collet-Eckmann and Semi-Hyperbolic thus RCE. By Theorem 1 g0 has UHP and
ExpShrink. Choosing the family G1 in a sufficiently small neighborhood of g0 we show
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two contraction results similar to Propositions 2.2.2 and 2.2.3 that hold on G1, Corollary
3.4.2 and Proposition 3.4.4 below. As g ∈ G1 we may choose constants µ, θ, ε, R and N0 -
as described in the final part of Section 2.3 - that do not depend on g.

The main idea of the proof of Theorem 2 is that in inequality (2.17) the right term
may be much bigger than the left term, see also Lemma 3.4.4. This means that when
pulling back a ball B to B−1 near a second degree critical point, the diameter of B−1 is
comparable to the square root of the radius of B but |f ′(z)|−1 may be as big as we want
for some z ∈ B−1. This is the main difference between growth conditions in terms of the
derivative or in terms of the diameter of pullbacks.

An immediate consequence of Proposition 3.4.3 replaces Proposition 2.2.2 in the proof
of Theorem 2.

Corollary 3.4.2. There exists δ > 0 such that for all 0 < r < R ≤ δ there exist β > α0

and N > 0 such that for all γ ∈ [α0, β] and z ∈ J the Julia set of gγ

diam Comp g−N
γ (B(z, R)) < r.

Proof. Using Lemma 3.4.2, g0 satisfies the hypothesis of Proposition 3.4.3. Using the
continuity of coefficients of gγ (3.13) there exists β > α0 such that

|g0 − gγ| < d for all γ ∈ [α0, β].

The following consequence of Corollary 3.4.1 is a weaker version of uniform Backward
Stability. We use it only twice therefore it can replace Proposition 2.3.1 in the proof of
Theorem 2. The proof is analogous to the proof of the previous proposition.

Corollary 3.4.3. For all ε > 0 there exist β > α0 and δ > 0 such that for all γ ∈ [α0, β]
and z ∈ J the Julia set of gγ

diam Comp g−n
γ (B(z, δ)) < ε for all n ≥ 0.

Let us compute en estimate of the diameter of a pullback far from critical points.

Lemma 3.4.3. Let h : B(z, 2R) → C be an analytic univalent map and U ∋ z a connected
open with diam U ≤ R. If

sup
x,y∈B(z,2R)

∣

∣

∣

∣

h′(x)

h′(y)

∣

∣

∣

∣

≤ D

then
diam U ≤ D |h′(z)|−1

diam h(U).

Proof. Let x, y ∈ ∂U such that |x − y| = diam U . Let a = h(x), b = h(y) and consider the
pullback of the line segment [a, b] that starts at x. Then there exists t0 ∈ (0, 1] such that

[a, t0a + (1 − t0)b]⊆h (B(z, 2R))
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and such that the length of h−1 ([a, t0a + (1 − t0)b]) is at least diam U . We also notice that
∣

∣

∣

(

h−1
)′

(ta + (1 − t)b)
∣

∣

∣
≤ D |h′(z)|−1

for all t ∈ [0, t0]

which completes the proof as |(t0 − 1)a + (1 − t0)b| ≤ diam h(U).

Proposition 2.2.3 relies on inequalities (2.16) and (2.17). We remark that they are
satisfied uniformly on a neighborhood of g0. By the Koebe lemma, the definition (2.16) of
ε does not depend on f . Let us prove the uniform version of inequality (2.17) in G.

Lemma 3.4.4. There exist M > 1, βM > α0 and rM > 0 such that for all γ ∈ [α0, βM ]
if W is a connected open with diam W < rM , W−1 a connected component of g−1

γ (W ) and
x ∈ W−1 then

diam W−1 < M
∣

∣g′
γ(x)

∣

∣

−1
diam W.

Proof. Let γ ∈ [α0, β1], x ∈ W−1 and suppose

3 diamW−1 ≤ dist
(

W−1, Crit
)

where we denote by Crit the set of critical points {c1, c2}. Then by the Koebe lemma
the distortion is bounded by an universal constant M1 ≥ 1 on the ball B (x, 2 diamW−1).
Using Lemma 3.4.3

diam W−1 ≤ M1

∣

∣g′
γ(x)

∣

∣

−1
diam W. (3.27)

Let us remark some properties of the map fb : C → C defined by fb(z) = bz2 for all
z ∈ C and b > 0. Let U be a connected open and V = fb(U). If 3 diam U > dist (U, 0)
then there exist universal constants M2, M3 > 1 such that

bM−1
2 diam U < sup

z∈U
|f ′

b(z)| < bM2 diamU,

bM−1
3 (diam U)2 < diam V < bM3 (diam U)2 .

Let us also remark that using equality (3.13) if γ ∈ [α0, β1] and c ∈ Crit then

gγ(x) = gγ(c) +
g′′

γ(c)

2
(x − c)2 +

g′′′
γ (c)

6
(x − c)6.

As g′′
0(c) 6= 0 and gγ(c), g′′

γ(c) and g′′′
γ (c) are continuous there exist rM > 0, βM > α0 and

M4 > 1 such that if γ ∈ [α0, βM ], diam W < rM and

3 diamW−1 > dist
(

W−1, Crit
)

then

M−1
4 diam W−1 < sup

x∈W−1

∣

∣g′
γ(x)

∣

∣ < M4 diam W−1,

M−1
4 (diam W−1)

2
< diam W < M4 (diam W−1)

2
.

(3.28)

The previous inequality together with inequality (3.27) complete the proof.
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We may now prove a uniform contraction result on a neighborhood of g0 in G. It
replaces Proposition 2.2.3 in the proof of theorem Theorem 2.

Proposition 3.4.4. For any 1 < λ0 < λ and θ < 1 there exist β > α0, δ > 0 and
N > 0 such that for all γ ∈ [α0, β], 0 < R ≤ δ, n ≥ N and z ∈ Jγ the Julia set of gγ, if

W ∈ Comp g−n
γ (B(z, R)) and there exists x ∈ W such that

∣

∣

∣

(

gn
γ

)′
(x)
∣

∣

∣
> λn then

diamW < θRλ−n
0 . (3.29)

Proof. Let us fix z ∈ C and D ∈ (1, λ/λ0). Let ε ∈ (0, 1) be provided by inequality (2.16).
Let also rM > 0 be small and M > 1 provided by the Lemma 3.4.4. Let l ≥ 1 such that

2M j/lDjλ−j ≤ θλ−j
0 for all j ≥ l. (3.30)

Let us define N = 2l. There exists r1 < rM such that for all i = 1, 2, k = 1, . . . , N and
any connected component W of g−k

0 (B(ci, 4r1))

diam W ≤ 2ε dist (W, Crit) .

An argument similar to the proof of Proposition 3.4.3 and the continuity of the critical
points and of the coefficients (3.13) of gγ show that there exists b0 > α0 such that for all
γ ∈ [α0, b0], i = 1, 2 and k = 1, . . . , N

g−k
γ (B(ci, 2r1))⊆g−k

0 (B(ci, 4r1)) .

There are only a finite number of connected components of g−k
0 (B(ci, 4r1)) for all i = 1, 2

and k = 1, . . . , N . Therefore by the continuity of the critical points there exists b1 > α0

such that for all γ ∈ [α0, b1], i = 1, 2 and k = 1, . . . , N all connected components of
g−k

γ (B(ci, 2r1)) satisfy inequality (2.16).
Corollary 3.4.3 provides b2 > α0 and δ > 0 such that for all γ ∈ [α0, b2], z ∈ Jγ and

k ≥ 0
diam Comp g−k

γ (B(z, δ)) < εr1.

Let us define β = min (βM , b0, b1, b2) and fix γ ∈ [α0, β], z ∈ Jγ and n > N . Then

diam Comp g−k
γ

(

B(z, R)−k
)

< εr1 < r for all 0 ≤ k ≤ n.

Let us also fix W and x as in the hypothesis. Denote xk = gn−k
γ (x) ∈ Wk = gn−k

γ (W ) for
all k = 0, . . . , n.

Let 0 < k1 < . . . < kt ≤ N be all the integers 0 ≤ k ≤ n such that Wk does not satisfy
the inequality (2.16). As εr1 ≥ diam Wki

r1 > dist (Wki
, Crit) for all 1 ≤ i ≤ t.

Then for all 1 ≤ i ≤ t there exists c ∈ {c1, c2} such that Wki
⊆ B(c, 2r1). By the definition

of r1

ki+1 − ki > N for all 1 ≤ i < t. (3.31)
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We may begin estimates. For all 0 < j ≤ n with j 6= ki for all 1 ≤ i ≤ t, Wj satisfies
the inequality (2.16) so the distortion on Wj is bounded by D. Thus

diam Wj ≤ D|g′
γ(xj)|−1 diam Wj−1. (3.32)

If j = ki for some 1 ≤ i ≤ t we use Proposition 3.2.2 to obtain

diam Wj ≤ M |g′
γ(xj)|−1 diam Wj−1. (3.33)

Let us recall that xn = x with
∣

∣

∣

(

gn
γ

)′
(x)
∣

∣

∣
> λn and that W0 = B(z, R) so diam W0 = 2R.

If t ≥ 2 inequality (3.31) yields lt ≤ 2l(t−1) = N(t−1) < n. Consequently, as n > 2l = N ,

t <
n

l
.

Multiplying all the relations (3.32) and (3.33) for all 0 < j ≤ n we obtain

diam Wn ≤ M tDn−t
∣

∣

∣

(

gn
γ

)′
(xn)

∣

∣

∣

−1

diam W0

< 2Mn/lDnλ−nR
≤ θRλ−n

0 .

The last inequality is inequality (3.30).

As a direct consequence of inequality (3.31) we obtain the following corollary.

Corollary 3.4.4. Assume the hypothesis of Proposition 3.4.4. If there exist

−1 ≤ k1 < k2 < n

such that v ∈ gk1+1
γ (W ) and gk2

γ (W ) ∩ {c1, c2} 6= ∅ then k2 − k1 > N therefore condition
n ≥ N is superfluous.

Let us compute a diameter estimate similar to (3.11).

Lemma 3.4.5. There exist δ > 0 and N > 0 such that for all γ ∈ [α0, β1], k ≥ 1 and
x ∈ I3(N) with i(x) = Ik

3 I∗ . . . where I∗ ∈ {I2, I3}, the following statement holds. If
x ∈ W⊆C a connected open such that diam gi

γ(W ) < δ for all i = 0, . . . , k − 1 then

diam W < λ−k diam gk
γ(W ).

Proof. Let us denote xi = gi
γ(x) and Wi = gi

γ(W ) for all i = 0, . . . , k. Using Lemma 3.3.6,
inequalities (3.14) and Lemma 3.3.5 for i1 = I3c1, i2 = I3c2 if I∗ = I2 and i1 = I3c2, i2 = I∞

3

if I∗ = I3 there exists N0 > 0 that does not depend on γ such that if N ≥ N0 then

∣

∣

∣

(

gk
γ

)′
(x)
∣

∣

∣
> (λ′)

k
.
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Let D ∈
(

1, λ′

λ

)

and ε > 0 given by inequality (2.16). Using Lemma 3.4.3 it is enough
to show that B(xi, 2δ) satisfies inequality (2.16) for all i = 0, . . . , k − 1.

Let us recall that gγ(y) < y for all y ∈ (c2, 1) = I3\{1}. Therefore for all i = 0, . . . , k − 1

dist (xi, {c1, c2}) ≥ dist (xk−1, {c1, c2}) > dist (x(I3c1), {c1, c2}) .

Let
d = min

γ∈[α0,β1]
dist (x(I3c1), {c1, c2})

and recall that ε does not depend on γ. Therefore there exists

δ =
d

2(1 + 2ε−1)
> 0

such that if dist (y, {c1, c2}) ≥ d then B(y, 2δ) satisfies inequality (2.16).

The following corollary admits a very similar proof.

Corollary 3.4.5. There exist δ > 0 and N > 0 such that for all γ ∈ [α0, β1], k ≥ 1 and
x ∈ I3(max(k, N)) the following statement holds. If x ∈ W⊆C a connected open such that
diam gi

γ(W ) < δ for all i = 0, . . . , k − 1 then

diam W < λ−k diam gk
γ(W ).

Let us recall that all distances and diameters are considered with respect to the Eu-
clidean metric, as we deal exclusively with polynomial dynamics. Let us state Lemma 2.2.1
in this setting.

Lemma 3.4.6. Let f be a polynomial, z ∈ C and 0 < r < R. Let W ∈ Comp f−1 (B(z, R))
and W ′ ∈ Comp f−1 (B(z, r)) with W ′ ⊆ W . If degW (f) ≤ µ then

diam W ′

diam W
< 32

( r

R

)
1
µ

.

Let us set some constants that define the telescope construction used in the proof of
Theorem 2. Let µ = 2 and θ = 1

2
32−µ. Let δ0 > 0 be provided by Corollary 3.4.2 and

β ′
0 > α0, δ1 > 0, N1 > 0 be provided by Proposition 3.4.4 applied to λ

1
2 . Let δ′ > 0, N2 > 0

be provided by Lemma 3.4.5, δ′′ > 0, N3 > 0 be provided by Corollary 3.4.5 and βM > α0,
rM > 0 and M > 1 defined by Lemma 3.4.4.

Let us observe that

I∞
1 ≺ I1c2 ≺ c1 ≺ I2c2 ≺ I∞

2 ≺ I2c1 ≺ c2 ≺ I3c1 ≺ I∞
3

and that all these sequences are continuously realized on [α0, β1]. Let us define

ε0 = min
γ∈[α0,β1]

(|x(I1c2) − c1| , |x(I2c2) − c1| , |x(I2c1) − c2| , |x(I3c1) − c2|)
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therefore ε0 > 0 is smaller than |c1 − c2|, |c1| and |1 − c2| for all γ ∈ [α0, β1]. We set

ε = min (ε0, δ
′, δ′′, rM) . (3.34)

Corollary 3.4.3 provides β ′
1 > α0 and δ2 > 0 such that for all γ ∈ [α0, β

′
1] the diameter

of any pullback of a ball of radius at most δ2 centered on Jγ is smaller than ε. Let
β ′

2 = min (β1, β
′
0, β

′
1, βM) and

R = min (δ0, δ1, δ2)

such that Proposition 3.4.4 applies for balls centered on Jγ of radius at most R, for all
γ ∈ [α0, β

′
2]. Moreover, Lemma 3.4.5 and Corollary 3.4.5 apply and inequalities (3.27) and

(3.28) hold on all pullbacks of such balls.
Corollary 3.4.2 applied to r = θR yields β ′

3 > α0 and N0 > 0 the time span needed to
contract the pullback of a ball of radius R into a component of diameter smaller than θR
for all γ ∈ [α0, β

′
3]. We define

β = min(β ′
2, β

′
3).

Let us also prove a version of Corollary 2.3.1 for all gγ with γ ∈ [α0, β] that works
together with Corollary 3.4.4. Let us recall that degWk

gk
γ is defined by equality (2.28).

Corollary 3.4.6. For all γ ∈ [α0, β], z ∈ Jγ, 0 < r ≤ R and (Wk)k≥0 a backward
orbit of B (z, r) = W0, if dn > µ, where dk = degWk

gk
γ for all k ≥ 0, then there exist

0 < k1 < k2 ≤ n such that Wk1 ∩ {c1, c2} 6= ∅ and c2 ∈ Wk2.

Proof. By the definition of R, diam Wk < ε ≤ ε0 < |c1 − c2| therefore Wk contains at most
one critical point for all k ≥ 0. As µ = µc1 = µc2 there exist 0 < k1 < k2 ≤ n such that
Wk1 and Wk2 contain exactly one critical point each. Suppose c1 ∈ Wk2 therefore 1 ∈ Wk

for all 0 ≤ k < k2 which contradicts diam Wk1 < ε ≤ ε0.

Let us prove the main result of this section.

Proof of Theorem 2. This proof has two parts. The first part describes the construction of
a convergent sequence of families (Gn)n≥0 of 2-modal polynomials with negative Schwarzian
derivative. Its limit g does not satisfy the RCE condition. The second part shows that g
has ExpShrink and it is very similar to the proof of Theorem 1.

Let us recall the construction of the family G1. It is described by the common prefix
S1 of its kneading sequences k(γ) for all γ ∈ [α1, β1]. We defined S1 = Ik0+1

1 Ik1
2 so β1 <

k−1
(

Ik0
1 c1

)

which converges to α0 = 0 as k0→∞. Using this convergence, inequalities
(3.14), Lemma 3.3.6 applied to v and Lemma 3.3.5 applied to i1 = I1c1, i2 = I1c2 to bound
∣

∣g′
γ(vk0)

∣

∣ there exists k0 > 0 such that the following inequalities hold

β1 < max k−1
(

Ik0
1 c1

)

< β,

dγ(k) > λk for all γ ∈ [α0, β1] and k = 1, . . . , k0 + 1.

Again by Lemma 3.3.6, property (3.15) and inequalities (3.14), if k1 is sufficiently big then

dγ(k) > λk for all γ ∈ [α1, β1] and k = 1, . . . , t1 (3.35)
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where t1 = k0 + 1 + k1 = |S1|. Let us choose k1 such that the previous inequality holds
and such that t1 > N1 and

max
(

εR−1, 2M4 (θR)−1 , ε2 (θR)−2 , 2M1

)

< λt1−1 (3.36)

where M1 and M4 are defined by inequalities (3.27) respectively (3.28). This achieves the
construction of the family G1.

For all k ≥ 1 we construct G2k using Proposition 3.4.1 with

λ−1 < λ1 < λ2 < 1

and G2k+1 using Proposition 3.4.2 with

∆k = 2−k.

Using inequality (3.18) the sequence (Gn)n≥1 converges to a map g = gγ0 . Let us denote

d(n) = dn(γ0) =
∣

∣(gn)′ (v)
∣

∣ and d(n, p) = dn,p(γ0) =
∣

∣(gp)′ (vn)
∣

∣ for all n, p ≥ 0, where
v is the second critical value and vn = gn(v). For all n ≥ 2 let pn = p be provided by
Proposition 3.4.1 or Proposition 3.4.2 used to construct Gn. Therefore for all n ≥ 1

tn < pn+1 < tn+1

where tn = |Sn| the length of the common prefix Sn of kneading sequences in Gn. Let us
set t0 = 1. As γ0 ∈ [αn, βn] for all n ≥ 1

k = k(γ0) ∈ Sn × Σ for all n ≥ 1.

Let us also recall that for all k ≥ 1

S2k = S2k−1I
k1+1
2 Ik2

3 Ik3
2

and that we may choose k1, k2 and k3 as big as we need. We impose therefore for all k ≥ 1

k1 > N3, k2 > N2 and k3 > N3. (3.37)

Let us remark that g(c1) = 1, g(1) = 1 and |g′(1)| > 1 therefore c1 ∈ J the Julia set
of g and c1 is non-recurrent and Collet-Eckmann. Let us remark that ∆k→0 as k→∞
and γ0 ∈ [α2k+1, β2k+1] for all k ≥ 1 therefore the second critical orbit is recurrent. By
construction and inequality (3.11) the second critical orbit accumulates on r and on 1.
Therefore c2 ∈ J using for example a similar argument to the proof of Lemma 3.4.2. Let
us show that c2 is not Collet-Eckmann. Indeed, by Proposition 3.4.1 for all k ≥ 1

d(p2k) < λp2k

2 < 1

and p2k→∞ as k→∞. Therefore by Definition 2.1.2

g is not RCE.



78 §3 COUNTEREXAMPLES

Combining inequalities (3.35) and (3.16), the third claim of Proposition 3.4.1 and the
second claim of Proposition 3.4.2

d(n) > λn for all n ∈
⋃

k≥0

{t2k, . . . , p2k+2 − 1} . (3.38)

Let us check that for all m > 0 such that |gm(c2) − c2| < ε

d(m) > λm. (3.39)

Let us recall that ε ≤ ε0 by its definition (3.34) so |gm(c2) − c2| < ε implies that vm =
gm+1(c2) ∈ I1 therefore k(m) = I1 so there exists k ≥ 1 such that

t2k < m < t2k+1

as Proposition 3.4.1 extends S2n−1 to S2n using only the symbols I2 and I3 for all n ≥
1. Therefore m ∈ {t2k, . . . , p2k+2 − 1} thus inequality (3.39) is a direct consequence of
inequality (3.38).

Let us show that g has ExpShrink. We use a telescope that is very similar to the one
used in the proof of Theorem 1. We make a minor change to the definition of type 2 as
Corollary 3.4.2 does not need to consider a ball of radius 2R. Let us reuse all notations
defined in Section 2.4 and redefine the three type of blocks.

Type 1 Blocks with R′ = r′ and N ′ such that d(n, R′, N ′) > 1 and c2 ∈ WN ′+1.

Type 2 Blocks with R′ = R, N ′ = min(N0, N − n) and d(n, R, N − n) ≤ µ.

Type 3 Blocks with d(n, R′, N ′) > 1, c2 ∈ WN ′+1 and d(n, R′, N − n) ≤ µ.

Another minor modification of the telescope is that if i > 0 and Ti−1 = 2 then we set

r′i = θR

instead of the eventually smaller diameter of Wi,N ′

i
. This is harmless for the construction

and estimates. We use Corollary 3.4.2 instead of Proposition 2.2.2 and Corollary 3.4.6 in-
stead of Corollary 2.3.1 to construct the telescope. We cannot however replace Proposition
2.2.3 by Proposition 3.4.4 as c2 is not Collet-Eckmann. We find λ0 such that inequality
(2.30) holds for all blocks of the first and the third type. This also implies inequality (2.32)
thus it completes the proof as all estimates remain unchanged.

Let us fix i ≥ 0 such that Ti ∈ {1, 3}. Suppose that i > 0 and Ti−1 ∈ {1, 3} also,
therefore

c2 ∈ Wi−1,N ′

i−1+1⊆Wi,1 = B(zni
, R′

i)
−1 = gN ′

i

(

Wi,N ′

i+1

)

⊆B(zni
, R)−1.

But c2 ∈ Wi,N ′

i+1 also and diam B(zni
, R)−1 < ε by the definition of R. Therefore by

inequality (3.39)
d(N ′

i) > λN ′

i
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so by Corollary 3.4.4 we may apply Proposition 3.4.4 to obtain

diamWi,N ′

i
< θR′

iλ
−N′

i
2 .

We have proved that for all i > 0 with Ti−1 ∈ {1, 3} inequality (2.30) holds for all λ0 ≤ λ
1
2 .

If i = 0 or Ti−1 = 2 then R′
i ∈ [θR, R]. Therefore it is enough to show that there exist

λ0 > 1 such that for all z ∈ J , r ∈ [θR, R], n > 0 and W a connected component of
g−n (B(z, r)) the following statement holds. If v ∈ W and there exist 0 ≤ m < n such that
gm(W ) ∩ Crit 6= ∅ then

diam W < θrλ−n
0 . (3.40)

Again, if d(n) > λn using Corollary 3.4.4 and Proposition 3.4.4 the previous inequality is

satisfied for all 1 < λ0 ≤ λ
1
2 . Therefore using inequality (3.38) we may suppose that there

exist k′ ≥ 1 such that
p2k′ ≤ n < t2k′ .

Let us denote p = p2k′ , t = t2k′−1 and Wk = gk(W ) for all k = 0, . . . , n. By the
definition of p in Proposition 3.4.1

2t < p. (3.41)

Using Corollary 3.4.5, inequalities (3.37) and (3.36)

diam Wt < λ−(p−1−t) diam Wp−1 < λ−(p−1−t)ε < R.

As t1 > N1, inequality (3.16) lets us apply Proposition 3.4.4 to B (vt, diam Wt) which
combined to the previous inequality shows that

diam W < θλ−(p−1− t
2) diam Wp−1. (3.42)

Using Lemma 3.4.5 and eventually Corollary 3.4.5 if vn ∈ I2 and inequalities (3.37)

diam Wp < λ−(n−p) diam Wn = 2λ−(n−p)r. (3.43)

Therefore the only missing link is an estimate of diam Wp−1 with respect to diam Wp.
We distinguish the following two cases.

1. dist (Wp−1, c1) < 3 diam Wp−1.

2. dist (Wp−1, c1) ≥ 3 diamWp−1.

Suppose the first case. The by the definition (3.34) of ε we may use inequality (3.28)
therefore

diam Wp−1 < (M4 diam Wp)
1
2

< (2M4r)
1
2 λ−n−p

2

using inequality (3.43). Using also inequalities (3.42), (3.41) and (3.36) we obtain

diam W < θλ−n
2 r (2λM4r

−1)
1
2 λ− t

2

< θλ−n
2 r.
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Therefore in the first case it is enough to choose λ0 ≤ λ
1
2 .

Suppose the second case. Using inequalities (3.42), (3.41) and (3.36) we may compute

diam W < θλ−(p−1− t
2)ε

< θλ− p
2 θR ≤ θλ− p

2 r

= θλ−n( p
2n)r.

(3.44)

This is not enough as λ0 should depend only on g. We may remark that we are in position
to use inequality (3.27) for Wp therefore

diam Wp−1 < M1 |g′(vp−1)|−1
diam Wp.

Let us compute an upper bound for |g′(vp−1)|−1 = d(p− 1, 1)−1. Using the first two claims
of Proposition 3.4.1

d(p)−1 = d(p − 1)−1d(p − 1, 1)−1 < λ−p
1 < λp

and
d(p − 1) < λp−1

r λp−1

where we denote λr = |g′(r(γ0))| and ν = log λr

log λ
. Combining the previous inequalities

d(p − 1, 1)−1 < λp(ν+2)

therefore using also inequalities (3.42), (3.43), (3.41) and (3.36)

diam W < 2M1θλ
−(p−1− t

2)λp(ν+2)λ−(n−p)r

< θ(2M1)λ
νp+2p+1+ t

2 λ−nr
< θλ−n+p(ν+3)r.

If n > 2p(ν + 3) then inequality (3.40) is satisfied for all λ0 ≤ λ
1
2 . If n ≤ 2p(ν + 3) then

using inequality (3.44), inequality (3.40) is satisfied for all

λ0 ≤ λ
1

4(ν+3) ≤ λ
p
2n

which completes the proof.

3.5 RCE is not topological for real polynomials with

negative Schwarzian derivative

Let H : [0, h] → P2 be equal to the family G defined in the previous section. Let us define
another family of 2-modal maps H̃ : [0, h′] → P2 in an analogous fashion. Let T ∈ R7[x] be
a degree 7 polynomial such that T (0) = 0 and such that T ′(x) = (x+1)3(x−1)3. Therefore
T has two critical points −1 and 1 of degree 4 and T (−x) = −T (x) for all x ∈ R. Let
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y0 = T (−1) and x0 > 1 such that T (x0) = y0. Let h′ > 0 be small and for each γ ∈ [0, h′]

two order preserving linear maps Rγ′(x) = x(2x0 + γ′) − x0 − γ′ and Sγ′(y) = y−T (−x0−γ′)
y0−T (−x0−γ′)

that map [0, 1] onto [−x0 − γ′, x0] respectively [T (−x0 − γ′), T (x0)] onto [0, 1]. One may
show by direct computation that if a real polynomial P is such that all the roots of P ′ are
real then P has negative Schwarzian derivative. Therefore

h̃γ′ = Sγ′ ◦ T ◦ Rγ′ ∈ P2 for all γ′ ∈ [0, h′].

We define H̃(γ′) = h̃γ′ for all γ′ ∈ [0, h′]. Let us remark that x0 ∈
(

3
2
, 2
)

therefore all three

fixed points of h̃0 are repulsive. Let r̃(γ′) be the only fixed point of h̃γ′ in (0, 1) and c̃1 < c̃2

its critical points. The proofs that for h′ > 0 sufficiently small H̃ satisfies properties (3.3)
to (3.6), Lemmas 3.3.1 and 3.3.2, that it is natural, that r̃, c̃1 and c̃2 are continuous and
that for all n > 1

r̃(γ′) − h̃n
γ′(c̃2) has finitely many zeros in [0, h′]

go exactly the same way as for G. As h′
0(r(0)) = −3, h′

0(1) = 9, y0 = 16
35

and 3
2

< x0 < 2
one may compute that

1

2

log |h′
0(1)|

log |h′
0(r(0))| = 1 <

3

4

log
∣

∣

∣
h̃′

0(1)
∣

∣

∣

log
∣

∣

∣
h̃′

0(r̃(0))
∣

∣

∣

.

We may also suppose h > 0 and h′ > 0 sufficiently small such that there exist 1 < λ < λ′,
1 < λ̃ < λ̃′ and θ1 < θ2 such that for all γ ∈ [0, h] and γ′ ∈ [0, h′]

λ′ < min
(
∣

∣h′
γ(0)

∣

∣ ,
∣

∣h′
γ(r)

∣

∣ ,
∣

∣h′
γ(1)

∣

∣

)

and

λ̃′ < min
(
∣

∣

∣
h̃′

γ′(0)
∣

∣

∣
,
∣

∣

∣
h̃′

γ′(r̃)
∣

∣

∣
,
∣

∣

∣
h̃′

γ′(1)
∣

∣

∣

)

and

1

2

log
∣

∣h′
γ(1)

∣

∣

log
∣

∣h′
γ(r(γ))

∣

∣

< θ1 < θ2 <
3

4

log
∣

∣

∣
h̃′

γ′(1)
∣

∣

∣

log
∣

∣

∣
h̃′

γ′(r̃(γ′))
∣

∣

∣

. (3.45)

Let us denote k(γ) the second kneading sequence of hγ and k̃(γ′) the second kneading
sequence of h̃γ′ . We construct two decreasing sequences of families of 2-modal maps (Hn)n≥1

and (H̃)n≥1. Let Hn : [αn, βn] → P2 with Hn(γ) = H(γ) for all γ ∈ [αn, βn] and H̃n :
[α′

n, β ′
n] → P2 with H̃n(γ) = H̃(γ) for all γ′ ∈ [α′

n, β ′
n]. By construction we choose that for

all n ≥ 1

k(αn) = k̃(α′
n) and k(βn) = k̃(β ′

n).

Let us denote v = hγ(c2), ṽ = h̃γ′(c̃2) and vn = hn
γ(v), ṽn = h̃n

γ′(ṽ) for all n ≥ 0, γ ∈ [αn, βn]

and γ′ ∈ [α′
n, β ′

n]. Let also dn(γ) =
∣

∣

∣

(

hn
γ

)′
(v)
∣

∣

∣
, d̃n(γ′) =

∣

∣

∣

∣

(

h̃n
γ′

)′
(ṽ)

∣

∣

∣

∣

, dn,p(γ) =
∣

∣

∣

(

hp
γ

)′
(vn)

∣

∣

∣



82 §3 COUNTEREXAMPLES

and d̃n,p(γ
′) =

∣

∣

∣

∣

(

h̃p
γ′

)′
(ṽn)

∣

∣

∣

∣

for all n, p ≥ 0, γ ∈ [αn, βn] and γ′ ∈ [α′
n, β ′

n]. The basic

construction tool is again Proposition 3.3.2 and we build the sequences (Hn)n≥1 and (H̃)n≥1

by specifying the common prefix Sn of the kneading sequences in Hn and H̃n for all n ≥ 1.
We also reuse the notation tn = |Sn| for all n ≥ 1. In an analogous way to the construction
of the family G1, see inequality (3.35), we choose

S1 = Ik0+1
1 Ik1

2

such that
dk(γ) > λk and d̃k(γ

′) > λ̃k (3.46)

for all γ ∈ [α1, β1], γ′ ∈ [α′
1, β

′
1] and k = 1, . . . , t1 and

β1 < h and β ′
1 < h′.

Let us describe the construction of the sequences (Hn)n≥1 and (H̃)n≥1 which satisfy
properties (3.15) to (3.19) and

d̃tn(γ′) > λ̃tn (3.47)

for all n ≥ 1.
Let us recall that Proposition 3.4.1 employs twice Proposition 3.3.2 to construct a

subfamily Gn+1 of Gn with
Sn+1 = SnIk1

2 Ik2
3 Ik3

2 .

Let γ0 and γ′
0 be provided by Proposition 3.3.2 such that k(γ0) = k̃(γ′

0) = SnI∞
2 . We use

the same strategy as in the proof of Proposition 3.4.1 to define both Hn+1 and H̃n+1 with
the same combinatorics. Taking k1, k2 and k3 sufficiently big we may control the growth
of dm(γ) and d̃m(γ′) uniformly for all tn < m ≤ tn+1. We let

k1

k2

→η > 0,

p = tn +k1 and compute some bounds for dp(γ) and d̃p(γ
′). For transparency, let us denote

λ0 =
∣

∣h′
γ0

(r)
∣

∣, λ̃0 =
∣

∣

∣
h̃′

γ′

0
(r̃)
∣

∣

∣
, λ3 =

∣

∣h′
γ0

(1)
∣

∣ and λ̃3 =
∣

∣

∣
h̃′

γ′

0
(1)
∣

∣

∣
. As in the proof of Proposition

3.4.1 we obtain

lim
k1→∞

1

k1
log dp(γ) = log λ0 −

1

2η
log λ3 for all γ ∈ [αn+1, βn+1]. (3.48)

We may observe that inequalities (3.22) hold exactly when c1 is a second degree critical
point. We may however write similar bounds for H̃n+1. By the same arguments there exist
constants M̃ > 1, δ̃ > 0 and Ñ2 > 0 such that if k1 > Ñ2 and γ′ ∈ [γ′

1, γ
′
2] then

M̃−1(x − c̃1)
4 < |1 − h̃γ′(x)| < M̃(x − c̃1)

4 and

M̃−1(x − c̃1)
3 <

∣

∣

∣
h̃′

γ′(x)
∣

∣

∣
< M̃(x − c̃1)

3
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for all x ∈ (c̃1 − δ̃, c̃1 + δ̃), where γ′
1, γ′

2 are the bounds for γ′ provided by Proposition 3.3.2
applied to Sn and H̃n. Therefore we obtain

lim
k1→∞

1

k1
log d̃p(γ

′) = log λ̃0 −
3

4η
log λ̃3 for all γ′ ∈ [α′

n+1, β
′
n+1]. (3.49)

Using inequalities (3.45) and the limits (3.48) and (3.49) it is enough to choose

θ1 < η < θ2

to obtain the following corollary of Proposition 3.4.1.

Corollary 3.5.1. There exist

0 < λ1 < 1 < λ2 < min
(

λ, λ̃
)

that depend only on H1 and H̃1 such that if Hn is a subfamily of H1 and H̃n is a subfamily of
H̃1 both satisfying conditions (3.15) to (3.19) and (3.47) then there exist Hn+1 a subfamily
of Hn and H̃n+1 a subfamily of H̃n satisfying the same condition and 2tn < p < tn+1 with
the following properties

1. dp(γ) > λp
2 for all γ ∈ [αn+1, βn+1].

2. d̃p(γ
′) < λp

1 for all γ′ ∈ [α′
n+1, β

′
n+1].

3. dtn,l(γ) > λl for all γ ∈ [αn+1, βn+1] and l = 1, . . . , p − 1 − tn.

4. d̃tn,l(γ
′) > λ̃l for all γ′ ∈ [α′

n+1, β
′
n+1] and l = 1, . . . , p − 1 − tn.

5. dp,l(γ) > λl for all γ ∈ [αn+1, βn+1] and l = 1, . . . , tn+1 − p.

6. d̃p,l(γ
′) > λ̃l for all γ′ ∈ [α′

n+1, β
′
n+1] and l = 1, . . . , tn+1 − p.

Proposition 3.4.2 has an immediate corollary for the families H and H̃.

Corollary 3.5.2. Let the subfamilies Hn and H̃n of H1 respectively H̃1 with n ≥ 1 satisfy
conditions (3.15) to (3.19) and (3.47) and

∆ > 0.

Then there exist subfamilies Hn+1 of Hn and H̃n+1 of H̃n satisfying the same conditions
and such that there exists tn < p < tn+1 with the following properties

1.
∣

∣hp
γ(c2) − c2

∣

∣ < ∆ for all γ ∈ [αn+1, βn+1].

2.
∣

∣

∣
h̃p

γ′(c̃2) − c̃2

∣

∣

∣
< ∆ for all γ′ ∈ [α′

n+1, β
′
n+1].

3. dtn,l(γ) > λl for all γ ∈ [αn+1, βn+1] and l = 1, . . . , tn+1 − tn.



84 §3 COUNTEREXAMPLES

4. d̃tn,l(γ
′) > λ̃l for all γ′ ∈ [α′

n+1, β
′
n+1] and l = 1, . . . , tn+1 − tn.

For all k ≥ 1 we define H2k and H̃2k using Corollary 3.5.1 and H2k+1 and H̃2k+1

using Corollary 3.5.2 with ∆ = 2−k. Let h be the limit of (Hn)n≥1 and h̃ be the limit of
(H̃n)n≥1. Then h is CE therefore RCE and the second critical point c̃2 of h̃ is recurrent
but not CE therefore h̃ is not RCE. Both h and h̃ have negative Schwarzian derivative
and their second critical orbits accumulate on r and 1 respectively on r̃ and 1. Moreover,
using Lemma 3.4.2, h and h̃ do not have attracting or neutral periodic points. We may
therefore apply Corollaries 3.2.1 and 3.2.2 to obtain the following theorem that contradicts
Conjecture 1 in [10].

Theorem 3. The RCE condition for S-multimodal maps is not topologically invariant.
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Abstract. We consider C4 infinitely renormalizable unimodal maps of the interval with non-
degenerate critical point. A recent result of Graczyk and Kozlovski (see [4]) shows that there is
σ < 1 such that every attractor of such a map has Hausdorff dimension less than or equal to σ.

We find a correspondence between the renormalization type and the kneading sequence. This

yields an algorithm that finds the quadratic map x → ax(1 − x) with a given renormalization

type. For periodic and preperiodic renormalization types we estimate the Hausdorff dimension

of the fractal attractor. The results suggest that the attractor of the Feigenbaum map has the

highest dimension.

A.1 Introduction

One-dimensional dynamics have been the subject of intense research during the last three
decades. Despite their apparent simplicity these models present an interesting mathe-
matical structure going far beyond the simple equilibrium solutions. They may arise as
time-discretizations of higher dimension problems. They are computationally accessible
and provide examples and counter-examples for a large spectrum of phenomena.

The simplest examples of one-dimensional dynamical systems are maps of the interval
and maps of the circle. On the interval unimodal and multimodal maps are considered
while on the circle homeomorphisms are usually studied.

Definition A.1.1. We say that a map f : I → I, where I = [a, b] is a compact interval,
is unimodal if

1. f is continuous,

2. f(a) = f(b) ∈ ∂I,

3. ∃c ∈ (a, b) such that f is strictly monotone on [a, c] and on [c, b].

We say that f is Cr-unimodal for r ≥ 1 if f is Cr-continuous and

4. f ′(x) 6= 0 if x 6= c.

If f is a C2-unimodal map we say that its critical point is non-degenerate if

f ′′(c) 6= 0.

In the sequel, when not explicitly stated, we only consider unimodal maps on [0, 1] that
are increasing on the left lap [0, c) and decreasing on the right lap (c, 1].

Definition A.1.2. We define a family of unimodal maps as a path F : [α, β] → U1, where
U1 is the topological space of C1-unimodal maps.

Note that F should be continuous with respect to the C1 topology of U1 and that in
such a family, the critical point c(a) of F (a) is continuous on [α, β]. One may check [9]
for the theory of families of unimodal and multimodal maps in its full generality - not
necessarily smooth maps or families, for example.

A computationally accessible, full family of unimodal maps is the quadratic family.
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Definition A.1.3. We define the quadratic family Q of unimodal maps by

Q = {fa : [0, 1] → [0, 1], a ∈ [1, 4]|fa(x) = ax(1 − x)}.

Indeed a → fa is continuous in the C1 topology and by Definition A.2.3 it is easy to
check that Q is a full family (fl = f1 and fr = f4).

The understanding of high iterates of maps is a central problem in dynamics. The bal-
ance between expansion and contraction features plays an important role. In the quadratic
case, the high degree of iterates (as polynomials) induces expansion and the presence of the
critical point induces contraction. When the critical orbit accumulates on an attracting
periodic orbit, the dynamics is well understood (hyperbolic). Attracting periodic orbits
are the simplest example of attractors.

An attractor is an invariant set where a large part of the phase space accumulates. If f
is an unimodal map, a forward invariant compact set A is called a (minimal) metric attrac-
tor of f if its basin of attraction B(A) = {x ∈ [0, 1] | ω(x) ⊆ A)} has positive Lebesgue
measure and A has no proper subset with the same property. A topological attractor is a
minimal forward invariant compact set A with B(A) of second Baire category.

The metric and topological attractors of a C3 unimodal map with non-degenerate crit-
ical point coincide, see [5]. Unimodal maps with negative Schwarzian derivative are known
to have exactly one metric attractor. In particular, quadratic maps have exactly one at-
tractor - metric and topological. It is either an attracting periodic orbit, a transitive cycle
of intervals or a Cantor set of solenoid type, see [5]. The interesting case from the point of
view of the Hausdorff dimension is when the attractor is a Cantor set - we call it a fractal
attractor. This happens exactly when the quadratic map is infinitely renormalizable (see
Definition A.3.1). In [4], Graczyk and Kozlovski show that the Hausdorff dimension of
such an attractor is bounded by an universal constant σ < 1. The Feigenbaum map is the
limit of the period doubling cascade in the quadratic family. Its renormalization type is
the simplest at any scale - period two renormalization. This work and [4] both suggest
that its attractor maximizes the Hausdorff dimension of fractal attractors in the quadratic
family.

A.2 The Kneading Sequence

Symbolic dynamics arose as an attempt to study dynamics by means of discretizing the
phase space. One of its simplest forms is illustrated by the itinerary and kneading sequences
of unimodal maps of the interval. Let f be a unimodal map and c its critical point. Let
{[0, c), {c}, (c, 1]} be a partition of the interval [0, 1] corresponding to the monotonicity of
f . We associate the symbols of an alphabet A = {L, C, R} to the elements of the partition,
with respect to their order. We may assign to any orbit of the dynamics a sequence of
symbols of A. The dynamics of f on the orbit is represented by the left shift S.

Definition A.2.1. For f unimodal and x ∈ [0, 1] we define the itinerary If(x) of x, the
sequence (In)0≤n≤n of symbols of A such that
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1. n = min {n ≥ 0|fn(x) = c} ∈ N,

2. In = C if and only if fn(x) = c,

3. In = L if fn(x) < c and In = R if fn(x) > c.

We define the kneading sequence Kf of f by

Kf = If(f(c)).

The map If conjugates the dynamics of f on [0, 1] \ {c} to the left shift S, that is

If(f(x)) = S(If(x)), ∀x 6= c, (A.1)

where S(I0I1I2 . . .) = I1I2I3 . . .. The shifts of Kf are the itineraries of the elements of the
post-critical orbit.

Let

I = {If (x)|f unimodal, x ∈ [0, 1]}
be the space of itinerary sequences of unimodal maps. We define a total order on I - a
signed lexicographic order - that makes If increasing for each f unimodal (see Proposition
II.3.1 in [9]).

Let us first define a sign function ǫ : A → {−1, 0, 1} - that corresponds to the sign of
the derivative of a quadratic map - by ǫ(L) = 1, ǫ(C) = 0 and ǫ(R) = −1. We extend ǫ to
finite sequences I0I1 . . . In of symbols of A by

ǫ(I0I1 . . . In) =
∏

0≤i≤n

ǫ(Ii).

If f ∈ Q and If (x) = I0I1 . . . In . . . then

ǫ(I0I1 . . . In) = sgn(fn)′(x).

Observe that for all I 6= I ′ ∈ I, I cannot be a prefix of I ′ as I ′ contains at most one symbol
C on the rightmost position, if finite.

Definition A.2.2. A signed lexicographic order ≺ on I is defined as follows. We say that
I ≺ I ′ if there exists n ≥ 0 such that I i = I ′

i for i = 0, 1, . . . , n − 1 and

ǫ(I0I1 . . . In) > ǫ(I ′
0I

′
1 . . . I ′

n).

We call a sequence I ∈ I maximal if

SkI � I, ∀k ≥ 0 such that SkI ∈ I.
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For f unimodal If is increasing and f(c) is its maximal value therefore, using equality
(A.1), the kneading sequence Kf is maximal. Let

K = {K ∈ I | K maximal}

be the space of maximal itinerary sequences of unimodal maps.
Let us consider families of unimodal maps from the point of view of the kneading

sequence. We may observe that L = LLL . . . is the minimal element of I, R = RLLL . . .
is its maximal element and L, R ∈ K. Let us state a classical result on the realization of
the kneading sequence - Theorem III.1.1 in [2].

Theorem A.2.1. Let F be a family of unimodal maps, f, g ∈ F and K ∈ K such that

Kf ≺ K ≺ Kg.

Then there exists h ∈ F such that
Kh = K.

This result motivates the following definition of full families of unimodal maps, such
families that realize all maximal sequences as kneading sequences.

Definition A.2.3. Let F be a family of unimodal maps. We say that F is a full family if
there exist fl, fr ∈ F with Kfl

= L and Kfr
= R.

The kneading sequence extracts important features of the quadratic dynamics. We
use the following theorem to prove our main result (see [2], page 69). We formulate it
for quadratic maps but it applies for a larger class (S-unimodal maps) that is stable by
renormalization.

Theorem A.2.2. If f ∈ Q then Kf is periodic or finite if and only if f has a stable
periodic orbit. If Kf is not periodic and Kf = Kg for some g ∈ Q then f and g are
topologically conjugate.

Let us define the composition of itinerary sequences.

Definition A.2.4. Let A = A1 . . . AnC and B be itinerary sequences and A′ = A1 . . . An

the maximal prefix of A. Let L = R and R = L if ǫ(A′) = −1 and L = L ,R = R otherwise.
We define

A ∗ B =

{

A′B1A
′ . . . A′BmA′C if B is finite,

A′B1A
′B2A

′ . . . if otherwise.

It is easy to check that this operation is associative. The next lemma describes the
maximality properties of itinerary sequences.

Lemma A.2.1. Let A be a finite maximal sequence. If B is maximal then A∗B is maximal.
Conversely, if A ∗ B is maximal then B is maximal.

Proof. The first implication is Corollary II.2.4 in [2]. Considering the shifts Snk(A∗B) for
all k ≥ 0, where n = |A|, one may check the second implication.
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A.3 Renormalization

We say that a unimodal map f is renormalizable if it has a restrictive interval on which
an iterate of f is unimodal. If this is true for infinitely many iterates we call f infinitely
renormalizable. In the quadratic family those are exactly the maps with a fractal attractor.
The existence of restrictive intervals simplifies the study of high iterates of f . We define
the combinatorial type of the renormalization and state a classical theorem of existence of
any type of renormalization in full families of unimodal maps.

Definition A.3.1. Let f : I → I be a unimodal map. A closed proper subinterval J of I
that contains the critical point c is called restrictive with period n ≥ 2 for f if

1. the interiors of J, . . . , fn−1(J) are disjoint,

2. the restriction of fn to J is unimodal,

3. J is maximal with respect to these properties: if J ′ is a closed interval with J ⊆ J ′

and such that the previous properties also hold for J ′ (for the same integer n) then
J = J ′.

Let f be renormalizable and J a restrictive interval of period n. We define a unimodal
map R(f, J) : [0, 1] → [0, 1] that is an affine conjugate of fn : J → J such that it is
increasing on the left lap and decreasing on the right lap. We define the renormalization
operator R(f) = R(f, J0) where J0 is the maximal restrictive interval (with minimal
period).

We use the following lemma on several occasions to prove the existence of restrictive
intervals. For a proof one may check [9] (Lemma II.5.1).

Lemma A.3.1. Let f : I → I be unimodal. If n ≥ 2 and J is an interval that contains the
critical point c such that fn(J) ⊆ J and the interiors of J, . . . , fn−1(J) are disjoint then J
is contained in a restrictive interval of period n.

Let us fix f a renormalizable unimodal map on [0, 1] that is increasing on [0, c) and
decreasing on (c, 1]. Let J be a restrictive interval for f and n its period. We switch our
attention to the combinatorial features of the renormalization. We define the itinerary of
the restrictive interval If(J) = K0K1 . . .Kn−1C that has the same prefix of length n−1 as
the kneading sequence Kf . The correspondence SiIf (J) → f i+1(J) for i = 0, . . . , n − 1 is
order preserving with respect to the natural order on the interval, as f(J), . . . , fn(J) are
intervals with disjoint interiors.

We define a permutation σf ∈ Sn that captures the dynamics of f on the orbit of the
restrictive interval with respect to the order on the real line. Let τ ∈ Sn be a permutation
such that

f τ(1)(J) < f τ(2)(J) < . . . < f τ(n)(J).

We set σf(i) = τ−1(τ(i) + 1) for i 6= τ−1(n) and σf (τ
−1(n)) = τ−1(1) = n. Then f, J and

σf satisfy
f
(

f τ(i)(J)
)

⊆ f τ(σf (i))(J) for i = 1, . . . , n,
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as fn+1(J) ⊆ f(J).
One may check that σf is a cycle that is increasing on {1, . . . , τ−1(n)} and decreasing

on {τ−1(n), . . . , n}. This motivates the following definition of an unimodal permutation.

Definition A.3.2. We call a cycle γ ∈ Sn unimodal if there is k ∈ {1, . . . , n − 1} such
that γ is increasing on {1, . . . , k} and decreasing on {k, . . . , n}. If γ is unimodal we also
call it renormalizable if there are 1 < k, m < n with km = n such that γ acts on m blocks
Bi = {ik + 1, . . . , ik + k}, that is

∀ 0 ≤ i < m ∃ 0 ≤ j < m such that γ(Bi) = Bj.

For a better picture of a unimodal permutation γ let us define its graph G(γ) : [0, n +
1] → [0, n + 1], a piecewise affine continuous map. Let G(0) = G(n + 1) = 0, G(i) = γ(i)
and G affine on [i, i + 1] for all i = 0, . . . , n. It is easy to check that γ is unimodal if and
only if G(γ) is unimodal. Using Lemma A.3.1 one may check that γ is renormalizable if
and only if G(γ) is renormalizable. Moreover, σf is non-renormalizable if and only if J is
a maximal restrictive interval for f .

Let us state the existence theorem of infinitely renormalizable unimodal maps of arbi-
trary combinatorial type for full families of unimodal maps (see [9], Theorem II.5.3).

Theorem A.3.1. Let fµ, µ ∈ ∆ be a full family of unimodal maps and let (σi)i≥0 be a
sequence of non-renormalizable unimodal permutations. Then for each n ∈ N, the set

{µ ∈ ∆ | fµ n times renormalizable, σ(Ri(fµ)) = σi, i = 0, . . . , n}

is closed, non-empty and contains an interval ∆σ0,σ1,...,σn
such that Ri(fµ), µ ∈ ∆σ0,σ1,...,σn

is
a full family of unimodal maps. Furthermore ∆σ0,σ1,...,σn

⊂ ∆σ0,σ1,...,σn−1. In particular,
∆σ0,σ1,... is non-empty and ∆∞ = ∪∆σ0,σ1,... contains a Cantor set.

A.4 Duality

In this section we identify finite maximal sequences to unimodal permutations and prove
our main result, an existence theorem for infinitely renormalizable quadratic maps, in terms
of the kneading sequence.

Let K be a fixed maximal sequence of length n > 1. We define σK , the permutation
that captures the dynamics of the left shift on K. Let τ ∈ Sn be the permutation for which

Sτ(1)−1K ≺ Sτ(2)−1K ≺ . . . ≺ Sτ(n)−1K,

and k = τ−1(n). We construct σK in a similar way to σf , that is σK(i) = τ−1(τ(i) + 1) for
i 6= k and σK(k) = τ−1(1) = n. We have

S
(

Sτ(i)−1K
)

= Sτ(σK (i))−1K for i 6= k,

and Sτ(k)−1K = C. As τ(n) = 1 the orbit of n under σK is {1, . . . , n} therefore σK is a
cycle. Moreover Sτ(i)−1K ≺ C for i = 1 . . . k − 1 and Sτ(i)−1K ≻ C for i = k + 1 . . . n. As
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the left shift is increasing on sequences L . . . and decreasing on sequences R . . ., σK is a
unimodal permutation.

Let us consider the kneading sequence Kσ of a unimodal permutation σ ∈ Sn, defined
by Kσ = KG(σ) the kneading sequence of the graph of σ. It is a maximal sequence of
length n as the critical point of G(σ) is periodic with period n. As they capture the same
dynamics it is not hard to see that σ → Kσ is the inverse of K → σK . Therefore the
correspondence is one to one and onto.

This duality comes into play in the following proposition and in the main theorem.

Proposition A.4.1. If f is a renormalizable unimodal map and J its maximal restrictive
interval then

Kf = If (J) ∗ K (R(f)) .

Proof. Let n be the period of J and Kf = K1K2 . . .. As fkn+i(c) ∈ f i(J) for all k, i ≥ 0
and c /∈ f i(J) for i = 1, . . . , n − 1 we already obtain

Kkn+i = Ki for i = 1, . . . , n − 1 and k ≥ 0.

But If(J) = K1 . . .Kn−1C so
Kf = If (J) ∗ K ′

and K ′ is maximal by Lemma A.2.1. Let J = [a, b] so R(f) = g◦fn|[a,b]◦g−1 with g an affine
homeomorphism from [a, b] to [0, 1]. If ǫ(K1 . . . Kn−1) = 1 then fn(c) is a local maximum
and fn(a) = fn(b) = a so K ′ = K(R(f)) as g is increasing. If ǫ(K1 . . .Kn−1) = −1 then
fn(c) is a local minimum, fn(a) = fn(b) = b and g is decreasing. Therefore K(R(f)) is
the complement of K ′, that is, the sequence with the positions of L and R exchanged in
K ′. By the definition of the composition this proves the proposition.

We say that a maximal finite sequence K 6= C is prime if there are no non-trivial
maximal sequences K1, K2 such that

K = K1 ∗ K2.

Let us recall that if a unimodal permutation σ is renormalizable so is G(σ). Apply-
ing the previous proposition, if K is a finite maximal prime sequence then σK is non-
renormalizable.

Theorem 4. If f is a quadratic unimodal map and Kf its kneading sequence then f is
infinitely renormalizable if and only if Kf is the composition of infinitely many prime
sequences. There exists a unique quadratic map f with

Kf = K1 ∗ K2 ∗ . . .

if Ki are prime sequences and

IRi−1(f) (Ji) = Ki for all i ≥ 1, (A.2)

where Ji is the maximal restrictive interval of Ri(f).
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Proof. The first implication is obtained directly from Proposition A.4.1. Suppose K =
K1 ∗ K2 ∗ . . . with Ki finite maximal non-trivial sequences for all i ≥ 0. Without loss
of generality we may suppose K i prime for all i ≥ 0, otherwise we write it as a product
of prime sequences. Therefore the unimodal permutations σi = σKi

for all i ≥ 0 are
non-renormalizable. By the existence Theorem A.3.1 there is a quadratic map f that is
infinitely renormalizable and

σi = σ(Ri(f)) for all i ≥ 0.

This also implies equality (A.2). We show that f is the unique quadratic map with Kf = K
and this ends the proof.

Suppose there is a quadratic map g 6= f such that Kg = Kf = K. Infinitely renormal-
izable maps do not have stable periodic orbits so by Theorem A.2.2 the maps f and g are
conjugate. Using the definition of restrictive intervals one may check that g is infinitely
renormalizable. Then by the Milnor-Thurston theory - the kneading sequence is increasing
in the quadratic family - there is an interval I ⊂ [1, 4] such that fa, a ∈ I is infinitely
renormalizable. But this contradicts the main result of [6] that hyperbolic dynamics is
dense in the quadratic family, as infinitely renormalizable maps are not hyperbolic.

Remark A.4.1. Except for the uniqueness of f , one may prove the second part of the
theorem directly, that is without using the result of [6]. This can be done using some
variant of Proposition A.5.1.

A.5 Applications

Motivated by the result of [4] that the Hausdorff dimension of fractal attractors is bounded
away from 1, the aim of this section is to estimate the Hausdorff dimension of several types
of fractal attractors of quadratic maps. Our work was inspired by the work of Grassberger
[7]; however we do not use any of its methods. Grassberger estimates by two methods
the dimension of the Feigenbaum attractor - with kneading sequence RC ∗ RC ∗ . . ., or
simply, with renormalization periods (2, 2, . . .) - using the box dimension. Attractors with
renormalization periods (k, 2, 2, . . .) for some k > 2 are considered in [7] but they all have
the same dimension. In fact, it is not hard to see that after renormalization, the dimension
of the attractor does not change. Moreover, for periodic and preperiodic renormalization
types of period k ≥ 1, the sequence of renormalizations

(

Rki(f)
)

i≥0
converges to a universal

analytic map (see [11]). Therefore the Hausdorff dimension of such a map depends only on
the periodic part of the renormalization type. This also means that the numerical approach
could not deal with non-preperiodic renormalization types.

A.5.1 The Algorithm

Feigenbaum-like maps are easy to trace in the quadratic family as they are the limit of
cascades of bifurcations - using the graph of ω(c), a forward invariant compact contained
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in the attractor of fa ∈ Q for all a ∈ [1, 4]. To the best of our knowledge there is no
known method to search for quadratic maps of other renormalization types. This is the
main application of Theorem 4, an algorithm that finds - up to arbitrarily small error -
the quadratic map of a given renormalization type. We are able to estimate this error
- in terms of the renormalization class of the result - and the time requirements of the
algorithm (the space requirements are O(1)).

Let σi be non-renormalizable unimodal permutations and Ki = Kσi
the corresponding

prime maximal sequences for i ≥ 1. Let f be the unique quadratic map of renormalization
type (σi)i≥1 so

Kf = K1 ∗ K2 ∗ . . .

Let K(a) = Kfa
, for all a ∈ [1, 4] and fa ∈ Q. We know that K(a) is increasing in a

and that all maximal sequences are realized by this application. Our algorithm computes
a0 ∈ [1, 4] with

K(a0) = Kf .

More precisely it computes I1 ⊃ I2 ⊃ . . . such that a0 =
⋂

n≥1 In. Let I0 = [1, 4] and let bi

be the center of the interval Ii, then for all i ≥ 0

Ii+1 =

{

Ii ∩ [1, bi] if Kf � K(bi),
Ii ∩ [bi, 4] if otherwise.

Therefore

|Ii| = 3 · 2−i for all i ≥ 0. (A.3)

This equality is used to compute the time requirements of the algorithm. For the evaluation
of the quality of the answer we prefer a lower bound for the number of good renormalizations
of fbn

rn ≤ max
{

j ≥ 1 | Rk(fbn
) = σk for k = 1, . . . , j

}

. (A.4)

Our algorithm simply computes the critical orbit and the kneading sequence so we need
a method to compute rn using only combinatorial properties of the critical orbit. The
following proposition is a first step in that direction.

Let g be a unimodal map and x ∈ [0, 1]. We define s(x) to be such that g(x) = g(s(x))
and s(x) 6= x if x 6= c, well defined on [0, 1]. If g is quadratic or some renormalization of a
quadratic map, it is symmetric thus s(x) = 1 − x. Let us also denote by ]a, b[ the closed
interval I with ∂I = {a, b}.

Proposition A.5.1. Let g be unimodal and ci = gi(c) for all i ≥ 0 its critical orbit. If for
some n > 1

c2n+1 > cn+1 > ck for all k ∈ {2, . . . , n} ∪ {n + 2, . . . , 2n} and (A.5)

c /∈]cj, cn+j[ for all j ∈ {1, . . . , n − 1} (A.6)

then g is renormalizable of period n.
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Proof. Using Lemma A.3.1 we show that the interval

J =]cn, s(cn)[

is contained in a restrictive interval of period n. As c ∈ J , one may check that g(J) =
]c1, cn+1[ and using (A.6)

gj(J) =]cj , cn+j[ for all j ∈ {1, . . . , n} .

As c2n+1 > cn+1 we may observe that

gn(J) ⊆ J.

Inequality (A.5) shows that g(J) is disjoint from gk(J) for all k ∈ {2, . . . , n} and using
also (A.6), J is disjoint from gk(J) for all k ∈ {1, . . . , n − 1}.

Suppose that there are 1 ≤ i < j < n such that gi(J) and gj(J) are not disjoint. Then
gn−(j−i)(J) and gn(J) ⊆ J have a common point, a contradiction.

The following proposition shows that conditions (A.5) and (A.6) are pertinent, that
they are satisfied by a good approximation of an infinitely renormalizable map.

Proposition A.5.2. If g is renormalizable of period n such that

K(R(g)) = RL . . . ≺ R

then g satisfies conditions (A.5) and (A.6). This hypothesis is satisfied by all infinitely
renormalizable maps.

Proof. Let J = [a, b] be the restrictive interval of period n of g. Then gn(a) = gn(b) ∈ {a, b}
so s(a) = b and s(b) = a. As cn ∈ J ,

]cn, s(cn)[⊆ J,

therefore ]ck, cn+k[⊆ gk(J) for all k = 1, . . . , n. Thus condition (A.6) is satisfied by g.
Let c′ be the critical point of g1 = R(g) and c′k = gk

1(c
′) for all k ≥ 1. As K(g1) = RL . . .

c′2 < c′ < c′1.

By definition g(s(c′1)) = g(c′1) = c′2 and g is increasing on [0, c′]. Then c′2 > s(c′1) otherwise
S2K(g1) � SK(g1) = L . . . so K(g1) = RLLL . . . = R which violates the hypothesis.
Therefore c2n lies in the interior of ]cn, s(cn)[ so

c2n+1 > cn+1.

Moreover c ∈]cn, c2n[ and s(cn) is not a fixed point for gn so ]cn, s(cn)[ is contained in the
interior of J . As J, g(J), . . . , gn−1(J) have disjoint interiors, ci 6= cj for all 1 ≤ i 6= j < 2n.
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The interval g(J) is the rightmost among J, g(J), . . . , gn−1(J), cn, c2n ∈ J and ci, cn+i ∈
gi(J) for all i = 1 . . . n − 1 so

cn+1 > ck for all k ∈ {2, . . . , n} ∪ {n + 2, . . . , 2n} .

If g is infinitely renormalizable so is R(g) therefore K(R(g)) cannot be periodic or
finite by Theorem A.2.2. The only maximal sequences that do not start with RL are
L = LLL . . ., C, RRR . . . and RC. Thus

K(R(g)) = RL . . . ≺ R.

Propositions A.5.1 and A.5.2 provide a method to check in 2n + 1 steps if a given
quadratic map is renormalizable of period n. Moreover, it can be applied to any renormal-
ization Rn, n ≥ 1. Let

Pn =
∏

1≤i≤n

|Ki|

be the renormalization period of Rn. Let ∆n = ∆σ1,...,σn
be the interval defined by Theorem

A.3.1. Then the time requirements for the algorithm to find some b ∈ ∆n, using equality
(A.3), is

O(−Pn · log2 |∆n|).
One may check that for n ∈ {2, 3, 4} there is only one finite prime maximal sequence of

length n. For n = 5 there are three such sequences RLRRC, RLLRC and RLLLC. Let
us denote those renormalization types by 51, 52 and 53 respectively. Table A.1 presents
the values of some parameters of quadratic maps as a function of the preperiodic renor-
malization type.

A.5.2 Hausdorff Dimension

Let us briefly discuss Grassberger’s numerical method employed in [7] to compute the
Hausdorff dimension of Feigenbaum-like fractal attractors. It is in fact an algorithm that
approximates the box dimension. Let A ⊆ [0, 1] be the attractor. We divide the interval
[0, 1] in N equal intervals. Let A(N) be the number of such intervals that intersect A. We
define the box dimension of A

BD(A) = lim
N→∞

log A(N)

log N
,

when the limit exists. For a detailed discussion on the box dimension and Hausdorff
dimension one may check [12]. We know that

HD(A) ≤ BD(A),
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Table A.1: Parameter bn as a function of the renormalization type.

Renormalization Type bn |In| rn

(2, 2, 2, 2, . . .) 3.5699456719 8.5 · 10−22 32
(3, 2, 2, 2, 2, . . .) 3.8494336812 3.4 · 10−21 26
(51, 2, 2, 2, 2, . . .) 3.7430055309 8.5 · 10−22 28
(52, 2, 2, 2, 2, . . .) 3.9064536326 2.1 · 10−22 28
(53, 2, 2, 2, 2, . . .) 3.9903214465 2.1 · 10−22 28
(2, 3, 2, 3, . . .) 3.6330072770 2.0 · 10−28 23
(3, 2, 3, 2, . . .) 3.8504152723 2.5 · 10−29 23
(2, 2, 3, 2, 2, 3, . . .) 3.5833031348 8.5 · 10−22 24
(2, 2, 2, 3, 2, 2, 2, 3, . . .) 3.5728060660 2.1 · 10−24 26
(3, 3, 3, 3, . . .) 3.8540779636 1.9 · 10−34 20
(4, 4, 4, 4, . . .) 3.9615565872 8.8 · 10−47 13

where HD(A) is the Hausdorff dimension of A. The inequality is strict for Q ∩ [0, 1] and
{

1
n
| n ≥ 1

}

. That is because the box dimension behaves rather badly under topological
and set-theoretical operations. For example

BD(S) = BD(S) for all S ⊆ [0, 1].

Moreover the box dimension of a countable union of sets cannot be computed as a function
of the dimensions of those sets - in the case of the Hausdorff dimension, it is the supremum
of their dimensions.

Figures A.1 and A.2 represent the graph of A(N) in a logarithmic scale, for the Feigen-
baum attractor and for the attractor of renormalization type (3, 2, 3, 2, . . .) respectively.
As the scale is logarithmic, the convergence of computer estimates is weak.

We propose a new method, inspired by the definition of the Hausdorff dimension and
by the definition of restrictive intervals. We observe faster convergence compared to the
previous method.

Let f be infinitely renormalizable and J be some restrictive interval of period n. Its
attractor A is the closure of the critical orbit (ci)i≥0, a Cantor set. We have seen in Section
A.5.1 that A ⊆ ⋃n−1

i=0 f i(J). Moreover,

A ⊆
n
⋃

i=1

]ci, cn+i[ (A.7)

and this is a minimal cover of A with n intervals - from the point of view of the inclusion
of covers. For α ∈ [0, 1] we define

S(α, n) =

n
∑

i=1

|ci − cn+i|α.
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Figure A.1: Grassberger’s method for the Feigenbaum attractor.

Figure A.2: Grassberger’s method for the attractor of type (3, 2, 3, 2, . . .).
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Table A.2: The Hausdorff dimension HD(A) for several renormalization types.

Renormalization type Hausdorff dimension
(2, 2, 2, 2, . . .) 0.53804514358
(3, 2, 2, 2, 2, . . .) 0.5380451436
(51, 2, 2, 2, 2, . . .) 0.5380451436
(52, 2, 2, 2, 2, . . .) 0.5380451436
(53, 2, 2, 2, 2, . . .) 0.5380451436
(2, 3, 2, 3, . . .) 0.420917432
(3, 2, 3, 2, . . .) 0.420917432
(2, 2, 3, 2, 2, 3, . . .) 0.4448735455
(2, 2, 2, 3, 2, 2, 2, 3, . . .) 0.46275047
(3, 3, 3, 3, . . .) 0.3502283975126
(4, 4, 4, 4, . . .) 0.2689433270892

If (A.7) would be an optimal cover, then

lim
n→∞

S(α, n) =

{

∞ if α < HD(A),
0 if α > HD(A),

(A.8)

where n → ∞ means for increasing n renormalization periods.
However, the Hausdorff dimension is constructed using countable covers of sets. There-

fore, from the point of view of computer experiments, it is not computationally accessible.
Let us recall that we consider only preperiodic renormalization types. Let k such a period,
then

(

Rki(f)
)

i≥0
converges uniformly to an analytic universal map - depending of the pe-

riodic renormalization type, see [11]. Therefore the attractor A is a self-similar set and [3]
indicates that

HD(A) = BD(A).

Therefore we compute our estimates using our best finite cover (A.7). They are always an
upper bound for HD(A).

Let ni be the renormalization period of Rki(f). As one may expect, the experiments
show that the following limit exists

c(α) = lim
i→∞

S(α, ni+1)

S(α, ni)

and it is decreasing. This means that the convergences (A.8) are exponential with base
c(α). Therefore

HD(A) = c−1(1).

Table A.2 presents the estimated Hausdorff dimension for several renormalization types.
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Résumé.

Cette thèse est consacrée à l’étude des relations entre les propriétés dynamiques des orbites
critiques et la géométrie des ensembles de Fatou et de Julia des applications rationnelles. La
régularité des composantes de l’ensemble de Fatou est équivalente à une version faible de l’hy-
perbolicité, conséquence des résultats de Graczyk et Smirnov et de Przytycki, Rivera-Letelier
et Smirnov. Plus précisément, les composantes de l’ensemble de Fatou sont des domaines de
Hölder si et seulement si le diamètre des préimages des petits disques centrés sur l’ensemble de
Julia décrôıt exponentiellement. On s’intéresse désormais aux applications rationnelles sans or-
bite périodique parabolique. En dynamique polynomiale, Carleson, Jones et Yoccoz ont montré
l’équivalence entre la semi-hyperbolicité (toute orbite critique dans l’ensemble de Julia est non-
récurrente) et la régularité John (qui implique la régularité Hölder) des composantes de l’ensemble
de Fatou. Graczyk et Smirnov ont montré plus tard que si tout point critique dans l’ensemble
de Julia est Collet-Eckmann alors les composantes de l’ensemble de Fatou sont Hölder. On in-
troduit la condition de Collet-Eckmann pour les orbites critiques récurrentes qui généralise ces
deux dernières conditions et on montre qu’elle a comme conséquence la régularité Hölder. On
construit un contre-exemple pour la réciproque. Un deuxième contre-exemple contredit la conjec-
ture de Świa̧tek qui affirme l’invariance topologique de la propriété Collet-Eckmann des points
critiques récurrents dans la classe des applications S-multimodales. Le dernier chapitre présente
une étude sur la dimension de Hausdorff des attracteurs des applications unimodales infiniment
renormalisables.

Mots-Clés : dynamique rationnelle, orbites critiques, géométrie de l’ensemble de Fatou,
hyperbolicité, semi-hyperbolicité, Collet-Eckmann, invariance topologique, attracteurs, dimension
de Hausdorff.

Abstract.

This PhD thesis is devoted to the study of the relations between dynamical and geometric
properties of the Julia set. The regularity of the components of the Fatou set is equivalent to
a weaker version of hyperbolicity. This follows from results by Graczyk and Smirnov and by
Przytycki, Rivera-Letelier and Smirnov. More precisely, the components of the Fatou set are
Hölder domains if and only if the diameter of preimages of small balls centered on the Julia
set decay exponentially. In the sequel we consider rational maps without parabolic orbits. In
polynomial dynamics, Carleson, Jones and Yoccoz show that semi-hyperbolicity (every critical
orbit in the Julia set is non-recurrent) and John regularity (which is stronger than Hölder) of the
components of the Fatou set are equivalent. Graczyk and Smirnov show that if every critical point
in the Julia set is Collet-Eckmann then the components of the Fatou set are Hölder domains. We
introduce the recurrent Collet-Eckmann condition (every recurrent critical point in the Julia set
is Collet-Eckmann) which is more general than semi-hyperbolicity and than Collet-Eckmann and
show that it also implies Hölder regularity. We also provide a counter-example for the converse. A
second counter-example shows that the Świa̧teks conjecture (topological invariance of the Collet-
Eckmann property of recurrent critical orbits in the S-multimodal setting) does not hold. The
last chapter presents a (numerical) study of the Hausdorff dimension of attractors of infinitely
renormalizable unimodal maps.

Key-words : rational dynamics, critical orbits, geometry of the Fatou set, hyperbolicity,
semi-hyperbolicity, Collet-Eckmann, topological invariance, attractors, Hausdorff dimension.

AMS Classification Codes (2000) : 37B10, 37B20, 37D25, 37E05, 37E15, 37F10, 37F15,
37F20, 37F25, 37F35, 37M05, 37M20.


