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First challenging open problem:

Find the classification of all perfect q-ary codes of length n over the Galois field GF (q).

The solution for the binary case n = 15 is done in [1].

REFERENCES
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Author: Danyo Danev
Title: Families of quasi-perfect codes

Some definitions:
• GF (q) −→ the Galois field of q elements, where q = ps;
• H(n, q) −→ the Hamming space : {a=(a0, . . . , an−1) :ai ∈ GF (q)};
• dH(x,y) = d(x,y) −→ the Hamming distance;
• wtH(x) = d(x,0) −→ the Hamming weight;
• q-ary code C −→ subset of H(n, q);
• q-ary linear code C −→ linear subspace of H(n, q);
• d(C) −→ the minimum distance of C min{d(x,y) | x,y ∈ C, x 6= y};
• t(C) −→ the packing radius of C :

⌊
d(C)−1

2

⌋
;

• ρ(C) −→ the covering radius of C : maxx∈H(n,q) minc∈C d(x, c);
• A q-ary code C is called quasi-perfect if ρ(C) = t(C) + 1.

Open problems:

Problem 1: Are there any quasi-perfect codes of minimum distance 5 over the finite field
GF (q) for a prime power q ≥ 5?

Problem 2: Are there any quasi-perfect codes BCH codes[1] over the finite field GF (q)
for a prime power q ≥ 5?

Problem 3: Are there any quasi-perfect BCH codes of minimum distance at least 7?

Problem 4: Are there any quasi-perfect codes of minimum distance at least 9?

Problem 5: Is there an upper bound on the minimum distance of quasi-perfect codes?
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Author: Thomas Ericson
Title: Preparata codes over the GF(4)

Some definitions: The binary Preparata codes can be constructed with help of some
code over GF (4) and applying the standard Gray mapping from GF (4) to GF (2)2. Let
z : GF (2µ) 7→ GF (4). We define Πµ to be the set of all functions z with the following
properties

1)
∑

u∈GF (2µ) z(u) = 0;
2)
∑

u∈GF (2µ) uTr{z(u)} = 0;

3)
∑

u∈GF (2µ) u
3Tr{z(u)} =

(∑
u∈GF (2µ) uz(u)

)3

;

Open problems:

Problem 1: Define an operation � on Πµ, i.e � : Π2
µ 7→ Πµ such that Πµ is an abelian

group under this operation.

Problem 2: Find a similar GF (4) description of the Kerdock codes.



Author: Denis Krotov
Title: On the binary codes with parameters of doubly-shortened 1-perfect codes

1. For q-ary alphabet Fq = {a0, a1, . . . , aq−1}, we define the map ρ : Fq → F q−1
2 by

ρ(a0) = 00...00, ρ(a1) = 10...00, ρ(a2) = 01...00, ρ(aq−1) = 00...01. This map is coordinate-
wise expanded to ρ : F n

q → F
n(q−1)
2 .

By 2-rank of a code C ⊂ F n
q we mean the dimension of the affine span of ρ(C).

2-Rank is invariant with respect to the isometries of the Hamming space (automorphisms
of the Hamming graph).

Open problems:

Problem 1: Study the 2-rank of q-ary (perfect) codes (minimal, maximal values, ...; cases
of odd and even q).

Problem 2: Find other “measures of non-linearity” that are invariant with respect to the
isometries of the Hamming space.

2. By s-fold MDS code we mean a set of vertices of the Hamming graph Hn
q such that

every line (maximal clique) contains exactly s code vertices. (1-Fold MDS codes are known
as distance-2 MDS codes, Latin hypercubes, multary quasigroups.)

For q ≥ 4, the number of such objects is known to be doubly-exponential (i.e., at least
22cn) [1].

By s-fold 1-perfect code we mean a set of vertices of the Hamming graph such that every
ball of radius 1 contains exactly s code vertices.

Open problem:

Problem 3: Find the limit

lim
n→∞

log log(the number of ...)
n

for s-fold MDS codes, s-fold 1-perfect codes. In particular, prove that this limit exists.
In some sense minimal unsolved case is the case of 2-fold MDS codes in Hn

4 , while the 1-
fold-MDS case in Hn

4 can be solved by different approaches, see http://www.nsc.ru/ws/Lyap2001/2363/.
Another important class is the class of (n+ 1)/2-fold 1-perfect binary codes, which exist for
every odd n.
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Author: Ivan Yu. Mogilnykh
Title: On perfect 2-colorings of Johnson graphs

Some necessary definitions:
Definition 1 (perfect coloring): Perfect m-coloring of a graph G with the matrix A =

{aij}i,j=1,...,m is a coloring of the vertices of G into the set of colors {1, . . . ,m} such that
the number of vertices of the color j adjacent with the fixed vertex x of the color i does not
depend on a choice of the vertex x and equals to aij .
Matrix A is called a matrix of parameters of perfect coloring.

Such objects as 1-perfect constant weight code and (w−1)−(n,w, λ)-design can be defined
as perfect 2-colorings of Johnson graph J(n,w). The existence of 1-perfect constant weight
codes is a long stating open question. The best result (no 1-perfect codes in Johnson graphs
J(n,w) exist for n ≤ 2250) is due to D.Gordon [4]

Open problems:

Problem 1(Delsarte [3]): Prove that no 1-perfect codes exist in Johnson graph.

Problem 2: The problem of existence of perfect 2-colorings: List all matrices of parameters
of perfect 2-colorings of Johnson graphs J(n,w) for small n, n ≥ 9. For n = 9 two left open

cases are colorings with matrices
(

10 8
8 10

)
for J(9, 3) and

(
12 8
8 12

)
for J(9, 4).

Problem 3:
Background: Using antipodality of 1-perfect codes, Avgustinovich in [1] established that

1-perfect code in Hamming space is uniquely defined by its ”middle level” words – set of
all codewords of weight (n− 1)/2. More over, there are explicit formulas for reconstruction
of perfect code by it’s middle level (see [2]).

All perfect 2-colorings of Johnson graph J(2w,w) hold the antipodality property simular to
antipodality property of perfect codes in the Hamming space. For odd w this property implies
that any perfect 2-coloring of graph J(2w,w) is uniquely defined by it’s ’middle level’ – part
of the coloring on vertices of graph that are at Johnson distance w/2 and w/2 + 1 from pair
of two fixed antipodal vertices of J(2w,w).

Problem statement: Find the formulas for reconstruction of perfect 2-colorings of J(2w,w)
for odd w from the middle level of a graph.
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Authors: Patric Östergård and Olli Pottonen
Title: Classification and properties of the Perfect One-Error-Correcting Codes of Length 15

Open problem:

1. A binary code with length n, size M , and minimum distance at least d is an (n,M, d)
code. The classification of binary one-perfect codes of length 15 in [2] leaves two undeter-
mined cases for optimal binary one-error-correcting codes of length at most 15, namely the
classification of (12, 256, 3) and (13, 512, 3) codes. An alternative path to the classification
of (15, 2048, 3) codes would give those classification results as well.

Open problems:

1) Is it possible to carry out a classification of binary one-perfect codes of length 15 via
subcodes? Starting from (8, 16, 3) codes, with repeated lengthening (clique search) and
isomorph rejection.

2) Are there necessary properties of (8, 16, 3) shortened codes that can be used to reject
some candidates immediately?

2. In [3] two (13, 512, 3) codes are discovered that are not subcodes of (15, 2048, 3) codes.
There are some interesting questions related to these two codes, listed in Table I.

TABLE I
TWO (13, 512, 3) CODES

First code:

Automorphism group generators:
(1 3 2 13)(4 7 8 9)(5 10 6 11) (1 3 2 13)(4 8)(5)(6)(10 11)(12)
(3 13)(4 9)(5 10)(6 11)(7 8)(12) (3 13)(4 10)(5 9)(6 7)(8 11)(12)
Orbit representatives:
0000000000000 1000000010100 1000011001100 1010010000100

Second code:

Automorphism group generators:
(3 7)(4 13 6 8)(5 11)(9)(10)(12) (4 6)(5)(8 13)(9)(10 12)(11)
(1 7 3)(2)(4 13 10)(5 9 11)(6 8 12)
Orbit representatives:
0000000000000 1000000111000 1010100101000
0000001101000 0010101111000 1000000001010

Open problems:

1) Is there some nice explanation for the two codes?
2) Do the two codes have some property that directly implies that they cannot be lengthened

to binary one-perfect codes of length 15?
3) Do the two codes belong to some (infinite) family of codes, which would lead to similar

results for binary one-perfect codes of other lengths than 15.
4) Are there even more optimal binary one-error-correcting codes of length 13?



The last question is obviously related to the previous open problem.

3. There are some really challenging problems regarding the binary one-perfect codes of
length 15, mentioned in [4] and stated in a more general form by Etzion and Vardy [3].

Open problems (see also the open problems of F.Solov’eva and M.Villanueva):

1) Determine the spectrum of intersection numbers of two codes, that is, all possible values
of |C1 ∩ C2| when C1 and C2 are binary one-perfect codes of length 15.

2) Classify the partitions of F15
2 into one-perfect codes. Even the restricted version, for 16

equivalent codes in the partition, seems very hard.

Partial results for the spectrum of intersection numbers have been published in [3], and
results for the partitioning problem include [9].

4. In [4] a wide variety of properties are studied for the binary one-perfect codes of length
15. The results form a good starting point for making conjectures about properties of longer
binary one-perfect codes and trying to prove these. Here is just one example.

Open problems:

1) Find an example of a Steiner triple system of some order 2n − 1, n ≥ 5 that does not
occur in a binary one-perfect code of length 2n − 1.

2) Even better, show that such examples exist for all admissible orders.
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Author: Fabio Pasticci
Title: Quasi-perfect linear codes with distance 4

1. Some necessary definitions:
Definition 1: An n-cap in a Galois space is a set of n points no three of which are collinear.
Definition 2: A ⊆ AG(2, q) is a bi-covering cap in AG(2, q) if each point P ∈ AG(2, q)\A

is both an internal point to some segment of A, and an external point to some other segment
of A.

Problem 1: Find new examples of bi-covering caps not contained in a conic or a cubic

2. Some necessary definitions:

Definition 3: An n-cap in a Galois space is a set of n points no three of which are collinear.

Some known results concerning the problem:
Theorem 1: There are positive constants c and M such that the following holds. In every

projective plane of order q ≥M , there is a complete cap of size at most
√
q logc q

Problem 2: Find explicit constructions of caps attaining the bound by Kim and Vu.
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Author: Kevin T. Phelps
Title: An enumeration of Kerdock codes of length 64

1. Some necessary definitions:
Definition 2 (Kerdock-like code): A generalized Kerdock code or Kerdock-like code is a

binary code of length 2m+1, m ≥ 3 and odd, and minimum distance 2m − 2(m−1)/2 having
weight distribution:

weight #codewords
0 1

2m − 2(m−1)/2 2m+1(2m − 1)
2m 2m+2 − 2

2m + 2(m−1)/2 2m+1(2m − 1)
2m+1 1

Definition 3 (Kerdock code): A binary code of length 2m+1, m ≥ 3 and odd, and minimum
distance 2m − 2(m−1)/2 , consisting of the first order Reed-Muller code RM(1,m + 1) and
2m − 1 of its cosets having the above weight distribution.

Some known results concerning the problem: Every Z4-linear Kerdock-like code is a
Kerdock code (Borges, Phelps, Rifa, Zinoviev)

Open problem:

Question: Are there Kerdock-like codes that are not Kerdock codes?

2. Some necessary definitions:
Graph G(m), m odd
• Vertices: cosets of RM(1,m+ 1) having minimum weight 2m − 2(m−1)/2

• Edges: distance between cosets is 2m − 2(m−1)/2

• Graph is multipartite with 2m − 1 parts.
• Kerdock set is clique of size 2m − 1

Some known results concerning the problem:
• AGL(m+ 1) affine general linear group is automorphism group of RM(1,m+ 1) (and
RM(2,m+ 1)).

• Graph G(m) is transitive and regular.

Open problem:

Problem 1: Find recurrence relation for vertex degree in G(m).
Problem 2: Find the automorphism group of G(m).
Problem 3: Find the smallest m such that there are at least 2 non-equivalent Kerdock-like

codes of length 2m+1.
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Author: Svetlana A. Puzinina
Title: Equitable partitions as a generalization of perfect codes

1. Let G = (V,E) be a graph, M = (mij)
n
i,j=1 an integer nonnegative matrix. Consider a

partition Π of V with cells C1, . . . , Cn. We call Π equitable if, for any pair of cells (Ci, Cj)
and a vertex u in Ci, the number of vertices in Cj adjacent to u does not depend on the
choice of u, but only on the pair (i, j), and is equal to mij . A matrix M is G-admissible, if
there exists an equitable partition of G with this matrix.

Open problem:

Let T be a set of 2×2 nonnegative integer matrices, such that the sum of elements in each
row is equal to m and nondiagonal elements are nonzero. The problem is to find a simple
m-regular graph G, such that all matrices from T are G-admissible and there are no other
G-admissible matrices of order two (if such graph exists).

2. Denote by G(Zm) the graph of the infinite m-dimensional grid. The set of vertices of
this graph consists of all m-tuples of integers. Two vertices are adjacent, if their m-tuples
differ in one coordinate by unit.

Open problem:

Find the classification of G(Zm)-admissible matrices.

Remark. For m ≤ 3 the solution is done.
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Author: Faina I. Solov’eva
Titles: Perfect codes and related problems (introduction lecture);

Partitions of F n
q into perfect codes

1. Kabatyanski and Panchenko in 1988, see [2], proved the following
Theorem. The density of the best parkings and coverings of F n

q , q ≥ 2 with the balls of
radius r = 1 tends to 1 for n −→∞.

Two old brilliant challenging problems:

1) Find the density of the best parking and covering of An, A = {1, 2, . . . , t}, with the
balls of radius 1, where t is not a power of a prime.

2) Find the density of the best parking and covering of F n
q , q ≥ 2 with the balls of radius

r > 1.

2. It is known the following
Theorem. The number N(n) of nonisomorphic Steiner triple systems of order n satisfies

the following bounds
(e−5n)

n2

6 ≤ N(n) ≤ (e−1/2n)
n2

6 .

The lower bound was proved by Egorychev in [1], 1980, using the result concerning
permanents of double stochastic matrices, the upper bound is straightforward.

One more old brilliant challenging problem:

1) Improve the lower and upper bounds on the number of nonisomorphic Steiner triple
systems presented in the previous theorem.

3. Two partitions of F n
q into codes are called different if they differ in at least one code.

Two partitions we call equivalent if there exists an isometry of the space F n
q that transforms

one partition into another one.

Open problems (see also open problems of P. Östergård and O. Pottonen, and M. Vil-
lanueva):

1) Find the classification of all partitions into perfect codes in F n
q , q ≥ 2.

2) Find the classification of all partitions into extended perfect codes in F 16
2 .

3) Determine the spectrum of intersection numbers of any two q-ary perfect codes, i.e.,
all possible values of |C ∩D| where C and D are q-ary perfect codes of length n.

Some contributions concerning the problems can be found in the papers mentioned in the
list of references.
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Author: Mercè Villanueva
Title: Z2Z4-additive (extended) perfect codes: intersection problem

1. Open problem (see also open problems of P. Östergård and O. Pottonen, and F.
Solov’eva):

For a given t, find the possible intersection numbers of distinct binary perfect codes of
length n = 2t − 1. In general, for a given q and t, find the possible intersection numbers of
distinct q-ary perfect codes of length n = qt−1

q−1
.

2. For two binary codes C1, C2, define i(C1, C2) = |C1∩C2| to be their intersection number.
A Hadamard matrix H of order n is an n×n matrix of +1’s and −1’s such that HHT = nI ,
where I is the n × n identity matrix. If +1’s are replaced by 0’s and −1’s by 1’s, H is
changed into a binary Hadamard matrix c(H). The binary (n, 2n, n/2)-code consisting of
the rows of c(H) and their complements is called a (binary) Hadamard code. It is known
that there exist Hadamard codes of length 2t, for all t ≥ 3, with intersection number i if
and only if i ∈ {0, 2, 4, . . . , 2t+1 − 12, 2t+1 − 8, 2t+1} [2]. Moreover, for all t ≥ 4, if there
exists a Hadamard matrix of order 4s, then there exist Hadamard codes of length 2t+2s with
intersection number i if and only if i ∈ {0, 2, 4, . . . , 2t+3s− 12, 2t+3s− 8, 2t+3s} [2].

Open problem: Find the possible intersection numbers of distinct Hadamard codes of
length 4s, for s > 1, s odd.

3. There are new constructions to obtain families of Z2Z4-additive codes such that, under
the Gray map, the corresponding binary codes have the same parameters and properties as
the usual binary linear Reed-Muller codes [3], [4]. These families include the Z2Z4-additive
extended perfectes codes and Z2Z4-additive Hadamard codes. It is known a complete solution
for the intersection problem for Z2Z4-additive Hadamard codes and Z2Z4-additive extended
perfect codes [5], [6].

Open problem:

Study the classification of these new families of codes. Give a complete solution for the
intersection problem of these new families of Z2Z4-additive Reed-Muller codes.
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Author: Thomas Westerbäck
Title: On the existence of perfect and extended perfect binary codes with trivial symmetry

group

Open problems:

Problem 1: What can be said about the existence of perfect codes of length n = 2m − 1
and rank n−m+ 2 with a trivial symmetry group?

Problem 2: What can be said in general about the symmetry groups of perfect and extended
perfect codes with different rank and dimensions of the kernel?



Author: Victor A. Zinoviev
Title: On Preparata-like codes and 2-resolvable Steiner quadruple systems

Open problems:

Problem 1: Whether any Preparata-like code P of length n induces a partition of the
corresponding Hamming-like code of length n into disjoint Preparata-like codes?

Problem 2: Are there other cases of Hamming-like codes H (different from the (linear)
Hamming code and Z4-linear Hamming-like code), which contain some Preparata-like code
P ?


