Perfect codes and related topics (Open Problems)

First challenging open problem:

Find the classification of all perfect q-ary codes of length n over the Galois field $G F(q)$.
The solution for the binary case $n=15$ is done in [1].
References
[1] Östergård, P. R. J. and Pottonen, O., The perfect binary one-error-correcting codes of length 15: Part I-Classification, IEEE Trans. Inform. Theory 55 (2009), 4657-4660.

Author: Danyo Danev

Title: Families of quasi-perfect codes

Some definitions:

- $G F(q) \longrightarrow$ the Galois field of q elements, where $q=p^{s}$;
- $H(n, q) \longrightarrow$ the Hamming space $:\left\{\mathbf{a}=\left(a_{0}, \ldots, a_{n-1}\right): a_{i} \in G F(q)\right\}$;
- $d_{H}(\mathbf{x}, \mathbf{y})=d(\mathbf{x}, \mathbf{y}) \longrightarrow$ the Hamming distance;
- $w t_{H}(\mathbf{x})=d(\mathbf{x}, \mathbf{0}) \longrightarrow$ the Hamming weight;
- q-ary code $\mathcal{C} \longrightarrow$ subset of $H(n, q)$;
- q-ary linear code $\mathcal{C} \longrightarrow$ linear subspace of $H(n, q)$;
- $d(\mathcal{C}) \longrightarrow$ the minimum distance of $\mathcal{C} \min \{d(\mathbf{x}, \mathbf{y}) \mid \mathbf{x}, \mathbf{y} \in \mathcal{C}, \mathbf{x} \neq \mathbf{y}\}$;
- $t(\mathcal{C}) \longrightarrow$ the packing radius of $\mathcal{C}:\left\lfloor\frac{d(\mathcal{C})-1}{2}\right\rfloor$;
- $\rho(\mathcal{C}) \longrightarrow$ the covering radius of $\mathcal{C}: \max _{\mathbf{x} \in H(n, q)} \min _{\mathbf{c} \in \mathcal{C}} d(\mathbf{x}, \mathbf{c})$;
- A q-ary code \mathcal{C} is called quasi-perfect if $\rho(\mathcal{C})=t(\mathcal{C})+1$.

Open problems:

Problem 1: Are there any quasi-perfect codes of minimum distance 5 over the finite field $G F(q)$ for a prime power $q \geq 5$?

Problem 2: Are there any quasi-perfect codes BCH codes[1] over the finite field $G F(q)$ for a prime power $q \geq 5$?

Problem 3: Are there any quasi-perfect BCH codes of minimum distance at least 7 ?
Problem 4: Are there any quasi-perfect codes of minimum distance at least 9 ?
Problem 5: Is there an upper bound on the minimum distance of quasi-perfect codes?

References

[1] MacWilliams, F. J. and Sloane, N. J. A., The Theory of Error-Correcting Codes, North-Holland, Amsterdam (1977).

Author: Thomas Ericson

Title: Preparata codes over the GF(4)
Some definitions: The binary Preparata codes can be constructed with help of some code over $G F(4)$ and applying the standard Gray mapping from $G F(4)$ to $G F(2)^{2}$. Let $z: G F\left(2^{\mu}\right) \mapsto G F(4)$. We define Π_{μ} to be the set of all functions z with the following properties

1) $\sum_{u \in G F\left(2^{\mu}\right)} z(u)=0$;
2) $\sum_{u \in G F\left(2^{\mu}\right)} u \operatorname{Tr}\{z(u)\}=0$;
3) $\sum_{u \in G F\left(2^{\mu}\right)} u^{3} \operatorname{Tr}\{z(u)\}=\left(\sum_{u \in G F\left(2^{\mu}\right)} u z(u)\right)^{3}$;

Open problems:

Problem 1: Define an operation \boxplus on Π_{μ}, i.e $\boxplus: \Pi_{\mu}^{2} \mapsto \Pi_{\mu}$ such that Π_{μ} is an abelian group under this operation.

Problem 2: Find a similar $G F(4)$ description of the Kerdock codes.

Author: Denis Krotov

Title: On the binary codes with parameters of doubly-shortened 1-perfect codes

1. For q-ary alphabet $F_{q}=\left\{a_{0}, a_{1}, \ldots, a_{q-1}\right\}$, we define the map $\rho: F_{q} \rightarrow F_{2}^{q-1}$ by $\rho\left(a_{0}\right)=00 \ldots 00, \rho\left(a_{1}\right)=10 \ldots 00, \rho\left(a_{2}\right)=01 \ldots 00, \rho\left(a_{q-1}\right)=00 \ldots 01$. This map is coordinatewise expanded to $\rho: F_{q}^{n} \rightarrow F_{2}^{n(q-1)}$.

By 2-rank of a code $C \subset F_{q}^{n}$ we mean the dimension of the affine span of $\rho(C)$.
2-Rank is invariant with respect to the isometries of the Hamming space (automorphisms of the Hamming graph).

Open problems:

Problem 1: Study the 2-rank of q-ary (perfect) codes (minimal, maximal values, ...; cases of odd and even q).

Problem 2: Find other "measures of non-linearity" that are invariant with respect to the isometries of the Hamming space.
2. By s-fold MDS code we mean a set of vertices of the Hamming graph H_{q}^{n} such that every line (maximal clique) contains exactly s code vertices. (1-Fold MDS codes are known as distance-2 MDS codes, Latin hypercubes, multary quasigroups.)

For $q \geq 4$, the number of such objects is known to be doubly-exponential (i.e., at least $2^{2^{c n}}$) [1].

By s-fold 1-perfect code we mean a set of vertices of the Hamming graph such that every ball of radius 1 contains exactly s code vertices.

Open problem:

Problem 3: Find the limit

$$
\lim _{n \rightarrow \infty} \frac{\log \log (\text { the number of } \ldots)}{n}
$$

for s-fold MDS codes, s-fold 1-perfect codes. In particular, prove that this limit exists.
In some sense minimal unsolved case is the case of 2 -fold MDS codes in H_{4}^{n}, while the 1-fold-MDS case in H_{4}^{n} can be solved by different approaches, see http://www.nsc.ru/ws/Lyap2001/2363/. Another important class is the class of $(n+1) / 2$-fold 1-perfect binary codes, which exist for every odd n.

References

[1] D. S. Krotov, V. N. Potapov, P. V. Sokolova. On reconstructing reducible n-ary quasigroups and switching subquasigroups // Quasigroups and Related Systems 16(1) 2008, 55-67.

Author: Ivan Yu. Mogilnykh
Title: On perfect 2-colorings of Johnson graphs

Some necessary definitions:
Definition 1 (perfect coloring): Perfect m-coloring of a graph G with the matrix $A=$ $\left\{a_{i j}\right\}_{i, j=1, \ldots, m}$ is a coloring of the vertices of G into the set of colors $\{1, \ldots, m\}$ such that the number of vertices of the color j adjacent with the fixed vertex x of the color i does not depend on a choice of the vertex x and equals to $a_{i j}$.
Matrix A is called a matrix of parameters of perfect coloring.
Such objects as 1-perfect constant weight code and $(w-1)-(n, w, \lambda)$-design can be defined as perfect 2 -colorings of Johnson graph $J(n, w)$. The existence of 1-perfect constant weight codes is a long stating open question. The best result (no 1-perfect codes in Johnson graphs $J(n, w)$ exist for $n \leq 2^{250}$) is due to D.Gordon [4]

Open problems:

Problem 1(Delsarte [3]): Prove that no 1-perfect codes exist in Johnson graph.
Problem 2: The problem of existence of perfect 2-colorings: List all matrices of parameters of perfect 2-colorings of Johnson graphs $J(n, w)$ for small $n, n \geq 9$. For $n=9$ two left open cases are colorings with matrices $\left(\begin{array}{cc}10 & 8 \\ 8 & 10\end{array}\right)$ for $J(9,3)$ and $\left(\begin{array}{cc}12 & 8 \\ 8 & 12\end{array}\right)$ for $J(9,4)$.

Problem 3:
Background: Using antipodality of 1-perfect codes, Avgustinovich in [1] established that 1-perfect code in Hamming space is uniquely defined by its "middle level" words - set of all codewords of weight $(n-1) / 2$. More over, there are explicit formulas for reconstruction of perfect code by it's middle level (see [2]).

All perfect 2-colorings of Johnson graph $J(2 w, w)$ hold the antipodality property simular to antipodality property of perfect codes in the Hamming space. For odd w this property implies that any perfect 2 -coloring of graph $J(2 w, w)$ is uniquely defined by it's 'middle level' - part of the coloring on vertices of graph that are at Johnson distance $w / 2$ and $w / 2+1$ from pair of two fixed antipodal vertices of $J(2 w, w)$.

Problem statement: Find the formulas for reconstruction of perfect 2-colorings of $\mathrm{J}(2 \mathrm{w}, \mathrm{w})$ for odd w from the middle level of a graph.

References

[1] S.V. Avgustinovich On a property of perfect binary codes, Discrete Analysis and Operation Research (in Russian). 1995. V. 2, N. 1, P. 4-6.
[2] S. V. Avgustinovich and A. Y. Vasil'eva Testing Sets for 1-Perfect Codes, General Theory for Information Transfer and Combinatorics 2006. Lecture Notes in Comput. Sci. V. 4123. P. 938-940.
[3] Delsarte P. An Algebraic Approach to the Association Schemes of Coding Theory, Philips Res. Rep. Suppl. 1973. V. 10. P. 1-97.
[4] Gordon M.D. Perfect Single Error-Correcting Codes in the Johnson Scheme, IEEE Trans. Inform. Theory. 2006. V. 52, N 10. P. 4670-4672.

Authors: Patric Östergård and Olli Pottonen
Title: Classification and properties of the Perfect One-Error-Correcting Codes of Length 15

Open problem:

1. A binary code with length n, size M, and minimum distance at least d is an (n, M, d) code. The classification of binary one-perfect codes of length 15 in [2] leaves two undetermined cases for optimal binary one-error-correcting codes of length at most 15 , namely the classification of $(12,256,3)$ and $(13,512,3)$ codes. An alternative path to the classification of $(15,2048,3)$ codes would give those classification results as well.

Open problems:

1) Is it possible to carry out a classification of binary one-perfect codes of length 15 via subcodes? Starting from $(8,16,3)$ codes, with repeated lengthening (clique search) and isomorph rejection.
2) Are there necessary properties of $(8,16,3)$ shortened codes that can be used to reject some candidates immediately?
2. In [3] two $(13,512,3)$ codes are discovered that are not subcodes of $(15,2048,3)$ codes. There are some interesting questions related to these two codes, listed in Table I.

TABLE I
Two (13, 512, 3) CODES

First code:	
Automorphism group generators:	
$(13213)(\overline{4} \overline{7} \overline{8} 9)(5106 \overline{11})$	$(\overline{1} 3 \overline{2} 13)(\overline{4} 8)(\overline{5})(\overline{6})(10 \overline{11})(\overline{12})$
$(313)(\overline{4} \overline{9})(510)(\overline{6} \overline{11})(\overline{7} \overline{8})(\overline{12})$	$(\overline{3} \overline{13})(410)(\overline{5} \overline{9})(\overline{6} \overline{7})(\overline{8} \overline{11})(\overline{12})$
Orbit representatives:	
00000000000001000000010100	10000110011001010010000100
Second code:	
Automorphism group generators:	$(46)(\overline{5})(813)(\overline{9})\left(\begin{array}{l}10\end{array} 12\right)(\overline{11})$
$(\overline{3} 7)(\overline{4} \overline{13} \overline{6} \overline{8})(5 \overline{11})(\overline{9})(\overline{10})(\overline{12})$	
$(1 \overline{7} 3)(\overline{2})(4 \overline{13} \overline{10})(\overline{5} \overline{9} \overline{11})(6 \overline{8} \overline{12})$	
Orbit representatives:	
00000000000001000000111000	1010100101000
00000011010000010101111000	1000000001010

Open problems:

1) Is there some nice explanation for the two codes?
2) Do the two codes have some property that directly implies that they cannot be lengthened to binary one-perfect codes of length 15 ?
3) Do the two codes belong to some (infinite) family of codes, which would lead to similar results for binary one-perfect codes of other lengths than 15 .
4) Are there even more optimal binary one-error-correcting codes of length 13 ?

The last question is obviously related to the previous open problem.
3. There are some really challenging problems regarding the binary one-perfect codes of length 15, mentioned in [4] and stated in a more general form by Etzion and Vardy [3].

Open problems (see also the open problems of F.Solov'eva and M.Villanueva):

1) Determine the spectrum of intersection numbers of two codes, that is, all possible values of $\left|C_{1} \cap C_{2}\right|$ when C_{1} and C_{2} are binary one-perfect codes of length 15 .
2) Classify the partitions of \mathbb{F}_{2}^{15} into one-perfect codes. Even the restricted version, for 16 equivalent codes in the partition, seems very hard.

Partial results for the spectrum of intersection numbers have been published in [3], and results for the partitioning problem include [9].
4. In [4] a wide variety of properties are studied for the binary one-perfect codes of length 15. The results form a good starting point for making conjectures about properties of longer binary one-perfect codes and trying to prove these. Here is just one example.

Open problems:

1) Find an example of a Steiner triple system of some order $2^{n}-1, n \geq 5$ that does not occur in a binary one-perfect code of length $2^{n}-1$.
2) Even better, show that such examples exist for all admissible orders.

References

[1] Etzion, T. and Vardy, A. On perfect codes and tilings: Problems and solutions, SIAM J. Discrete Math. 11 (1998), 205-223.
[2] Östergård, P. R. J. and Pottonen, O., The perfect binary one-error-correcting codes of length 15: Part I-Classification, IEEE Trans. Inform. Theory 55 (2009), 4657-4660.
[3] Östergård, P. R. J. and Pottonen, O., Two optimal one-error-correcting codes of length 13 that are not doubly shortened perfect codes, Des. Codes Cryptogr., to appear.
[4] Östergård, P. R. J., Pottonen, O., and Phelps, K. T., The perfect binary one-error-correcting codes of length 15: Part II-Properties, IEEE Trans. Inform. Theory, to appear.
[5] Solov'eva, F. I., On transitive partitions of an n-cube into codes (in Russian), Problemy Peredachi Informatsii 45(1) (2009), 27-35. English translation in Probl. Inf. Transm. 45 (2009), 23-31.

Author: Fabio Pasticci
 Title: Quasi-perfect linear codes with distance 4

1. Some necessary definitions:

Definition 1: An n-cap in a Galois space is a set of n points no three of which are collinear. Definition 2: $A \subseteq A G(2, q)$ is a bi-covering cap in $A G(2, q)$ if each point $P \in A G(2, q) \backslash A$ is both an internal point to some segment of A, and an external point to some other segment of A.

Problem 1: Find new examples of bi-covering caps not contained in a conic or a cubic
2. Some necessary definitions:

Definition 3: An n-cap in a Galois space is a set of n points no three of which are collinear.
Some known results concerning the problem:
Theorem 1: There are positive constants c and M such that the following holds. In every projective plane of order $q \geq M$, there is a complete cap of size at most $\sqrt{q} \log ^{c} q$

Problem 2: Find explicit constructions of caps attaining the bound by Kim and Vu.

References

[1] M. Giulietti, F. Pasticci, Quasi-perfect linear codes with minimum distance 4, IEEE Trans. Inform. Theory 53 (2007), no. 5, 1928-1935.
[2] J. H. Kim and V. H. Vu, Small complete arcs in projective planes, Combinatorica 23 (2003), no. 2, 311-363.

Author: Kevin T. Phelps

Title: An enumeration of Kerdock codes of length 64

1. Some necessary definitions:

Definition 2 (Kerdock-like code): A generalized Kerdock code or Kerdock-like code is a binary code of length $2^{m+1}, m \geq 3$ and odd, and minimum distance $2^{m}-2^{(m-1) / 2}$ having weight distribution:

weight	$\#$ codewords
0	1
$2^{m}-2^{(m-1) / 2}$	$2^{m+1}\left(2^{m}-1\right)$
2^{m}	$2^{m+2}-2$
$2^{m}+2^{(m-1) / 2}$	$2^{m+1}\left(2^{m}-1\right)$
2^{m+1}	1

Definition 3 (Kerdock code): A binary code of length $2^{m+1}, m \geq 3$ and odd, and minimum distance $2^{m}-2^{(m-1) / 2}$, consisting of the first order Reed-Muller code $R M(1, m+1)$ and $2^{m}-1$ of its cosets having the above weight distribution.

Some known results concerning the problem: Every \mathbb{Z}_{4}-linear Kerdock-like code is a Kerdock code (Borges, Phelps, Rifa, Zinoviev)

Open problem:

Question: Are there Kerdock-like codes that are not Kerdock codes?
2. Some necessary definitions:

Graph $G(m), m$ odd

- Vertices: cosets of $R M(1, m+1)$ having minimum weight $2^{m}-2^{(m-1) / 2}$
- Edges: distance between cosets is $2^{m}-2^{(m-1) / 2}$
- Graph is multipartite with $2^{m}-1$ parts.
- Kerdock set is clique of size $2^{m}-1$

Some known results concerning the problem:

- $A G L(m+1)$ affine general linear group is automorphism group of $R M(1, m+1)$ (and $R M(2, m+1))$.
- Graph $G(m)$ is transitive and regular.

Open problem:

Problem 1: Find recurrence relation for vertex degree in $G(m)$.
Problem 2: Find the automorphism group of $G(m)$.
Problem 3: Find the smallest m such that there are at least 2 non-equivalent Kerdock-like codes of length 2^{m+1}.

References

[1] J. Borges, K. P. Phelps, J. Rifà and V. Zinoviev, On \mathbb{Z}_{4}-linear Preparata-like and Kerdock-like codes, IEEE Transactions on Information Theory 49, n.11, pp. 2834-2843, 2003.

Author: Svetlana A. Puzinina
Title: Equitable partitions as a generalization of perfect codes

1. Let $G=(V, E)$ be a graph, $M=\left(m_{i j}\right)_{i, j=1}^{n}$ an integer nonnegative matrix. Consider a partition Π of V with cells C_{1}, \ldots, C_{n}. We call Π equitable if, for any pair of cells $\left(C_{i}, C_{j}\right)$ and a vertex u in C_{i}, the number of vertices in C_{j} adjacent to u does not depend on the choice of u, but only on the pair (i, j), and is equal to $m_{i j}$. A matrix M is G-admissible, if there exists an equitable partition of G with this matrix.

Open problem:

Let T be a set of 2×2 nonnegative integer matrices, such that the sum of elements in each row is equal to m and nondiagonal elements are nonzero. The problem is to find a simple m-regular graph G, such that all matrices from T are G-admissible and there are no other G-admissible matrices of order two (if such graph exists).
2. Denote by $G\left(\mathbb{Z}^{m}\right)$ the graph of the infinite m-dimensional grid. The set of vertices of this graph consists of all m-tuples of integers. Two vertices are adjacent, if their m-tuples differ in one coordinate by unit.

Open problem:

Find the classification of $G\left(\mathbb{Z}^{m}\right)$-admissible matrices.
Remark. For $m \leq 3$ the solution is done.

References

[1] C. Godsil C. Equitable partitions. Combinatorics, Paul Erdős is Eighty Vol. 1. Budapest, 1993. p. 173-192.

Author: Faina I. Solov'eva
Titles: Perfect codes and related problems (introduction lecture);
Partitions of F_{q}^{n} into perfect codes

1. Kabatyanski and Panchenko in 1988, see [2], proved the following

Theorem. The density of the best parkings and coverings of $F_{q}^{n}, q \geq 2$ with the balls of radius $r=1$ tends to 1 for $n \longrightarrow \infty$.

Two old brilliant challenging problems:

1) Find the density of the best parking and covering of $A^{n}, A=\{1,2, \ldots, t\}$, with the balls of radius 1 , where t is not a power of a prime.
2) Find the density of the best parking and covering of $F_{q}^{n}, q \geq 2$ with the balls of radius $r>1$.
2. It is known the following

Theorem. The number $N(n)$ of nonisomorphic Steiner triple systems of order n satisfies the following bounds

$$
\left(e^{-5} n\right)^{\frac{n^{2}}{6}} \leq N(n) \leq\left(e^{-1 / 2} n\right)^{\frac{n^{2}}{6}}
$$

The lower bound was proved by Egorychev in [1], 1980, using the result concerning permanents of double stochastic matrices, the upper bound is straightforward.

One more old brilliant challenging problem:

1) Improve the lower and upper bounds on the number of nonisomorphic Steiner triple systems presented in the previous theorem.
3. Two partitions of F_{q}^{n} into codes are called different if they differ in at least one code. Two partitions we call equivalent if there exists an isometry of the space F_{q}^{n} that transforms one partition into another one.

Open problems (see also open problems of P. Östergård and O. Pottonen, and M. Villanueva):

1) Find the classification of all partitions into perfect codes in $F_{q}^{n}, q \geq 2$.
2) Find the classification of all partitions into extended perfect codes in F_{2}^{16}.
3) Determine the spectrum of intersection numbers of any two q-ary perfect codes, i.e., all possible values of $|C \cap D|$ where C and D are q-ary perfect codes of length n.
Some contributions concerning the problems can be found in the papers mentioned in the list of references.

References

[^0][5] S. V. Avgustinovich, O. Heden, F. I. Solov'eva, "On intersections of perfect binary codes", Bayreuther Mathematische Schriften, vol. 71, pp. 8-13, 2005.
[6] S. V. Avgustinovich, O. Heden, F. I. Solov'eva, "On intersection problem for perfect binary codes", Des. Codes Crypt., vol. 39, pp. 317-322, 2006.
[7] E. Bar-Yahalom, T. Etzion, "Intersection of isomorphic linear codes", Journal of Comb. Theory, Series A 80, pp. 247-256, 1997.
[8] F. I. Solov'eva, A. V. Los' "Constructions of partitions of F_{q}^{n} into perfect q-ary codes," Discrete Analysis and Oper. Research, 16 (3) (2009), 63-73 (in Russian)
[9] Solov'eva, F. I., On transitive partitions of an n-cube into codes (in Russian), Problemy Peredachi Informatsii 45(1) (2009), 27-35. English translation in Probl. Inf. Transm. 45 (2009), 23-31.

Author: Mercè Villanueva
Title: $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive (extended) perfect codes: intersection problem

1. Open problem (see also open problems of P. Östergård and O. Pottonen, and F. Solov'eva):

For a given t, find the possible intersection numbers of distinct binary perfect codes of length $n=2^{t}-1$. In general, for a given q and t, find the possible intersection numbers of distinct q-ary perfect codes of length $n=\frac{q^{t}-1}{q-1}$.
2. For two binary codes C_{1}, C_{2}, define $i\left(C_{1}, C_{2}\right)=\left|C_{1} \cap C_{2}\right|$ to be their intersection number. A Hadamard matrix H of order n is an $n \times n$ matrix of +1 's and -1 's such that $H H^{T}=n I$, where I is the $n \times n$ identity matrix. If +1 's are replaced by 0 's and -1 's by 1 's, H is changed into a binary Hadamard matrix $c(H)$. The binary $(n, 2 n, n / 2)$-code consisting of the rows of $c(H)$ and their complements is called a (binary) Hadamard code. It is known that there exist Hadamard codes of length 2^{t}, for all $t \geq 3$, with intersection number i if and only if $i \in\left\{0,2,4, \ldots, 2^{t+1}-12,2^{t+1}-8,2^{t+1}\right\}$ [2]. Moreover, for all $t \geq 4$, if there exists a Hadamard matrix of order $4 s$, then there exist Hadamard codes of length $2^{t+2} s$ with intersection number i if and only if $i \in\left\{0,2,4, \ldots, 2^{t+3} s-12,2^{t+3} s-8,2^{t+3} s\right\}$ [2].

Open problem: Find the possible intersection numbers of distinct Hadamard codes of length $4 s$, for $s>1$, s odd.
3. There are new constructions to obtain families of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes such that, under the Gray map, the corresponding binary codes have the same parameters and properties as the usual binary linear Reed-Muller codes [3], [4]. These families include the $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive extended perfectes codes and $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive Hadamard codes. It is known a complete solution for the intersection problem for $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive Hadamard codes and $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive extended perfect codes [5], [6].

Open problem:
Study the classification of these new families of codes. Give a complete solution for the intersection problem of these new families of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive Reed-Muller codes.

REFERENCES

[1] MacWilliams, F. J. and Sloane, N. J. A., The Theory of Error-Correcting Codes, North-Holland, Amsterdam (1977).
[2] Phelps K. T., Villanueva M., Intersection of Hadamard Codes, IEEE Transactions on Information Theory, (2007) 53, n. 5: 1924-1928.
[3] Pujol J., Rifà J., and Solov'eva F. I., Construction of \mathbb{Z}_{4}-Linear Reed-Muller Codes IEEE Transactions on Information Theory (2009) 55, n. 1: 99-104.
[4] Pujol J., Rifà J., and Ronquillo L., Construction of Additive Reed-Muller Codes, Applicable Algebra in Engineering, Communication and Computing (2009) 5527: 223-226.
[5] J. Rifà, F. I. Solov'eva and M. Villanueva, "On the intersection of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive perfect codes", IEEE Trans. Inform. Theory, vol. 54, no. 3, pp. 1346-1356, 2008.
[6] J. Rifà, F. I. Solov'eva and M. Villanueva, "On the intersection of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive Hadamard codes", IEEE Trans. Inform. Theory, vol. 55, no. 4, pp. 1766-1774, 2009.

Author: Thomas Westerbäck

Title: On the existence of perfect and extended perfect binary codes with trivial symmetry group

Open problems:

Problem 1: What can be said about the existence of perfect codes of length $n=2^{m}-1$ and rank $n-m+2$ with a trivial symmetry group?

Problem 2: What can be said in general about the symmetry groups of perfect and extended perfect codes with different rank and dimensions of the kernel?

Author: Victor A. Zinoviev

Title: On Preparata-like codes and 2-resolvable Steiner quadruple systems

Open problems:

Problem 1: Whether any Preparata-like code P of length n induces a partition of the corresponding Hamming-like code of length n into disjoint Preparata-like codes?

Problem 2: Are there other cases of Hamming-like codes H (different from the (linear) Hamming code and Z_{4}-linear Hamming-like code), which contain some Preparata-like code P ?

[^0]: [1] Egorychev G. P., The solution of the van der Waerden problem for permanents, Adv. in Math. (42) 3 (1981) 299-305
 [2] Kabatyanskij G. A., Panchenko V. I., Packing and covering of the Hamming space by balls of unit radius, Problems of information Transm. (4) 24 (1988) 3-16
 [3] Etzion, T. and Vardy, A. On perfect codes and tilings: Problems and solutions, SIAM J. Discrete Math. 11 (1998), 205-223.
 [4] F. I. Solov'eva "On perfect codes and related topics," Com² Mac Lecture Note. Series 13. Pohang, 2004. 80 p.

