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Introductory

This PhD thesis belongs to the area of real harmonic analysis. In particular, the objects we
are interested in are the so called oscillatory integrals, that is integrals of functions that oscillate
between their positive and negative values. The result of these oscillations is the cancellation of
positive and negative values. A suitable implementation of this heuristic principle leads to ”good”
estimates for the integrals in question.

The primordial example of an oscillatory integral is the Fourier transform:

F(f)(ξ) =
∫

R
e−2πix·ξf(x)dx.

A classical result that takes advantage of the oscillation of the factor e−2πix·ξ is Riemmann-Lebesgue
Lemma which for f ∈ L1(R) says that lim|ξ|→+∞F(f)(ξ) = 0.

‘ Already, the Fourier transform plays a central role when someone wants to study the bound-
edness properties of singular integral operators like the Hilbert transform

H(f)(x) = p.v.
1
π

∫
R
f(x− y)

dy

y
= lim

ε→0

1
π

∫
|y|>ε

f(x− y)
dy

y
,

as well as the corresponding maximal operator

H∗(f)(x) = sup
ε>0

1
π

∫
|y|>ε

f(x− y)
dy

y
.

The central role of the interplay between these three objects (Fourier transform, singular integrals
and corresponding maximal operators) is already well known from the beginning of the development
of the real methods in harmonic analysis. The successive generalizations and refinements of singular
integral operators and corresponding maximal operators created the need to study more general
oscillatory integrals. These integrals come in multiple forms (Fourier integral operators, convolution

xi



xii Introductory

operators as well as variants of the Fourier transform ) which makes their classification quite difficult
and generates a whole new study area in harmonic analysis.

In this thesis we study three problems coming from this study area:

Problem A Let P be a polynomial of degree at most d. Consider the integral

I(P ) = p.v.

∫
R
eiP (t)dt

t
.

Stein and Wainger showed in [16] that |I(P )| ≤ cd, where the constant cd depends only on the
degree d of the polynomial and is independent of its coefficients. We want to determine the optimal
dependence of I(P ) on the parameter d.

This problem finds the answer in theorem 3.3 and in particular we have

sup
P∈Pd

|I(P )| ∼ log d.

Theorem 3.3 answers positively to the corresponding conjecture stated by Carbery, Wainger and
Wright in [5].

Problem B This is the n−dimensional analogue of problem A. Let P be a real polynomial on Rn,
of degree at most d and K a homogeneous function on Rn of degree −n, having zero mean value
on the unit sphere Sn−1. The function K can be written in the form K(x) = Ω(x/|x|)

|x|n where Ω is a
real function defined on the unit sphere Sn−1. We now consider the integral

In(P ) = p.v.

∫
Rn

eiP (x)K(x)dx.

Here we wish to obtain estimates of the form

|In(P )| ≤ cd‖Ω‖Sn−1 ,

where ‖Ω‖Sn−1 is a suitable norm of the function Ω on the unit sphere Sn−1. Again, the constant
cd depends only on the parameter d.

Stein proved in [14] that if Ω is bounded and has zero mean value on the unit sphere then
supP∈Pd,n

|In(P )| ≤ cd‖Ω‖L∞(Sn−1).

We improve Stein’s result in theorem 3.9 where we prove that if the function Ω has zero mean
value and belongs to the class L logL on the unit sphere, then

|In(P )| ≤ c log d‖Ω‖L logL(Sn−1),

where c is an absolute positive constant.
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Problem C Let P be a real polynomial of degree at most d on Rn and Q = [0, 1]n be the unit cube
on Rn. The writers in [4] prove that, if the polynomial P has zero mean value on the unit cube Q,
then ∣∣∣∣∫

Q
eiP (x)dx

∣∣∣∣ ≤ cd,n‖P‖
− 1

d

L1(Q)
.

On the other hand Carbery Wright have conjectured in [6] that the constant cd,n could be replaced
by cmin(n, d) for some absolute constant c. In theorem 2.12 we show that∣∣∣∣∫

Q
eiP (x)dx

∣∣∣∣ ≤ cmin(d, n)n
1
2d ‖P‖−

1
d

L1(Q)

for some absolute positive constant c. This result answer positively to the conjecture in the case
n ≤ cd for some absolute positive constant c while it misses the conjectured constant by the factor
n

1
2d in the general case.

There are three chapters in this thesis. The first chapter is a general introduction to oscillatory
integrals and contains some general results and techniques. Several known results are presented
here that will either be used in what follows, or are there in order to give a flavor of the type of
results we are interested in. This chapter does not contain any new result.

In the second chapter, we study oscillatory integrals with polynomial phase. Here, the analytic
properties of polynomials allow us to obtain precise estimates for the corresponding oscillatory
integrals. This is being done by using well known estimates contained in the first chapter as well
as other results that cant be found in the bibliography. The analysis of chapter 2 leads to theorem
2.12 which is a new result and partially answers the question raised in problem C. At the same
time it provides us with a series of tools that come in handy when one wants to study oscillatory
integrals with polynomial phase.

In chapter 3 we study singular oscillatory integrals. These usually come up as multipliers
of singular integral operators like the generalized Hilbert transform f 7→ p.v.

∫
R f(x − P (y))dyy .

Theorems 3.3 and 3.9 answer problems A and B respectively and are both new results.
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CHAPTER 1

Oscillatory integrals in harmonic analysis

Oscillatory integrals have always played a central role in harmonic analysis. We won’t try here
to give an extensive review of the relative results. We refer the interested reader to [14] and [15] for
a more thorough description of the theory. Following the terminology introduced in [14], we divide
oscillatory integrals into those of the first and those of the second kind.

For oscillatory integrals of the first kind, we study the behavior of only function which typically
can be written in the form

Iψ(λ) =
∫
eiλφ(x)ψ(x)dx.

Here, we want to study the behavior of Iψ(λ) as the real parameter λ tends to infinity.
We also consider oscillatory integrals of the first kind, related to some singular integrals. More

precisely, if we consider the Hilbert transform along a polynomial curve

HP (f)(x) = p.v.

∫
R

f(x− P (y))
y

dy,

where P is a real polynomial of degree at most d, then the corresponding multiplier can be written
in the form

mP (ξ) = p.v.

∫
R
eiξP (t)dt

t
.

We want to estimate the L∞-norm of the multiplier by a constant depending only on the degree d
of the polynomial and independent of its coefficients.
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2 1.Oscillatory integrals in harmonic analysis

In oscillatory integrals of the second kind, we are dealing with the boundedness of an operator
which carries an oscillatory factor in its kernel. Oscillatory integrals of the second kind can be
usually written in the form

Tλ(f)(x) =
∫
eiλΦ(x,y)K(x, y)dy.

The purpose here is the description of the norm of the operator Tλ as λ→ ±∞.

1.1 Oscillatory integrals of the first kind, one variable

We are interested in the behavior of the integral

Iψ(λ) =
∫ b

a
eiλφ(t)ψ(t)dt (1.1)

for large positive λ. Here, φ is a real-valued smooth (phase) and ψ is complex-valued and smooth
on (a, b). Often, but not always, one assumes that ψ is compactly supported in (a, b).

In one variable the theory is complete. There are three basic principles that govern the behavior
of Iψ(λ), as λ→ +∞. These are: the main contributions to Iψ(λ) come from the critical points of
the phase φ; in addition, supposing there is only one critical point, there is a complete description of
the asymptotic behavior of Iψ(λ) which is determined by the order of vanishing of φ′ at this critical
point; finally, there is a universal estimate for the decay of Iψ(λ), consistent with the asymptotic
description, in terms of some uniform lower bound for some derivative of the phase function φ.

The principle that is studied and exploited here is the last one. Suppose we only know that∣∣∣∣dkφ(t)
dtk

∣∣∣∣ ≥ 1, t ∈ [a, b],

for some fixed k, and we wish to obtain an estimate for the integral

I(λ) =
∫ b

a
eiλφ(t)dt,

independent of a, b as well as any other quantitative attribute of the function φ. The change of
variable t 7→ λ−

1
k t′ shows that the only possible estimate for I(λ) is

I(λ) ≤ O(λ−
1
k ).

The fact that this is indeed the case goes back to van der Corput, and is the content of the following
proposition:



Introductory 3

Proposition 1.1. Let φ : [a, b] → R be a Ck−function and suppose that |φ(k)(t)| ≥ 1 for some
k ≥ 1 and all t ∈ [a, b]. If k = 1 suppose in addition that φ′ is monotonic. Then, for every λ > 0,∣∣∣∣ ∫ b

a
eiλφ(t)dt

∣∣∣∣ ≤ c k

λ
1
k

(1.2)

where c is an absolute positive constant, independent of a,b,k and φ.

Before we proceed to the proof of Proposition 1.1, several remarks are in hand.
One way to obtain estimates for the integral in (1.2) is to successively integrate by parts. This

was the original idea of van der Corput, which proves Proposition 1.1 with the factor ck being
replaced by some constant ck. The proof of Proposition 1.1 with this method is contained foe
example in [15].

Let us suppose that for functions φ satisfying the condition∣∣∣∣dkφ(t)
dtk

∣∣∣∣ ≥ 1

we know ((good)) estimates for the Lebesgue measure of the sublevel set

Eα = {t ∈ [a, b] : |φ(t)| < α}, (1.3)

in terms of α > 0. Then, the estimate (1.2) is a direct consequence of the sublevel set estimate. This
principle first appears in [1] while it’s fully exploited in [4]. Using this principle we will next prove
Proposition 1.1, following the proof that can be found in [1] and which proves the linear dependence
on k on the right hand of (1.2). It is also worth noting that this argument will be frequently used
in the present work, in the chapters that follow.

The ((good)) estimate for the sublevel set (1.3) is the content of the following Proposition:

Proposition 1.2. Let φ : [a, b] → R be a Ck−function and suppose that |φ(k)(t)| ≥ 1 for some
k ≥ 1 and all t ∈ [a, b]. Then

|{t ∈ [a, b] : |φ(t)| ≤ α}| ≤ 2kα
1
k (1.4)

Proof. Let Eα = {t ∈ [a, b] : |φ(t)| ≤ α}. Eα is a finite union of closed intervals. We slide them in
order to create a single interval I of length |Eα| and then pick k + 1 equally spaced points in I. If
we bring back the interval in their original position, we end up with k + 1 points x0, x1, x2, . . . , xk
in Eα which satisfy

|xj − xl| ≥ |Eα|
|j − l|
k

. (1.5)
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Consider the Lagrange interpolation polynomial h(x), which interpolates φ(x0), φ(x1), . . . , φ(xk):

h(x) =
k∑

n=0

φ(xn)
(x− x0) · · · (x− xn−1)(x− xn+1) · · · (x− xk)

(xn − x0) · · · (xn − xn−1)(xn − xn+1) · · · (xn − xk)
.

The function F (x) = h(x) − φ(x) is k times differentiable and vanishes at each of the points
x0, x1, . . . , xk. Thus, there are k points ξ1, ξ2, . . . , ξk, where x0 < ξ1 < x1 < ξ2 < · · · < ξk < xk, such
that F ′(ξ1) = F ′(ξ2) = · · · = F ′(ξk) = 0. Using the same argument k times we conclude that there
is a point ξ ∈ (a, b) such that F (k)(ξ) = h(k)(ξ)− φ(k)(ξ) = 0. We therefore have that

φ(k)(ξ)
k!

=
k∑

n=0

φ(xn)
(xn − x0) · · · (xn − xn−1)(xn − xn+1) · · · (xn − xk)

.

Now, from the hypothesis |φ(k)(t)| ≥ 1 and the property (1.5) of the points x0, x1, x2, . . . , xk, we get
that

1
k!
≤

∣∣φ(k)(ξ)
∣∣

k!
≤ α

k∑
n=0

1
|xn − x0| · · · |xn − xn−1||xn − xn+1| · · · |xn − xk|

≤ α
k∑

n=0

kk

n!(k − n)!|Eα|k
≤ αkk

|Eα|kk!

k∑
n=0

(
k

n

)
=

αkk

|Eα|kk!
2k,

and thus
|Eα|k ≤ αkk2k.

Taking k−th roots in both sides of the above estimate, completes the proof.

The proof of Proposition 1.1 is now immediate.

Proof of Proposition 1.1. We will first prove the Proposition in the case k = 1. We have∫ b

a
eiλφ(t)dt =

eiλφ(b)

iλφ′(b)
− eiλφ(a)

iλφ′(a)
− 1
iλ

∫ b

a
eiλφ(t) d

dt

(
1

φ′(t)

)
dt.

Therefore ∣∣∣∣∫ b

a
eiλφ(t)dt

∣∣∣∣ ≤ 1
λ |φ′(b)|

+
1

λ |φ′(a)|
+

1
λ

∫ b

a

∣∣∣∣ ddt
(

1
φ′(t)

)∣∣∣∣ dt.
By the monotonicity of φ′ we now get

1
λ

∫ b

a

∣∣∣∣ ddt
(

1
φ′(t)

)∣∣∣∣ dt =
1
λ

∣∣∣∣∫ b

a

d

dt

(
1

φ′(t)

)
dt

∣∣∣∣ =
1
λ

∣∣∣∣ 1
φ′(b)

− 1
φ′(a)

∣∣∣∣ ≤ 1
λ
.
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From the last estimates now give:∣∣∣∣∫ b

a
eiλφ(t)dt

∣∣∣∣ ≤ 2
λ

max
(

1
|φ′(a)|

,
1

|φ′(b)|

)
≤ 2
λ
.

This proves the proposition in the case k = 1 with c = 2.
Suppose now that k ≥ 2. For some α > 0 to be defined later, we write∣∣∣∣∫ b

a
eiλφ(t)dt

∣∣∣∣ ≤

∣∣∣∣∣
∫
{t∈[a,b]:|φ′(t)|≥α}

eiλφ(t)dt

∣∣∣∣∣ +
∫
{t∈[a,b]:|φ′(t)|<α}

dt = I1 + I2.

In order to estimate I2 = |{t ∈ [a, b] : |φ′(t)| < α}| we use Proposition 1.2 for the function φ′

to get I2 ≤ 2(k − 1)α
1

k−1 . For I1, observe that the hypothesis
∣∣φ(k)(t)

∣∣ ≥ 1 means that the set
{t ∈ [a, b] : |φ′(t)| ≥ α} is a union of at most 2k intervals on each of which φ′ is monotone. Using
the result for k = 1 in each of these intervals we get that I1 ≤ 4 k

λα . Thus∣∣∣∣∫ b

a
eiλφ(t)dt

∣∣∣∣ ≤ 4
k

λα
+ 2(k − 1)α

1
k−1 .

Optimizing in α, yields that ∣∣∣∣∫ b

a
eiλφ(t)dt

∣∣∣∣ ≤ 4k

λ
1
k

.

Remark 1.3. The linear dependence of the constants on k in Propositions 1.1 and 1.2 is optimal
as may be seen by testing them against the function φ(t) = tk

k! .

The estimate 1.1 leads to the corresponding estimate for integrals of the form (1.1).

Corollary 1.4. If φ satisfies the hypotheses of Proposition 1.1 and ψ is a C1-function, then∣∣∣∣∫ b

a
eλiφ(t)ψ(t)dt

∣∣∣∣ ≤ c k

λ
1
k

{
|ψ(b)|+

∫ b

a

∣∣ψ′(t)∣∣ dt} (1.6)

Proof. We just write F (t) =
∫ t
a e

iλφ(x)dx. Then, from Proposition 1.1 we have that∣∣∣∣∫ b

a
eλiφ(t)ψ(t)dt

∣∣∣∣ =
∣∣∣∣∫ b

a
F ′(t)ψ(t)dt

∣∣∣∣ =
∣∣∣∣F (b)ψ(b)−

∫ b

a
F (t)ψ′(t)dt

∣∣∣∣
≤ c k

λ
1
k

{
|ψ(b)|+

∫ b

a

∣∣ψ′(t)∣∣ dt}.
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1.2 Oscillatory integrals of the first kind, many variables

In many variables we are interested in the behavior of the integral

Iψ(λ) =
∫

Rn

eiλφ(x)ψ(x)dx (1.7)

as λ → +∞, where the phase function φ is real and smooth and ψ is a complex-valued smooth
function with compact support. The situation in many variables is far from being as clear as in one
variable and the corresponding results are quite far from being optimal.

The first step here is to consider the integral∫
Rn

eiλφ(x)dx (1.8)

and then try to estimate integrals of the form (1.7). However, in dimensions greater than one,
satisfactory results for (1.8) are generally valid only for functions φ defined on suitable bounded
subsets of Rn. For simplicity we work on the unit cube of Rn, Q = [0, 1]n, and we study integrals
of the form

I(λ) =
∫
Q
eiλφ(x)dx. (1.9)

Ideally here we would like to suppose that for some multi-index β ∈ Nn
o with |β| > 0 we have

|Dβφ(x)| ≥ 1 (1.10)

on Q and conclude that ∣∣∣∣∫
Q
eiλφ(x)dx

∣∣∣∣ ≤ cn,βλ
−ε, (1.11)

uniformly for all φ satisfying (1.10). This means that the constant cn,β and the exponent ε should
depend only on the dimension n and the multi-index β. The seemingly ((natural)) exponent in
(1.11) is ε = 1

|β| .
The main idea is the one already developed in the first section of this chapter in the case of one

variable. If we know ((good)) estimates for the sublevel sets of the function φ,

{x ∈ Q : |φ(x)| ≤ α},

then we can get respectively good estimates for the integrals of the form (1.9). For example, we
have the following Theorems.
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Theorem 1.5. For each multi-index β ∈ Nn
o with |β| > 0 there is an ε = εβ,n > 0 and some positive

constant cβ,n, depending only on β and n, such that for every real function φ ∈ C |β|(Q) satisfying∣∣Dβφ(x)
∣∣ ≥ 1 on Q and every α > 0:

|{x ∈ Q : |φ(x)| < α}| ≤ cβ,n α
ε. (1.12)

Theorem 1.6. Let β = (β1, . . . , βn) 6= 0 be a multi-index and suppose that βj ≥ 2 for at least one
j ∈ {1, 2, . . . , n}. Then, there exists an ε = εβ,n > 0 and some positive constant cβ,n, depending
only on β and n, such that for every real function φ ∈ C |β|(Q) satisfying

∣∣Dβφ(x)
∣∣ ≥ 1 on Q and

every λ > 0: ∣∣∣∣∫
Q
eiλφ(x)dx

∣∣∣∣ ≤ cβ,nλ
−ε. (1.13)

The results above were stated and proved in [4]. The writers in [4] also prove the above theorems
with the stronger exponent ε = 1

|β| under some additional ((convexity)) hypotheses for the phase
function φ. This is the content of the following Theorems.

Theorem 1.7. Let φ ∈ C |β|(Q),
∣∣Dβφ(x)

∣∣ ≥ 1 on Q, and moreover that for some indices N2 >
β2, N3 > β3, . . . , Nn > βn the partial derivatives

D(0,0,...,Nn)φ, D(0,0,...,0,Nn−1,βn)φ, . . . , D(0,N2,β3,...,βn)φ,

are all single-signed. Then, there exists a constant cβ,N2,...,Nn which depends only on β,N2, . . . , Nn

such that for every α > 0,

|{x ∈ Q : |φ(x)| < α}| ≤ cβ,N2,...,Nnα
1
|β| . (1.14)

Proof. We prove the theorem by induction on n. The case n = 1 is Proposition 1.2 and therefore
we suppose that the statement of the theorem holds true for dimensions up to n− 1. Let E = {x ∈
Q : |φ(x)| < α}, for some γ > 0 to be defined later we write

|E| =
∫
Q
χE(x′, xn)dx =

∫
Q1

∫
Qn−1

χE(x′, xn)dx′dxn

=
∫
Q1

∫
{x′∈Qn−1:|∂βnφ(x)/∂xβn

n |≥γ}
χE(x′, xn)dx′dxn

+
∫
Q1

∫
{x′∈Qn−1:|∂βnφ(x)/∂xβn

n |<γ}
χE(x′, xn)dx′dxn = I + II.

We also write β = (β′, βn). For II we use the inductive hypothesis for Dβ′ and (∂/∂xn)βnφ replacing

φ and we get II ≤ cβ′,N2,...,Nn−1γ
1
|β′| . For I, the fact that the partial derivative ∂Nnφ/∂xNn

n has
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constant sign assures that [0, 1] can be written as a union of boundedly many intervals on each
of which |∂βnφ(x)/∂xβn

n | ≥ γ. Using the one dimensional estimate, that Proposition 1.2, we get

I ≤ cNn(α/γ)
1

βn . We thus have |E| ≤ cβ,N2,...,Nn(γ
1
|β′| + (α/γ)

1
βn ). Optimizing in γ, γ = α

|β′|
|β| ,

completes the proof.

As before, Theorem 1.7 implies implies the corresponding estimate for the integral (1.9). This
is the content of the following Theorem.

Theorem 1.8. Under the hypotheses of Theorem 1.7, there exists a constant cβ,N2,...,Nn such that

|I(λ)| =
∣∣∣∣∫
Q
eiλφ(x)dx

∣∣∣∣ ≤ cβ,N2,...,Nnλ
− 1
|β| (1.15)

Proof. We have that

|I(λ)| ≤

∣∣∣∣∣
∫
{x∈Q:|(∂φ(x)/∂xn)βn |≥γ}

eiλφ(x)dx

∣∣∣∣∣ + |{x ∈ Q : |(∂φ(x)/∂xn)βn | < γ}| = I + II.

To estimate II we use Theorem 1.7 to get II ≤ cβ′,N2,...,Nnγ
1
|β′| . For I we use Proposition 1.1 since

for every x′ ∈ Qn−1 the set {xn ∈ [0, 1] :
∣∣∂βnφ

∂xβn
n

(x′, xn)
∣∣ ≥ γ} consists of boundedly many intervals.

We thus get I ≤ cNn(λγ)−
1

βn . Choosing γ = λ
− |β′|

|β| we get (1.15).

Finally, it is worth mentioning a result of Stein for estimating integrals of the form (1.7) which
can be found in [15]. Stein gives the optimal estimate as far as the exponent ε = 1

|β| is concerned
, but his result is not uniform over all φ satisfying (1.10). More precisely, we have the following
theorem.

Theorem 1.9. Let ψ be a smooth function supported inside the unit ball of Rn. We suppose that
φ is a real-valued function, such that for some multi-index β with |β| > 0 it satisfies

|Dβφ| ≥ 1

inside the support of ψ. Then∣∣∣∣∫
Rn

eiλφ(x)ψ(x)dx
∣∣∣∣ ≤ ck(φ)λ−

1
k {‖ψ‖L∞ + ‖∇ψ‖L1} (1.16)

where k = |β|; the constant ck(φ) is independent of λ and ψ and remains bounded as long as the
Ck+1 norm of φ remains bounded.
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1.3 Notes and references

1.3.1 References

The basic references for this chapter are [14],[15], [1] and [4]. The proof of propositions 1.1 and
1.2 which we presented here can be found in [1]. Essentially the same proofs are contained in [4].
In [4], Proposition 1.2 is inductively exploited in order to give results like Theorems 1.5, 1.6, 1.7
and 1.8. Theorem 1.9 is proved in [14] and [15].

1.3.2 Sublevel sets in many dimensions

The problem of estimating the n−dimensional Lebesgue measure of the set

Eα = {x ∈ Q : |φ(x)| ≤ α},

for all φ with |Dβφ| ≥ 1 on Q and no additional hypotheses, finds an answer in Theorem 1.5:

|{x ∈ Q : |φ(x)| ≤ α}| ≤ cβ,nα
ε.

We don’t know if the exponent ε can take the ((optimal)) value ε = 1
|β| . In dimension n = 2, we

have the following theorem which is proved in [4].

Theorem 1.10. Let φ ∈ C2(Q2) with |∂
2φ(x)
∂x∂y | ≥ 1 on Q2. Then

|{x ∈ Q2 : |φ(x)| ≤ α}| ≤ cα
1
2 | logα|

1
2 .

Note that the above estimate is a logarithmic factor away from the seemingly optimal value α
1
2 .

1.3.3 Connection with combinatorial problems

The problem of estimating the Lebesgue measure of a sublevel set has a natural connection with
some combinatorial problems.

Question 1.11. Let E ⊆ Q2 = [0, 1]2 with |E| > 0. Is it true for some absolute constant c, we
can always find points A,B,C,D ∈ E such that the quadrilateral ABCD has sides parallel to the
coordinate axes, and area at least c|E|2?

Question 1.11 has an equivalent discrete formulation

Question 1.12. Let M,N be positive integers, A a N ×N matrix with at least M entries equal to
1 and the rest equal to 0. Is there an absolute constant c > 0 and some 2× 2 sub-matrix of A, with
all its entries equal to 1 and ((area)) at least cM2/N2?
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A positive answer to the above question would have as an immediate consequence the estimate

|{x ∈ Q : |φ(x)| ≤ α}| ≤ cα
1
2 ,

for all φ with | ∂
2φ

∂x∂y | ≥ 1 on Q. Indeed, if there are four points (xi, yi), i, j ∈ {0, 1} in the set
Eα = {x ∈ Q : |φ(x)| ≤ α}, such that the area of the parallelogram T they form is at least c|Eα|2,
then

c|Eα|2 ≤ |T | ≤
∫
T

∣∣∣∣∂2φ(x)
∂x∂y

∣∣∣∣ dxdy ≤ 4α,

and thus |Eα| ≤ cα
1
2 . For more details, we refer the interested reader to [4].



CHAPTER 2

Oscillatory integrals with polynomial phase on Rn

In this chapter, we focus on oscillatory integrals of the first kind, where the phase function is a
real polynomial on Rn. We denote by Pd,n the vector space of all real polynomial on Rn, of degree
at most d. The typical element P ∈ Pd,n can be written in the form

P (x) =
∑

0≤|α|≤d

cαx
α = c0 +

∑
0<|α|≤d

cαx
α1
1 xα2

2 · · ·xαn
n . (2.1)

Let P ∈ Pd,n and we write Q = [0, 1]n for the unit cube on Rn. We want to study the behavior
of the integral

I(λ) =
∫
Q
eiλP (x)dx (2.2)

as λ→ +∞.

2.1 Van der Corput estimates and polynomials

The analytic properties of polynomials will let us obtain estimates for I(λ), essentially with
no additional hypothesis. For example, the additional convexity hypotheses imposed on the phase
functions of theorems 1.7 and 1.8 are automatically satisfied. Thus, we have the following.

Theorem 2.1. For every d, n there exists an absolute constant cd,n such that for every multi-index
β and every P ∈ Pd,n which satisfies |DβP (x)| ≥ 1 for every x ∈ Q, we have that

|{x ∈ Q : |P (x)| < α}| ≤ cd,nα
1
|β| . (2.3)

11
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Now theorem 1.8 gives us a van der Corput type estimate for polynomials on Rn.

Theorem 2.2. For every d, n there exists a positive constant cd,n such that for every multi-index
β and every polynomial P ∈ Pd,n satisfying |DβP (x)| ≥ 1 for every x ∈ Q, we have that∣∣∣∣∫

Q
eiλP (x)dx

∣∣∣∣ ≤ cd,nλ
− 1
|β| . (2.4)

If P ∈ Pd,n we can always find some β ∈ Nn
o with |β| = d such that |DβP (x)| ≥ |cβ | everywhere

on Rn. As a result, theorem 2.2 immediately gives that for every polynomial P ∈ Pd,n there exists
a multi-index β with |β| = d such that∣∣∣∣∫

Q
eiP (x)dx

∣∣∣∣ ≤ cd,n|cβ|−
1
d , (2.5)

where the constant cd,n depends only on d and n. Estimate (2.5) can be strengthened.

Corollary 2.3. Let P ∈ Pd,n, P (x) =
∑

0≤|α|≤d cαx
α. Then

∣∣∣∣∫
Q
eiP (x)dx

∣∣∣∣ ≤ cd,n

( ∑
0<|α|≤d

|cα|
)− 1

d

, (2.6)

where the constant cd,n depends only on d and n.

Proof. We can assume, without loss of generality, that the polynomial P has no constant term,
that is P (0) = 0. Consider the space P = {P ∈ Pd,n : P (0) = 0} endowed with the norm
‖P‖ =

∑
0<|α|≤d |cα|. The functional

θ(P ) = max
0<|α|<d

inf
x∈Q

|DαP (x)|

is continuous on P and homogeneous of degree 1. It is clear that for every non zero polynomial
P ∈ P we have that θ(P ) 6= 0. As a consequence, there exists a positive constant cd,n which depends
only on n and d such that θ(P ) ≥ cd,n ‖P‖ for all P. Theorem 2.2 now gives the desired result.

Remark 2.4. The writers in [4] also prove that in dimension 1 we have the estimate cd,1 ≤ cd
for some absolute positive constant c. We did not include that proof since we will prove a stronger
result in what follows.

We consider the vector space Pod,n = {P ∈ Pd,n :
∫
Q P (x)dx = 0}, that is the space of all real

polynomials on Rnof degree at most d, having zero mean value on the unit cube Q. For P ∈ Pod,n
we have that:
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∑
0≤|α|≤d

|cα| ≤ 2
∑

0<|α|≤d

|cα|,

and thus, for P ∈ Pod,n, corollary 2.3 gives that∣∣∣∣∫
Q
eiP (x)dx

∣∣∣∣ ≤ cd,n
( ∑

0≤|α|≤d

|cα|
)− 1

d .

Since all norms in the space Pod,n are equivalent, with constants depending only on d and n,
corollary 2.3 can be equivalently written in the form:

Corollary 2.5. Let P ∈ Pod,n and ‖ · ‖ a norm in the space Pod,n. Then∣∣∣∣∫
Q
eiP (x)dx

∣∣∣∣ ≤ cd,n‖P‖−
1
d , (2.7)

where the constant cd,n depends only on d,n and the choice of the norm.

The purpose of this chapter from now on is to study the constants in estimates of the form (2.7).
For that reason we will deviate a bit in order to give some basic estimates on the constants involved
in the equivalence of polynomial norms on Rn.

2.2 Equivalent polynomial norms and sublevel sets

We consider the vector space of polynomials Pd,n and some convex body Kof volume one 1 on

Rn. Since the space Pd,n is finite dimensional , the norms (
∫
K |P (x)|pdx)

1
p , 1 ≤ p ≤ ∞, are all

equivalent. In this section we are going to study the constants involved in these equivalences. We
refer the interested reader to [6] and the references therein.

Let 1 ≤ p ≤ q ≤ ∞.Hölder’s inequality then gives

‖P‖Lp(K) ≤ ‖P‖Lq(K) , (2.8)

and the constant 1 in the above inequality is best possible. For the opposite inequality we have the
following theorem which is proved in [6].

Theorem 2.6. Let P : Rn → R be a polynomial of degree at most d and K a convex body on Rn of
volume 1. Let 1 ≤ p ≤ q ≤ ∞. Then there exist an absolute positive constant c, such that

(i) If n
d ≤ p ≤ q then

‖P‖
1
d

Lq(K) ≤ c ‖P‖
1
d

Lp(K).
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(ii) If p ≤ n
d ≤ q then

‖P‖
1
d

Lq(K) ≤ c
n

pd
‖P‖

1
d

Lp(K).

(iii) If p ≤ q ≤ n
d , then

‖P‖
1
d

Lq(K) ≤ c
q

p
‖P‖

1
d

Lp(K).

The constants arising in the right hand sides of the above theorem are best possible modulo the
arithmetic constant c when one looks for inequalities over arbitrary convex bodies K of volume
1 on Rn. We do not know for example if these constants can be sharpened if we fix as our convex
body the unit cube on Rn, that is when K = Q.

For 0 ≤ p ≤ 1 ≤ q ≤ ∞, theorem 2.6 has a stronger formulation in terms of distribution
inequalities. This is the content of theorem 2.7. In this theorem we estimate the Lebesgue measure
of a polynomial sublevel set on a convex body in Rn in terms of the Lq(K) norm of the polynomial.
From the previous discussion, we know that sublevel set estimates usually imply estimates for
corresponding oscillatory integrals. The estimates contained in the following theorem of [6] will
prove particularly useful in what follows.

Theorem 2.7. Let P : Rn → R be a polynomial of degree at most d and K be a convex body on Rn

of volume 1. Let 1 ≤ q ≤ ∞. Then there exists an absolute positive constant c, independent of P ,
d, K, q and n, such that, for every α > 0,

|{x ∈ K : |P (x)| ≤ α}| ≤ cmin(n, qd)α
1
d ‖P‖−

1
d

Lq(K) . (2.9)

Again, the constant cmin(n, qd) in the right-hand side of (2.9) is best possible in the context of
arbitrary convex bodies of volume 1.

Looking back at the discussion in chapter 1, it is immediately clear that sublevel set estimates
are used for some derivative of the phase function and not for the function itself. If we look at
equation (2.9) we will see that its use for some derivative of the polynomial P on Rn will produce
the corresponding derivative norm on the right-hand side. For that reason we state now a simple
lemma which will allow us to compare the L2(Q) norm of a polynomial P with the L2(Q) norm of
∇P . This is a Poincaré inequality for polynomials on the unit cube of Rn.

Lemma 2.8. Let P : Rn → R be a polynomial with zero mean value on the unit cube Q = [0, 1]n.
Then

‖P‖L2(Q) ≤ c ‖∇P (x)‖L2(Q),

for some absolute positive constant c, independent of P and n.
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The proof of lemma 2.8 is a simple application of Fourier series on the unit cube Q of Rn.
We conclude this section by giving another application of theorem 2.7. Let 1 ≤ q < ∞ and

1
p + 1

q = 1. A weight function ω (that is a non negative measurable function) for which there exists
some constant K < +∞ such that

1
|B|

∫
B
ω(x)dx

(
1
|B|

∫
B
ω(x)−

p
q dx

) q
p

≤ K < +∞

for every ballB is said to belong to the weight classAq. When q = 1 the quantity
(

1
|B|

∫
B ω(x)−

p
q dx

) q
p

should be replaced by esssupB
(

1
ω

)
. The smallest constant K for which the above estimate holds is

called the Aq constant of the weight ω and it is denoted by Aq(ω). For polynomials on Rn we have
the following result toward that direction.

Corollary 2.9. Let P : Rn → R be a polynomial of degree at most d and K a convex body on Rn

of volume 1. Let 1 ≤ p ≤ ∞ and 0 < ε < 1
d . Then there exists an absolute positive constant c,

independent of P , d, K, p, ε and n such that( ∫
K
|P (x)|−εdx

) 1
ε
( ∫

K
|P (x)|pdx

) 1
p

≤
(
cmin(n, pd)

dε

1− dε

)d

.

Proof. LetP be a polynomial of degree at most d and K be a convex body on Rn of volume 1. For
1 ≤ p ≤ ∞ and some λ > 0 to be defined later, we write∫

K
|P (x)|−εdx =

∫ ∞

0
|{x ∈ K : |P (x)|−ε > α}|dα

≤ λ+
∫ ∞

λ
|{x ∈ K : |P (x)| < α−

1
ε }|dα.

Now, using theorem 2.7 for the sublevel set of the polynomial P we get∫
K
|P (x)|−εdx ≤ λ+ cmin(n, pd)‖P‖−

1
d

Lp(K)

∫ ∞

λ
α−

1
dεdα

= λ+ cmin(n, pd)‖P‖−
1
d

Lp(K)

λ−
1
dε

+1

1
dε − 1

,

since ε < 1
d . Optimizing in λ the above inequality becomes,∫

K
|P (x)|−εdx ≤

(
cmin(n, pd)

dε

1− dε

)dε

‖P‖−εLp(K),

which is the desired estimate.
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The corollary above says that for a polynomial P ∈ Pd,n, the function ω = |P | is a weight on
Rn with

Aq(|P |) ≤
(
c
dmin(n, d)
q − (d+ 1)

)d

for every q > d+ 1. For another application of theorem 2.9 see section 3.3.

2.2.1 Estimates for polynomials in dimension one

As is usually the case, the one dimensional estimates are more precise and complete. For
example, theorem 2.6 says that, for 1 ≤ p ≤ q ≤ ∞, we have that

‖P‖
1
d

Lp[0,1] ≤ ‖P‖
1
d

Lq [0,1] ≤ c‖P‖
1
d

Lp[0,1].

If P (t) = b0 + b1t+ · · ·+ bdt
d, proposition 1.2 gives for the sublevel set of the polynomial P that

|{x ∈ [0, 1] : |P (x)| ≤ α}| ≤ cα
1
d |bd|−

1
d . (2.10)

On the other hand, theorem 2.7 in the case n = 1 gives the estimate

|{x ∈ [0, 1] : |P (x)| ≤ α}| ≤ cα
1
d ‖P‖−

1
d

Lp[0,1] . (2.11)

The ((worse)) norm, which gives the best estimate for the measure of the polynomial sublevel
set is the L∞ norm. We will now show that this estimate can be strengthened in dimension one ,
and the L∞ norm can be replaced by a bigger norm. More precisely, we have the following result
due to Vinogradov.

Lemma 2.10. Let h(t) = b0 + b1t+ · · ·+ bdt
d be a real polynomial of degree at most d. Then,

|{t ∈ [a, b] : |h(t)| ≤ α}| ≤ cmax(|a|, |b|)
(

α

max0≤k≤d |bk|

) 1
d

.

Proof. The set Eα = {t ∈ [a, b] : |h(t)| ≤ α} is a finite union of closed intervals. We slide them
together to form a single interval I of length |Eα| and pick d+ 1 equally spaced points in I. If we
slide the intervals back to their original position, we end up with d+1 points x0, x1, x2, . . . , xd ∈ Eα
which satisfy

|xj − xk| ≥ |Eα|
|j − k|
d

. (2.12)
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The Lagrange interpolation polynomial which interpolates the values h(x0), h(x1),. . . , h(xd) coin-
cides with h(x):

h(x) =
d∑
j=0

h(xj)
(x− x0)(x− x1) · · · (x− xj−1)(x− xj+1) · · · (x− xd)

(xj − x0)(xj − x1) · · · (xj − xj−1)(xj − xj+1) · · · (xj − xd)
.

We thus get for the coefficients of h that

bk =
d∑
j=0

h(xj)
(−1)d−kσd−k(x0, . . . , x̂j , . . . , xd)

(xj − x0)(xj − x1) · · · (xj − xj−1)(xj − xj+1) · · · (xj − xd)

for k = 0, 1, . . . , d. In the above equality, σd−k(x0, . . . , x̂j , . . . , xd) is the (d− k)-th elementary sym-
metric function of x0, . . . , x̂j , . . . , xd where xj is omitted. Using the estimate σd−k(x0, . . . , x̂j , . . . , xd) ≤(
d

d−k
)
max(|a|, |b|)d−k together with (2.12), we get that, for every k = 0, 1, . . . , d,

|bk| ≤
(

d

d− k

)
max(|a|, |b|)d−kdd α

|Eα|d
d∑
j=0

1
j!(d− j)!

=
(

d

d− k

)
max(|a|, |b|)d−k2dd

d

d!
α

|Eα|d
≤ c

(4 max(|a|, |b|))d√
d

dd

d!
α

|Eα|d
,

where we have used the estimate
(
d

d−k
)
≤

( d
[ d
2
]

)
≤ c 2d

√
d
. Consequently

max
0≤k≤d

|bk| ≤ c
(4 max(|a|, |b|))d√

d

dd

d!
α

|Eα|d

and solving with respect to |Eα| we get

|Eα| ≤ cmax(|a|, |b|)
(

α

max0≤k≤d |bk|

) 1
d

.

Lemma 2.10 has the following consequence

|{x ∈ [0, 1] : |P (x)| ≤ α}| ≤ cα
1
d {max

0≤j≤d
|bj |}−

1
d . (2.13)

A moments’ reflection will now show that (2.13) implies the estimates (2.10) and (2.11).



18 2.Oscillatory integrals with polynomial phase on Rn

2.3 A conjecture by Carbery and Wright

In this section we fix as our convex body the unit cube Q of Rn. If P ∈ Pod,n, corollary 2.5 says
that there exists some constant cd,n, which depends only on d and n, such that∣∣∣∣∫

Q
eiP (x)dx

∣∣∣∣ ≤ cd,n‖P‖
− 1

d

L1(Q)
. (2.14)

On the other hand, theorem 2.7 gives for the sublevel set of the polynomial P that

|{x ∈ Q : |P (x)| ≤ α}| ≤ cmin(d, n)α
1
d ‖P‖−

1
d

L1(Q)
. (2.15)

Comparing the estimates (2.14) and (2.15) and baring in mind the general principle that sub-
level set estimates imply oscillatory integral estimates motivated Carbery and Wright to state the
following question in [6].

Question 2.11. Can we replace the constant cd,n in (2.14) with cmin(d, n) for some absolute
positive constant c?

We partially answer question 2.11 by means of the following theorem.

Theorem 2.12. Let P : Rn → R be a polynomial of degree at most d, with zero mean value on the
unit cube Q. Then, there is an absolute constant c, independent of P , n and d, such that∣∣∣∣∫

Q
eiP (x)dx

∣∣∣∣ ≤ cmin(n, 2d)n
1
2d ‖P‖−

1
d

L2(Q)
.

Proof. Let P : Rn → R be a polynomial of degree at most d with zero mean value on the unit cube
Q. There exists j ∈ {1, 2, . . . n} such that

∥∥∥ ∂P
∂xj

∥∥∥
L2(Q)

≥ 1√
n
‖∇P‖L2(Q). For some α > 0 to be

defined later, we write

I =
∫
Q
eiλP (x)dx =

∫
{x∈Q:| ∂P

∂xj
(x)|≤α}

eiλP (x)dx+
∫
{x∈Q:| ∂P

∂xj
(x)|>α}

eiλP (x)dx.

We thus have that

|I| ≤ |{x ∈ Q : |∂P (x)/∂xj | ≤ α}|+
∣∣∣∣ ∫

{x∈Q:| ∂P
∂xj

(x)|>α}
eiλP (x)dx

∣∣∣∣.
Using theorem 2.7 we now get

|{x ∈ Q : |∂P (x)/∂xj | ≤ α}| ≤ cmin(2(d− 1), n)α
1

d−1 ‖∂P/∂xj‖
− 1

d−1

L2(Q)

≤ cn
1

2(d−1) min(2d, n)α
1

d−1 ‖∇P‖
− 1

d−1

L2(Q)

≤ cn
1

2(d−1) min(2d, n)α
1

d−1 ‖P‖
− 1

d−1

L2(Q)
,
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where in the last inequality we used lemma 2.8.
For

∫
{x∈Q:| ∂P

∂xj
(x)|>α} e

iλP (x)dx we observe that for every (x1, . . . , xj−1, xj+1, . . . , xn) the set {xj ∈

[0, 1] : | ∂P∂xj
(x)| > α} consists of at most O(d) interval where the function ∂P

∂xj
(x) is monotonic. Using

proposition 1.1 we get ∣∣∣∣ ∫
{x∈Q:| ∂P

∂xj
(x)|>α}

eiλP (x)dx

∣∣∣∣ ≤ c
d

α
.

Summing up the estimates we get

|I| ≤ c

(
min(2d, n)n

1
2(d−1)α

1
d−1 ‖P‖

− 1
d−1

L2(Q)
+
d

α

)
.

Optimizing in α completes the proof.

Although we stated theorem 2.12 for the L2 norm, it is easy to see that it is equivalent with the
same statement for the L1 norm. Indeed, it follows from the discussion in the section 2.2 that there
is an absolute positive constant c such that

‖P‖
1
d

L1(Q)
≤ ‖P‖

1
d

L2(Q)
≤ c‖P‖

1
d

L1(Q)
.

On the other hand it is obvious that min(n, d) ∼ min(n, 2d). Thus, theorem 2.12 answers positively
in question 2.11 in the case n ≤ cd for some absolute positive constant c. In the case n > cd,
theorem 2.12 misses the constant of question 2.11 by the factor n

1
2d . More generally, one could ask

the following question:

Question 2.13. Let P : Rn → R be a polynomial of degree at most d, with zero mean value on the
unit cube Q. Let 1 ≤ p ≤ ∞. Corollary 2.5 sat that there exists an absolute positive constant cd,n,p,
independent of P , such that ∣∣∣∣∫

Q
eiP (x)dx

∣∣∣∣ ≤ cd,n,p‖P‖
− 1

d

Lp(Q). (2.16)

Can we replace the constant cd,n,p in (2.16) by cmin(n, pd) for some absolute positive constant
c > 0?

For example, using lemma 2.10, we can easily show that in the case of dimension n = 1, the
answer in question 2.13 is positive.

2.4 Notes and References

2.4.1 References

The basic references for the development of this chapter are [4] and [6]. Theorems 2.1 and 2.2
are contained in [4]. Theorem 2.2 can also be proved by the methods in [1]. See also [12], [18] for
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a van der Corput type result for oscillatory integrals with polynomial phase. Theorems 2.6 and 2.7
are contained in [6]. The basic tool used in [6] is a strong extremal result of Kannan, Lovász and
Simonovits [8]. Analogous estimates by using the same tool but different methods can be found in
[9]. Corollary 2.9 exists in [6] since it’s an immediate consequence of the results therein. Analogous
estimates are contained in [9], which improve older results from [14] and [13]. Lemma 2.10 is due
to Vinogradov and the proof we presented here is based on [19]. Question 2.11 is stated in [6] while
theorem 2.12 is a new result.

2.4.2 The KLS lemma

A central role in the proof of theorems 2.6 and 2.7 plays the following theorem which is contained
in [8].

Theorem 2.14. For a, b ∈ Rn and λ ≥ 1 we define the measures µa,b,λ by means of the formula

< φ, µa,b,λ >=
∫ 1

0
φ(a(1− t) + bt)(λ− t)n−1dt.

Let f1, f2, f3, f4 be continuous, non negative functions on Rn and α, β > 0. Suppose that for
a, b ∈ Rn and λ ≥ 1,( ∫

f1dµa,b,λ

)α( ∫
f2dµa,b,λ

)β

≤
( ∫

f3dµa,b,λ

)α( ∫
f4dµa,b,λ

)β

.

Then, for every convex body K on Rn,( ∫
K
f1

)α( ∫
K
f1

)β

≤
( ∫

K
f3

)α( ∫
K
f4

)β

.

Using theorem 2.14, theorems 2.6 and 2.7 reduce to one dimensional weighted inequalities.
Theorem 2.14 is also used, in a different way, in [9].

2.4.3 Poincaré inequalities on convex bodies

Results like lemma 2.8 are classic when we look at functions with zero mean value on a convex
body. For example, we have that for every convex body K and a ((good)) function u with zero
mean value on K,

‖u‖L2(K) ≤ c d(K)‖∇u‖L2(K),

where d(K) is the diameter of K. This is a classical result which can be found for example in
[11],[3]. The dependence on the diameter is sharp in this case. If K = Q, we have that d(Q) =

√
n.

However, if we restrict ourself in functions on the unit cube, the corresponding estimate holds with
an absolute constant replacing d(Q).
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2.4.4 Polynomials and BMO

We consider the following definition of the norm of the space BMO:

‖u‖BMO = sup
K⊂Rn,K convex

inf
c∈R

1
|K|

∫
K
|u(x)− c|dx.

It is a classical result that, if a function ω is an Aq weight, then log |ω| ∈ BMO. More precisely, if
we know estimates like the one in 2.9, we can estimate the BMO norm of log |ω|. For polynomials,
it is well known that log |P | ∈ BMO. See for example [14] and [13]. Using estimates analogous to
the ones in [6], the writers in [9] show that if P ∈ Pd,n then ‖ log |P |‖BMO ∼ d.





CHAPTER 3

Singular oscillatory integrals

If γ(t) is a ((nice)) curve, we can define the Hilbert transform along γ,

Hγf(x) = p.v.

∫
R
f(x− γ(t))

dt

t
.

A classical question in harmonic analysis is the following.

Question 3.1. Can we have an estimate of the form

‖Hγf‖Lp ≤ cp‖f‖p,

for some p?

Following the standard argument, one is first going to show the L2 bound. On the level of the
Fourier transform, this amounts to showing that the multiplier of Hγ ,

mγ(ξ) = p.v.

∫
R
eiξγ(t)

dt

t
,

belongs to L∞. In what follows, we will estimate the L∞ norm of the multiplier mP (ξ), in the case
where γ = P , is a real polynomial of degree at most d.

Let Pd be the vector space of all real polynomials of degree at most d in R. For P ∈ Pd we
consider the principal value integral

I(P ) =
∣∣∣∣p.v. ∫

R
eiP (t)dt

t

∣∣∣∣.
23
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We wish to estimate the quantity I(P ) by a constant C(d) depending only on the degree of the
polynomial d. This amounts to estimating the integral

I(ε,R)(P ) =
∣∣∣∣ ∫

ε≤|t|≤R
eiP (t)dt

t

∣∣∣∣
by some constant C(d) independent of ε, R and P .

This problem is quite old and in fact has been answered some thirty years ago by Stein and
Wainger in [16] and [20]. They showed that the quantity I(P ) is bounded by a constant Cd depending
only on d. Their proof is very simple and uses a combination of induction and Van der Corput’s
lemma.

On the other hand, Carbery, Wainger and Wright stated in [5] the following conjecture.

Conjecture 3.2. The order of magnitude of the principal value integral I(P ) is log d.

The main result of this chapter is the proof of this conjecture. This is the content of

Theorem 3.3. There exist two absolute positive constants c1 and c2 such that

c1 log d ≤ sup
P∈Pd

∣∣∣∣p.v.∫
R
eiP (x)dx

x

∣∣∣∣ ≤ c2 log d.

3.1 The lower bound in theorem 3.3

In this section we will construct a real polynomial P of degree at most d such that the inequality

I(P ) =
∣∣∣∣p.v. ∫

R
eiP (t)dt

t

∣∣∣∣ ≥ c log d. (3.1)

holds. The general plan of the construction is as follows. We will first construct a function f (which
will not be a polynomial) such that I(f) ≥ c log n. We will then construct a polynomial P of degree
d = 2n2 − 1 that approximates the function f in a way that |I(f) − I(P )| is small (small means
o(log n) here). Since log n ∼ log d this will yield our result.

Lemma 3.4. For n a large positive integer, let f(t) be the continuous function which is equal to
1 for 1

n ≤ t ≤ 1 − 1
n , equal to −1 for −1 + 1

n ≤ t ≤ − 1
n , equal to 0 for |t| ≥ 1 and linear in each

interval [−1,−1 + 1
n ], [− 1

n ,
1
n ] and [1− 1

n , 1]. Then,

I(f) =
∣∣∣∣p.v.∫

R
eif(t)dt

t

∣∣∣∣ ≥ c log n. (3.2)
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Proof. The proof is more or less straightforward.

I(f) = 2
∣∣∣∣ ∫ 1

0

sin f(t)
t

dt

∣∣∣∣
≥ 2

∣∣∣∣ ∫ 1− 1
n

1
n

sin f(t)
t

dt

∣∣∣∣− 2
∣∣∣∣ ∫ 1

n

0

sin f(t)
t

dt

∣∣∣∣− 2
∣∣∣∣ ∫ 1

1− 1
n

sin f(t)
t

dt

∣∣∣∣
≥ 2 sin 1 log(n− 1)− 2

∫ 1
n

0

f(t)
t
dt− 2

∫ 1

1− 1
n

f(t)
t
dt

= 2 sin 1 log(n− 1)− 2− 2n log
n

n− 1
+ 2

≥ 2 sin 1 log(n− 1)− 4 ≥ c log n.

We now want to construct a polynomial which approximates the function f . We will do so by
convolving the function f with a ”polynomial approximation to the identity”. To be more specific,
for k ∈ N and x ∈ R define the function

φk(x) = ck

(
1− x2

4

)k2

(3.3)

where the constant ck is defined by means of the normalization∫ 2

−2
φk(x)dx = 1. (3.4)

Observe that

1 = ck

∫ 2

−2

(
1− x2

4

)k2

dx = 4ck

∫ 1

0
(1− x2)k

2
dx = 2ckB

(
1
2
, k2 + 1

)
,

where B(·, ·) is the beta function. Using standard estimates for the beta function we see that ck ∼ k.
Define, next, the functions Pk in R as

Pk(t) =
∫ 1

−1
f(x)φk(t− x)dx, (3.5)

where f is the function of Lemma ??. It is clear that the functions Pk are polynomials of degree at
most 2k2. The following lemma deals with some technical issues concerning the polynomials Pk.

Lemma 3.5. Let Pk be defined as in (??) above.
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(i) Pk is an odd polynomial of degree 2k2 − 1 with leading coefficient

ak = (−1)k
2+1 2ckk2

4k2

(
1− 1

n

)
.

That is
Pk(t) = akt

2k2−1 + · · · .
(ii) As a consequence of (i) we have for all t

|P (2k2−1)
k (t)| ≥ c(2k2 − 1)!

k3

4k2 .

(iii) For t ∈ [−1, 1] we have

Pk(t) =
∫ 2

0

(
f(t+ x) + f(t− x)

)
φk(x)dx.

Proof. (i) Using (3.5) we have

Pk(−t) =
∫ 1

−1
f(x)φk(−t− x)dx =

∫ 1

−1
f(x)φk(t+ x)dx

=
∫ 1

−1
f(−x)φk(t− x)dx = −Pk(t).

Next, from (3.5) we have that

Pk(t) = ck

∫ 1

−1
f(x)

k2∑
m=0

(
k2

m

)(
− (t− x)2

4

)m

dx

= ck

k2∑
m=0

(
k2

m

)
(−1)m

4m

∫ 1

−1
f(x)(t− x)2mdx

= ck
(−1)k

2

4k2

∫ 1

−1
f(x)(x− t)2k

2
dx

+ ck

k2−1∑
m=0

(
k2

m

)
(−1)m

4m

∫ 1

−1
f(x)(t− x)2mdx.

It is now easy to see that the two highest order terms come from the first summand in the above
formula. Therefore,

Pk(t) = ck
(−1)k

2

4k2

∫ 1

−1
f(x)dx t2k

2 − ck
(−1)k

2
2k2

4k2

∫ 1

−1
f(x)xdx t2k

2−1 + · ·

= (−1)k
2+1 2ckk2

4k2

(
1− 1

n

)
t2k

2−1 + · · · .
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(ii) We just use the result of (i) and that ck ∼ k.
(iii) Fix a t ∈ [−1, 1]. Then,∫ 2

−2
f(t− x)φk(x)dx =

∫
R
f(t− x)φk(x)χ[−2,2](x)dx

=
∫ 1

−1
f(x)φk(t− x)χ[−2,2](t− x)dx

=
∫ 1

−1
f(x)φk(t− x)dx

= Pk(t).

However, since φk is even,

Pk(t) =
∫ 2

−2
f(t− x)φk(x)dx =

∫ 2

0

(
f(t+ x) + f(t− x)

)
φk(x)dx.

We are now ready to prove the lower bound for I(P ).

Proposition 3.6. Let Pn be the polynomial defined in (3.5) where n is the large positive integer
used to define the function f in Lemma ??. Then Pn is a polynomial of degree d = 2n2 − 1 and

I(Pn) =
∣∣∣∣p.v.∫

R
eiPn(t)dt

t

∣∣∣∣ ≥ c log d.

Proof. Since Pn is odd,

I(Pn) = 2
∣∣∣∣ ∫ +∞

0

sinPn(t)
t

dt

∣∣∣∣,
and it suffices to show that for all R ≥ 1∣∣∣∣ ∫ R

0

sinPn(t)
t

dt

∣∣∣∣ ≥ c log d ∼ c log n. (3.6)

By part (ii) of Lemma (ii) of lemma 3.5 and corollary 1.4, we see that∣∣∣∣ ∫ R

1

sinPn(t)
t

dt

∣∣∣∣ ≤ c

for every R ≥ 1. As a result, the proof will be complete if we show that

I1(Pn) =
∣∣∣∣ ∫ 1

0

sinPn(t)
t

dt

∣∣∣∣ ≥ c log n. (3.7)
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Using lemma 3.4 and the triangle inequality we get

I1(Pn) ≥ c log n− |I1(Pn)− I(f)| (3.8)

and, in order to show (3.7), it suffices to show that

|I1(Pn)− I(f)| = o(log n). (3.9)

We have that

|I1(Pn)− I(f)| =
∣∣∣∣ ∫ 1

0

sinPn(t)− sin f(t)
t

dt

∣∣∣∣
≤

∫ 1

0

|Pn(t)− f(t)|
t

dt.

Using part (iii) of lemma 3.5 and (3.4), we get

|Pn(t)− f(t)| ≤
∫ 2

0
|f(t+ x) + f(t− x)− 2f(t)|φn(x)dx

for 0 ≤ t ≤ 1. Hence,

|I1(Pn)− I(f)| ≤
∫ 2

0

∫ 1

0

|f(t+ x) + f(t− x)− 2f(t)|
t

dt φn(x)dx.

Now, the desired result, condition(3.9), is the content of the following lemma.

Lemma 3.7. Let A(x, t) = |f(t+ x) + f(t− x)− 2f(t)|. Then,∫ 2

0

∫ 1

0

A(x, t)
t

dt φn(x)dx = o(log n).

Proof. Firstly, it is not difficult to establish that

A(x, t) ≤ 4 min(nx, nt, 1) (3.10)

A(x, t) = 0, when
1
n
≤ t− x ≤ t+ x ≤ 1− 1

n
. (3.11)

Indeed,

A(x, t) ≤ |f(t+ x)− f(t)|+ |f(t− x)− f(t)|
≤ nx+ nx ≤ 2nx.
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On the other hand,

A(x, t) = |f(t+ x)− f(x) + f(t− x)− f(−x)− 2f(t)|
≤ |f(t+ x)− f(x)|+ |f(t− x)− f(−x)|+ 2|f(t)|
≤ nt+ nt+ 2nt = 4nt.

Inequality (3.10) now follows by the fact that |f | is bounded by 1 and (3.11) is trivial to prove.
We split the integral

∫ 2
0

∫ 1
0 · · · dtdx into seven integrals:

∫ 2

0

∫ 1

1
2

· · · dtdx+
∫ 1

n

0

∫ x

0
· · · dtdx+

∫ 2

1
n

∫ 1
n

0
· · · dtdx+

∫ 1
n

0

∫ x+ 1
n

x
· · · dtdx

+
∫ 1

2
− 1

n

0

∫ 1
2

x+ 1
n

· · · dtdx+
∫ 1

2
− 1

n

1
n

∫ x+ 1
n

1
n

· · · dtdx+
∫ 2

1
2
− 1

n

∫ 1
2

1
n

· · · dtdx.

We estimate each of the seven integrals separately.∫ 2

0

∫ 1

1
2

A(x, t)
t

dtφn(x)dx ≤ 4 log 2
∫ 2

0
φn(x)dx = 2 log 2.

∫ 1
n

0

∫ x

0

A(x, t)
t

dtφn(x)dx ≤
∫ 1

n

0

∫ x

0

4nt
t
dtφn(x)dx

=
∫ 1

n

0
4nxφn(x)dx ≤ 2.

∫ 2

1
n

∫ 1
n

0

A(x, t)
t

dtφn(x)dx ≤
∫ 2

1
n

∫ 1
n

0

4nt
t
dtφn(x)dx

=
∫ 1

n

0
4φn(x)dx ≤ 2.

∫ 1
n

0

∫ x+ 1
n

x

A(x, t)
t

dtφn(x)dx ≤
∫ 1

n

0

∫ x+ 1
n

x

4nx
t
dtφn(x)dx

=
∫ 1

n

0
4nx log

(
1 +

1
nx

)
φn(x)dx ≤ 2.
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For
∫ 1

2
− 1

n
0

∫ 1
2

x+ 1
n

we have 1
n ≤ t− x ≤ t+ x ≤ 1− 1

n and, from (3.11), A(x, t) = 0. Hence

∫ 1
2
− 1

n

0

∫ 1
2

x+ 1
n

A(x, t)
t

dtφn(x)dx = 0.

Next, ∫ 1
2
− 1

n

1
n

∫ x+ 1
n

1
n

A(x, t)
t

dtφn(x)dx ≤
∫ 1

2
− 1

n

1
n

∫ x+ 1
n

1
n

4
t
dtφn(x)dx

≤ 4
∫ 1

1
n

log(nx+ 1)φn(x)dx.

Now, fix some α ∈ (0, 1). Write∫ 1

1
n

log(nx+ 1)φn(x)dx =
∫ 1

nα

1
n

· · · dx+
∫ 1

1
nα

· · · dx

≤ log(n1−α + 1)
2

+ cn log(n+ 1)
∫ 1

1
nα

(
1− x2

4

)n2

dx

≤ log(n1−α + 1)
2

+ cn log(n+ 1) e−
1
4
n2(1−α)

.

Therefore,

lim sup
n→∞

∫ 1
1
n

log(nx+ 1)φn(x)dx

log n
≤ 1− α

2
and, since α is arbitrary in (0, 1),∫ 1

2
− 1

n

1
n

∫ x+ 1
n

1
n

A(x, t)
t

dtφn(x)dx = o(log n).

Finally, ∫ 2

1
2
− 1

n

∫ 1
2

1
n

A(x, t)
t

dtφn(x)dx ≤
∫ 2

1
2
− 1

n

∫ 1
2

1
n

4
t
dtφn(x)dx

≤ 4 log
n

2
cn

∫ 2

1
2
− 1

n

(
1− x2

4

)n2

dx

≤ cn log ne−
1
16
n2

= o(1).
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3.2 The upper bound in theorem 3.3

We set

Kd = sup
P∈Pd,ε,R

∣∣∣∣ ∫
ε≤|t|≤R

eiP (t)dt

t

∣∣∣∣. (3.12)

We take any real polynomial P of degree at most d which we can assume has no constant term,
that is, P (0) = 0. We set k = [d2 ] and we write

P (t) = a1t+ a2t
2 + · · ·+ akt

k + ak+1t
k+1 + · · ·+ adt

d

= Q(t) +R(t),

where Q(t) = a1t+a2t
2 + · · ·+akt

k and R(t) = ak+1t
k+1 + · · ·+adt

d. Let |al| = maxk+1≤j≤d|aj | for
some k + 1 ≤ l ≤ d. By a change of variables in the integral in (3.12) we can assume that |al| = 1
and thus that |aj | ≤ 1 for every k + 1 ≤ j ≤ d. Now split the integral in (3.12) in two parts as
follows ∣∣∣∣ ∫

ε≤|t|≤R
eiP (t)dt

t

∣∣∣∣ ≤ ∣∣∣∣ ∫
ε≤|t|≤1

eiP (t)dt

t

∣∣∣∣ +
∣∣∣∣ ∫

1≤|t|≤R
eiP (t)dt

t

∣∣∣∣ = I1 + I2. (3.13)

For I1 we have that

I1 ≤
∣∣∣∣ ∫

ε≤|t|≤1

[
eiP (t) − eiQ(t)

]dt
t

∣∣∣∣ +
∣∣∣∣ ∫

ε≤|t|≤1
eiQ(t)dt

t

∣∣∣∣
≤

∫
ε≤|t|≤1

∣∣eiP (t) − eiQ(t)
∣∣dt
t

+K[ d
2
]

≤
∫

0≤|t|≤1

|R(t)|
t

dt+K[ d
2
]

≤ 2
d∑

j=k+1

|aj |
j

+K[ d
2
] ≤ 2

d∑
j=k+1

1
j

+K[ d
2
] ≤ c+K[ d

2
].

For the second integral in (3.13) we have that

I2 ≤
∣∣∣∣ ∫

1≤t≤R
eiP (t)dt

t

∣∣∣∣ +
∣∣∣∣ ∫

−R≤t≤−1
eiP (t)dt

t

∣∣∣∣ = I+
2 + I−2 .

For some α > 0 to be defined later, split I+
2 into two parts as follows:

I+
2 ≤

∫
{t∈[1,+∞):|P ′(t)|≤α}

dt

t
+

∣∣∣∣ ∫
{t∈[1,R]:|P ′(t)|>α}

eiP (t)dt

t

∣∣∣∣.
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Since {t ∈ [1, R] : |P ′(t)| > α} consists of at most O(d) intervals where P ′ is monotonic, using
Corollary 1.4 we get the bound ∣∣∣∣ ∫

{t∈[1,R]:|P ′(t)|>α}
eiP (t)dt

t

∣∣∣∣ ≤ c
d

α
.

For the logarithmic measure of the set {t ∈ [1,+∞) : |P ′(t)| ≤ α}, observe that∫
{t∈[1,+∞):|P ′(t)|≤α}

dt

t
≤

∞∑
m=0

∫
{t∈[2m,2m+1]:|P ′(t)|≤α}

dt

t

=
∞∑
m=0

∫
{2mt∈[2m,2m+1]:|P ′(2mt)|≤α}

dt

t

=
∞∑
m=0

∫
2m{t∈[1,2]:|P ′(2mt)|≤α}

dt

t

=
∞∑
m=0

∫
{t∈[1,2]:|P ′(2mt)|≤α}

dt

t
.

We have thus showed that∫
{t∈[1,+∞):|P ′(t)|≤α}

dt

t
≤

∞∑
m=0

|{t ∈ [1, 2] : |P ′(2mt)| ≤ α}|. (3.14)

In order to finish the proof we need a suitable estimate for the sublevel set of a polynomial.
This is the content of lemma 2.10.

Consider the polynomial P ′(2mt) with coefficients jaj2m(j−1), 1 ≤ j ≤ d. Clearly,

max
1≤j≤d

|jaj2m(j−1)| ≥ |lal2m(l−1)| ≥ ([
d

2
] + 1)2m[ d

2
].

Using lemma 2.10 and (3.14), we get

∫
{t∈[1,+∞):|P ′(t)|≤α}

dt

t
≤ cα

1
d−1

∞∑
m=0

(
1

([d2 ] + 1)2m[ d
2
]

) 1
d−1

≤ cα
1

d−1 .

Obviously, a similar estimate holds for I−2 . Summing up the estimates we get∣∣∣∣ ∫
ε≤|t|≤R

eiP (t)dt

t

∣∣∣∣ ≤ c+ c
d

α
+ cα

1
d−1 +K[ d

2
].
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Optimizing in α we get that ∣∣∣∣ ∫
ε≤|t|≤R

eiP (t)dt

t

∣∣∣∣ ≤ c+K[ d
2
] (3.15)

and hence
Kd ≤ c+K[ d

2
].

In particular we have
K2n ≤ c+K2n−1 .

Using induction on n we get that K2n ≤ cn. It is now trivial to show the inequality for general d.
Indeed, if 2n−1 < d ≤ 2n then Kd ≤ K2n ≤ cn ≤ c log d.

3.3 Singular oscillatory integrals on Rn

In this section we want to generalize theorem 3.3 in many variables. The problem is stated as
follows. Let K : Rn → R be a −n homogeneous function on Rn. The function K can be written in
the form

K(x) =
Ω(x′)
|x|n

, (3.16)

where x′ = x/|x| ∈ Sn−1 and the function Ω is Sn−1. Let P ∈ Pd,n. We are interested in estimates
of the form

In(P ) =
∣∣∣∣p.v.∫

Rn

eiP (x)K(x)dx
∣∣∣∣ ≤ cd‖Ω‖Sn−1 , (3.17)

where the constant cd depends only on the degree d of the polynomial and ‖Ω‖Sn−1 is a suitable
norm of the function Ω on the unit sphere. This problem was also studied by Stein who showed in
[14] that (3.17) holds for some constant cd, depending only on d and ‖Ω‖Sn−1 = ‖Ω‖L∞(Sn−1).

In the case where Ω is an odd function, (3.17) is an immediate consequence of the one dimensional
estimate. We introduce the notation

WL =
{

Ω : Sn−1 → R, Ω is odd, ‖Ω‖L1(Sn−1) ≤ 1
}
.

Corollary 3.8. There exists an absolute positive constant c such that

sup
P∈Pd,n,Ω∈WL

∣∣∣∣p.v.∫
Rn

eiP (x) Ω(x/|x|)
|x|n

dx

∣∣∣∣ ≤ c log d.
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Proof. We simply write∫
ε≤|x|≤R

eiP (x) Ω(x/|x|)
|x|n

dx =
∫
Sn−1

∫ R

ε
eP (rx′)dr

r
Ω(x′)dσn−1(x′)

=
1
2

∫
Sn−1

∫ R

ε
eP (rx′)dr

r
(Ω(x′)− Ω(−x′))dσn−1(x′)

=
1
2

∫
Sn−1

∫
ε≤|r|≤R

eP (rx′)dr

r
Ω(x′)dσn−1(x′),

and use theorem 3.3.

For the general case we will follow Stein’s proof from [14], incorporating the ideas that gave the
proof in dimension one. Here, the suitable class of functions Ω on the unit sphere is

WL logL =
{

Ω : Sn−1 → R,
∫
Sn−1

Ω(x′)dσn−1(x′) = 0, ‖Ω‖L logL ≤ 1
}
,

where
‖Ω‖L logL =

∫
Sn−1

|Ω(x′)|(1 + log+ |Ω(x′)|)dσn−1(x′).

For functions Ω ∈ WL logL we have the analogue of corollary 3.8.

Theorem 3.9. There exists an absolute positive constant c such that

sup
P∈Pd,n,Ω∈WL logL

∣∣∣∣p.v.∫
Rn

eiP (x) Ω(x/|x|)
|x|n

dx

∣∣∣∣ ≤ c log d.

The proof of theorem 3.9 is based on corollary 2.9 and on the following lemmas.

Lemma 3.10. Let P (t) = a0 + a1t + · · · + adt
d and suppose that for some d

2 < j ≤ d, |aj | ≥ 1.
Then, there exists an absolute positive constant c such that for every R > 0,∣∣∣∣∫ R

1
eiP (t)dt

t

∣∣∣∣ ≤ c. (3.18)

Proof. The proof is contained in the proof of theorem 3.3 in section 3.2.

Lemma 3.11. Let Pa(t) = a1t+ a2t
2 + · · ·+ adt

d, Pb(t) = b1t+ b2t
2 + · · ·+ bdt

d be real polynomials
of degree at most d = 2n, with al, bl 6= 0 for every l ∈ {1, 2, . . . , d}. Then there exists an absolute
positive constant c such that∣∣∣∣∫ R

ε

{
eiPa(t) − eiPb(t)

}dt
t

∣∣∣∣ ≤ cn +
n∑
j=0

∣∣∣∣∣log
max2j−1<l≤2j |al|

1
l

max2j−1<l≤2j |bl|
1
l

∣∣∣∣∣ , (3.19)

for every 0 < ε < R and cn ≤ cn.
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Proof. We prove the lemma by induction on n. For n = 0 the estimate∣∣∣∣∫ R

ε
{eiat − eibt}dt

t

∣∣∣∣ ≤ c+
∣∣∣∣log

|a|
|b|

∣∣∣∣
is classical. Suppose now that (3.19) holds for n− 1. We set δ = max2n−1<l≤2n(|al|

1
l , |bl|

1
l ). By the

change of variables t 7→ t/δ in the integral in (3.19) we get∣∣∣∣∫ R

ε

{
eiPa(t) − eiPb(t)

}dt
t

∣∣∣∣ =
∣∣∣∣∫ Rδ

εδ

{
eiPa(t/δ) − eiPb(t/δ)

}dt
t

∣∣∣∣
≤

∣∣∣∣∫ 1

εδ

{
eiPa(t/δ) − eiPb(t/δ)

}dt
t

∣∣∣∣ +
∣∣∣∣∫ Rδ

1

{
eiPa(t/δ) − eiPb(t/δ)

}dt
t

∣∣∣∣
= I1 + I2.

We write Qa(t) =
∑

1≤l≤2n−1 alt
l, Qb(t) =

∑
1≤l≤2n−1 blt

l. For I1 we have that

I1 ≤
∣∣∣∣∫ 1

εδ

{
eiQa(t/δ) − eiQb(t/δ)

}dt
t

∣∣∣∣
+

∣∣∣∣∫ 1

εδ

{
eiPa(t/δ) − eiQa(t/δ)

}dt
t

∣∣∣∣ +
∣∣∣∣∫ 1

εδ

{
eiPb(t/δ) − eiQb(t/δ)

}dt
t

∣∣∣∣
From the inductive hypothesis we now have∣∣∣∣∫ 1

εδ

{
eiQa(t/δ) − eiQb(t/δ)

}dt
t

∣∣∣∣ ≤ cn−1 +
n−1∑
j=0

∣∣∣∣∣log
max2j−1<l≤2j |al|

1
l

max2j−1<l≤2j |bl|
1
l

∣∣∣∣∣ . (3.20)

On the other hand,∣∣∣∣∫ 1

εδ

{
eiPa(t/δ) − eiQa(t/δ)

}dt
t

∣∣∣∣ ≤
∫ 1

0
|Pa(t/δ)−Qa(t/δ)|

dt

t
≤

∑
2n−1<l≤2n

1
l

|al|
δl

≤
∑

2n−1<l≤2n

1
l
≤ c.

Similarly, we show that
∣∣∣∫ 1
εδ

{
eiPb(t/δ) − eiQb(t/δ)

}
dt
t

∣∣∣ ≤ c, and thus that

I1 ≤ cn−1 + c+
n−1∑
j=0

∣∣∣∣∣log
max2j−1<l≤2j |al|

1
l

max2j−1<l≤2j |bl|
1
l

∣∣∣∣∣ .
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Observer that I2 is symmetrical with respect to Pa, Pb. Hence we can assume that δ =
max2n−1<l≤2n |bl|

1
l and thus that one of the 2n−1 last coefficients of the polynomial Pb(t/δ) is equal

to 1. Lemma 3.10 now gives ∣∣∣∣∫ Rδ

1
eiPb(t/δ)

dt

t

∣∣∣∣ ≤ c.

’Estw P̃a(t) = Pa(t/δ) = ã1t+ · · ·+ ãdt
d. We set δa = max2n−1<l≤2n |ãl|

1
l . Then∣∣∣∣∫ Rδ

1
eiPa(t/δ)dt

t

∣∣∣∣ =
∣∣∣∣∫ Rδ

1
eiP̃a(t)dt

t

∣∣∣∣ ≤ ∣∣∣∣∫ 1

δα

eiP̃a(t/δa)dt

t

∣∣∣∣ +
∣∣∣∣∫ Rδδa

1
eiP̃a(t/δa)dt

t

∣∣∣∣ .
Now, one of the last 2n−1 coefficients of the polynomial P̃a(t/δα) is equal to 1 and thus, using lemma
3.10 again∣∣∣∣∫ Rδ

1
eiPa(t/δ)dt

t

∣∣∣∣ ≤ log
1
δα

+ c = log
1

max2n−1<l≤2n |ãl|
1
l

+ c = log
max2n−1<l≤2n |bl|

1
l

max2n−1<l≤2n |al|
1
l

+ c.

We have supposed that
max

2n−1<l≤2n
|bl|

1
l ≥ max

2n−1<l≤2n
|al|

1
l .

A moment’s reflection will let us write

I2 ≤ c+

∣∣∣∣∣log
max2n−1<l≤2n |bl|

1
l

max2n−1<l≤2n |al|
1
l

∣∣∣∣∣ .
Summing up the estimates for I1 and I2 we get∣∣∣∣∫ R

ε

{
eiPa(t) − eiPb(t)

}dt
t

∣∣∣∣ ≤ cn−1 + c+
n∑
j=0

∣∣∣∣log
max2j−1<l≤2j |al|
max2j−1<l≤2j |bl|

∣∣∣∣ ,
and thus that cn ≤ cn−1 + c. This also proves that cn ≤ cn.

Proof of theorem 3.9. Let P ∈ Pd,n and Ω ∈ WL logL. It is enough to prove the theorem for
polynomials of degree d = 2n, by using the same argument we used in the proof of theorem 3.2. For
0 < ε < R we have that∫

ε≤|x|≤R
eiP (x) Ω(x/|x|)

|x|n
dx =

∫
Sn−1

∫ R

ε
eP (rx′)dr

r
Ω(x′)dσn−1(x′).

We write

P (rx′) =
d∑
j=1

Pj(x′)rj ,
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where the polynomials Pj are homogeneous polynomials of degree j. We set mj = ‖Pj‖L∞(Sn−1).
Using the zero mean value condition on Ω we can write∣∣∣∣∣

∫
ε≤|x|≤R

eiP (x) Ω(x/|x|)
|x|n

dx

∣∣∣∣∣ =
∣∣∣∣∫
Sn−1

∫ R

ε

{
ei

∑d
j=1 Pj(x

′)rj

− ei
∑d

j=1mjr
j

}
dr

r
Ω(x′)dσn−1(x′)

∣∣∣∣
≤

∫
Sn−1

∣∣∣∣∫ R

ε

{
ei

∑d
j=1 Pj(x

′)rj

− ei
∑d

j=1mjr
j

}
dr

r

∣∣∣∣ |Ω(x′)|dσn−1(x′)

≤ cn‖Ω‖L1(Sn−1) +
n∑
j=0

∫
Sn−1

∣∣∣∣∣log
max2j−1<l≤2j |ml|

1
l

max2j−1<l≤2j |Pl(x′)|
1
l

∣∣∣∣∣ |Ω(x′)|dσn−1(x′),

where in the last inequality we used lemma 3.11. Now take any j ∈ {0, 1, . . . , n}. Observe that
max2j−1<l≤2j |ml|

1
l ≥ max2j−1<l≤2j |Pl(x′)|

1
l . We have that max2j−1<l≤2j |ml|

1
l = |mlo |

1
lo for some

2j−1 < lo ≤ 2j . Then

∫
Sn−1

∣∣∣∣∣log
max2j−1<l≤2j |ml|

1
l

max2j−1<l≤2j |Pl(x′)|
1
l

∣∣∣∣∣ |Ω(x′)|dσn−1(x′) ≤
∫
Sn−1

log
|mlo |

1
lo

|Plo(x′)|
1
lo

|Ω(x′)|dσn−1(x′)

= 2
∫
Sn−1

log
|mlo |

1
2lo

|Plo(x′)|
1

2lo

|Ω(x′)|dσn−1(x′)

≤ 2
∫
Sn−1

|mlo |
1

2lo

|Plo(x′)|
1

2lo

dσn−1(x′) + 2
∫
Sn−1

|Ω(x′)| log(|Ω(x′)|+ 1)dσn−1.

To see the last line observe that the functionsφ(t) = et− 1, ψ(t) = log(t+ 1) both vanish at 0, they
are non negative and monotonic, and the one is the inverse of the other for t ≥ 0. From Young’s
inequality we get that for every a, b ≥ 0,

ab ≤
∫ a

0
φ(t)dt+

∫ b

0
ψ(t)dt ≤ ea + b log(b+ 1).

The last inequality now follows if we set a = log |mlo |
1

2lo

|Plo (x′)|
1

2lo

and b = |Ω(x′)|. Furthermore, observer

that ∫
Sn−1

|Ω(x′)| log(|Ω(x′)|+ 1)dσn−1 ≤ c‖Ω‖L logL.

For the first term in the last inequality we have the following lemma:
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Lemma 3.12. Let P : Rn → R be a homogeneous polynomial of degree k. Then, there exists an
absolute positive constant c such that∫

Sn−1

‖P‖
1
2k

L∞(Sn−1)

|P (x′)|
1
2k

dσn−1(x′) ≤ c. (3.21)

We postpone the proof of lemma 3.12 until the end of the proof of theorem 3.9. Summing up
the estimates we get that∣∣∣∣∣

∫
ε≤|x|≤R

eiP (x) Ω(x/|x|)
|x|n

dx

∣∣∣∣∣ ≤ cn‖Ω‖L1(Sn−1) + c

n∑
j=0

(1 + ‖Ω‖L logL)

≤ cn‖Ω‖L1(Sn−1) + cn‖Ω‖L logL + cn ≤ cn,

since ‖Ω‖L logL ≤ 1.

Proof of lemma 3.12. Let B = B(0, ρ) be the ball of volume 1 in Rn. The radius of B satisfies the
equation ρn = Γ(n

2
+1)

π
n
2

. Now, from corollary 2.9 we have that∫
B
|P (x)|−

1
2k dx‖P‖

1
2k

L∞(B) ≤ (cn)
1
2 .

Using polar coordinates we get

‖P‖
1
2k

L∞(Sn−1)

∫
Sn−1

|P (x′)|−
1
2k dσn−1(x′) ≤ c

n
3
2

ρn
= c

n
3
2π

n
2

Γ(n2 + 1)

≤ c
n

3
2 (eπ)

n
2

(n2 + 1)
n+1

2

≤ c,

from Stirling’s formula.

3.4 Notes and references

3.4.1 References

The problem of estimating the principal value integral I(P ) is posed for the first time in [16] and
then in [14] and [20]. The corresponding problem on Rn is also contained in [14]. In these earlier
results, the known estimates didn’t describe the dependence of the constants on the degree d of the
polynomials. Theorem 3.3 is contained in [10] and it is a new result as well as its n−dimensional
analogues. In the proof of theorem 3.9, we follow the argument in the proof of Stein from [14],
improving all the lemmas therin. The argument used in the proof of theorem 3.9 in order to pass
to the L logL norm of the function Ω is classical. Young’s inequality can be found for example in
[21].
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3.4.2 Singular oscillatory integrals with rational phase

Let P,Q ∈ Pd. We consider the principal value integral

I(P,Q) = p.v.

∫
R
e
i

P (t)
Q(t)

dt

t
.

The following theorem is contained in [7].

Theorem 3.13. Let P,Q ∈ Pd. Then there exists an absolute positive constant cd depending only
on d such that ∣∣∣∣p.v. ∫

R
e
i

P (t)
Q(t)

dt

t

∣∣∣∣ ≤ cd.

3.4.3 A descreet analogue

For P ∈ Pd let us consider the symmetrical sums

S(P ) =
∑
n6=0

eiP (n)

n
.

The correspondind symmetrical partial sums are then

SN (P ) =
∑

0<|n|<N

eiP (n)

n
.

We have the following theorem.

Theorem 3.14. Let d ≥ 2. Then

sup
N=1,2,...

sup
P∈Pd

|SN (P )| ≤ cd.

Whatsmore, for every polynomial P ∈ Pd the sequence {SN (P )} converges as N →∞ and thus the
series S(P ), considered as the limit of the symmetrical partial sums SN (P ) is everywhere defined
and bounded on the space Pd.

This theorem is proved in [2] and independently in [17]. The dependence of the constant cd apo
to d den e’inai gnwst’h.
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