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Abstract. Let Pd denote the space of all real polynomials of degree at most

d. It is an old result of Stein and Wainger [4] that

sup
P∈Pd

∣∣∣∣p.v.

∫
R

eiP (t) dt

t

∣∣∣∣ ≤ Cd

for some constant Cd depending only on d. On the other hand, Carbery,
Wainger and Wright in [2] claim that the true order of magnitude of the above
principal value integral is log d. We prove that

sup
P∈Pd

∣∣∣∣p.v.

∫
R

eiP (t) dt

t

∣∣∣∣ ∼ log d.

1. Introduction

Let Pd be the vector space of all real polynomials of degree at most d in R. For
P ∈ Pd we consider the principal value integral

I(P ) =
∣∣∣∣p.v.

∫
R

eiP (t) dt

t

∣∣∣∣.
We wish to estimate the quantity I(P ) by a constant C(d) depending only on the
degree of the polynomial d. This amounts to estimating the integral

I(ε,R)(P ) =
∣∣∣∣ ∫

ε≤|t|≤R

eiP (t) dt

t

∣∣∣∣
by some constant C(d) independent of ε, R and P .

This problem is quite old and in fact has been answered some thirty years ago by
Stein and Wainger in [4] and [6]. They showed that the quantity I(P ) is bounded
by a constant Cd depending only on d. Their proof is very simple and uses a
combination of induction and Van der Corput’s lemma. Let us recall the latter
since we’ll also be using it in what follows.
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Proposition 1.1 (van der Corput). Let φ : [a, b] → R be a Ck function and suppose
that |φ(k)(t)| ≥ 1 for some k ≥ 1 and all t ∈ [a, b]. If k = 1 suppose in addition
that φ′ is monotonic. Then, for every λ ∈ R,∣∣∣∣ ∫ b

a

eiλφ(x)dx

∣∣∣∣ ≤ Ck

|λ| 1k

where C is an absolute constant independent of a,b,k and φ.

For a proof of this very well known result with Ck replaced by Ck see for example
[3]. A proof that the constant Ck can be taken to be linear in k can be found in [1].

On the other hand, Carbery, Wainger and Wright have conjectured in [2] that
the true order of magnitude of the principal value integral is log d. The main result
of this paper is the proof of this conjecture. This is the content of:

Theorem. There exist two absolute positive constants c1 and c2 such that

c1 log d ≤ sup
P∈Pd

∣∣∣∣p.v.

∫
R

eiP (x) dx

x

∣∣∣∣ ≤ c2 log d.

Remark 1.2. Suppose that K is a −n homogeneous function on Rn, odd and in-
tegrable on the unit sphere. Then, by the one-dimensional result, we trivially get
that there is an absolute positive constant c, such that:∣∣∣∣p.v.

∫
Rn

eiP (x)K(x)dx

∣∣∣∣ ≤ c‖K‖L1(Sn−1) log d,

for every polynomial P on Rn, of degree at most d.

Notation. We will use the letter c to denote an absolute positive constant which
might change even in the same line of text. Also, the notation A ∼ B means that
there exist absolute positive constants c1 and c2 such that c1B ≤ A ≤ c2B.

2. Aknowledgements

I would like to thank James Wright for bringing this problem to our attention
and for many helpful discussions. I would also like to thank Mihalis Papadimitrakis
from the University of Crete, my thesis supervisor, for his constant support.

3. The lower bound in the Theorem

In this section we will construct a real polynomial P of degree at most d such
that the inequality

(3.1) I(P ) =
∣∣∣∣p.v.

∫
R

eiP (t) dt

t

∣∣∣∣ ≥ c log d

holds. The general plan of the construction is as follows. We will first construct a
function f (which will not be a polynomial) such that I(f) ≥ c log n. We will then
construct a polynomial P of degree d = 2n2 − 1 that approximates the function f
in a way that |I(f)− I(P )| is small (small means o(log n) here). Since log n ∼ log d
this will yield our result.
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Lemma 3.1. For n a large positive integer, let f(t) be the continuous function
which is equal to 1 for 1

n ≤ t ≤ 1− 1
n , equal to −1 for −1 + 1

n ≤ t ≤ − 1
n , equal to

0 for |t| ≥ 1 and linear in each interval [−1,−1 + 1
n ], [− 1

n , 1
n ] and [1− 1

n , 1]. Then,

(3.2) I(f) =
∣∣∣∣p.v.

∫
R

eif(t) dt

t

∣∣∣∣ ≥ c log n.

Proof. The proof is more or less straightforward.

I(f) = 2
∣∣∣∣ ∫ 1

0

sin f(t)
t

dt

∣∣∣∣
≥ 2

∣∣∣∣ ∫ 1− 1
n

1
n

sin f(t)
t

dt

∣∣∣∣− 2
∣∣∣∣ ∫ 1

n

0

sin f(t)
t

dt

∣∣∣∣− 2
∣∣∣∣ ∫ 1

1− 1
n

sin f(t)
t

dt

∣∣∣∣
≥ 2 sin 1 log(n− 1)− 2

∫ 1
n

0

f(t)
t

dt− 2
∫ 1

1− 1
n

f(t)
t

dt

= 2 sin 1 log(n− 1)− 2− 2n log
n

n− 1
+ 2

≥ 2 sin 1 log(n− 1)− 4 ≥ c log n.

�

We now want to construct a polynomial which approximates the function f . We
will do so by convolving the function f with a ”polynomial approximation to the
identity”. To be more specific, for k ∈ N and x ∈ R define the function

(3.3) φk(x) = ck

(
1− x2

4

)k2

where the constant ck is defined by means of the normalization

(3.4)
∫ 2

−2

φk(x)dx = 1.

Observe that

1 = ck

∫ 2

−2

(
1− x2

4

)k2

dx = 4ck

∫ 1

0

(1− x2)k2
dx = 2ckB

(
1
2
, k2 + 1

)
,

where B(·, ·) is the beta function. Using standard estimates for the beta function
we see that ck ∼ k.

Define, next, the functions Pk in R as

(3.5) Pk(t) =
∫ 1

−1

f(x)φk(t− x)dx,

where f is the function of Lemma 3.1. It is clear that the functions Pk are polyno-
mials of degree at most 2k2. The following lemma deals with some technical issues
concerning the polynomials Pk.
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Lemma 3.2. Let Pk be defined as in (3.5) above.
(i) Pk is an odd polynomial of degree 2k2 − 1 with leading coefficient

ak = (−1)k2+1 2ckk2

4k2

(
1− 1

n

)
.

That is

Pk(t) = akt2k2−1 + · · · .

(ii) As a consequence of (i) we have for all t

|P (2k2−1)
k (t)| ≥ c(2k2 − 1)!

k3

4k2 .

(iii) For t ∈ [−1, 1] we have

Pk(t) =
∫ 2

0

(
f(t + x) + f(t− x)

)
φk(x)dx.

Proof. (i) Using (3.5) we have

Pk(−t) =
∫ 1

−1

f(x)φk(−t− x)dx =
∫ 1

−1

f(x)φk(t + x)dx

=
∫ 1

−1

f(−x)φk(t− x)dx = −Pk(t).

Next, from (3.5) we have that

Pk(t) = ck

∫ 1

−1

f(x)
k2∑

m=0

(
k2

m

)(
− (t− x)2

4

)m

dx

= ck

k2∑
m=0

(
k2

m

)
(−1)m

4m

∫ 1

−1

f(x)(t− x)2mdx

= ck
(−1)k2

4k2

∫ 1

−1

f(x)(x− t)2k2
dx

+ ck

k2−1∑
m=0

(
k2

m

)
(−1)m

4m

∫ 1

−1

f(x)(t− x)2mdx.

It is now easy to see that the two highest order terms come from the first summand
in the above formula. Therefore,

Pk(t) = ck
(−1)3k2

4k2

∫ 1

−1

f(x)dx t2k2
− ck

(−1)k2
2k2

4k2

∫ 1

−1

f(x)xdx t2k2−1 + · ·

= (−1)k2+1 2ckk2

4k2

(
1− 1

n

)
t2k2−1 + · · · .

(ii) We just use the result of (i) and that ck ∼ k.
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(iii) Fix a t ∈ [−1, 1]. Then,∫ 2

−2

f(t− x)φk(x)dx =
∫

R
f(t− x)φk(x)χ[−2,2](x)dx

=
∫ 1

−1

f(x)φk(t− x)χ[−2,2](t− x)dx

=
∫ 1

−1

f(x)φk(t− x)dx

= Pk(t).

However, since φk is even,

Pk(t) =
∫ 2

−2

f(t− x)φk(x)dx =
∫ 2

0

(
f(t + x) + f(t− x)

)
φk(x)dx.

�

We are now ready to prove the lower bound for I(P ).

Proposition 3.3. Let Pn be the polynomial defined in (3.5) where n is the large
positive integer used to define the function f in Lemma 3.1. Then Pn is a polynomial
of degree d = 2n2 − 1 and

I(Pn) =
∣∣∣∣p.v.

∫
R

eiPn(t) dt

t

∣∣∣∣ ≥ c log d.

Proof. Since Pn is odd,

I(Pn) = 2
∣∣∣∣ ∫ +∞

0

sinPn(t)
t

dt

∣∣∣∣,
and it suffices to show that for all R ≥ 1

(3.6)
∣∣∣∣ ∫ R

0

sinPn(t)
t

dt

∣∣∣∣ ≥ c log d ∼ c log n.

By part (ii) of Lemma 3.2 and a standard application of Proposition 1.1 (Van der
Corput) we see that ∣∣∣∣ ∫ R

1

sinPn(t)
t

dt

∣∣∣∣ ≤ c

for all R ≥ 1. As a result, the proof will be complete if we show that

(3.7) I1(Pn) =
∣∣∣∣ ∫ 1

0

sinPn(t)
t

dt

∣∣∣∣ ≥ c log n.

Using Lemma 3.1 and the triangle inequality we get

(3.8) I1(Pn) ≥ c log n− |I1(Pn)− I(f)|

and, in order to show (3.7), it suffices to show that

(3.9) |I1(Pn)− I(f)| = o(log n).
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We have that

|I1(Pn)− I(f)| =
∣∣∣∣ ∫ 1

0

sinPn(t)− sin f(t)
t

dt

∣∣∣∣
≤

∫ 1

0

|Pn(t)− f(t)|
t

dt.

Using part (iii) of Lemma 3.2 and (3.4), we get

|Pn(t)− f(t)| ≤
∫ 2

0

|f(t + x) + f(t− x)− 2f(t)|φn(x)dx

for 0 ≤ t ≤ 1. Hence

|I1(Pn)− I(f)| ≤
∫ 2

0

∫ 1

0

|f(t + x) + f(t− x)− 2f(t)|
t

dt φn(x)dx.

Now, the desired result, condition (3.9), is the content of the following lemma. �

Lemma 3.4. Let A(x, t) = |f(t + x) + f(t− x)− 2f(t)|. Then,∫ 2

0

∫ 1

0

A(x, t)
t

dt φn(x)dx = o(log n).

Proof. Firstly, it is not difficult to establish that

A(x, t) ≤ 4 min(nx, nt, 1)(3.10)

A(x, t) = 0, when
1
n
≤ t− x ≤ t + x ≤ 1− 1

n
.(3.11)

Indeed,

A(x, t) ≤ |f(t + x)− f(t)|+ |f(t− x)− f(t)|
≤ nx + nx ≤ 2nx.

On the other hand,

A(x, t) = |f(t + x)− f(x) + f(t− x)− f(−x)− 2f(t)|
≤ |f(t + x)− f(x)|+ |f(t− x)− f(−x)|+ 2|f(t)|
≤ nt + nt + 2nt = 4nt.

Inequality (3.10) now follows by the fact that |f | is bounded by 1 and (3.11) is
trivial to prove.

We split the integral
∫ 2

0

∫ 1

0
· · · dtdx into seven integrals:∫ 2

0

∫ 1

1
2

· · · dtdx +
∫ 1

n

0

∫ x

0

· · · dtdx +
∫ 2

1
n

∫ 1
n

0

· · · dtdx +
∫ 1

n

0

∫ x+ 1
n

x

· · · dtdx

+
∫ 1

2−
1
n

0

∫ 1
2

x+ 1
n

· · · dtdx +
∫ 1

2−
1
n

1
n

∫ x+ 1
n

1
n

· · · dtdx +
∫ 2

1
2−

1
n

∫ 1
2

1
n

· · · dtdx.

We estimate each of the seven integrals separately.∫ 2

0

∫ 1

1
2

A(x, t)
t

dtφn(x)dx ≤ 4 log 2
∫ 2

0

φn(x)dx = 2 log 2.
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∫ 1
n

0

∫ x

0

A(x, t)
t

dtφn(x)dx ≤
∫ 1

n

0

∫ x

0

4nt

t
dtφn(x)dx

=
∫ 1

n

0

4nxφn(x)dx ≤ 2.

∫ 2

1
n

∫ 1
n

0

A(x, t)
t

dtφn(x)dx ≤
∫ 2

1
n

∫ 1
n

0

4nt

t
dtφn(x)dx

=
∫ 1

n

0

4φn(x)dx ≤ 2.

∫ 1
n

0

∫ x+ 1
n

x

A(x, t)
t

dtφn(x)dx ≤
∫ 1

n

0

∫ x+ 1
n

x

4nx

t
dtφn(x)dx

=
∫ 1

n

0

4nx log
(

1 +
1

nx

)
φn(x)dx ≤ 2.

For
∫ 1

2−
1
n

0

∫ 1
2

x+ 1
n

we have 1
n ≤ t− x ≤ t + x ≤ 1− 1

n and, by (3.11), A(x, t) = 0.
Hence ∫ 1

2−
1
n

0

∫ 1
2

x+ 1
n

A(x, t)
t

dtφn(x)dx = 0.

Next ∫ 1
2−

1
n

1
n

∫ x+ 1
n

1
n

A(x, t)
t

dtφn(x)dx ≤
∫ 1

2−
1
n

1
n

∫ x+ 1
n

1
n

4
t
dtφn(x)dx

≤ 4
∫ 1

1
n

log(nx + 1)φn(x)dx.

Now, fix some α ∈ (0, 1). Write∫ 1

1
n

log(nx + 1)φn(x)dx =
∫ 1

nα

1
n

· · · dx +
∫ 1

1
nα

· · · dx

≤ log(n1−α + 1)
2

+ cn log(n + 1)
∫ 1

1
nα

(
1− x2

4

)n2

dx

≤ log(n1−α + 1)
2

+ cn log(n + 1) e−
1
4 n2(1−α)

.

Therefore,

lim sup
n→∞

∫ 1
1
n

log(nx + 1)φn(x)dx

log n
≤ 1− α

2

and, since α is arbitrary in (0, 1),∫ 1
2−

1
n

1
n

∫ x+ 1
n

1
n

A(x, t)
t

dtφn(x)dx = o(log n).
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Finally, ∫ 2

1
2−

1
n

∫ 1
2

1
n

A(x, t)
t

dtφn(x)dx ≤
∫ 2

1
2−

1
n

∫ 1
2

1
n

4
t
dtφn(x)dx

≤ 4 log
n

2
cn

∫ 2

1
2−

1
n

(
1− x2

4

)n2

dx

≤ cn log ne−
1
16 n2

= o(1).

�

4. The upper bound in the Theorem

We set

(4.1) Kd = sup
P∈Pd,ε,R

∣∣∣∣ ∫
ε≤|t|≤R

eiP (t) dt

t

∣∣∣∣.
We take any polynomial P , of degree at most d, which we can assume has no
constant term, that is, P (0) = 0. We set k = [d

2 ] and we write

P (t) = a1t + a2t
2 + · · ·+ aktk + ak+1t

k+1 + · · ·+ adt
d

= Q(t) + R(t),

where Q(t) = a1t + a2t
2 + · · · + aktk and R(t) = ak+1t

k+1 + · · · + adt
d. Let

|al| = maxk+1≤j≤d|aj | for some k + 1 ≤ l ≤ d. By a change of variables in the
integral in (4.1) we can assume that |al| = 1 and thus that |aj | ≤ 1 for every
k + 1 ≤ j ≤ d. Now split the integral in (4.1) in two parts as follows∣∣∣∣ ∫

ε≤|t|≤R

eiP (t) dt

t

∣∣∣∣ ≤
∣∣∣∣ ∫

ε≤|t|≤1

eiP (t) dt

t

∣∣∣∣ +
∣∣∣∣ ∫

1≤|t|≤R

eiP (t) dt

t

∣∣∣∣(4.2)

= I1 + I2.

For I1 we have that

I1 ≤
∣∣∣∣ ∫

ε≤|t|≤1

[
eiP (t) − eiQ(t)

]dt

t

∣∣∣∣ +
∣∣∣∣ ∫

ε≤|t|≤1

eiQ(t) dt

t

∣∣∣∣
≤

∫
ε≤|t|≤1

∣∣eiP (t) − eiQ(t)
∣∣dt

t
+ K[ d

2 ]

≤
∫

0≤|t|≤1

|R(t)|
t

dt + K[ d
2 ]

≤ 2
d∑

j=k+1

|aj |
j

+ K[ d
2 ] ≤

d∑
j=k+1

1
j

+ K[ d
2 ] ≤ c + K[ d

2 ].

For the second integral in (4.2) we have that

I2 ≤
∣∣∣∣ ∫

1≤t≤R

eiP (t) dt

t

∣∣∣∣ +
∣∣∣∣ ∫
−R≤t≤−1

eiP (t) dt

t

∣∣∣∣ = I+
2 + I−2 .

For some α > 0 to be defined later split I+
2 into two parts as follows:

I+
2 ≤

∫
{t∈[1,+∞):|P ′(t)|≤α}

dt

t
+

∣∣∣∣ ∫
{t∈[1,R]:|P ′(t)|>α}

eiP (t) dt

t

∣∣∣∣.
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Since {t ∈ [1, R] : |P ′(t)| > α} consists of at most O(d) intervals where P ′ is
monotonic, using Proposition 1 we get the bound∣∣∣∣ ∫

{t∈[1,R]:|P ′(t)|>α}
eiP (t) dt

t

∣∣∣∣ ≤ c
d

α
.

For the logarithmic measure of the set {t ∈ [1,+∞) : |P ′(t)| ≤ α}, observe that∫
{t∈[1,+∞):|P ′(t)|≤α}

dt

t
≤

∞∑
m=0

∫
{t∈[2m,2m+1]:|P ′(t)|≤α}

dt

t

=
∞∑

m=0

∫
{2mt∈[2m,2m+1]:|P ′(2mt)|≤α}

dt

t

=
∞∑

m=0

∫
2m{t∈[1,2]:|P ′(2mt)|≤α}

dt

t

=
∞∑

m=0

∫
{t∈[1,2]:|P ′(2mt)|≤α}

dt

t
.

We have thus showed that∫
{t∈[1,+∞):|P ′(t)|≤α}

dt

t
≤

∞∑
m=0

|{t ∈ [1, 2] : |P ′(2mt)| ≤ α}|.(4.3)

In order to finish the proof we need a suitable estimate for the sublevel set of a
polynomial. This is the content of the following lemma.

Lemma 4.1 (Vinogradov). Let h(t) = b0 + b1t + · · ·+ bntn be a real polynomial of
degree n. Then,

|{t ∈ [1, 2] : |h(t)| ≤ α}| ≤ c

(
α

max0≤k≤n |bk|

) 1
n

.

This Lemma is due to Vinogradov [5]. We postpone the proof of Lemma 4.1
until after the end of the proof of the upper bound.

Consider the polynomial P ′(2mt) with coefficients jaj2m(j−1), 1 ≤ j ≤ d.
Clearly, max1≤j≤d |jaj2m(j−1)| ≥ |lal2m(l−1)| ≥ ([d

2 ] + 1)2m[ d
2 ]. Using Lemma 4

and (4.3), we get∫
{t∈[1,+∞):|P ′(t)|≤α}

dt

t
≤ cα

1
d−1

∞∑
m=0

(
1

([d
2 ] + 1)2m[ d

2 ]

) 1
d−1

≤ cα
1

d−1 .

Obviously, a similar estimate holds for I−2 . Summing up the estimates we get∣∣∣∣ ∫
ε≤|t|≤R

eiP (t) dt

t

∣∣∣∣ ≤ c + c
d

α
+ cα

1
d−1 + K[ d

2 ].

Optimizing in α we get that∣∣∣∣ ∫
ε≤|t|≤R

eiP (t) dt

t

∣∣∣∣ ≤ c + K[ d
2 ](4.4)

and hence
Kd ≤ c + K[ d

2 ].
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In particular we have
K2n ≤ c + K2n−1 .

Using induction on n we get that K2n ≤ cn. It is now trivial to show the inequality
for general d. Indeed, if 2n−1 < d ≤ 2n then Kd ≤ K2n ≤ cn ≤ c log d.

For the sake of completeness we give the proof of Lemma 4.1.

Proof of Lemma 4.1. The set Eα = {t ∈ [1, 2] : |h(t)| ≤ α} is a union of intervals.
We slide them together to form a single interval I of length |Eα| and pick n + 1
equally spaced points in I. If we slide the intervals back to their original position
we end up with n + 1 points x0, x1, x2, . . . , xn ∈ Eα which satisfy

|xj − xk| ≥ |Eα|
|j − k|

n
.(4.5)

The Lagrange polynomial which interpolates the values h(x0), h(x1),. . . , h(xn)
coincides with h(x):

h(x) =
n∑

j=0

h(xj)
(x− x0)(x− x1) · · · (x− xj−1)(x− xj+1) · · · (x− xn)

(xj − x0)(xj − x1) · · · (xj − xj−1)(xj − xj+1) · · · (xj − xn)
.

Therefore we get for the coefficients of h that

bk =
n∑

j=0

h(xj)
(−1)n−kσn−k(x0, . . . , x̂j , . . . , xn)

(xj − x0)(xj − x1) · · · (xj − xj−1)(xj − xj+1) · · · (xj − xn)

for k = 0, 1, . . . , n. In the above formula σn−k(x0, . . . , x̂j , . . . , xn) is the (n− k)-th
elementary symmetric function of x0, . . . , x̂j , . . . , xn where xj is omitted. Using the
estimate σn−k(x0, . . . , x̂j , . . . , xn) ≤

(
n

n−k

)
2n−k together with (4.5) we get that, for

every k = 0, 1, . . . , n,

|bk| ≤
(

n

n− k

)
2n−knn α

|Eα|n
n∑

j=0

1
j!(n− j)!

=
(

n

n− k

)
22n−k nn

n!
α

|Eα|n
≤ c

8n

√
n

nn

n!
α

|Eα|n
,

where we used the estimate
(

n
n−k

)
≤

(
n

[ n
2 ]

)
≤ c 2n

√
n
. Hence

max
0≤k≤n

|bk| ≤ c
8n

√
n

nn

n!
α

|Eα|n

and solving with respect to |Eα| we get

|Eα| ≤ c

(
α

max0≤k≤n |bk|

) 1
n

.

�
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