
MIN-MAX REPRESENTATIONS OF VISCOSITY SOLUTIONS OF
HAMILTON-JACOBI EQUATIONS

BOUALEM DJEHICHE, HENRIK HULT†, AND PIERRE NYQUIST∗

Abstract. In this paper a duality relation between the Mañé potential and the action
functional is derived in the context of convex and state-dependent Hamiltonians. The
duality relation is used to obtain min-max representations of viscosity solutions of first
order evolutionary Hamilton-Jacobi equations. As a special case, for state-independent
Hamiltonians the duality result provides a new way to derive the classical Hopf-Lax-
Oleinik representation.

1. Introduction

In this paper we study viscosity solutions of Hamilton-Jacobi equations associated with
Lagrangian dynamics arising in the theory of large deviations for stochastic processes.
Suppose that the rate function associated with the large deviations of a sequence of
stochastic processes {Xn(t); t ∈ [0, T ]} is of the form∫ T

t

L̄(ψ(s), ψ̇(s))ds,

where ψ is an absolutely continuous function and L̄ is the local rate function, such that
v 7→ L̄(x, v) is convex for all x ∈ Rn. This is typical, for example, for Markov processes
[8, 17, 22]. To illustrate the connection between large deviations and Hamilton-Jacobi
equations, consider the probability that the process Xn has exited an open set Ω ⊂ Rd

before time T , conditioned on X t = x for for 0 ≤ t < T , x ∈ Ω: Pt,x(X
n(T ) /∈ Ω). If the

rate function associated with Xn is of the aforementioned form, then the large deviations
rate of this probability is given by

Ū(t, x) = inf
ψ

{∫ T

t

L̄(ψ(s), ψ̇(s))ds, ψ(t) = x, ψ(T ) /∈ Ω
}
,

where the infimum is taken over all absolutely continuous functions. That is, for large n,

Pt,x(X
n(T ) /∈ Ω) ≈ e−nŪ(t,x).

Since Ū is the value function of a variational problem, it satisfies, in the sense of a
viscosity solution, a Hamilton-Jacobi terminal value problem of the form{

Ūt(t, x)− H̄(x,−DŪ(t, x)) = 0, (t, x) ∈ [0, T )× Ω,

Ū(T, x) = 0, x ∈ ∂Ω,
(1.1)
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where H̄ is the Fenchel-Legendre transform of L̄, see e.g. [17].
Furthermore, because of the connection between probabilities that become exponen-

tially small asymptotically, in the above example as n→∞, and Hamilton-Jacobi equa-
tions, subsolutions of such equations are intrinsically linked to efficient Monte Carlo
methods for so-called rare-event simulation; see e.g. [9, 10, 11]. Therefore, in addition to
its relevance for Lagrangian dynamics in general and problems arising in, for example,
partial differential equations, calculus of variations and control theory, the results of this
paper lay the foundation for a systematic approach to solving the challenging task of
finding subsolutions that define provably efficient rare-event methods, a topic pursued in
forthcoming work.

In this paper we consider Lagrangians (x, v) 7→ L(x, v) that are convex in v. The main
results, Proposition 3.2 and Theorem 4.1, prove a certain form of viscosity solutions to
evolutionary Hamilton-Jacobi equations and a duality between Mañé’s potential and the
action functional, respectively; we now give a brief outline.

The Mañé potential at level c is given by the value of the variational problem

Sc(x, y) = inf
ψ,t

{∫ t

0

c+ L(ψ(s), ψ̇(s))ds, ψ(0) = x, ψ(t) = y
}
, x, y ∈ Rd,

where the infimum is taken over all absolutely continuous functions ψ : [0,∞)→ Rn and
t > 0, see [20]. Whenever it is continuous, y 7→ Sc(x, y) is a viscosity subsolution of the
stationary Hamilton-Jacobi equation

H(y,DS(y)) = c, y ∈ Rd,

where H denotes the Fenchel-Legendre transform of L and D denotes the gradient. An
object similar to the Mañé potential is the action functional given by

M(t, y;x) = inf
ψ

{∫ t

0

L(ψ(s), ψ̇(s))ds, ψ(0) = x, ψ(t) = y
}
, t > 0 x, y ∈ Rd,

where the infimum is taken over all absolutely continuous functions ψ : [0, t]→ Rd. This
action functional is a well-studied object in large deviations theory and control-theory,
see for example [19, 18] and the references therein. In the weak KAM and dynamical
systems literature it is often referred to as Mather’s action functional - see the overview
paper [21] and references therein - even though the functional was known well before the
papers by Mather. From the definition of the Mañé potential it is elementary to show
that

Sc(x, y) = inf
t>0
{M(t, y;x) + ct}.

The main result, Theorem 4.1, shows that, in the one-dimensional setting, d = 1, and
for all t < tL, the dual relation also holds:

M(t, y;x) = sup
c>cL

{Sc(x, y)− ct},

where tL is a time that depends on the Lagrangian and (x, y) and cL denotes the smallest
c such that Sc > −∞. An example is given that illustrates why the duality may fail
for t > tL. As a prelude to this duality result, in Proposition 3.2 it is shown that, for
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arbitrary dimension d ≥ 1, the right-hand side of the last display is a viscosity solution
whenever y 6= x.

The duality result is used to derive min-max representations of viscosity solutions of
various time-dependent problems. For the initial value problem{

Vt(t, y) +H(y,DV (t, y)) = 0, (t, y) ∈ (0,∞)× R,
V (0, y) = g(y), y ∈ R,

the duality leads to a min-max representation of the form

V (t, y) = inf
x

sup
c>cL

{g(x) + Sc(x, y)− ct}, (t, y) ∈ [0, tL)× R.

The min-max representation may be viewed as a generalization, to state-dependent
Hamiltonians, of the classical Hopf-Lax-Oleinik formula, which states that if H(x, p) =
H(p), then the solution to the initial value problem is given by

V (t, y) = inf
x

{
g(x) + tL

(y − x
t

)}
.

See [5, 2] for further details and generalizations of Hopf-Lax representation formulas
to some state-dependent Hamiltonians. For state-independent Hamiltonians the duality
result holds for arbitrary dimension d and we obtain the Hopf-Lax representation as a
special case.

Similar min-max representations are stated for terminal value problems, problems on
domains, and exit problems. For instance, the viscosity solution Ū to (1.1) can be
represented as

Ū(t, x) = inf
y∈∂Ω

sup
c>cL̄

{S̄c(x, y)− c(T − t)},

where S̄c is the Mañé potential associated with the Lagrangian L̄.
The paper is organized as follows. In Section 2 the Mañé potential and stationary

Hamilton-Jacobi equations are introduced and we establish some relevant properties. In
Section 3 a similar program is carried out for the action functional and evolutionary
Hamilton-Jacobi equations. This is followed by a duality theorem involving the Mañé
potential and the action functional in Section 4. In Section 5 it is shown how the duality
leads to min-max representations for initial value problems, terminal value problems,
problems on domains and exit problems. We conclude the paper by showing a direct
relation between the min-max representation for the initial value problem and the Hopf-
Lax-Oleinik formula for state-independent convex Hamiltonians (Section 6).

2. The Mañé potential and the stationary Hamilton-Jacobi equation

We begin by introducing the Mañé potential and establish some of its properties, as
well as its relation to the stationary Hamilton-Jacobi equation. Throughout the paper
the following assumption will be made. Let the Langrangian L : Rd × Rd → R be a
locally bounded measurable function that is convex in the second coordinate and let the
Hamiltonian H be the Fenchel-Legendre transform of L,

H(x, p) = sup
v
{〈p, v〉 − L(x, v)}. (2.1)



4 VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS

By convex duality it follows that

L(x, v) = sup
p
{〈p, v〉 −H(x, p)}.

2.1. The Mañé potential. Originally introduced by Mañé in [20], the Mañé potential
at level c ∈ R, is the function Sc : Rd × Rd → R defined by

Sc(x, y) = inf
ψ,t

{∫ t

0

c+ L(ψ(s), ψ̇(s))ds, ψ(0) = x, ψ(t) = y
}
, x, y ∈ Rd, (2.2)

where the infimum is taken over all t > 0 and absolutely continuous paths ψ : [0,∞)→
Rd. Since L is locally bounded it follows that Sc(x, y) < ∞, for all x, y ∈ Rd and
c <∞. It is possible that Sc is identically −∞ for small c. Indeed, if L(x, v) = 1

2
|v|2 and

c < 0, then it follows from the definition (2.2) that Sc(x, y) = −∞ for all x, y ∈ Rd, by
taking ψ(t) = 0 for all t > 0. Next, for completeness, some elementary and well known
properties of Sc are established.

Proposition 2.1. The following properties hold.

(i) For each x, y ∈ Rd, the function c 7→ Sc(x, y) is nondecreasing.
(ii) For each c ∈ R, the function (x, y) 7→ Sc(x, y) satisfies the triangle inequality:

Sc(x, z) ≤ Sc(x, y) + Sc(y, z), x, y, z ∈ Rd. (2.3)

(iii) If Sc(x0, y0) = −∞ for some x0, y0 ∈ Rd and c ∈ R, then Sc(x, y) = −∞ for all
x, y ∈ Rd.

(iv) If Sc > −∞, then Sc(x, x) = 0, for each x ∈ Rd.

Throughout the paper cL denotes the infimum over all c such that Sc > −∞.

Proof. (i) follows immediately from the definition of the Mañé potential. (ii) For the
triangle inequality, if Sc(x, z) = −∞ there is nothing to prove. Suppose Sc(x, z) > −∞.
Then Sc(x, y) > −∞ and Sc(y, z) > −∞ as well, for otherwise, if Sc(x, y) = −∞, then
there exists, for each N > 0, a tN > 0 and an absolutely continuous path ψN with
ψN(0) = x and ψN(tN) = y such that

Sc(x, y) ≤
∫ tN

0

c+ L(ψN(s), ψ̇N(s))ds ≤ −N.

Let τ > 0 and ϕ be any absolutely continuous path with ϕ(0) = y and ϕ(τ) = z and∫ τ
0
c+ L(ϕ(s), ϕ̇(s))ds =: C <∞. Then, by concatenating ψN and ϕ as

ψN(s)I{0 ≤ s ≤ tN}+ ϕ(s− tN)I{tN < s ≤ tN + τ}

it follows that

Sc(x, z) ≤
∫ tN

0

c+ L(ψN(s), ψ̇N(s))ds+

∫ τ

0

c+ L(ϕ(s), ϕ̇(s))ds ≤ −N + C.

By sending N → ∞ it follows that Sc(x, z) = −∞, which is a contradiction. Conse-
quently, Sc(x, y) > −∞. A similar argument shows that Sc(y, z) > −∞.
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To proceed with the proof of the triangle inequality, take an arbitrary ε > 0, and select
t1, t2 > 0 and absolutely continuous paths ψ1, ψ2 with ψ1(0) = x, ψ1(t1) = y, ψ2(0) = y
and ψ2(t2) = z such that

Sc(x, y) ≥
∫ t1

0

c+ L(ψ1(s), ψ̇1(s))ds− ε

2
,

Sc(y, z) ≥
∫ t2

0

c+ L(ψ2(s), ψ̇2(s))ds− ε

2
.

Concatenate the two trajectories by

ψ(s) = ψ1(s)I{0 ≤ s ≤ t1}+ ψ2(s− t1)I{t1 < s ≤ t1 + t2}.
It follows that

Sc(x, y) + Sc(y, z) ≥
∫ t1

0

c+ L(ψ1(s), ψ̇1(s))ds

+

∫ t2

0

c+ L(ψ2(s), ψ̇2(s))ds− ε

=

∫ t1+t2

0

c+ L(ψ(s), ψ̇(s))ds− ε

≥ Sc(x, z)− ε.
Since ε > 0 is arbitrary the triangle inequality follows.

(iii) follows from the triangle inequality.
To prove (iv), take x ∈ Rd and let ε > 0, h > 0 be such that h(c + L(x, 0)) < ε and

ψ(s) = x for each 0 ≤ s ≤ h. By definition of the Mañé potential,

Sc(x, x) ≤ h(c+ L(x, 0)) < ε.

Since ε > 0 is arbitrary it follows that Sc(x, x) ≤ 0. The reverse inequality, Sc(x, x) ≥ 0,
follows from the triangle inequality. �

2.2. The stationary Hamilton-Jacobi equation. Given a Hamiltonian H and c ∈ R,
the stationary Hamilton-Jacobi equation is

H(y,DS(y)) = c, y ∈ Rd. (2.4)

A continuous function S : Rd → R is a viscosity subsolution (supersolution) of the
stationary Hamilton-Jacobi equation (2.4) if, for every function v ∈ C∞(Rd),

if S − v has a local maximum (minimum) at y0 ∈ Rd,
then H(y0, Dv(y0)) ≤ c (≥ c).

}
(2.5)

Such a function S is a viscosity solution if it is both a viscosity subsolution and a viscosity
supersolution.

The Mañé critical value is the infimum over c for which (2.4) admits a viscosity subso-
lution. With some abuse of notation it will be denoted by cH . The critical value admits
the lower bound

cH ≥ sup
y

inf
p
H(y, p). (2.6)
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Indeed, if (2.4) admits a viscosity subsolution U c at level c, then for every y there is a v ∈
C∞(Rd) such that U c− v has a local maximum at y and infpH(y, p) ≤ H(y,Dv(y)) ≤ c.
The claim follows by taking supremum over y. Examples where cH = supy infpH(y, p)
are provided below.

The Mañé potential (2.2) is well studied within weak KAM theory, where it is com-
monly assumed that the Hamiltonian is uniformly superlinear: for each K ≥ 0 there
exists C(K) ∈ R such that H(y, p) ≥ K|p| − C(K) for each y, p. Under such an as-
sumption there exist critical viscosity subsolutions, that is, there exists a global viscosity
subsolution to (2.4) for c = cH , see [15, 14]. In this paper it is assumed that the Hamil-
tonian is given by the Fenchel-Legendre transform of a Lagrangian L, as in (2.1), and
consequently p 7→ H(y, p) is convex in p, for every y ∈ Rd. For instance, the Hamiltonian
associated with the unit rate Poisson process, which is of the form

H(p) = ep − 1, p ∈ R,

is covered by our assumptions. For this choice of H the Mañé critical value is cH = −1,
but there can be no critical subsolution S as it would have to satisfy DS(y) = −∞
almost eveywhere, see Example 2.3 below.

The following properties of the Mañé potential are well known and similar statements
appear in [14, 15, 16], see also the lecture notes [13, 4]. However, our assumptions on
the Hamiltonian are different and thus a proof is included for completeness.

Proposition 2.2. Assume (2.1). Take c ∈ R, x ∈ Rd and suppose the function y 7→
Sc(x, y) is continuous.

(i) Suppose that Sc > −∞. Then y 7→ Sc(x, y) is a viscosity subsolution to H(y,DS(y)) =
c on Rd and a viscosity solution on Rd \ {x}.

(ii) For each y ∈ Rd, Sc(x, y) = supS∈Scx S(y), where Scx is the collection of all continu-
ous viscosity subsolutions to H(y,DS(y)) = c that vanish at x.

Recall that cL is the infimum over c such that Sc > −∞. Take x ∈ Rd and suppose that,
for each c > cL, the function y 7→ Sc(x, y) is continuous. For c > cH there exist viscosity
subsolutions to (2.4) and by Proposition 2.2(ii) it follows that Sc > −∞. Consequently,
cH ≥ cL. Similarly, for c < cH there are no subsolutions and by Proposition 2.2(i)
Sc = −∞, which implies cH ≤ cL. This proves the following.

Corollary 2.1. Take x ∈ Rd and suppose that, for each c > cL, the function y 7→ Sc(x, y)
is continuous. Then cH = cL.

Before proceeding to the proof of Proposition 2.2 we state an important lemma that
can be interpreted as a dynamic programming property of the Mañé potential.

Lemma 2.1. Suppose that Sc > −∞. For any x, y0 ∈ Rd with y0 6= x and ε > 0 there
exist 0 < δ < |x − y0|, y with |y − y0| < δ, h > 0 and an absolutely continuous path ψ
with ψ(0) = y, ψ(h) = y0, and |ψ(s)− y0| < δ for all s ∈ [0, h], such that

Sc(x, y0) ≥ Sc(x, y) +

∫ h

0

(
c+ L(ψ(s), ψ̇(s))

)
ds− ε.
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Proof. Given x, y0 ∈ Rd with x 6= y0 and ε > 0, take t > 0 and an absolutely continuous
function ϕ with ϕ(0) = x, ϕ(t) = y0 such that

Sc(x, y0) ≥
∫ t

0

(c+ L(ϕ(s), ϕ̇(s))) ds− ε.

Let 0 < δ < |x− y0| and take h > 0 such that |ϕ(s)− y0| < δ for each s ∈ [t−h, t]. With
y = ϕ(t− h) and ψ(s) = ϕ(s+ t− h), s ∈ [0, h], it follows that

Sc(x, y0) ≥
∫ t

0

(c+ L(ϕ(s), ϕ̇(s))) ds− ε

=

∫ t−h

0

(c+ L(ϕ(s), ϕ̇(s))) ds+

∫ t

t−h
(c+ L(ϕ(s), ϕ̇(s))) ds− ε

≥ Sc(x, y) +

∫ h

0

(
c+ L(ψ(s), ψ̇(s))

)
ds− ε.

This completes the proof. �

Proof of Proposition 2.2. Proof of (i). Suppose that Sc > −∞, take x ∈ Rd and suppose
that y 7→ Sc(x, y) is continuous. First we prove the viscosity subsolution property. For
v ∈ C∞(Rd), suppose that Sc(x, ·)− v has a local maximum at y0 and, contrary to what
we want to show, that H(y,Dv(y))− c ≥ θ > 0 for |y− y0| ≤ δ, for some δ > 0. We may
assume that δ is sufficiently small that

Sc(x, y)− v(y) ≤ Sc(x, y0)− v(y0), for |y − y0| ≤ δ.

Take any y with |y − y0| ≤ δ and consider any absolutely continuous path ψ such that
ψ(0) = y, ψ(h) = y0 and |ψ(s)− y0| ≤ δ for all s ∈ [0, h]. By the triangle inequality (2.3)
and the last inequality

0 ≥ Sc(x, y0)− Sc(x, y)−
∫ h

0

(
c+ L(ψ(s), ψ̇(s))

)
ds

≥ v(y0)− v(y)−
∫ h

0

(
c+ L(ψ(s), ψ̇(s))

)
ds

=

∫ h

0

(
d

ds
v(ψ(s))− L(ψ(s), ψ̇(s))− c

)
ds

=

∫ h

0

(
〈Dv(ψ(s)), ψ̇(s)〉 − L(ψ(s), ψ̇(s))− c

)
ds.

We may assume that ψ̇ is chosen such that, using the conjugacy between H and L,

H(ψ(s), Dv(ψ(s))) ≤ 〈Dv(ψ(s)), ψ̇(s)〉 − L(ψ(s), ψ̇(s)) +
θ

2
,

for all s ∈ [0, h]. Then

θh

2
≥
∫ h

0

(H(ψ(s), Dv(ψ(s)))− c) ds ≥ θh,

which is a contradiction. Thus, it must hold that H(y0, Dv(y0)) ≤ c.
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Next, we prove the supersolution property on Rd \{x}. Take v ∈ C∞(Rd) and suppose
Sc(x, ·)− v has a local minimum at y0 6= x and, contrary to what we want to show, that
H(y,Dv(y)) − c ≤ −θ < 0 for |y − y0| ≤ δ, for some δ > 0. We may assume that δ is
sufficiently small that |x− y0| > δ and

Sc(x, y)− v(y) ≥ Sc(x, y0)− v(y0), for |y − y0| ≤ δ.

By Lemma 2.1 we may select y with |y − y0| ≤ δ and an absolutely continuous path
ψ such that ψ(0) = y, ψ(h) = y0 and |ψ(s)− y0| ≤ δ for all s ∈ [0, h], with the property
that

Sc(x, y0) ≥ Sc(x, y) +

∫ h

0

c+ L(ψ(s), ψ̇(s))ds− θh

2
.

The last inequality implies that

θh

2
≥ Sc(x, y)− Sc(x, y0) +

∫ h

0

(
c+ L(ψ(s), ψ̇(s))

)
ds

≥ v(y)− v(y0) +

∫ h

0

(
c+ L(ψ(s), ψ̇(s))

)
ds

=

∫ h

0

(
− d

ds
v(ψ(s)) + L(ψ(s), ψ̇(s)) + c

)
ds

=

∫ h

0

(
−〈Dv(ψ(s)), ψ̇(s)〉+ L(ψ(s), ψ̇(s)) + c

)
ds

≥
∫ h

0

−
(
H(ψ(s), Dv(ψ(s)))− c

)
ds.

We conclude that

−θh
2
≤
∫ h

0

(H(ψ(s), Dv(ψ(s)))− c) ds ≤ −θh.

This is a contradiction and thus it must indeed hold that H(y0, Dv(y0)) ≥ c, which
completes the proof of (i).

Proof of (ii). Let c ∈ R. If there are no viscosity subsolutions at level c, then by
(i) Sc = −∞ and Scx = ∅, which implies that supS∈Scx S(y) = −∞ as well. If there

exist continuous viscosity subsolutions at level c, take x ∈ Rd and let S be a continuous
viscosity subsolution of H(y,DS(y)) = c on Rd. It is sufficient to show that for any
y ∈ Rd, t > 0 and absolutely continuous function ψ with ψ(0) = x and ψ(t) = y,

S(y)− S(x) ≤
∫ t

0

(
c+ L(ψ(s), ψ̇(s))

)
ds. (2.7)

To show (2.7), fix t > 0, y ∈ Rd, an absolutely continuous path ψ with ψ(0) = x and
ψ(t) = y and take an arbitrary ε > 0. For every s ∈ [0, t], let vs ∈ C∞(Rd) be such that
S − vs has a local maximum at ψ(s). Then, there exists δs > 0 such that

S(z)− vs(z) ≤ S(ψ(s))− vs(ψ(s)), for |z − ψ(s)| < δs,
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and consequently that

S(z)− S(ψ(s)) ≤ vs(z)− vs(ψ(s)), for |z − ψ(s)| < δs. (2.8)

By continuity of H and Dvs we may, in addition, assume that δs is sufficiently small that

H(z,Dvs(z)) ≤ c+
ε

t
, for |z − ψ(s)| < δs.

For every s ∈ [0, t], let hs > 0 be such that |ψ(u)−ψ(s)| < δs for every u with |u−s| < hs.
This is possible due to the continuity of ψ. The union

[0, h0) ∪
⋃

s∈(0,t]

(s, s+ hs),

is an open cover of [0, t]. Since [0, t] is compact there is a finite subcover, which we can
assume is of the form

[0, h0) ∪
n−1⋃
k=1

(sk, sk + hsk),

where 0 = s0 < s1 < · · · < sn−1 < sn = t. Since the finite union is a subcover, it must
hold that sk−1 < sk < sk−1 + hsk−1

for each k = 1, . . . , n. It follows that, using (2.8) and
the conjugacy between H and L,

S(y)− S(x) =
n∑
k=1

S(ψ(sk))− S(ψ(sk−1))

≤
n∑
k=1

vsk−1
(ψ(sk))− vsk−1

(ψ(sk−1))

=
n∑
k=1

∫ sk

sk−1

〈Dvsk−1
(ψ(s)), ψ̇(s)〉ds

≤
n∑
k=1

∫ sk

sk−1

(
H(ψ(s), Dvsk−1

(ψ(s))) + L(ψ(s), ψ̇(s))
)
ds

≤
n∑
k=1

∫ sk

sk−1

(
c+

ε

t
+ L(ψ(s), ψ̇(s))

)
ds

= ε+

∫ t

0

(
c+ L(ψ(s), ψ̇(s))

)
ds.

Since ε > 0 was arbitrary the claim follows. �

We proceed by computing Mañé’s critical value, cH for some Hamiltonians arising
in the theory of large deviations of stochastic processes; in all three examples there is
equality in the lower bound for cH .

Example 2.1 (Critical diffusion process). Let U : Rd → R be a potential function
and b(y) = −DU(y). Consider the Hamiltonian H(y, p) = 〈b(y), p〉 + 1

2
|p|2. Then

cH = supy infpH(y, p) = −1
2

infy |b(y)|2. Indeed, from (2.6), cH ≥ −1
2

infy |b(y)|2 and U

is a subsolution to H(y,DS(y)) = −1
2

infy |b(y)|2, which implies cH ≤ −1
2

infy |b(y)|2. In
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particular, if DU(y) = 0 for some y, then cH = 0. In this setting the Mañé potential can
be viewed as a generalization of Freidlin and Wentzell’s quasi-potential, described in [19,
Ch. 4].

Example 2.2 (Birth-and-death process). Consider an interval (a, b) ⊂ R and functions

µ : (a, b) → [0,∞), λ : (a, b) → [0,∞) satisfying
∫ b
a

log(
√
µ(y)/λ(y))dy < ∞. Consider

the Hamiltonian

H(y, p) = λ(y)(ep − 1) + µ(y)(e−p − 1).

In this case cH = supy infpH(y, p) = − infy(
√
µ(y) −

√
λ(y))2. To see this, recall from

(2.6) that cH ≥ − infy(
√
µ(y)−

√
λ(y))2. A subsolution of

H(y,DS(y)) = − inf
y

(
√
µ(y)−

√
λ(y))2,

is given by

U(y) =

∫ y

a

log(
√
µ(z)/λ(z))dz.

Indeed,

H(y,DU(y)) = −(
√
µ(y)−

√
λ(y))2 ≤ − inf

y
(
√
µ(y)−

√
λ(y))2.

Example 2.3 (Pure birth process). Let λ : [0,∞)d → [0,∞)d and put

H(y, p) =
d∑
j=1

λj(y)(epj − 1).

In this case cH = supy infpH(y, p) = − infy
∑d

j=1 λj(y) =: −λ∗. Indeed, from (2.6) it

follows that cH ≥ −λ∗ and for any c ∈ (−λ∗, 0) and α ≤ log(1 + c/λ∗), the function
α〈1, y〉 is a subsolution to H(y,DS(y)) = c, which implies cH ≤ −λ∗.

We end this subsection by proving a sufficient condition for the continuity of y 7→
Sc(x, y).

Proposition 2.3. Suppose that the Lagrangian L is continuous at (y, 0) for each y ∈ Rd.
Then, for each x ∈ Rd and c > cL the function y 7→ Sc(x, y) is continuous.

Proof. Take y0 ∈ Rd and ε > 0. To prove continuity at y0 we show that there exists a
δ > 0 such that |y − y0| < δ implies

Sc(x, y0) ≤ Sc(x, y) + ε, (2.9)

Sc(x, y) ≤ Sc(x, y0) + ε. (2.10)

We begin to prove (2.9). By assumption L is continuous at (y0, 0) and we may select δ′

such that L(y0 + z, v) ≤ L(y0, 0) + 1 for all |z| < δ′ and |v| < δ′. Pick h > 0 such that
h(c+ L(y0, 0) + 1) < ε/2 and let δ = hδ′. For |y − y0| < δ, take t > h and an absolutely
continuous path ψ with ψ(0) = x, ψ(t− h) = y such that

Sc(x, y) ≥
∫ t−h

0

(
c+ L(ψ(s), ψ̇(s))

)
ds− ε

2
,
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and ψ̇(s) = h−1(y0 − y) for t− h ≤ s ≤ t. Then,

Sc(x, y0) ≤
∫ t−h

0

(
c+ L(ψ(s), ψ̇(s))

)
ds+

∫ t

t−h

(
c+ L(ψ(s), ψ̇(s))

)
ds

≤ Sc(x, y) +
ε

2
+ h(c+ L(y0, 0) + 1)

≤ Sc(x, y) + ε,

by the choice of h. The proof of (2.10) is similar.
�

3. The action functional and the evolutionary Hamilton-Jacobi
equation

In this section we establish the connection between the action functional, the Mañé
potential and viscosity solutions to the evolutionary Hamilton-Jacobi equation. The key
result is Proposition 3.2, which shows how to construct certain solutions via the Mañé
potential. The results in this section are derived in Rd for arbitrary d ≥ 1, whereas for
the duality theorem in Section 4 we move to the one-dimensional setting (d = 1). For a
more thorough introduction to Hamilton-Jacobi equations we refer to [1, 3, 12, 14, 7, 6].

3.1. The action functional. For any x ∈ Rd and (t, y) ∈ (0,∞) × Rd, let M be the
action functional

M(t, y;x) = inf
ψ

{∫ t

0

L(ψ(s), ψ̇(s))ds, ψ(0) = x, ψ(t) = y
}
, (3.1)

where the infimum is taken over all absolutely continuous ψ : [0,∞) → Rd. M is the
action functional of Mather, see [21], viewed as a function of (t, y).

3.2. The evolutionary Hamilton-Jacobi equation. Consider a Hamiltonian H :
Rd × Rd → R as in (2.1). The evolutionary Hamilton-Jacobi equation is

Vt(t, y) +H(y,DV (t, y)) = 0, (t, y) ∈ (0,∞)× Rd, (3.2)

where Vt = ∂V/∂t and DV = (∂V/∂y1, . . . , ∂V/∂yn). A continuous function V : (0,∞)×
Rd → R is a viscosity subsolution (supersolution) of (3.2) if, for every v ∈ C∞((0,∞)×
Rd),

if V − v has a local maximum (minimum) at (t0, y0) ∈ (0,∞)× Rd,
then vt(t0, y0) +H(x0, Dv(t0, y0)) ≤ 0 (≥ 0).

}
V is a viscosity solution if it is both a subsolution and a supersolution of (3.2).

Proposition 3.1 shows how the action functional M in (3.1) plays a similar role for
the evolutionary Hamilton-Jacobi equation as the Mañé potential does for the stationary
Hamilton-Jacobi equation.

Proposition 3.1. Take x ∈ Rd and assume that (t, y) 7→M(t, y;x) is continuous.

(i) M(· ;x) is a viscosity solution to (3.2) on (0,∞)× Rd.
(ii) M(t, y;x) = supV ∈S0,x

V (t, y), where S0,x is the collection of all continuous viscosity

subsolutions to (3.2) vanishing at (0, x).
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The proof of Proposition 3.1 is almost identical to that of Proposition 2.2 and is
therefore omitted.

We now show how viscosity solutions to (3.2) can be constructed from the Mañé poten-
tial. Suppose that L and H satisfy (2.1) and y 7→ Sc(x, y) is continuous for x ∈ Rd and
c > cL. By Proposition 2.2(i), y 7→ Sc(x, y) is a viscosity subsolution to H(y,DS(y)) = c
for each x ∈ Rd and c > cL. It follows that the function (t, y) 7→ Sc(x, y)−ct is a viscosity
subsolution of the evolutionary Hamilton-Jacobi equation (3.2). Perron’s method, see [1,
Theorem V.2.14], implies that the function U(· ;x) given by

U(t, y;x) = sup
c>cL

{Sc(x, y)− ct}, (t, y) ∈ [0,∞)× Rd, (3.3)

is also a viscosity subsolution to (3.2). Moreover, (t, y) 7→ Sc(x, y) − ct is a viscosity
solution to (3.2) on Rd \ {x}. This property also transfers to U(t, y;x) as the following
proposition shows.

Proposition 3.2. For x ∈ Rd, the function U in (3.3) is a viscosity solution to (3.2) on
(0,∞)× Rd \ {x}.

Proof. Since y 7→ Sc(x, y) is a viscosity subsolution to H(y,DS(y)) = c, for any c > cL,
it follows by Perron’s method that U(t, y;x) is a viscosity subsolution to (3.2). It remains
to show the supersolution property.

Fix x ∈ Rd and take v ∈ C∞((0,∞) × Rd \ {x}). Suppose that U(· ;x) − v has a
local minimum at (t0, y0) where t0 > 0 and y0 6= x. We must show that vt(t0, y0) +
H(y0, Dv(t0, y0)) ≥ 0.

Suppose, on the contrary, that there exist θ > 0 and δ > 0 such that

vt(t, y) +H(y,Dv(t, y)) ≤ −θ,

for all (t, y) with |t − t0| + |y − y0| < δ. We will arrive at a contradiction by showing
that there is a c > cL for which the viscosity supersolution property is violated for the
function (t, y) 7→ Sc(x, y)− ct at some point (t, y), t > 0, y 6= x.

We may assume that the δ above is sufficiently small that |x− y0| > δ and

U(t, y;x)− v(t, y) ≥ U(t0, y0;x)− v(t0, y0),

for all (t, y) with |t− t0|+ |y− y0| < δ. Then, the subsolution property is strict at (t0, y0)
in the sense that there is a θ1 > 0 such that, for all w ∈ C∞((0,∞)×Rd \ {x}) such that
U(· ;x)− w has a local maximum at (t0, y0)

wt(t, y) +H(y,Dw(t, y)) ≤ −θ1, (3.4)

for all |t − t0| + |y − y0| < δ1, some δ1 > 0. To prove (3.4), observe first that since
U(· ;x) − w has a local maximum at (t0, y0) and U(· ;x) − v has a local minimum at
(t0, y0) we may select δ1 such that

U(t, y;x)− w(t, y) ≤ U(t0, y0;x)− w(t0, y0),

U(t, y;x)− v(t, y) ≥ U(t0, y0;x)− v(t0, y0),

for all (t, y) with |t− t0|+ |y − y0| < δ1. Consequently, w − v satisfies

w(t, y)− v(t, y) ≥ w(t0, y0)− v(t0, y0),
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for all (t, y) with |t− t0|+ |y − y0| < δ1 so w − v has a local minimum at (t0, y0). Since
both v and w are in C∞((0,∞) × Rd \ {x}) it follows that wt(t0, y0) = vt(t0, y0) and
Dw(t0, y0) = Dv(t0, y0). We conclude that

wt(t0, y0) +H(y0, Dw(t0, y0)) = vt(t0, y0) +H(y0, Dv(t0, y0)) ≤ −θ.

Now (3.4) follows by taking θ1 ∈ (0, θ) and using continuity of H, wt and Dw.
Without loss of generality we assume that w in (3.4) is such that w(t0, y0) = U(t0, y0;x)

and w(t, y) > U(t, y;x), |t − t0| + |y − y0| < δ1. Take 0 < ε < δ1 so that (3.4) holds on
N ε = {(t, y) : |t− t0|+ |y − y0| ≤ ε}. Since w(t, y) > U(t, y;x) on ∂Nε there is an η > 0
such that

w(t, y)− η ≥ U(t, y;x), (t, y) ∈ ∂Nε.

Moreover, we may select c > cL such that

Sc(x, y0)− ct0 > U(t0, y0;x)− η = w(t0, y0)− η.

Rewriting the last two displays we find that

Sc(x, y0)− ct0 − w(t0, y0) > −η,
Sc(x, y)− ct− w(t, y) ≤ −η, (t, y) ∈ ∂Nε.

It follows that the maximum of the continuous function (t, y) 7→ Sc(x, y) − ct − w(t, y)
over the compact set N ε is attained at some (tε, yε) in the open neighborhood Nε and by
(3.4)

wt(tε, yε) +H(yε, Dw(tε, yε)) ≤ −θ1.

Let vε ∈ C∞((0,∞)×Rd \ {x}) be such that the function (t, y) 7→ Sc(x, y)− ct− vε(t, y)
has a local minimum at (tε, yε). Then, there is a δ2 > 0 such that

Sc(x, y)− ct− w(t, y) ≤ Sc(x, yε)− ctε − w(tε, yε),

Sc(x, y)− ct− vε(t, y) ≤ Sc(x, yε)− ctε − vε(tε, yε),

for all (t, y) with |t − tε| + |y − yε| < δ2. Consequently, w − vε has a local minimum at
(tε, yε) and wt(tε, yε) = vεt(tε, yε) and Dw(tε, yε) = Dvε(tε, yε). We conclude that

vεt(tε, yε) +H(yε, Dv
ε(tε, yε)) = wt(tε, yε) +H(yε, Dw(tε, yε)) ≤ −θ1 < 0.

The last display contradicts the viscosity supersolution property of (t, y) 7→ Sc(x, y)− ct
at (tε, yε). We conclude that the supersolution property holds for U(· ;x) on (0,∞) ×
Rd \ {x}. �

Take x ∈ Rd and assume the required continuity. By Proposition 3.1 and Proposition
3.2 both (t, y) 7→ M(t, y;x) and (t, y) 7→ U(t, y;x) are viscosity solutions to (3.2) on
(0,∞) × Rd \ {x}. At t = 0, M(0, y;x) = U(0, y;x) = ∞ if y 6= x and = 0 if y =
x. However, in the present setting there is no valid comparison principle so equality
between M and U need not hold for t > 0. Indeed, by Theorem 4.1, when d = 1
M(t, y;x) = U(t, y;x) for t ≤ tL, but it may happen that M(t, y;x) > U(t, y;x) for
t > tL as illustrated in Example 4.3.
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4. The duality theorem

We now move to state and prove a duality result between between the Mañé potential
(2.2) and the action functional (3.1) in R. The duality may fail when constraints on the
time t in the action functional is not satisfied and we include an example that illustrates
this; we also compute the Mañé potential for the Hamiltonians used in Examples 2.1 and
2.2.

From the definition (2.2) of the Mañé potential it follows immediately that, for x, y ∈
Rd,

Sc(x, y) = inf
t>0
{M(t, y;x) + ct}.

The dual relationship holds in R for all t not too large. Let cL denote the infimum over
all c such that Sc > −∞.

Theorem 4.1. Assume (2.1). For each x, y ∈ Rd and c ∈ R,

Sc(x, y) = inf
t>0
{M(t, y;x) + ct}, (4.1)

For x, y ∈ R and t < tL = limc↓cL ∂c+S
c(x, y),

M(t, y;x) = sup
c>cL

{Sc(x, y)− ct}. (4.2)

Moreover, if ScL > −∞, then (4.2) holds for t = tL and, in addition, if either x ∈ A :=
{x : L(x, 0) = −cL} or y ∈ A, then (4.2) holds for all t > 0 and

M(t, y;x) = ScL(x, y)− cLt,

for t ≥ tL.

Before proceeding with the proof ot Theorem 4.1, we give an intuitive physical interpre-
tation of the duality between Sc(x, y) and M(t, y;x). The optimal t in the representation
(4.1) is the optimal time it takes to move from x to y in a system with energy level c.
Similarly, the optimal c in the representation (4.2) is the energy level at which it takes
precisely time t to move from x to y along the most-cost efficient path. The duality may
fail if t is sufficiently large that it exceeds the optimal time in the definition of ScL(x, y)
. In convex analysis terms: c 7→ Sc(x, y) is always concave but t 7→ M(t, y;x) is convex
only for t < tL. Example 4.3 serves as an illustration.

Proof of Theorem 4.1. As mentioned above (4.1) follows from the definition (2.2) of the
Mañé potential. Let us prove (4.2). By (4.1) it follows that

sup
c>cL

{Sc(x, y)− ct} = sup
c>cL

inf
s>0
{M(s, y;x)− c(t− s)} ≤M(t, y;x),

by taking s = t, so it is sufficient to prove M(t, y;x) ≤ supc>cL{S
c(x, y) − ct}. Take

x, y ∈ R and suppose that y > x and tL > 0. The argument for y < x is similar. The
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proof relies on the construction of a convex upper bound M̃(·, y;x) of M(·, y;x). Let

M(t, y;x) = {ψ : [0, t]→ R, abs. cont., ψ(0) = x, ψ(t) = y, ψ strictly increasing}, t > 0,

M = ∪t>0M(t, y;x),

M−1 = {ψ−1 : ψ ∈M},

M−1
1 = {ξ : ξ(z) =

d

dz
ψ−1(z), ψ−1 ∈M−1}.

Since each ψ ∈M is absolutely continuous and strictly increasing, so is ψ−1. Moreover,
ψ−1(x) = 0 and ψ−1(t) = y for some t > 0. Consequently, each ξ ∈ M−1

1 is strictly
positive a.e. and

∫ y
x
ξ(z)dz = t for some t > 0. By a change of variables it follows that,

for all t > 0,

M(t, y;x) ≤ inf
ψ∈M

{∫ t

0

L(ψ(s), ψ̇(s)) ds, ψ(t) = y
}

= inf
ξ∈M−1

1

{∫ y

x

L
(
z,

1

ξ(z)

)
ξ(z)dz,

∫ y

x

ξ(z)dz = t
}

=: M̃(t, y;x).

By the convexity of v 7→ L(x, v) it follows that F : ξ 7→
∫ y
x
L(z, 1

ξ(z)
)ξ(z)dz is convex and,

consequently, M̃(t, y;x) is the value of the following convex optimization problem: min-
imize the convex functional F over the convex set M−1

1 , subject to the linear constraint
G(ξ) :=

∫ y
x
ξ(z)dz = t.

For c ∈ R, let

S̃c(x, y) = inf
ψ∈M

{∫ t

0

c+ L(ψ(s), ψ̇(s))ds, t > 0
}

= inf
ξ∈M−1

1

{F (ξ) + cG(ξ)}.

The proof proceeds by showing the relation

M̃(t, y;x) = sup
c∈R
{S̃c(x, y)− ct}, for all t > 0. (4.3)

To prove (4.3), let A be the convex set

A = {(r, s) ∈ (−∞,∞)× (0,∞) : r ≥ F (ξ), s = G(ξ), some ξ ∈M−1
1 }.

The following representation then holds for any c ∈ R:

S̃c(x, y) = inf
ξ∈M−1

1

{F (ξ) + cG(ξ)} = inf
(r,s)∈A

{〈(1, c), (r, s)〉}.

Take t > 0, let µt = M̃(t, y;x) = infξ∈M−1
1
{F (ξ), G(ξ) = t} and (1, ct) be the normal

vector to the tangent plane of A at (µt, t). If A has a corner at (µt, t) so that ct is not
unique, take the largest ct. By the choice of ct

0 ≤ 〈(1, ct), (r, s)− (µt, t)〉, (r, s) ∈ A.

The inequality in the last display can be rewritten as µt ≤ r+ ct(s− t) and consequently,

µt ≤ inf
(r,s)∈A

{r + ct(s− t)} ≤ inf
ξ∈M−1

1

{F (ξ) + ct(G(ξ)− t)} ≤ inf
ξ∈M−1

1

{F (ξ), G(ξ) = t} = µt.
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It follows that all inequalities in the last display are in fact equalities and, in particular,

S̃ct(x, y)− ctt = inf
(r,s)∈A

{〈(1, ct), (r, s)〉} − ctt = inf
(r,s)∈A

{〈(1, ct), (r, s− t)〉} = M̃(t, y;x).

This completes the proof of (4.3) and we conclude that

M(t, y;x) ≤ M̃(t, y;x) = S̃ct(x, y)− ctt.
We proceed by showing that

Sc(x, y) = S̃c(x, y), c > cL. (4.4)

To prove (4.4) take c > cL. The inequality S̃c(x, y) ≥ Sc(x, y) is trivial, so it is sufficient
to show S̃c(x, y) ≤ Sc(x, y). Suppose, on the contrary, that there exist ε > 0, T > 0 and
an absolutely continuous path ψ with ψ(0) = x and ψ(T ) = y such that∫ T

0

(
c+ L(ψ(s), ψ̇(s))

)
ds ≤ S̃c(x, y)− ε.

Let

ψ∗(s) = sup
0≤u≤s

ψ(u) =

∫ s

0

ψ̇(u) ∨ 0 ds,

and let Bψ = {s > 0 : ψ∗(s) = ψ(s) and ψ̇(s) > 0} be the points of increase of ψ. Then∫ T

0

(
c+ L(ψ(s), ψ̇(s))

)
ds =

∫
Bψ

(
c+ L(ψ(s), ψ̇(s))

)
ds+

∫
Bcψ

(
c+ L(ψ(s), ψ̇(s))

)
ds

=

∫
Bψ

(
c+ L(ψ∗(s), ψ̇∗(s))

)
ds+

∫
Bcψ

(
c+ L(ψ(s), ψ̇(s))

)
ds

≥ S̃c(x, y) +

∫
Bcψ

(
c+ L(ψ(s), ψ̇(s))

)
ds.

Consequently, ∫
Bcψ

(
c+ L(ψ(s), ψ̇(s))

)
ds ≤ −ε.

It follows that ψ has some excursion with negative cost. Repeating this excursion N
times implies that

Sc(x, y) ≤ S̃c(x, y) +N

∫
Scψ

(
c+ L(ψ(s), ψ̇(s))

)
ds ≤ S̃c(x, y)−Nε.

Letting N → ∞ implies Sc(x, y) = −∞, which contradicts c > cL. We conclude that
Sc(x, y) = S̃c(x, y) for c > cL. This proves (4.4).

Next we show that

t < tL implies ct > cL. (4.5)

To see this, suppose t < tL. By (4.4) it follows that

lim
c↓cL

∂c+S̃
c(x, y) = lim

c↓cL
∂c+S

c(x, y) = tL > t.
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Since c 7→ S̃c(x, y)− ct is concave with with supremum at ct, it follows that

∂c−S̃
ct(x, y) ≥ t ≥ ∂c+S̃

ct(x, y),

and, furthermore, that

tL > t ≥ ∂c+S̃
ct(x, y).

Concavity of c 7→ S̃c(x, y) implies that c 7→ ∂c+S̃
ct(x, y) is non-increasing and we conclude

that ct > cL. This proves (4.5).
The proof of (4.2) is completed by combining (4.3), (4.4) and (4.5). Indeed, with x < y

and t < tL, by (4.3)

M(t, y;x) ≤ S̃ct(x, y)− ctt.

By (4.5) it follows that ct > cL and finally (4.4) shows that

M(t, y;x) ≤ S̃ct(x, y)− ctt ≤ Sct(x, y)− ctt.

This completes the proof of (4.2).
Suppose ScL > −∞. Then, by similar arguments, (4.4) holds for c ≥ cL and (4.5) can

be restated as

t ≤ tL implies ct ≥ cL,

which implies that (4.2) holds for all t ≤ tL. To prove the final statement, take x ∈ A,
y ∈ R and t ≥ tL. Since x ∈ A it follows that L(x, 0) = −cL and therefore,

M(t, y;x) ≤M(t− tL, x;x) +M(tL, y;x)

≤
∫ t−tL

0

L(x, 0)ds+M(tL, y;x)

= −cL(t− tL) +M(tL, y;x).

The proof is completed by showing

M(tL, y;x) = ScL(x, y)− cLtL.

Since ScL > −∞ it follows that

M(tL, y;x) = sup
c≥cL
{Sc(x, y)− ctL}.

As c 7→ ∂c+S
c(x, y) is non-decreasing and, by definition of tL,

∂c+S
c(x, y)− tL ≤ 0, c > cL

it follows that the concave function c 7→ Sc(x, y)−ctL achieves its maximum over [cL,∞)
at cL. Consequently

M(tL, y;x) = ScL(x, y)− cLtL.
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If instead y ∈ A and x ∈ R, then, similarly

M(t, y;x) ≤M(tL, y;x) +M(t− tL, y; y)

≤M(tL, y;x) +

∫ t−tL

0

L(x, 0)ds

= M(tL, y;x)− cL(t− tL)

= ScL(x, y)− cLt.

This completes the proof. �

Remark 4.2. For the set A we have the representation A = {x : L(x, 0) = −cL} = {x :
infpH(x, p) = cL}. In many of the examples considered in this paper this set is identical
to the projected Aubry set, see for example [14, 13].

Example 4.3. Consider the Lagrangian

L(x, v) =
v2

2
+
x2

2
,

with convex conjugate

H(x, p) =
p2

2
− x2

2
. (4.6)

Suppose that x > 0 and y > x. The claim is that for t sufficiently large, M(t, y;x) >
U(t, y;x).

The Euler-Lagrange equation associated with M is

ψ(s)− d

ds
ψ̇(s) = 0,

with boundary conditions ψ(0) = x, ψ(t) = y. The solution to this ODE is given by

ψ(s) =
y − xe−t

2 sinh(t)
es +

xet − y
2 sinh(t)

e−s,

and the associated time derivative is

ψ̇(s) =
y − xe−t

2 sinh(t)
es − xet − y

2 sinh(t)
e−s.

It follows that the cost associated with this (optimal) trajectory is

M(t, y;x) =
1

2

∫ t

0

(
ψ(s)2 + ψ̇(s)2

)
ds =

x2 + y2

2

cosh(t)

sinh(t)
− xy

sinh(t)
.

The Mañé potential is given by

Sc(x, y) =

∫ y

x

sign(z − x)
√
z2 + 2cdz

=
1

2

(
y
√

2c+ y2 − x
√

2c+ x2 + 2c log

(√
2c+ y2 + y√
2c+ x2 + x

))
.
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One way to see this is via Proposition 2.2. The stationary Hamilton-Jacobi equation
takes the form

DSc(x, y)2

2
− y2

2
= c,

where D denotes gradient with respect to y. The expression for Sc(x, y) is obtained
by solving for DSc(x, y), integrating from x to y, and using that Sc is the maximal
subsolution, see Proposition 2.2(ii). From (2.6) it follows that cL ≥ 0 and it is easy to
check that equality holds in this case, that is, cL = 0.

To illustrate that the duality of Theorem 4.1 does not necessarily hold for t > tL(x, y),
we compare the derived expressions for M(t, y;x) and U(t, y;x) = supc>cL{S

c(x, y)− ct}
for specific choices of x, y, and t; the optimization over c in U(t, y;x) is solved numerically.
Figure 1 shows U and M as functions of t for x = 0.5, y = 1. Note that this is an arbitrary
choice of x and y and it is easily checked that similar characteristics appear for other
choices. A closer look at U and M for this particular choice of x and y reveals that the

Time t
0.2 0.4 0.6 0.8 1

0.4

0.6

0.8

1

1.2 U(t,y;x)

M(t,y;x)

Figure 1. U(t, y;x) and M(t, y;x) for x = 0.5, y = 1.

duality ceases to hold at (roughly) t ≈ 0.6931.
For the specific choice (4.6) of Hamiltonian H, Sc(x, y) is clearly continuous in c and it

is elementary to compute ∂c+S
c(x, y) = (∂/∂c)Sc(x, y) as well as the (right-hand) limit
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as c→ cL:

tL(x, y) = lim
c→cL

∂c+S
c(x, y)

=
y

2
√

2cL + y2
− x

2
√

2cL + x2
+ log

(
y +

√
2cL + y2

x+
√

2cL + x2

)

+ cL

(
1

2cL + y2 + y
√

2cL + y2
− 1

2cL + x2 + x
√

2cL + x2

)
.

For the choice x = 0.5, y = 1 the limit is tL ≈ 0.6931, and we have already seen that
M(t, y;x) > U(t, y;x) for t > 0.6931. This illustrates that the duality can cease to hold
for t > tL(x, y).

Next, consider the choice x = 0 ∈ A. Then

M(t, y; 0) =
y2

2

cosh(t)

sinh(t)
,

and

Sc(0, y) =
y

2

√
2c+ y2 + c log

(
y√
2c

+

√
y2

2c
+ 1

)
.

It is straightforward to check that in this case M(t, y; 0) and U(t, y; 0) agree for all choices
of y and t > 0. In fact, differentiating Sc(0, y) with respect to c reveals that tL = ∞ in
this case.

We end this section by computing the Mañé potential for two examples of the Hamil-
tonian H connected to common stochastic processes: critical diffusion and birth-and-
death process (see Examples 2.1-2.2).

Example 4.1 (Critical diffusion process). Consider the Hamiltonian H(y, p) = b(y)p +
1
2
|p|2, where b(y) = −DU(y) for some potential function U : R → R such that cH = 0.

The function y 7→ Sc(x, y) is a viscosity solution to H(y,DS(y)) = c for all y 6= x and
all solutions p to this equation are of the form

p(y) =
(
DU(y)±

√
DU(y)2 + 2c

)
.

S̄c(x, ·) is a primitive function of p, and the maximal of all subsolutions vanishing at x, see
Proposition 2.2(ii). Therefore the ± sign must be selected as sign(z − x). Consequently,
the Mañé potential is given by

S̄c(x, y) =

∫ y

x

(
DU(z) + sign(z − x)

√
DU(z)2 + 2c

)
dz.

Example 4.2 (Birth-and-death process). We consider the setting of Example 2.2: (a, b) ⊂
R and µ : (a, b) → [0,∞) and λ : (a, b) → [0,∞) satisfy

∫ b
a

log(
√
µ(y)/λ(y))dy < ∞.

The Hamiltonian of a birth-and-death process with intensity functions λ and µ is given
by

H(y, p) = λ(y)(ep − 1) + µ(y)(e−p − 1).
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To compute the Mañé potential, observe that in this example the function

pc(y) = log

[
c+ λ(y) + µ(y)

2λ(y)
±

√(c+ λ(y) + µ(y)

2λ(y)

)2

− µ(y)

λ(y)

]
,

is the solution toH(y, pc(y)) = c. The Mañé potential y 7→ S̄c(x, y) is a primitive function
of pc, and the maximal of all viscosity subsolutions vanishing at x, see Proposition 2.2.
Therefore the ± sign must be taken as positive for trajectories to the right, y > x, and
negative for trajectories to the left, y < x. Consequently, the Mañé potential is given by

S̄c(x, y) =

∫ y

x

log

[
c+ λ(z) + µ(z)

2λ(z)
+ sign(z − x)

√(c+ λ(z) + µ(z)

2λ(z)

)2

− µ(z)

λ(z)

]
dz.

5. Min-max representation of viscosity solutions

In this section we demonstrate how the duality in Theorem 4.1 leads to min-max
representations of viscosity solutions of initial value problems, terminal value problems
and problems on domains. Since Theorem 4.1 is established in the one-dimensional
setting, all the results of this section are also be restricted to the one-dimensional setting.
The starting point is the evolutionary Hamilton-Jacobi equation

Vt(t, y) +H(y,DV (t, y)) = 0, (t, y) ∈ (0,∞)× R, (5.1)

which is (3.2) with n = 1.

5.1. Min-max representation for initial value problems. Given an initial function
g : R → R, the initial value problem for the Hamilton-Jacobi equation is to find V :
[0,∞)× R→ R such that

V satisfies (5.1) and V (0, y) = g(y), y ∈ R. (5.2)

A continuous function V : (0,∞)×R→ R is a viscosity subsolution (supersolution) if it
is a viscosity subsolution (supersolution) to (3.2) and V (0, y) ≤ g(y) (≥ g(y)).

If V is uniformly continuous and H satisfies Condition 5.1 below, then the comparison
principle holds and the solution of the initial value problem is unique, see e.g. Theorem
3.7 and Remark 3.8 in Chapter II of [1].

Condition 5.1. H is uniformly continuous on Rd ×B0(R) for each R > 0 and

|H(x, p)−H(y, p)| ≤ ω(|x− y|(1 + |p|)), for x, y, p ∈ Rd,

where B0(R) = {p ∈ Rn : |p| < R} and ω : [0,∞)→ [0,∞) is a continuous nondecreasing
function with ω(0) = 0.

Moreover, viscosity solutions can be given a variational representation; we state this
representation on R but it holds for arbitrary dimension d. Given an initial function
g : R→ R, let V be the value function of the variational problem

V (t, y) = inf
ψ

{
g(ψ(0)) +

∫ t

0

L(ψ(s), ψ̇(s))ds, ψ(t) = y

}
, (5.3)
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where (t, y) ∈ [0,∞)×R and the infimum is taken over all absolutely continuous functions
ψ : [0,∞)→ R. It is well known that if V is continuous, then it is a continuous viscosity
solution to (5.2), see e.g. [1, Ch. III, Sec. 3].

From Theorem 4.1 the following min-max representation of V is obtained.

Proposition 5.1. Suppose that L and H are as in (2.1), with d = 1, and V is given by
(5.3). If either y ∈ A and t > 0 or y ∈ R and t < tL, then

V (t, y) = inf
x

sup
c>cL

{g(x) + Sc(x, y)− ct}. (5.4)

Moreover, if V is continuous, then it is a viscosity solution to (5.2) on [0, tL)× R.

Proof. It follows from (4.2) that

V (t, y) = inf
x
{g(x) +M(t, y;x)} = inf

x
sup
c>cL

{g(x) + Sc(x, y)− ct}.

�

5.2. Min-max representation for terminal value problems. Let the following be
given: A time T > 0, a Lagrangian L̄ and Hamiltonian H̄ as in Section 4, and a terminal
cost function g. Consider a terminal value problem with value function

V̄ (t, x) = inf
ψ

{∫ T

t

L̄(ψ(s), ψ̇(s))ds+ g(ψ(T )), ψ(t) = x

}
,

where the infimum is taken over all absolutely continuous functions ψ on [0, T ], with
ψ(t) = x. By changing the direction of the paths it follows that V̄ (t, x) is equal to

inf

{
g(ψ(0)) +

∫ T−t

0

L̄(ψ(s),−ψ̇(s))ds, ψ(T − t) = x

}
= V (T − t, x),

where V is the value function of the forward problem (5.3) with L(x, v) = L̄(x,−v).
For c > cL̄, let S̄c(x, y) denote the Mañé potential associated with L̄. Then, it holds

that S̄c(x, y) = Sc(y, x) and the min-max representation of Proposition 5.1 can be ex-
pressed as

V̄ (t, x) = V (T − t, x) = inf
y

sup
c>cL̄

{g(y) + Sc(y, x)− c(T − t)}

= inf
y

sup
c>cL̄

{g(y) + S̄c(x, y)− c(T − t)},

if either x ∈ A and t > 0 or x ∈ Rn and T − t < tL.
The Hamiltonian of the corresponding forward problem is

H(x, p) = sup
v
{〈p, v〉 − L(x, v)} = sup

v
{〈−p,−v〉 − L̄(x,−v)} = H̄(x,−p).

If V̄ is continuous, then so is V and since V is a continuous viscosity solution to (5.2) on
[0, tL) it follows that V̄ is a continuous viscosity solution to{

V̄t(t, x)− H̄(x,−DV̄ (t, x)) = 0, (t, x) ∈ [0, T )× R,
V̄ (T, x) = g(x), x ∈ R,

if T ≤ tL.
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In general, it is not possible to interchange the inf and sup in the min-max represen-
tation as the following example shows. More generally, results such as Sion’s general
minimax theorem can be applied on a case-by-case basis to check whether or not inter-
changing inf and sup is allowed.

Example 5.1. Consider a one-dimensional terminal value problem, with Hamiltonian
H̄(x, p) = H̄(p) = p + 1

2
p2 and g(x) = 0 on ∂(a, b) and g(x) = ∞ on (a, b), where

a < 1 < b and b− 1 < 1− a. Since H̄ does not depend on x we have A = R. The Mañé
critical value is cH̄ = cL = −1/2 and the Mañé potential is given by

S̄c(x, y) =

{
(y − x)(−1 +

√
1 + 2c), y ≥ x,

(x− y)(1 +
√

1 + 2c), y < x.

By performing the optimization it follows that

sup
c>cL̄

{S̄c(x, y)− c(T − t)} =

{
T−t

2
(y−x
T−t − 1)2, y ≥ x,

T−t
2

(x−y
T−t − 1)2, y < x.

and, for x < a, we have

V̄ (t, x) = inf
y∈{a,b}

sup
c>cL̄

{S̄c(x, y)− c(T − t)} = inf
y∈{a,b}

T − t
2

(y − x
T − t

− 1
)2

.

In particular, with T = 1, we have

V̄ (0, 0) = inf
y∈{a,b}

1

2
(y − 1)2 =

1

2
(b− 1)2.

Consider interchanging the order of the inf and sup. For any c > cL̄ the infimum over
the boundary is

inf
y∈{a,b}

{S̄c(0, y)− c} =

{
a(−1 +

√
1 + 2c)− c, for c ≥ 0,

b(−1 +
√

1 + 2c)− c, for c < 0.

An elementary calculation shows that supc>cL infy∈{a,b}{S̄c(0, y)− c} is equal to(
sup
c≥0
{a(−1 +

√
1 + 2c)− c}

)
∨
(

sup
c<0
{b(−1 +

√
1 + 2c)− c}

)
= 0.

We conclude that

V̄ (0, 0) = inf
y∈{a,b}

sup
c>cL̄

{S̄c(0, y)− c} > sup
c>cL̄

inf
y∈{a,b}

{S̄c(0, y)− c}.

5.3. Min-max representation for problems on domains. Let Ω := (a, b) ⊂ R be an
open interval, ∂Ω := {a, b}, g : ∂Ω→ R a function representing the boundary condition
and, for (t, y) ∈ (0,∞)× (a, b), let

V (t, y) = inf
ψ

{
g(ψ(0)) +

∫ t

0

L(ψ(s), ψ̇(s))ds, ψ(0) ∈ ∂Ω, ψ(t) = y

}
,

where the infimum is taken over all absolutely continuous functions ψ : [0,∞)→ Ω, with
ψ(0) ∈ ∂Ω and ψ(t) ∈ Ω, t > 0. If either y ∈ A and t > 0 or y ∈ R and t < tL, then the
min-max representation is given by

V (t, y) = inf
x∈{a,b}

sup
c>cL

{g(x) + Sc(x, y)− ct}. (5.5)
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If V is continuous, then it is a continuous viscosity solution to{
Vt(t, y) +H(y,DV (t, y)) = 0, (t, y) ∈ (0,∞)× Ω,

V (0, y) = g(y), y ∈ ∂Ω.

Similarly, the terminal value problem on Ω is

V̄ (t, x) = inf

{∫ T

t

L̄(ψ(s), ψ̇(s))ds+ g(ψ(T )), ψ(t) = x, ψ(T ) ∈ ∂Ω

}
,

where (t, x) ∈ [0, T ) × Ω. If either x ∈ A and t > 0 or x ∈ R and T − t < tL, then the
min-max representation is given by

V̄ (t, x) = inf
y∈∂Ω

sup
c>cL̄

{g(y) + S̄c(x, y)− c(T − t)} (5.6)

If V̄ is continuous, then it is a continuous viscosity solution to{
V̄t(t, x)− H̄(x,−DV̄ (t, x)) = 0, (t, x) ∈ [0, T )× Ω,

V̄ (T, x) = g(x), x ∈ ∂Ω.
(5.7)

5.4. Min-max representation for exit problems. Let Ω : (a, b) ⊂ R be an open
interval, ∂Ω := {a, b}, g : ∂Ω→ R be the boundary condition and take T > 0. Consider
the minimal cost W̄ of leaving the interval before time T , when starting from (t, x) ∈
[0, T )× Ω. The function W̄ is given by

W̄ (t, x) = inf
ψ,σ

{∫ σ

t

L̄(ψ(s), ψ̇(s))ds+ g(ψ(σ)), ψ(t) = x, ψ(σ) ∈ ∂Ω

}
,

where t ≤ σ ≤ T . By the change of variables, τ = T − σ + t, and, for t ≤ s ≤ T ,
ϕ(s) = ψ(t+ s− τ).

W̄ (t, x) = inf
ψ,t≤τ≤T

{∫ T

τ

L̄(ϕ(s), ϕ̇(s))ds+ g(ϕ(T )), ϕ(τ) = x, ϕ(T ) ∈ {a, b}
}

= inf
t≤τ≤T

V̄ (τ, x), (t, x) ∈ [0, T )× (a, b),

with V̄ as in (5.7).
If either x ∈ A or T < tL̄, then W̄ can be represented as

W̄ (t, x) = inf
t≤τ≤T

inf
y∈∂Ω

sup
c>cL̄

{g(y) + S̄c(x, y)− c(T − τ)} (5.8)

Obviously W̄ (t, x) ≤ V̄ (t, x). If cL̄ ≥ 0, then it follows that

W̄ (t, x) = inf
t≤τ≤T

inf
y∈∂Ω

sup
c>cL̄

{g(y) + S̄c(x, y)− c(T − τ)}

≥ inf
y∈∂Ω

sup
c>cL̄

inf
t≤τ≤T

{g(y) + S̄c(x, y)− c(T − τ)}

≥ inf
y∈∂Ω

sup
c>cL̄

{g(y) + S̄c(x, y)− c(T − t)}

= V̄ (t, x).

We have proved the following.
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Proposition 5.2. If cL̄ ≥ 0 and either x ∈ A or T < tL̄, then W̄ (t, x) = V̄ (t, x),
0 ≤ t ≤ T .

Note also that if W̄ is continuous, then it is a continuous viscosity solution to{
W̄t(t, x)− H̄(x,−DW̄ (t, x)) = 0, (t, x) ∈ [0, T )× Ω,

W̄ (t, x) = g(x), (t, x) ∈ [0, T ]× ∂Ω.
(5.9)

6. The Hopf-Lax-Oleinik representation

Suppose the Hamiltonian H is state-independent, H(x, p) = H(p), and convex. Then
A = Rd (d ≥ 1). If g is uniformly continuous, then the Hopf-Lax-Oleinik representation,
see [12, Ch. X], states that the function

V (t, y) = inf
x

{
g(x) + tL

(y − x
t

)}
, (6.1)

is the unique continuous viscosity solution to{
Vt(t, y) +H(DV (t, y)) = 0, (t, y) ∈ (0,∞)× Rd,

V (0, y) = g(y), y ∈ Rd.

We will demonstrate a direct relation between the Hopf-Lax-Oleinik representation and n-
dimensional versions of the duality theorem and min-max representation (5.4) (available
due to the state-independence of the Hamiltonian).

Proposition 6.1. If H is convex and state-independent, then, for all y ∈ Rd,

sup
c>cL

{Sc(x, y)− ct} = tL
(y − x

t

)
.

Moreover, if the initial function g is uniformly continuous, then

V (t, y) = inf
x

sup
c>cL

{g(x) + Sc(x, y)− ct} = inf
x

{
g(x) + tL

(y − x
t

)}
.

is the unique continuous viscosity solution to (5.2).

Proof. We begin by proving the folowing inequality: for each x,

sup
c>cL

{Sc(x, y)− ct} ≥ tL
(y − x

t

)
.

Take x ∈ Rd, c > cL and observe that for p such that H(p) = c

Sc(x, y) = inf
ψ,t

{∫ t

0

H(p) + L(ψ̇(s))ds, ψ(0) = x, ψ(t) = y
}

≥ inf
ψ,t

{∫ t

0

〈p, ψ̇(s)〉ds, ψ(0) = x, ψ(t) = y
}

= 〈p, y − x〉,
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where the inequality holds due to the convex conjugacy between L and H. It follows
that

Sc(x, y)− ct ≥ sup
p:H(p)=c

{〈p, y − x〉 − tH(p)}

= t sup
p:H(p)=c

{
〈p, y − x

t
〉 −H(p)

}
.

By Proposition 2.2, Sc(x, y) = −∞ for c < cL, which implies that the supremum over
c > cL can be extended to the whole of R. That is,

sup
c>cL

{Sc(x, y)− ct} = sup
c∈R
{Sc(x, y)− ct}

≥ t sup
c∈R

sup
p:H(p)=c

{
〈p, y − x

t
〉 −H(p)

}
= tL

(y − x
t

)
.

The reverse inequality

sup
c>cL

{Sc(x, y)− ct} ≤ tL
(y − x

t

)
,

follows immediately by taking ψ̇(s) = (y − x)/t and observing that

Sc(x, y) ≤
∫ t

0

(
c+ L(ψ̇(s))

)
ds =

[
c+ L(

y − x
t

)]
t.

�

Remark 6.1. When H is state-independent the action functional reduces to tL((y −
x)/t), and Proposition 6.1 is the d-dimensional version of Theorem 4.1 for this setting.
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