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Abstract

This paper provides a unifying algorithm for computing any analytic interpolant of bounded complexity. Such computation
can be performed by solving an optimization problem, due to a theorem by Georgiou and Lindquist. This optimization
problem is numerically solvable by a continuation method. The proposed numerical algorithm is useful, among other cases,
for designing a low-degree controller for a benchmark problem in robust control. The algorithm unifies previously developed
algorithms for the Carathéodory extension and the Nevanlinna–Pick interpolation to one for more general interpolation
problems.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

It has been recognized for decades that classical an-
alytic interpolation theory, such as Carathéodory ex-
tension and Nevanlinna–Pick interpolation[26,2,17],
has interesting applications in systems and control.
Although the classical theory provides the characteri-
zation of all interpolants, it is of little use in charac-
terizing all interpolants of a certain degree, or more
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generally, complexity. The complexity of interpolants
is of major concern in applications, since it relates to
the complexity of various components/devises. There-
fore, it is important to develop the theory and com-
putational algorithms for analytic interpolation with
complexity constraint.
The first work on analytic interpolation with de-

gree constraint was done by Georgiou in[18–20]. He
showed the existence of an interpolant of bounded de-
gree for each choice of spectral zeros (or dissipative
polynomial). He also conjectured that each choice of
spectral zeros uniquely determines such an interpolant.
This conjecture was proven to be true, together with
a much stronger assertion on the smoothness of the
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parameterization, in[13], which revitalized the re-
search field. Later constructive proofs based on convex
optimization were given in[9,7]. In the recent paper
[23], the optimization approach in[9,7] was ex-
tended to a generalized analytic interpolation prob-
lem with complexity constraint, including both the
Carathéodory extension and the Nevanlinna–Pick
interpolation as special cases.
To utilize the theory in[9,7,23], robust numerical

algorithms to solve the optimization problem are in-
dispensable. In[16,24,5], we have developed such al-
gorithms for the theory of[9,7], by means of a contin-
uation method. In this paper, following the extension
of the theory in[9,7] to the one in[23], we will show
that the numerical technique in[16,24,5]still applies
to the general theory in[23]. This is the first contri-
bution of this paper.
The importance of the theory in[23] and the al-

gorithm proposed in this paper can be substantiated
by engineering applications. Such applications have
been presented in[3] for spectral estimation using or-
thonormal basis functions and in[6] for pre-filtered
AR-estimation. In this paper, we provide an applica-
tion to sensitivity shaping in robust control. Using an
example, we will show that the controller degree be-
comes much lower than with a conventionalH∞ con-
trol method thanks to the theory in[23], and that such
low degree controllers can be computed by the pro-
posed algorithm which can deal with not only inter-
polation but also derivative interpolation conditions.
This is the second contributions of this paper.
The outline of this paper is as follows. In Section 2,

the problem of analytic interpolation with complexity
constraint is formulated and the theory in[23] for this
problem is reviewed. Based on the theory, Section 3
formulates a new, more tractable optimization prob-
lem, equivalent to the original problem in a certain
sense, and gives an algorithm for solving it. Section 4
provides an example of sensitivity shaping in robust
control and shows how the proposed computational
algorithm can be used.

2. Analytic interpolation with complexity
constraint

In this section, we formulate a problem of find-
ing spectral densities subjected to both moment and

complexity conditions. This problem reduces to sev-
eral analytic interpolation problems in special cases.
We also state a theorem from[23] for this problem
concerning the existence and the uniqueness of the so-
lution.
First we will introduce some notation. LetA ∈

Cn×n andB ∈ Cn×1 be given such thatA has all eigen-
values in the open unit disc and(A,B) is a reachable
pair. The pair(A,B) constitutes a transfer function

G(z) := (I − zA)−1B. (1)

LetG∗(z) := G(z̄−1)
T
denote the point-wise complex

conjugate transpose. Using the givenG in (1), define
the following set of Hermitian matrices:

L+ :=




� ∈ Cn×n :
� = 1

2�

∫ �
−� G(ei�)�(ei�)

×G∗(ei�)d�,
� = �∗ ∈ C(T)

G∗�G ∈ C+(T)



,

whereC(T) is the space of continuous real-valued
functions on the unit circleT andC+(T) its subset of
positive functions. Also, define the set

S+ :=
{
� ∈ Cn×n : � = 1

2�

∫ �

−�
G(ei�)�(ei�)

×G∗(ei�)d�, � = �∗ ∈ C+(T)

}
. (2)

Due to[22, Theorem 1],S+ can equivalently be writ-
ten as

S+ = {� ∈ Cn×n : 2� = WE + EW ∗ >0,

W ∈ W(A)},
whereE is the reachability Grammian of(A,B) and
W(A) := {W ∈ Cn×n : AW = WA} is the set of
matrices which are polynomials inA and thus an di-
mensional linear space over the field of complex num-
bers. The matrix� is called a generalizedPick ma-
trix. ClearlyS+ ⊂ L+ since the positive definiteness
of � impliesG∗(ei�)�G(ei�)>0 for all �, and hence
G∗�G ∈ C+(T).
The problem of interest can now be stated as fol-

lows.

Problem 2.1. Let G and� ∈ S+ (or equivalently
the triple (A,B,W)) be given as above. For each
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� = �∗ ∈ C+(T), find any� ∈ C+(T) of the form

� = �
G∗�G

, � ∈ L+, (3)

which satisfies

1

2�

∫ �

−�
G(ei�)�(ei�)G∗(ei�)d� = �. (4)

Although the spectral density� is neither analytic
nor interpolates, the problem can be interpreted as an
analytic interpolation problemfor the following rea-
son. Due to Riesz–Herglotz representation theorem
[2, p. 91], the density function� corresponds to the
Carathéodory function

F(z) := 1

2�

∫ �

−�

ei� + z

ei� − z
�(ei�)d�,

which is analytic in the open unit disc and maps the
open unit disc into the open right half-plane. The
density is then the real part of the analytic function:
�(z)=2Re{F(z)}. Condition (4) can be stated in terms
of the analytic functionF as theinterpolation condi-
tion; see[22]. For instance, taking

A =



0
1 0

. . .
. . .

1 0


 , B =



1
0
...

0


 ,

W =




w0
w1 w0
...

. . .
. . .

wn−1 · · · w1 w0


 , (5)

corresponds to the conditionsF(0)/k! = wk,
k = 0, ..., n − 1, in the Carathéodory extension prob-
lem, and

A =


p1

. . .

pn


 , B =


1
...

1


 ,

W =


w1

. . .

wn


 , (6)

to the conditionsF(pk) = wk, k = 1, . . . , n, in the
Nevanlinna–Pick problem. Also derivative conditions
onF at arbitrary points in the unit disc (see, e.g.,[15])

can also be expressed as (4) with appropriateA,B and
W ; see[23]. In fact, the interpolation conditions can
equivalently be written in the operator theory style as
F(A) = W .
Constraint (3) on the density� can be interpreted

as acomplexity constraint. In the case when� is a
rational function, it degenerates to adegree constraint
of F , studied in, e.g.,[13,9,7].
In [23] Georgiou and Lindquist show the existence

and the uniqueness of a solution to Problem 2.1 by
considering an approximation problem. Furthermore,
they provide a constructive way to determine the
unique solution.

Theorem 2.2(Georgiou [23] ). Let G and� ∈ S+
(or equivalently the triple(A,B,W)) be given as
above. For each� = �∗ ∈ C+(T), there exists a
unique� = �∗ ∈ C+(T) which minimizes

S(�‖�) := 1

2�

∫ �

−�
�(ei�) log

�(ei�)

�(ei�)
d�, (7)

subject to(4).The minimizer takes the form(3)where
� is the unique minimizer of the dual functional

J�(�) := trace(��) − 1

2�

∫ �

−�
�(ei�)

× log(G∗(ei�)�G(ei�))d�, (8)

over� ∈ L+.

HereS(�‖�) is theKullback–Leibler divergence
between spectral densities. It can be viewed as a gen-
eralization of entropy (set� = 1). We emphasize that
the global strict convexity of the dual functional (8)
also gives the uniqueness of the solution to Problem
2.1. Next, we will give a numerical algorithm for solv-
ing the dual problem.

3. An algorithm for solving the optimization
problem

This section proposes a numerical algorithm to
solve the optimization problem

(OPT1) min
�∈L+

J�(�),

where the functionalJ� is defined in (8). Since the
domainL+ is a convex set and the cost functionalJ�
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is a convex function,(OPT1) is a convex optimization
problem. In fact, it has a uniqueinterior pointmini-
mizer. However, the problem may not, in some cases,
be accurately solvable. This can be attributed to the
unbounded gradient of the functional at the boundary
of the feasible region. This property is numerically un-
desirable since it leads to ill-conditioning of systems
of linear equations arising in Newton iterations; see
discussions in[16,24].
To avoid such undesirable properties we, in Sec-

tion 3.1, transform the optimization problem(OPT1)
into a new optimization problem. This new problem
is a generalization of the ones in[16,24,5], but of the
same type. To be more precise, it is in general non-
convex, but has better numerical properties. Thus, to
solve the new problem, we utilize the same numeri-
cal algorithm based on a continuation method as in
[16,24,5]. The numerical properties and the algorithm
will be sketched in Section 3.2.

3.1. An equivalent optimization problem

Here we will show that the optimization problem
(OPT1) is equivalent (in the sense explained in Propo-
sition 3.1) to the optimization problem

(OPT2) min
�∈A+

J�(�),

where the domain is the Schur stability region defined
by

A+ :=




� = [�0 �1 . . . �n−1]T
∈ R × Cn−1 : �0>0

�(z) := �0
+�1z + · · · + �n−1z

n−1 �= 0,∀z ∈ D




with the closed unit discD := {z ∈ C : |z|�1}. The
new cost functional is defined as

J�(�) := �∗K� − 2× 1

2�

∫ �

−�
�(ei�) log |�(ei�)|d�,

where then× n positive definite Hermitian matrixK
is defined by

K := L−∗�−1
�T�−TL−1. (9)

Here� is the reachability matrix of a reachable pair
(A,B) andL is the lower triangular Toeplitz matrix

defined as

L :=




1 0 · · · 0

	1 1
...

...
. . .

. . . 0
	n−1 · · · 	1 1




with 	(z) := 1+ 	1z + · · · + 	nzn := det(I − zA).
For each� ∈ L+, sinceG∗�G ∈ C+(T) and by

uniqueness up to sign of spectral factorization, there
is a unique� ∈ A+ such that

G∗(z)�G(z) = �(z)�∗(z)
	(z)	∗(z)

. (10)

Note that without the conditions�0 ∈ R and
�0>0, � in (10) is not unique since�(z)�∗(z) =
(ei��(z))(ei��(z))∗ for all � ∈ R. LetH : L+ → A+
denote the corresponding map. The optimization
problems(OPT1) and (OPT2) are equivalent in the
sense of the following proposition.

Proposition 3.1. The matrix�̂ is the unique solution
to (OPT1) if and only if �̂ is the unique solution to
(OPT2) where�̂ = H(�̂).

Proposition 3.1 tells us that we might as well solve
(OPT2). The main advantage of solving(OPT2)
rather than(OPT1) is better numerical properties, see
[16,24]. Also, in the self-conjugate case, we get a
real parameterization and avoid complex arithmetics.
The self-conjugate case is when it is possible to re-
state the problem in realA,B andW . For instance,
in Nevanlinna–Pick interpolation, it corresponds to
having the constraintsF(z̄k) = w̄k andF(zk) = wk

simultaneously.
In order to prove the proposition, we will need the

following lemma.

Lemma 3.2. The map H is a bijection. Moreover, for
each� ∈ L+,

trace(��) = �∗K�,

where� = H(�) andK is defined in(9).

Proof of Lemma 3.2. It can be shown thatL+ has
real dimension 2n− 1 [23, Lemma 4], and clearly the
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same holds forA+ and

Q+ := {q ∈ Cn×1 : Re{qTG(z)}>0,

∀z ∈ T, Im{qTB} = 0}.
Hence they are all open sets inR2n−1. SinceL+ and
Q+ are also convex, they are Euclidean (diffeomor-
phic to R2n−1) (see[11, Lemma 6.7]for a rigorous
proof). It can also be shown thatA+ is Euclidean[10,
p. 2306].
Now, H = H2 ◦ H1, whereH1 : L+ → Q+

is the finite-dimensional map sending� to q via
qTG + (qTG)∗ = G∗�G andH2 : Q+ → A+ maps
q to � via spectral factorization. By Georgiou[23,
Lemma 8], the mapH1 is injective. Now, for all com-
pactK ⊂ Q+ one can show that the inverse images
H−1

1 (K) are bounded by a contradiction argument.
Taking any sequence�k ∈ H−1

1 (K) converging to
a �0 ∈ L+, �0 ∈ H−1

1 (K) unless it lies on the
boundary ofL+ sinceH1 is continuous and injective.
However, sinceH1 maps the boundary ofL+ into
the boundary ofQ+ andK is compact,�0 cannot be
on the boundary. ThereforeH−1

1 (K) is also closed
and hence compact. ThereforeH1 is proper. Conse-
quently, sinceH1 maps between two Euclidean spaces
of the same dimension, it is a homeomorphism[12,
Lemma 2.3]and hence a bijection. ClearlyH2 is also
bijective, and hence so isH .
Finally, there is aC ∈ Cn such that

�(z)
	(z)

= CTG(z),

where the coefficients are related by the linear relation
C = �−TL−1�. Therefore, proceeding along the lines
of [23, p. 2915], we have

trace(��)

= trace

(
�

1

2�

∫ �

−�
G(ei�)�(ei�)G∗(ei�)d�

)
,

= 1

2�

∫ �

−�
trace(�G(ei�)�(ei�)G∗(ei�))d�,

= 1

2�

∫ �

−�
G∗(ei�)�G(ei�)�(ei�)d�,

= 1

2�

∫ �

−�
CTG(ei�)G∗(ei�)C�(ei�)d�,

= CT�C = C∗�TC = �∗K�.

This proves the second part of the lemma.�

Now the proof of Proposition 3.1 is straightforward.

Proof of Proposition 3.1. Let� ∈ L+ and�=H(�).
Using factorization (10) and Lemma 3.2, we have

J�(�) = trace(��) − 1

2�

∫ �

−�
�(ei�)

× log(G∗(ei�)�G(ei�))d�,

= �∗K� − 1

2�

∫ �

−�
�(ei�)(log(�(ei�)�∗(ei�))

− log(	(ei�)	∗(ei�)))d�,

= �∗K� − 2× 1

2�

∫ �

−�
�(ei�)

× log |�(ei�)|d� + c,

= J�(�) + c,

where c := − ∫ �
−� �(ei�) log(	(ei�)	∗(ei�))d�/2�.

Let �̂ be the unique optimizer of(OPT1) in L+:

J�(�̂)<J�(�), ∀� ∈ L+, � �= �̂.

Then with �̂ = H(�̂), using the bijectivity in Lemma
3.2, we equivalently have

J�(�̂) + c = J�(�̂)<J�(�) = J�(�) + c,

∀� ∈ A+, � �= �̂.

This concludes the proof.�

3.2. An algorithm for solving the new optimization
problem

The optimization problem(OPT2) is a generaliza-
tion of the optimization problems that appeared in
[16,24,5] in two ways. Firstly, interpolation condi-
tions are given in the more general formulation us-
ing the reachable pair(A,B), and secondly, the class
of �. In fact, while� in [16,24,5]was on the form
�= (

∗)/(		∗) for some stable polynomial
 of de-
gree at mostn−1, in this paper,�=�∗ is arbitrary in
C+(T). Still, the optimization problem(OPT2) is of
the same type as in[16,24,5]. It also shares the prop-
erties of having a unique global minimizer and being
locally convex around the global minimizer. To avoid
getting stuck in local, but not global, minima, we will
apply the same continuation method as in[16,24,5].
In fact, we will define auniquetrajectory from an ini-
tial point to the global optimum. By iterating close
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enough to the trajectory, we will avoid getting stuck in
a local minimum which is not global. In this section
we summarize the algorithm.
Consider a family of optimization problems

{ min
�∈A+

J��(�) : �� := 1+ �(� − 1) ∈ C+(T)},
� ∈ [0,1], (11)

which all are of the same type as(OPT2). For � = 0,
the optimization problem

min
�∈A+

J1(�)

has a minimizer in a closed form, called amaximum
entropy solution[23]. When� = 1, �1 = � and thus
the optimization problem

min
�∈A+

J�(�)

coincides with(OPT2). For� ∈ [0,1], all the solutions
�̂� constitutes a trajectory of minimizers to a family of
optimization problems (11), that we will be approx-
imately followed using a predictor–corrector method
[1]. In summary we present the algorithm below:

A predictor–corrector algorithm

1. Determine the maximum entropy solution (closed
form) and set�0 = 0.

2. (Predictor step) Pick a new�k+1> �k. Compute a
predictor step in the direction of the trajectory.

3. (Corrector step) Use Newton iterates to return to
the trajectory.

4. Iterate the Predictor and Corrector steps until
�N = 1.

Expressions for the predictor direction, the gradient
and the Hessian all generalizes directly from[24,5],
and are hence omitted here. In each Corrector step we
solve one optimization problem in (11), which is of
the type(OPT2).
By increasing�k slowly enough, the predicted

points will lie in the region of convexity, so that the
Newton iterates in the Corrector step converges. In
the implementation we check a necessary condition
for being in the region of local convexity, namely that
the Hessian is positive definite. However, increasing
�k rapidly to one reduces the number of iteration
steps. Sensible rules for choosing the sequence{�k}
are given in[16,24].

C P
r (t) e(t) u(t) y(t)

d(t)
v(t)

Fig. 1. The feedback system.

4. A low degree controller design for a
benchmark problem

InH∞ controller design, analytic interpolation with
complexity constraint has turned out to be particularly
useful [7,25,4]. In the conventional approach, one is
confined to a particular interpolant and design is per-
formed by insightful choices of weighing functions.
By parameterizing a class ofH∞ controllers of a cer-
tain degree, weighting functions can be avoided. This
gives a new paradigm for tuningH∞ controllers while
keeping controller degrees low.
In this section, we will study the “Flexible Beam”

design problem from the textbookFeedback Control
Theory[14, Sections 10.3 and 12.4]. The study indi-
cates the potential use of the proposed algorithm while
showing how the design is performed in a step-by-step
manner.

4.1. Formulation of the controller design problem

Consider the standard feedback system depicted in
Fig. 1. The plantP is given by

P(s) = −6.4750s2 + 4.0302s + 175.7700

s(5s3 + 3.5682s2 + 139.5021s + 0.0929)
,

which has one unstable pole ats=0, one non-minimum
phase zero ats = 5.5308, and one zero at infinity of
multiplicity two. The objective is to design a controller
C in Fig. 1which achieves the following conditions:

(I) C is strictly proper,
(II) the feedback system is internally stable,
(III) for a step reference signalr(t),

(i) the settling time is less than 8 seconds,
(ii) the overshoot is less than 10%, and
(iii) the control input fulfills |u(t)|�0.5 for

all t .
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In the book[14], the authors approximate the time
domain conditions (III)(i) and (III)(ii) by a frequency
domain condition. More concretely, they try to match
the frequency response of the sensitivity functionS :=
(1+PC)−1 to an “ideal” sensitivity function given by

Sideal(s) := s(s + 1.2)

s2 + 1.2s + 1
,

which captures the time domain conditions (III)(i) and
(III)(ii). We follow the same strategy, i.e., we state
the problem in the frequency domain as designing a
sensitivity functionS which achieves (I), (II) and

(III ′) the frequency response ofS is similar to that of
Sideal.

Here, we do not explicitly include condition (III)(iii).
Instead, we need to check the condition after design-
ing anS and, if necessary, redesign anS without an
unacceptable degradation of the frequency response of
S. Similarly, in the end we need to check conditions
(III)(i) and (III)(ii) since they are not guaranteed by
(III ′).

Now, we define a set of sensitivity functions

S := {S : S fulfills conditions (I), (II), and

‖S‖∞ < �}.
for some�> ‖Sideal‖∞. Our strategy is to determine
an element ofS which solves the control problem.

4.2. Reduction to an analytic interpolation problem
with degree constraint

Next, we will show that each element in the set1

P :=
{
� = �∗ ∈ C+(T) : 1

2�

×
∫ �

−�
G(ei�)�(ei�)G∗(ei�)d� = �

}
, (12)

whereG is defined in (2), determines a unique element
in the setS. We also determine the matricesA, B and
W of Section 2 for our particular control problem. We
need the following five steps to do this.
Firstly, conditions (I) and (II) can be expressed us-

ing S, see for instance[14], asS being analytic in the

1The complexity constraint (3) will be imposed on� later.

closed right half-planeC+ and satisfying conditions
at unstable poles, non-minimum phase zeros and infi-
nite zeros. For our case we get

S(0) = 0, S(5.5308) = 1, S(∞) = 1,

d

ds
S(s−1)

∣∣∣∣
s=0

= d2

ds2
S(s−1)

∣∣∣∣
s=0

= 0.

Note that the condition on the highest derivative ofS

will make the corresponding controller strictly proper.
Therefore the setS becomes

S =

S :

S is analytic inC+, ‖S‖∞ < �
S(0) = 0, S(5.5308) = 1, S(∞) = 1
d
ds S(s

−1)
∣∣
s=0 = d2

ds2
S(s−1)

∣∣∣
s=0

= 0


 .

(13)

In the second step, we introduce the new function
Ŝ(s) := S(s−1). Then we can express the interpolation
conditions for the function and its derivatives. The set
S has a one-to-one correspondence to the new set

Ŝ :=

Ŝ :

Ŝ is analytic inC+, ‖Ŝ‖∞ < �
Ŝ(∞) = 0, Ŝ(1/5.5308) = 1, Ŝ(0) = 1

d
ds Ŝ(0) = d2

ds2
Ŝ(0) = 0


.

In the third step we consider the bilinear transforma-
tions of the domain and the range as

F̂ (z) := � + Ŝ(1− z)

� − Ŝ(1+ z)
.

Transforming the data according to the bilinear trans-
formations, the set̂S has a one-to-one correspondence
to the set

F̂ :=


F̂ :

F̂ is analytic inD, F̂ + F̂ ∗ ∈ C+(T)

F̂ (−1) = 1, F̂ (0.6938) = 3.5,
F̂ (1) = 3.5

d
ds F̂ (1) = d2

ds2
F̂ (1) = 0


 .

In the fourth step we defineF(z) := F̂ (z/) for some
||<1. The reason for doing this is that some interpo-
lation points lie on the unit circle. This corresponds to
eigenvalues ofA in (1) on the unit circle, and this case
is not covered with the theory in[23]. The smaller
the worse approximation, but typically, the better be-
haved optimization problem. Here, we take = 0.90
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and get the solution set

F :=


F :

F is analytic inD, F + F ∗ ∈ C+(T)

F (−0.90) = 1, F (0.6244) = 3.5,
F (0.90) = 3.5

d
ds F (0.90) = d2

ds2
F(0.90) = 0


 .

Notice that the relation{F̂ : F̂ (z)=F(z), F ∈ F} ⊂
F̂ holds.
In the last step we define the function� := F +F ∗.

The setF is then in one-to-one correspondence with
the setP in (12), if we take

A =




0.90 0 0 0 0
1 0.90 0 0 0
0 1 0.90 0 0
0 0 0 −0.90 0
0 0 0 0 0.63


 ,

B =




1
0
0
1
1


 , W =




3.5 0 0 0 0
0 3.5 0 0 0
0 0 3.5 0 0
0 0 0 1 0
0 0 0 0 3.5


 .

To bound the controller degree, we introduce a degree
constraint onS, see[25]. To this end, note that due to
Theorem 2.2 and Lemma 3.2, for each given�=�∗ ∈
C+(T) there exists a unique element of the form

� = �
G∗�G

= �
��∗/		∗ ,

in the setP. If we restrict the form of� to � =
(

∗)/(		∗), where
 is a stable polynomial of degree
at most four, then we can guarantee that the McMillan
degree ofS is at most four. In this case, we get the set
of degree constrained spectral densities

P̂ :=
{
� ∈ P : � = 

∗

��∗ ,deg
�4,
(z) �= 0,

∀z ∈ {z : |z|�1}
}
.

This corresponds to the solution set to an analytic in-
terpolation problem with degree constraint parameter-
ized by
. For each
, we can determine the corre-
sponding element� in P̂ by using the algorithm of
Section 3.2 and successively compute the uniqueS in
S. The
 will serve as a tuning parameter in the con-
troller design.
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Fig. 2. The frequency responses of sensitivity functions for the
conventional design, our design and the ideal function. The dotted
line is the upper bound� of |S|.

4.3. Controller design in the frequency domain

Here we tune our design parameters� and
 in order
to fulfill condition (III ′). First, we determine a value of
� larger than‖Sideal‖∞ which will guarantee a certain
level of robustness. In this problem, we pick� = 1.8,
seeFig. 2.
Next, we will choose a
 of degree four to achieve

all the specifications. Using the strategies of[25] to-
gether with some trial-and-error, we pick the roots of

 asz = 0.4373± 0.7866i,0.6750, and 0.9000. With
the bilinear transformations of Section 4.2 the corre-
sponding roots in the domain ofS are s = ±1.7i,7,
and∞. The complex conjugated pair of roots on the
imaginary axis yields a peak of|S| close to that of
|Sideal|, see[25]. The other roots are chosen so that the
magnitude of the control signal fulfills the condition
(III)(iii). 2 Multiplication of 
 with a constant does
not affectS. For this choice of
, the functionS in S
and the controllerC becomes

S(s) = s4 + 15.24s3 + 64.42s2 + 132.58s

s4 + 15.24s3 + 64.42s2 + 116.21s + 90.49
,

C(s) = 12.63s3 + 9.016s2 + 352.5s + 0.2347

s4 + 20.15s3 + 139.2s2 + 448.8s + 650.7
.

(14)

2 The choice of roots of
 for condition (III)(iii) is quite
heuristic at this point.
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Fig. 3. The step responsey(t) for the closed loop systems and the corresponding control signalu(t) for the conventional and the proposed
designs.

Table 1
The performance for a conventionalH∞ design and the proposed
design.

Conventional Proposed

Controller degree 8 4
Rise time (s) 1.55 1.46
Overshoot 1.11 1.02
Settling time (s) 5.41 2.49
Max |u| 0.48 0.48

In Fig. 2 the frequency responses of the proposed de-
sign, the design of the book[14] and ofSideal are plot-
ted. One can see that our sensitivity function almost
overlapsSideal and thus in agreement with(III ′).

4.4. Performance comparison in the time domain

Now we verify the achievement of the given spec-
ification in the time domain, and compare controller
(14) with the controller designed in[14, p. 215]. The
step responses of the closed-loop systems and the cor-
responding control signals are plotted inFig. 3. In
Table 1, we can see that our design not only meets
the specifications but also provides a better perfor-
mance than the conventional design. In addition, our
controller is of half the degree.

5. Conclusions

In this paper, we have proposed a numerical algo-
rithm for computing any solution to a general class
of analytic interpolation problems with complexity
constraint. The computation amounts to solving a
convex optimization problem which has numerical
undesirable properties. We have transformed the prob-
lem into an optimization problem which is non-convex
but solvable by means of a numerical continuation
method. The proposed algorithm has successfully been
applied to a benchmark problem in robust control.
At this stage, the algorithm only works for the scalar

case. In this context, we note that the existence proof
in [18] was also done for the multivariate case. It is im-
portant to develop algorithms for multivariate versions
of analytic interpolation with complexity constraint.
One such algorithm was developed based on the the-
ory on matrix-valued interpolation with degree con-
straint in [4]. Other extensions to multivariate cases,
such as tangential interpolation (see e.g.[15]), will
be an important subject of future research. In addi-
tion, interpolants with complexity constraint having
boundary spectral zeros are important in applications.
In [21] it was shown that the parameterization in terms
of spectral zeros can be extended to the boundary, and
in [8] it was shown in a more general setting that the
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optimization approach can also be extended to the
boundary. However, a computational algorithm for the
theory is still to be developed. Furthermore, it is very
important and interesting to study how to tune theH∞
controllers in this framework. This work is initialized
in [25] but more research effort is needed.
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