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Abstract

This paper presents a new approach to shaping of the frequency response of the sensitivity function. In this approach, a desired
frequency response is assumed to be specified at a finite number of frequency points. A sensitivity shaping problem is formulated as
an approximation problem to the desired frequency response with a function in a class of sensitivity functions with a degree bound.
The sensitivity shaping problem is reduced to a finite-dimensional constrained nonlinear least-squares optimization problem. To solve the
optimization problem numerically, standard algorithms for an unconstrained version of nonlinear least-squares problems are modified to
incorporate the constraint. Numerical examples illustrate how these design parameters are tuned in an intuitive manner, as well as how
the design proceeds in actual control problems.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction (Henrion, Sebek, & Kaéra, 2003Henrion, 2003, to name
a few. However, these previous tools heavily require de-
It is well-known that thesensitivity functiondenoted by  signers’ engineering experience, knowledge and intuition in
S is one of the essential factors in determining performancesmanual selection of design parameters such as weighting
of feedback systems, such as robust stability and tracking.functions. Even for experienced designers, the manual se-
It has been recognized since the classical control era thatlection involves trial and error, which is by no means an
sensible control design can be accomplished by designingeasy task.

Sappropriately. Thus, it is significant to develop systematic  In Byrnes, Georgiou, and Lindquist (2001a new
design tools folS. paradigm is suggested for sensitivity shaping without
Much effort has been made for such development, e.g., weighting functions in an* control framework, and it
classical control methodologies such as PID-based controlis further developed iNagamune and Lindquist (2001)
and lead-lag compensationdqrowitz, 1992, both open- and Nagamune (2004ajThe paradigm is based on ana-
loop (McFarlane & Glover, 199pand closed-loop shaping  lytic interpolation theory with degree constraint initiated
techniques inH> control (e.g.,Doyle, Francis, & Tannen-  in Georgiou (1983, 1987aand carried to completion in

baum, 1992, an approach based on positive polynomials Byrnes, Lindquist, Gusev, and Matveev (199B8yrnes,
Gusev, and Lindquist (1998)and Byrnes et al. (2001)

* This paper was not presented at any IFAC meeting. This paper was |n this paradigm, design parameters apectral zerogor
recommend_ed fqr publicaFion in revised form by Associate Editor T. Sugie equivalently, Schur polynomials and additional interpo-
under the direction of Editor R. Tempo. . L . .

* Corresponding author. Tel.: +15106438903; fax: +15106426163. lation conditions. We have illustrated through numerical

E-mail addressestyozo@me.berkeley.ed(R. Nagamune), examples that the approach hMagamune (2004apften
andersb@math.kth.g@. Blomqvist). generates controllers of lower degrees than conventional
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H® controller design does. (See alBtomgvist & Naga- d
mune, 2005; Blomqvist, Lindquist, & Nagamune, 208 r e y
such examples.) However, only guidelines have been pro- c@ P@)
vided for the tuning of spectral zerosNagamune (2004a) )
n

and it would be convenient to have a method for determin-
ing these parameters in a certain optimal sense. This is the
motivation of this paper.

In this paper, for scalar systems, we shall propose a
new method to desigrs in the frequency domain. We
will formulate a sensitivity shaping problem as an approx-
imation problem, for a function in a class & with a
bounded degree, relative to a desired frequency response
given at a finite number of frequency points. The prob-
lem can be reduced to a finite-dimensional constrained
nonlinear least-squares (NLS) optimization problem. To
solve the NLS problem numerically, we will use algo-
rithms which are modifications of standard algorithms
originally developed for unconstrained NLS optimization.
Since the optimization problem is nonconvex, sensible se-rig 2 The frequency response of a “best-approximate” sensitivity function
lection of the initial point for the algorithms is crucial. S(solid curve) to datay (circles) at frequenciey (black dots orf-axis).
Some rules of thumb for such selection are suggested.

Although trial-and-error process is necessary for choos-

ing appropriate design parameters even in our approach,that can be expressed in terms of gamsitivity function

we believe that the way of selecting and tuning design ) 1

parameters is more int)l/Jitive than t%]at in prev?ous agp— 5@ =1+ PRICW@) (1)
proaCheS. This pOint will be illustrated through control inthe frequency domain. (Note that frequency domain spec-
design examples. ifications onT := 1 — §, CSandPScan be transformed

In addition to the advantage of intuitive design, another into that onS seeHelton & Marino (1998)) More pre-
important advantage of our approach over the conven-cisely, we assume that, at a given finite numbieof fre-
tional H>> methodology, including the LMI-based approach quencies) := {0}, < [0, ], a “desired” frequency re-
(lwasaki & Skelton, 1994; Gahinet & Apkarian, 1994 as Sponses := {Sk}llcv—l C C of Sis given, and we try to find
follows. To shape the frequency response, we will not rely 4 “best-approximate” sensitivity functiocdfrom a class of
on weighting functions which typically cause the increase «)owable” sensitivity functions (seBig. 22). Next, what
of controller degrees. In fact, although we will introduce \ye mean by “best-approximate” and “allowable” will be ex-
some “weights” which play a similar role to weighting plained.
functions, the weights doot affect controller degrees. Also, To clarify the meaning of “best-approximation,” we need
the weights in our approach do not assume any rationality, {5 introduce a discrepancy between the desired frequency

while the weighting functions should be rational in most response dat@, s) and a sensitivity functio. In this paper,
cases. The lack of rationality requirement increases the e yse the weighted squares sum

design flexibility.

N
d((0.9). S) = % kZ_l ;’%w(e'“k) — sil2, )
2. A sensitivity shaping problem B
where the weightsv := {wk},’{*’:1 are positive scalars to be
Consider the feedback system depicteérig. 1 Here,P chosen by the designer; if one wants a better approximation
is a given scalar real rational discrete-time pla@ndC is at the frequency;, one can choose a large, relative to
a controller to be designed to fulfill both internal stability weights at other frequencies. We remark that any specifica-
of the feedback system and some given performance specition of the form)_, wi|H(€%) — hy |2 can be expressed as
fications. In this paper, we consider only such specifications (2), wherew; andh; are fixed weights and fixed desired fre-
guency responses given at frequency grid points,Hucdn
be equal td5 CS PS or PCS In (2), the termS(e%) — s
1To be consistent with the mathematical settingBygirnes et al. is the distance of two complex numbesge% ) and s, in
(2001); Georgiou (1987b, 1999ve deal with only scalar discrete-time
systems in this paper. However, as will be shown in Section 5, our method 2The 3-D plot inFig. 2 can be interpreted as a combination of the

is applicable even to continuous-time systems with bilinear transforma- gain plot and the phase plot in the Bode diagram.
tions. 3 Division by |sk\2 is for normalization. We assumg # 0.
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the complex plane; see the dashed arroWwim 2 A “best-
approximate” sensitivity functios is the one which mini-
mizes this discrepancy for givemw, 0, s).

In this paper, we call a sensitivity functié“allowable”
if it satisfies the following four conditions:

(C1) the internal stability condition,

(C2) ne conditionsS(4;) = nj,j=1... ne, which are
specified at pointd; € C outside the unit disc,

(C3) theH* norm bound conditior ||~ <y, where for a
stable rational functio, || S || o:=mMaXpc[_n. xS €],
andy is chosen to be large enough so that there exists
an Swhich satisfies (C1), (C2), anffS||- <y, and

(C4) rationality and a degree condition, i.8.must be real
rational and de§ <n := np + nz +ne — 1, wherenp
andn; are the number of unstable poles and zeros of
the plantP, respectively.

The motivations for these conditions are as follows. (C1)
is a standard requirement for any practical feedback sys-
tem. (C2)—(C4) are motivated by the work Byrnes et al.
(2001)andNagamune (2004ajC2) increases the flexibility
of the shaping design. (S&¢agamune (2004awhere we
call these conditiongadditional interpolation constraints.
We may not need this condition for achieving required per-
formance, in which case, we just set = 0. As for (C3),
there are motivations from both control viewpoint and opti-
mization viewpoint. From control viewpoint, the constraint
(C3) is called thegain-phase margin constrairfseeHelton

& Marino (1998), p. 20, and (C3) is important to avoid a
large peak gain oS for a large stability margin. From op-
timization viewpoint, (C3) is useful to avoid choosing an
initial point far from the solution in nonconvex optimization
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degs as (C4) instead of dag, we can formulate a “nicer”
optimization problem, in the sense that the feasible set be-
comes an open connected set. See Eq. (7).

3. A finite-dimensional constrained nonlinear
least-squares problem

In this section, we will show that the sensitivity shap-
ing problem (4) can be reduced to a finite-dimensional con-
strained NLS problem.

Suppose that is a feasible point of the optimization
problem (4), i.e..S € . Then, sinceS satisfies (C4), it
can be factored a$(z) = b(z)/a(z), wherea(z) = z'a,

b(z) =7'B,ac R pe R andz:=[z", ...,z 1].

In addition, sinceS satisfies (C1) and (C2§ needs to fulfill

np + nz + ne(=n + 1) interpolation/derivative conditions
at unstable poles and zeros (including infinite zeros) of the
plant, as well as at points specified by (C2). Due to these
(n + 1) conditions, we can derive a linear relation between
p anda asp= Ka, for a uniquely determined real matrix
SeeNagamune and Blomqvist (2008)r the detail of the
construction oK. Besides, sinc& satisfies (C3)S must be
stable and meet the norm conditipfi||», < 7. The stability
condition can be stated that the denominator vegtoeeds

to be in the Schur stability region:

with notation D¢ {z ¢ C |z|>1} and z de-
fined above. The norm condition can be expressed as
y2a@?)2 — |1b(@%)|2> 0, V0 € R, which leads to spectral

factorization

=0, ..., 01" € R :0p>0

Z'a #0,Vz € D¢ ©)

that we need to solve; see Section 4. (C4) restricts a class

to a degree constrained one, which eventually leads to a re-2;(z)a(z 1) — b(2)b(z™%) = p(2)p(z 1)

striction on the controller degree; sdlmgamune (2004a),
Proposition 2.1

With definitions of the discrepaneyy in (2) and the class
of allowable sensitivity functions
S ={S : § satisfies(C1)-(C4}, 3)
the sensitivity shaping problerto be considered in this pa-
per is, for given weightsv and data0, s), to solve an opti-
mization problem:
inf dw((0,9),S). 4)
Se
Remark 2.1. Condition (C4) is the main difference of
& from the suboptimal solution set to the standafd®
control problem. In conventional reduced-ordéf® con-
troller design, we will have a rank conditiotGéhinet &
Apkarian, 1994. Such condition will be difficult to exploit
as a constraint in optimization, since the feasible set be-
comes a “thin” set; perturbation of optimization parameters
easily violate the feasibility. To the contrary, by bounding

(6)

for a uniqué spectral factop(z) := z"p with p € S.
So far, we have explained that eahe & corresponds
to somex € 2, where?l is an open set ifi"** defined by

A= {aecS:?e0) o —|e) Ka)?>>0,V0 € R},

with e(0) := [é"0, d=D0  1]T. The converse is trivial;
for eachn € A, the functionS := (zZ'Ka)/(Z'a) isin.¥. We
have also explained that, for eaghe 2, there is a unique

p € S. Actually, a much stronger assertion holds for the
map betweenrl and S, as stated in the following theorem
taken fromByrnes et al. (1995and Byrnes and Lindquist
(2000)

Theorem 3.1. To eachp € &, there exists a unique € A

such thatS(z) =b(z)/a(z) satisfieq6) and f = K« with the
uniquely determined K above. The map S to 2l sending
p to a is a diffeomorphism

4 Without the positivity conditiorg > 0 in (5), the spectral factop
would be determined uniquely up to sign.
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The proof of Theorem 3.1 is highly nontrivial. To each
p € S, the existence o € 2 in the theorem was proven
in Georgiou (1983, 1987a,b)He also conjectured the
unigueness of such. The conjecture was shown to be true
in Byrnes et al. (1995n the context of rational covariance
extensions, and later iGeorgiou (1999)and Byrnes and
Lindquist (2000)for Nevanlinna—Pick interpolation. It was
also established iByrnes et al. (1995and Byrnes and
Lindquist (2000)that the magh is a diffeomorphism, pro-
viding a complete parameterization of the sétin terms
ofpe &

Z'Kh(p)

pe S} .

Due to this parameterization o, we can reduce the
sensitivity shaping problem (4) to the following finite-
dimensional constrained NLS problem:

N T 2
1 wi |l Kh(p)
L5 ﬁ ~ha % (7)
pe€ 2 = Isk e h(p)
where e, := e(0;), k =1,..., N. SeeNagamune and

Blomqvist (2004)for the explicit form of the majh.

4. Solving the nonlinear least-squares problems

In order to solve the sensitivity shaping problem formu-
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smoothness is due to the continuous differentiability of the
residual vectorF with respect top; see Nagamune and
Blomqvist (2004 ¥or derivative expressions. This enables lo-
cal search algorithms based on derivative information, which
will be proposed in Section 4.2. For derivative-based algo-
rithms, nonconvexity means that it will not converge to a
global minimizer unless algorithms are initialized properly.
This makes the problem of finding good initial points im-
portant. Some guideline to select proper initial points will
be given in Section 4.3.

4.2. Two modified algorithms

The formulation as a NLS problem also has the advan-
tage that the problem class is well-studied and that there are
several efficient and numerically robust algorithms for solv-
ing the problem available; see eMash and Sofer (1996)
Especially, two popular algorithms are tkBauss—Newton
and thelLevenberg—Marquardinethods, which were origi-
nally developed for unconstrained NLS problems. Here, we
will modify these two algorithms in order to incorporate the
constraintp € . We will treat the constraint implicitly;
more precisely, we will enforce a bound on the step length
so that an updated point stays@ As stopping criteria, we
will either require the gradient to be close to zero, or that
the norm of the step is small for detectipggetting close
to the boundary of the feasible region. Detailed descriptions

lated in Section 2, we need a reliable and numerically robust @ré given inNagamune and Blomavist (2004)

algorithm to solve the optimization problem in (7). The pre-
cise meaning of “solving” will become clear in Section 4.1.
The problem can be written as

1
inf_ EF(p)TF(p). €)
pe

whereF : G — RZY

F(p) := [Relf1(p)}, ..., Re(fn (p)},
Im{f1(p)}, ..., Im{fn (P,

wu<§Kmm_&>’k

Isx| \ elh(p)
4.1. Properties of the optimization problem

is the vector-valued residual map

Jie(p) == 1,....,N. (9

Since the domair® of problem (8) is open, there is no
guarantee that there exists a minimizer@n In addition,

In the algorithms proposed above, we need to check fea-
sibility (p € &) and to compute the residual vectérand
its JacobiarVF. To check whethep € S, we can, e.g., re-
cursively compute the corresponding partial reflection coef-
ficients and check that they are less or equal to one in mod-
ulus, sincep is a real polynomial. Computing andVF for
a given pointp € & involves the computation dfi(p) as
shown in (9). This computation can be done by the contin-
uation method developed Blomqvist, Fanizza, and Naga-
mune (2003)which however requires some computational
effort.

4.3. Determining a good initial point

The initialization of the algorithm is most important since
the problem in general is nonconvex. If we have a con-
troller design to be improved incrementally we can initialize
with that solution. Otherwise we propose to use what we

since the cost functional in (8) is nonconvex and the domain might call theapproximate peak solutiohis also serves
@ in general is a nonconvex set, a global minimizer may as the default initial point in the MLAB implementation
not be unique, and there may even be several local minima.(Blomqgvist & Nagamune, 2004

Therefore, by “solving” (8), we mean either findindaeal
minimizerin & or anapproximation inS of a local infimizer
within a certain tolerance.

A major advantage with the formulated NLS prob-

The approximate peak solution is motivated by the tuning
rules ofNagamune (2004ayhe most effective tuning rule
is to place a complex conjugate pair of rootpafiose to the
unit circle at the frequency corresponding to a desired peak

lem is the smoothness of the cost functional in (8). This gain of the sensitivity function. Approximately knowing a
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desired peak location we place a pair of roots correspond-setting as

ingly and the rest in origin. Starting at the maximum en-

tropy (ME) solution, we can use the continuation method of 6 := {0; : dl = (1 +im)@ —io) ™ oy € o},

Blomqvist et al. (2003}o determine the approximate peak

solution. The ME solutions can be computed using the for- s:= {s; := Sq(iwk), o € }.

mula Georgiou & Lindquist, 2003, Eq. (6.2), p. 291ter
the positive real setting, with bilinear transformations.

5. Design procedure and examples

Next, through a couple of examples from the control lit-

(11)
(12)

Since we have initially no information on frequency em-
phasis, weights are setas:= {w; :=1, k=1,...,100.

The uniform upper bound of the sensitivity gain is chosen
asy := 1.5. We do not use any additional interpolation con-
dition in this problem. From the gain plot ¢, we would

like to have a peak gain around 1rad/s. Therefore, we al-

erature, we shall explain how to select and tune design pa-ways set the initial point for optimization to@in & that

rameters ¢, s, w, y and (4;, 1;)) to satisfy given design

has its roots at-0.95i, which corresponds to an approxi-

specifications. These problems assume the feedback strucate peak solution having its peak close to 1rad/s in the

ture depicted irFig. 1L To focus on the presentation of the

selection and tuning strategies, we will skip the exposition

continuous-time setting.

of the physical meanings in each problem, and presentitjusts 1.3, Controller design

as a mathematical problem. Readers interested in detailed with the initial selection of design parameters, NLSsolver
problem settings are referred to each book from which eachgytputs a controllecy and a sensitivity functiorsg. Sev-
problem is taken. In this SeCtion, “NLSsolver” stands for the eral frequency and time responses are p|ottdag"| 3 The
nonlinear least-squares optimization solver, which realizes yppermost figure shows the Bode plot £ with the de-

the theory in Sections 3 and 4.

5.1. Flexible beam control

Here, we will deal with a control problem iDoyle et al.
(1992, Sections 10 & 12yhere a desired sensitivity function
is naturally available from the specification.

5.1.1. Problem setting
The continuous-time plarR is given as

—6.4750:2 + 4.030% + 17577
5(5s3 + 3.568%2 4+ 13950215 + 0.0929

P(s) = (10)

Our goal in this problem is to design a strictly proper con-
troller C which satisfies, for a step reference

o the settling time is less than 8s,
e the overshoot is less than 10%, and
e the control input fulfills|u ()| < 0.5 for all t.

In Doyle et al. (1992)the first two requirements in the

sired frequency respong@, s). As can be seen, NLSsolver
indeed generate$ approximating(d, s).

Now, we check the original time domain specifications.
The lower figures irFig. 3 show the step response and the
input signal. Although the step response meets the specifi-
cation, the input signal is too large to fulfill the specifica-
tion |u(r)| <0.5. Therefore, we need to update some of our
design parameters, and redesign a controller.

To see the cause of large input signal, we draw the Bode
plot of the controllerCq in the middle of Fig.3. From the
figure, we see that there is a sharp gain peak around 20 rad/s.
In fact, this frequency coincides with the frequency of the
input oscillation. Therefore, one natural way to suppress the
input is to lower the gain peak .

Now, we update the design parameters. Si@ce (1 —
S)/PS, we need to mak8&close to one to decrease the gain
of C. Desired frequency responsg is almost one around
frequency 20rad/s, and thus, we increase the weight
around the frequency to f8closer tos;. (We do not change
other design parameters in this example.) After some trial
and error, we have chosen weightsis inFig. 4, that results
in the following controller and sensitivity function:

time domain have been approximated by a requirement in the

frequency domain as a desired sensitivity functis) :=
s(s + 1.2)/(s® + 1.25s + 1). We also aim at designing a
sensitivity function similar taSq, with extra consideration
of control input constraint.

5.1.2. Initial selection of design parameters

2.706s2 4 1.93152 + 75.51s + 0.05028

C(s) = ,
() = 7756983 1 33502 1 12685 1 143

(13)

s+ 2.78%3 + 19952 + 29.13s

S(@s) = .
) s4 +2.78%3 + 19952 + 25625 + 19.38

(14)

Using Sy, we extract our desired frequency response at The resulting Bode plots and response signals are shown
a finite number of frequencies. We take 100 points in the in Fig. 5, with response signals iDoyle et al. (1992)The

frequency[10~3, 10%] (rad/s), equally distanced in the log-
arithmic scale, a® := {wx}129. With these points, we set

our desired frequency responé® s) in the discrete-time

figures show that the sharp peak disappeared in the g&in of
which has been done at the price of degradation of sensitivity
fitting, and that the original time domain specifications are
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indeed satisfied. Also, one can see that we have obtained
.. . Control Input for Step
a similar performance to that iDoyle et al. (1992) We Step Response Response
stress that the degree of the controller (13) is half of the one 12 — T 05—
obtained inDoyle et al. (1992) 0.4
° o 0.3{f-
=} o
2 2 02y
5.2. Slide drive control £ g 01
< < 0
. . . . . . - 0.1t ‘ i
Here, we will deal with a slide drive control problem in 0 1 , 02b WA
the book byHelton and Marino (1998, Chapter 6.2) this 02 | Lo - Previous design 03 | Lo - Previous design
. . . 0 2 4 6 8 10 0 2 4 6 8 10
control problem, in contrast to the first example, a desired Time (sec) Time (sec)

sensitivity function is not available at the outset. We will

explain how to solve such problem with our approach. Fig. 5. Bode plots and response signals by the new design.
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5.2.1. Problem setting Bode Plot of Sensitivity Function
The plantP is given by = 12 : T T .
252 4+ 105 + 100 g 10}

P(s) := : E

54+ 7.01s3 + 1104752 + 45265 + 521 £ -20
which is stable and minimum-phase. The performance spec- £ 30 T ; R L
ifications for the continuous-time sensitivity function are 4002 101 100 ot 10°
given as 150
|S(iw)| < — 20dB, w € [0,0.1], = 100
|S(iw)| < —10dB, o €[0.1, 1.0], s 5
|S(iw)| < 6dB, o € [1.0,5.0], (15) a .
11— S(iw)| < —20dB, € [5.0,10.0], £ 0
|1— S(iw)|<—40dB w € [10.0, co]. -520_2 e - — o o =
5.2.2. Initial selection of design parameters Frequency (rad/sec)

First of all, since the plant is stable and minimum-phase, 10 Bode Plot of Complementary Sensitivity Function
we can show that our allowable st would be a singleton ) DD riinn AAdiinn 0o
S ={§: § = 1} without additional constraint§(4;) =n;; ;.;
see Proposition 1.2 ilNagamune (2004bYhe case of = ER
1 (i.e., C = 0) is obviously unsatisfactory, and thus we &~
<.

need to introduce at least one additional constraint. Here, we
will initially use two constraints as(+0.01L) =0.1 (= —
20dB) in the continuous-time setting to take into account 50
the specification over low frequencies.

Next, we need to construct a desired frequency response
from specification (15). We take 50 points[(h01, 1] (rad/s)
and 50 points in5, 100] (rad/s), equally distanced in the -100 |-+
logarithmic scale, denoted by := {w;}1%. With these 1ol AR .
points, we set our desired frequency respogke) in the 10? 10" 10° 10" 10°
discrete-time setting t6 in (11) ands as shown irFig. 6, Freauency (rad/sec)
for the specifications oveo, 1] (rad/s) and5, oc] (rad/s). Fig. 6. Bode plots ofSg and 7o := 1 — So.
On the other hand, the specification over the intermediate
frequenciegl, 5] (rad/s) is taken care of by setting the uni-
form upper bound tg := 2 (~ 6dB). The weights are set
asw:={w:=1, k=1,...,100.

[— Our Design] |

Phase (deg)

Our strategy here is to modify this, as well as to
modify/add additional constraints if necessary, after every
design iteration so that the specifications in (15) are ful-
Iq'lled. More concretely, one design iteration consists of (i)
gradually changing, toward the achievement of specifica-
tions, s and/or current additional condition$(4x) = n;,

(ii) introducing new additional conditions if necessary, (iii)
adopting an initial poinjp for NLSsolver as the minimizer

of the previous design if the design is not bad, and (iv)
designing a new controller and checking the performance
in the Bode plot. After a number of design iterations, with
four additional conditions (see the circles kig. 7), we
have obtained a controller and a sensitivity function as

Remark 5.1. As we have no information about how to select
desired phases, we set phases to zero. Although this selectio
may not be a best one, it will be one natural selection. After
the first design, we will obtain an idea how the phase should
look like; see the design below.

5.2.3. Controller design

Using the initial selections of design parameters and by
choosing the initiap whose roots locate at@(1+3i)/(1F
3i) (i.e., gain peak around 3rad/s in the continuous-time
setting), the NLSsolver returns the controll€g and the
sensitivity functionSg. Bode plots of the sensitivity function 0.22387 + 8.8755 + 82,585 -+ 965554
and complementary sensitivity function are showiig. 6, ’ 1 423153 + 79772 + é233 4 5493
in which we can see that some specifications in (15) are notC(s) = 71 928%° 1 85 (52;*’ 291057 ,
satisfied. ' o3 S 1o

Now, we will utilize Sg to generate new desired frequency + 741367+ 55115% + 59415 + 96.21
response datd@, s). The vectoi is taken at 100 frequencies S(s)
o = {0112, equally distanced in the logarithmic scale 5 . s )
over [0.01, 100]. Then, 6 is obtained by (11), and a vector ~ _ 5~ + 4.281s" + 1361s” + 9.814° + 1169 + 1.924
sis given bys:= {s; := So(iwy), k=1, ...,100}. 5%+ 4.2815% + 14.065% + 24.4352 + 24.97s + 2301
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Bode plot of desired sensitivity

=
o

o

N
S o

Magnitude (dB)

@
=)

10t

10? 10°

Weight

N
o
N

10° 10* 102

Frequency (rad/sec)

101

=
<
N

Fig. 7. Design parameters in the final design. The horizontal line in the
uppermost figure is the level=2, and the circles correspond to additional
conditions.

Bode Plot of Sensitivity Function
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Bode Plot of Complementary Sensitivity Function
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Fig. 8. Bode plots oSand7 :=1— S.
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The corresponding Bode plots &and 7 := 1 — S are
shown inFig. 8, with the design result inlelton and Marino
(1998, Chapter 6.20Ithough the complementary sensitivity
slightly violates the requirements over high frequencies, we
have obtained much lower gain in those frequencies than
that designed in the book bielton and Marino (1998)
Note that the degree of controller is seven, comparable to
the controller degree iiklelton and Marino (1998, p. 80)
which was eight.

Remark 5.2. At this point, it is quite heuristic to select
(4, n;) for additional constraints, even though we have
some guidelines for the selections as was presented in
Nagamune (2004aHow to select these design parameters
in a certain optimal sense is still an open question.

6. Conclusions

In this paper, we have proposed a new approach to design
the sensitivity function in the frequency domain. We have
formulated a sensitivity shaping problem, and reduced it
to a finite-dimensional constrained nonlinear least-squares
optimization problem. To solve this problem, we have
modified the Gauss—Newton and the Levenberg—Marquardt
methods to incorporate the constraint. Numerical examples
from the control literature have demonstrated the usefulness
of the proposed method in designing relatively low degree
controllers. We have developed a user-friendly software
for the sensitivity shaping based on the developed theory
(Nagamune & Blomqvist, 2004A multivariable extension
of the proposed sensitivity shaping method is currently un-
der investigation. In addition, a numerical comparison with
convex optimization approaches to sensitivity shaping, such
aslwasaki and Hara (2003nd Grassi et al. (2001)will
be an interesting subject.
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