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A2) (z;,w;) € D whenever(z;, w;) € D. from the one in [6] and, hence, one needs to use different treatments at
A3) zp = oc andwy is real. some parts.
For the seD, the problem is to determine all the functiofsatisfying: ~ The note is organized as follows. In Section II, we transfdinin
i) interpolation constraintsf(z;) = wj, j = 0,1,...,n, ii) strictly (2) into a new function by means of a variable change. Section Ill dis-
positive realnessf is analytic and Ref(z) > 0 for all |z| > 1, and cusses attractive properties of the new function from the optimization
iii) degree constraintf is rational of McMillan degree at most viewpoint. Based on the properties, a continuation method is applied to

Assumption Al) guarantees that the solution set of NPDC #9lve the minimization problem of the objective function in Section IV.
nonempty, A2) leads to the restriction of the solutighso rational Section V gives one numerical example to illustrate the efficiency of
functions with real coefficients (see [3, Corollary 4.6]), which aréhe proposed solver. A preliminary version of this note has appeared
especially relevant to applications, and A3) is for mathematichl [13], [14]. The proposed solver will be useful in many important
convenience. engineering problems which are reducible to the Nevanlinna—Pick in-

The classical Nevanlinna—Pick interpolation problem (see, e.g., [1&§ypolation problems, e.g., the problems presented in [2], [4], [5], [9],
requires only conditions i) and ii), but here, we have an additional coli0], and [17].
dition iii) and this completely alters the mathematical problem. The
theory for NPDC has been developed in [2], [3], [7], and [8], and its Il. FORMULATION IN TERMS OF THECOEFFICIENTS OFx

usefulness in applications has been recognized in [2] and [12]. Then [2, Appendix BJ, it was shown that the first term & in (2) does

theory completely parameterizes interpolants for NPDC in terms |%t depend on a particular choice of the functiorand that it can be

Schur polynomials. . )
- . 1
To compute each interpolant for a specified Schur polynomiafl represented in terms df in (1) as

degreen, we need to solve an optimization problem [2], [3] g+ ¢  w+w") = 'yHP7 (5)
min J,(q), J,(¢) = {g+ ¢, w+w" if the unique (modulat1) minimum-phase, derived by
q(z)+¢ (271) =a(z)a (:71) (6)

<10g(q +a ) — > 2 for someg € Q4, is expressed in terms of Cauchy kernels as) =
i viE/ (2 = ,;1) and if we define the coefficient vector gs:=
[,0,71,..../’}71] EHXC”.

We will further transform/,, to express it in terms of coefficients of
« in (4). By comparing (4) and (6), we can expresas

Here, 7 is a fixed real polynomial of degree which depends on the
interpolation points as(z) := []/_,(z — z‘j_1), the domainQ is
defined by

. o w : real polynomial of degree . n et
= 0= () g () >0, w0 [om) ] O o=t st )
¢"(2) := q(=™"), wis any real function that is analytic fn| > 1 and Then, it can be shown that the coefficientn vecter =
satisfies the interpolation constraini$z;) = w;,j = 0,1,...,nand [ nj wn]” € B is expressed b :
the inner producta, b) is defined for two real’z functionsa andb by~ * "t TT P y
(a,by == [T _a(e')b(e™")d /2. With the optimal solutiony, the a=L,Vy (8)
mterpolantf |s obtained by spectral factorization where the invertible matricé§ and L., are defined by
iy az)a (271) 1 1 cee 1
az)+q(z7") = T 4) , =t o 5t
by solvinga3* 4+ a*3 = pp* and by setting’ = 3/a. V= : : :
It was shown in [3] that (2) is a convex optimization problem with a son zom . —n
unique interior minimum, i.e., stationary point. To find the stationary - 10 ! "
point numerically, an algorithm based on Newton’s method was pro- 1
posed in [2] and [3]. This algorithm involves a system of linear equa- L, := n
tions. The system of linear equations in this algorithm can be ill-condi- : . .
tioned and the solution may be numerically inaccurate if the condition |7 -+ 7 1

number of the Hess_iaH is I_arge. _This occurs whepis close to the Due to (5)—(8), the functiod, in (2) becomes
boundary of the regio@ ., since itis known (see [3]) that the function o
J,(q) has an infinite gradient at the boundary. In addition, the spec- Jo(q) = o Ka —2(log|al. ¥) + 2 (og 7], ¥) ©)
tral factorization in (4) is often numerically hard to solve when rootghere® := pp* /77" and the positive—definite matrix
of the polynomiak lie near the unit circle, in which casgjs near the i g e INH N N
boundary ofQ_; . These disadvantages are crucial since engineering ap- K=1L," (‘/ 1) Py Lt e RUHDXY (10)
plications often require sucf, generating a sharp peak of frequencys completely determined by the interpolation data. Since the last term
responses (see [2] and [12]). Thus, a new solver which overcomesig9) is constant, it does not affect the minimization problem. Noting
drawbacks needs to be developed. This is the subject of this note. (log |a|, ¥) = (log «, ¥) for any real polynomial, we define

We employ coefficients ofv in (4) as variables in the optimization e A g .
to avoid the spectral factorization. Although this yields a nonconvex go(e) i= o Ko = 2loga, T). (11)
objective function in a nonconvex region, it turns out that the functioe also define the Schur stability region by
has a unique stationary point in the region and that it is locally convex,  _ {a c R . alz) =0 2" £0,V)z] > 1, }
around the stationary point. To find the stationary point, we apply the " ' wg >0 ’
Euler—Newton continuation method [1]. This idea was inspired by [6];he Schur stability region is open and nonconvex:#fop> 3. Since
where the solver for the rational covariance extension problem with dgsectral factorization (4) defines a one-one correspondence between
gree constraint was developed with the continuation method. Howevgojnts inS,, and Q-, the problems of finding the minimizere Q4
as will be seen later, the objective function we treat is slightly differewnt .7,(¢) in (2) and of finding the minimizea € S,, of g,(a) in (11)
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are equivalent. Thus, instead of (2), the rest of this note focuses on e will show that the Hessian is not positive definite at some patrticular

problem point. Take& = [0.1,0.05]”, which is obviously inS;. Then, the
min g,(a), where g,(a)=a’ Ka—2(loga,¥). (12) smal_lest eigenvalue_of t_he Hessianggfat& becomes nega_tive. (_The
QAES, detail of the calculation is presented in [14]). Henbe, functiory, is

Remark 1.1: The optimization problem (12) is nonconvex, which isyot globally convex in general on the regioh .
generally considered to be more difficult than the convex one. However,
there are advantages here to solve the nonconvex problem. NamelyGved_ocal Convexity of,, Around the Optimum

can avoid numerical difficulties caused by spectral factorization andWe next give another lemma which motivates us to resort to the pro-
ill-conditioning of a system of linear equations. Besides, we can Stwedure based on a continuation method to solve (12)

solve the nonconvex problem (12) in an efficient way, as explained Iy oy ma 111.2: The functiong, is strictly convex in a neighborhood

Section IV. of the global minimum.

_ Remark II.2_: This _objectiye function differs from the one dealt with Proof: With a lengthy calculation, we can show that the Hessian
in[6]inthatW in (11) is aratio of pseudo polynomials, not justa pseudga is expressed by
polynomial. Because of this difference, the approach in [6] cannot be

dopted directly h ag\" . oq ag,\" o%q 1"
adopted directly here. Ho =29\ g,% 99s 14
« (8a> q@a+ [(aq) é)azaak]k —o (14)
IIl. PROPERTIES OF THEFUNCTION g, where the second term denotes the+ 1) x (n 4 1) matrix whose
In this section, we derive some attractive propertieg,oin (11), (k+ 1.7+ 1) entry appears in the bracket. Sinfg is positive defi-
which are relevant to the optimization problem (12). nite anddyg, /9q vanishes at the optimal point (see [3]) and also since
(8q/9a) = L,;'Ty 'Ta is invertible at the optimumi, is positive
A. Unique Stationary Point definite at the optimum. By continuity of the HessiHi, Hq is pos-
itive definite in a neighborhood of the optimum. [ ]

We first state a lemma which implies thiie search for the global
optimizer ofg,, is equivalent to finding the unique stationary point.

Lemma Ill.1: The functiong, has a unique stationary poitin IV. CONTINUATION METHOD
Sn. In addition, the poiné corresponds to the minimizgre Q. of Recall that our goal is to find, for a given positive—definite maftix
J,(q) via spectral factorization (4). B and a given¥ = pp* /77", the global minimizer of the optimization
Proof: First, for a vectow = [vo,v1,...,v,]", introduce the problem (12). Owing to Lemma IIl.1, this is equivalent to finding the
operator unique stationary poirt in S,,. This pointis characterized as a solution
Vgt Up Vg ter Un of the system of nonlinear equations
Tvi=1: + R Vagp(a) = 990(@) _ 9jq -2 <1z,\11> =0 (15)
v v Jda o

which is known to be invertible wheneveris in S,,. For ana € S,, Wherez := [z",z"~',... 1]" and, with abuse of notation, the inner

there exists a unique strictly positive real functipre Q, such that Pproduct means component-wise inner products, that is

(4) holds. Define a vectay which consists of the Markov parameters <”T \Il>
of the uniquey asq = [q0. q1, - -.,¢.]", whereg(z) = go + 1 2" + .
---+gn,z " 4---. Then, the vectof can be explicitly written in terms <lz \I,> — < o *\IJ>
of a (by using [2, p. 3193, eq. (3.12)]) as Y .
—1p—1 :
g= w (13) (L, @)

L T . - . For an arbitrarily specified Schur polynomial the solutiona of
\évh/egzr_ 'L__ 15},71} ) T;;]n 'dlljteltso?:::'(?ﬁ;gomzr%fh;\elgfy that (15) must be determined in an iterative way. Because of the lack of
a T T 6"' ’ 9 ' global convexity ofy,, the initial point of the iteration must be chosen
% = (LngT’lTa)T %. sufficiently close to the (unknown) solution, which is generally hard.

o q

. . . .. On the other hand, if equalsr, then¥ = 1 and the solution of the
We know from [3] that the functiod, has a unique stationary point in svstem

Q.. Suppose that the Markov parameter vector of the unique stationary
point is denoted by. Then, it satisfiedg,/dq|q_g = 0 and hence
89, /0a|q—a = 0, wherea is a unique point s, which corresponds
via (4) tog. On the other hand, for each poine Q. other thary, let
us denote a unique point &, corresponding to the via (4) asa and
defineg by (13) witha: = @. Then, we can conclud®y, /da|a—a #
0, sinceL,, T ' Ty is nonsingular andg,/dq|q=q # 0.

2Ka—2<éz,l> =0 (16)
is well-known as the so-callezkntral solutionwhich is easy to obtain.
(Indeed, the solution of (15) in this case can be obtained by solving
a system of linear equations; see [2]). Therefore, by starting with the
central solution, we shall apply a continuation method [1] to solve (15).
B. Nonconvexity of, The method is tailored so that each point of iterations from the central
solution stays in a region of convexity of a family of optimization prob-

The fun_ction.]/, is strictly convex onQ. (_see [3]), but the global lems tending to (12). This removes the problem caused by the lack of
convexity is lost for the new objective functign. Here, one example global convexity of the functiop, .

is given to illustrate this statement.
Consider the interpolation dafao, wo) = (o0, 3) and(z1,w1) = A. Problem Normalization
(2,1.5). When we sep(z) = =z — 0.9, the cost functiory, is repre-

. . Before explaining the continuation method, for technical reasons, we
sented for an appropriate mattix as

normalize¥ by defining a new function

o (:-09) (7 =0.9) W(x
gola) =a Ka—2 <1°g“’ (z=05) (1 —05) /" =) = 2 1)>
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so that{¥, 1) = 1. This normalization can be interpreted as a scalinG. Predictor Step
of p by 1/4/{%¥, 1). Here, we should note thg®¥, 1) > 0. It can be

. . We will apply Euler's methodn this step. To be more specific, for
verified that a solutiorx of the system

a given pointax(v) and a step sizév, we move the poin&(») in the

2Ka — 2 <lz, ‘I/1> =0 (17) direction
. dialr)) = — (OF ' (Oh 1
is a multiple of the solution of (15) by the same scal (T, 1) (@(r)) = — a—a(a, v) 67(% v) A (19)
and so is? obtained vian3* + a* 3 = pp*. Hence, this scaling does . . a=q(v)
notaffect the solutiory = 3/a of NPDC. Therefore, we can shift our by the step sizév, that is
attention from (15) to the normalized problem (17). (v + ) = &(v) + d (6(v)) . (20)
B. Continuation Method This predictor step approximates the trajectory curve by a straight line.

Th tinuat thod that vt ve (17 h Note that the notation is used in the left-hand side of (20) instead of

t e continuation method that we apply to solve (17) uses a 0m&’,’since the point after the predictor step is not guaranteed to lie on the

opy trajectory. To obtaime(» + é6v), we need to calculaté(a(»)) and to
h(a,-):[0,1] — R"T! cho_ose step sizév. . ) _ _ _

First, the computation of the vectdfa(v)) in (19) is explained.

such thak(a, 0) = 0 andh(a, 1) = 0 coincide respectively with (16) The first part is the inverse of the Hessiarypf ata = &(v) and can

and (17). Recall that we want to solkéa, 1) = 0, whereagk(a, 0) = be computed according to the procedure presented in [14]. The second
0 is easy to solve. The idea of the continuation method is sketchedrt becomes as follows:

as follows. First, we solve a system of linear equatibfrs, 0) = 0. oh o o

Next, we consider a slightly different systéditxw, v) = 0 with a small- 5((1’ Y) a=d(v) = Vag(al) = 2Raw) @)

positiver. This is a nonlinear system and, hence, an iterative method is

necessary to obtain the solution. We shall apply Newton’s method he‘f‘g‘.ere the functiory is defined by

The initial point of the iteration is determined based on the solution of @) i=a"Ka-2{loga ntt + 71"
the previous systerh(a, 0) = 0 and this step is called thgredictor ’ ’ R
step while the step of solving the new systéit, v) = 0 is called the wheren(z) = [z, "2, 1]L,._1%. The gradient term in (21)

corrector step After solvmgh(a./ v) = 0, we increase t_he value of can be determined by the same calculation as in [14].

and go through the predictor and corrector steps again. We repeat th'ﬁlext, a reasonable method is proposed to determine the step length

procedure unti become_s one, that is, until we obtain the solution ogy such that the updated poin(z -+ év) does not deviate from the

h(a, 1) = 0. Inthe following, we first construct the homotopya.-)  (ynknown) point(x -+ 5) on the trajectory too much. A small devia-

and explain the predictor and corrector steps later. tion from the trajectory is necessary, due to the lack of global convexity
Now, let us define a class of functions and Lemma I11.2, for convergence of the Newton’s iteration in the cor-

P(z,v):=1+v(¥(2)—1), v €10,1]. rector step which follows this predictor step. Since, for ang [0, 1],
Note that®(z,0) = 1, ®(z,1) = ¥(z) and due to the problem the po'n'f‘?(") satisfies the |dent|t,y
normalization(1, ®(z,v)) = 1, Vv € [0, 1]. Since®(e’,0) = 1 > () Vag,, (@) =2a(v) Ka(v) = 2(1,8(z,v)) =0

0 and®(e¢?,1) = ¥, (%) > 0 forall§ € [—=, ], itis easy to verify
that®(e,») > 0 forall 8 € [—=, 7] andv € [0,1]. Hence, for
eachv, there exists a unique Schur polynomialsatisfying®(z,v) =

pvpy /77" (In fact, we do not need to determipg in our procedure; -
see [14]). Due to Lemma lIl.1, for each € [0, 1], the optimization a(v)' Ka(v) =1, Vv € ]0.1]. (22)
problem

due to (18) and since the inner product term equals one due to the nor-
malization, the trajectory(v) lies on a hyper-ellipsoid in theu(+
1)-dimensional Euclidean space, namely

Hence, the direction vectdrfa(v)) is orthogonal to the normal vector
min g, (@) g, (a):=a’ Ka—2(oga, ®(z,v)) Ka&(v) of the hyper-ellipsoid, that ig(a(v))" IKa(v) = 0. From this
HESn and the relation (22), we obtain the following:
1 alv+ ) Ka(v + 6v) =1 +d(a(v)  Kd(a(v))(5v)*. (23)
h(e,v) := Vag,, (@) = 2Ka — 2 <EZ’ o(z, V)> =0 (18 ginceris positive definite, the poink(r + 6v) lies on an enlarged
Sinceh(a, 0) = 0 andh(a, 1) = 0 are exactly (16) and (17), respec-version of the hyper-ellipsoid (22) unledsa(»)) = 0. Keeping the
tively, we have constructed the desired homotbpy, ») in (18). lastterm in (23) small will be helpful to get the small deviation from the
For eachv € [0,1], denote the unique solution of (18) &, by original hyper_—gllipsoid (22) and hence, from the trajectory. Therefore,
&(v). The class of vectorga(v) : v € [0,1]} forms a trajectory in for @ prespecified small constant> 0, we setor as
the (» + 1)-dimensional Euclidean space and the role of the predictor - 1/2
ang cforregtor s_ts_ps ishto foll(;)_w the tr;ijectory from= Otor = 1. _ bv <d(&(y))’f[(d (d(,,)))
efore describing the predictor and corrector steps, we state one "Memark IV.2: We would like to maintain the positivity of the Hes-
portant fact for trajectory following, which is the direct consequence

ofthe mplicit unction theorem [15]. Note that the Hessiamaf(e, % e o SCTERRRE ) SEELEE 0 CE R 00,
Vad,, () = 0h/da(a, v) is positive definite (and hence invertible) 9 P '

on the trajectonfa(»)}}_ due to Lemma Ill.2. in the case where the Hessian is not positive(@t+ 6v), we decrease

Lemma IV.1: The function&(v) is continuously differentiable with év from (24) until it becomes positive.
respect tas over the interval [0, 1]. Besides, the derivative is given b)b Corrector Ste

dé oh ~' (0Oh
%(V) = — <8—a(a, 1/)> <8—V(a, I/)>

has a unique minimizer i§,,, characterized by

(24)

p
Using the poinia(v + év) in (20) as an initial point and fixing
@=G(») atv + 6v, we applyNewton’s methodo pull a(v + év) back to the
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trajectory and to obtaia(»v + é»). Since the functiony,,, ,, () is method consisting of Euler-Newton predictor-corrector steps. A

strictly convex around the trajectory due to Lemma 1.2, it is expectezhange of variables has been introduced in order to remove numerical

that the Newton'’s iteration converges as long as the initial point is ndifficulties caused by the inaccuracy of spectral factorization and

far from the trajectory, that is, the valaén (24) is chosen appropriately the ill-conditioning of a system of linear equations in the previous

small. algorithm. Even though estimates of the condition number of the
In Newton’s method, we need the values of the gradient and the Heékessian and a convergence proof for the algorithm are missing,

sian ofg,, , ;, () with respect tax. The details of the calculations arenumerical experiments show that the proposed solver performs in an

given in [14]. To increase the robustness of the algorithm, we perfoefficient and numerically robust manner.

an inaccurate line search by means of the Wolfe test (see [11, p. 214]

for a detailed exposition). See [13] and [14] for the whole procedure of ACKNOWLEDGMENT

the corrector step.
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In this section, we will give one example which illustrates the effi-
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VI. CONCLUSION

A new solver for Nevanlinna—Pick interpolation with degree
constraint has been presented. The solver relies on a continuation
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