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B. Proof of Lemma 2.3

We can assume that all components ofx, y, u, v are nonzero. To
see why this is so, suppose that the result was proven for this case
and we were given four arbitrary nonzero vectorsx, y, u, andv. We
could transform them via a single nonsingular transformationT such
that each component ofTx, Ty, Tu, Tv was nonzero (Lemma 2.2).
Then for all Hermitian matricesP we would have(Tx)TP (Ty) =
xT (TTPT )y, and hence, that(Tx)TP (Ty) = �k(Tu)TP (Tv).
Then,Tx = �Tu and, thus,x = �u or Tx = �Tv andx = �v. So,
we shall assume that all components ofx, y, u, v are nonzero. Suppose
thatx is not a scalar multiple ofu to begin with. Then, for any index
i with 1 � i � n, there is some other indexj and two nonzero real
numbersci; cj such that

xi = ciui xj = cjuj ; ci 6= cj : (8)

Choose one such pair of indexesi, j. Equating the coefficients ofpii,
pjj andpij , respectively, in the identityxTPy = �kuTPv yields the
following equations:

xiyi =� kuivi (9)

xjyj =� kujvj (10)

(xiyj + xjyi) =� k(uivj + ujvi): (11)

If we combine (8) with (9) and (10), we find

yi =�
k

ci
vi (12)

yj =�
k

cj
vj : (13)

Using (9)–(13), we findciuiyj + cjujyi = �k(uivj +ujvi). Hence,
uivj(cj � ci=cj) = ujvi(cj � ci=ci). Recall thatci 6= cj , so we can
divide bycj � ci and rearrange the terms to get

ci
cj

=
vi
vj

uj
ui

: (14)

However, using (8), we find

ci
cj

=
xi
xj

uj
ui

: (15)

Combining (14) and (15) yields

vi
vj

=
xi
xj

: (16)

Thus,xi = cvi, xj = cvj for some constantc. Now, if we select
any other indexk with 1 � k � n, and writexk = ckuk thenck
must be different to at least one ofci, cj . Without loss of generality,
we may take it thatck 6= ci. Then, the aforementioned argument can
be repeated with the indexesi andk in place ofi andj to yield

xi = cvi xk = cvk: (17)

However, this can be done for any indexk so we conclude thatx = cv
for a scalarc. So, we have shown that ifx is not a scalar multiple of
u, then it is a scalar multiple ofv. To complete the proof, note that if
x = �v for a scalar� then by (9),�viyi = �kuivi for all i. Thusy =
�(k=�)u as claimed. The same argument will show that ifx = �u for
a scalar�, theny = �(k=�)v. Q.E.D
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A Robust Solver Using a Continuation Method
for Nevanlinna–Pick Interpolation With

Degree Constraint

Ryozo Nagamune

Abstract—This note modifies a previous algorithm for solving a cer-
tain convex optimization problem, introduced by Byrnes, Georgiou, and
Lindquist, to determine any Nevanlinna–Pick interpolant satisfying degree
constraint. The modified algorithm is based on a continuation method with
predictor-corrector steps and it turns out to be quite efficient and numeri-
cally robust.

Index Terms—Continuation method, degree constraint, Nevan-
linna–Pick interpolation, predictor–corrector step.

I. INTRODUCTION

This note proposes a new solver for computing interpolants for
the Nevanlinna–Pick interpolation problem with degree constraint
(NPDC), formulated as follows.

NPDC: Suppose that a setD := (zj ; wj) 2
2 n

j=0
, with dis-

tinct fzjg andjzj j > 1, is given under the following assumptions.

A1) The Pick matrixP is positive definite, where

P :=
wi + �wj

1� z�1i �z�1j

n

i;j=0

: (1)
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A2) (zj ; wj) 2 D whenever(�zj ; �wj) 2 D.
A3) z0 = 1 andw0 is real.

For the setD, the problem is to determine all the functionsf satisfying:
i) interpolation constraints:f(zj) = wj , j = 0; 1; . . . ; n, ii) strictly
positive realness:f is analytic and Ref(z) > 0 for all jzj � 1, and
iii) degree constraint:f is rational of McMillan degree at mostn.

Assumption A1) guarantees that the solution set of NPDC is
nonempty, A2) leads to the restriction of the solutionsf to rational
functions with real coefficients (see [3, Corollary 4.6]), which are
especially relevant to applications, and A3) is for mathematical
convenience.

The classical Nevanlinna–Pick interpolation problem (see, e.g., [16])
requires only conditions i) and ii), but here, we have an additional con-
dition iii) and this completely alters the mathematical problem. The
theory for NPDC has been developed in [2], [3], [7], and [8], and its
usefulness in applications has been recognized in [2] and [12]. The
theory completely parameterizes interpolants for NPDC in terms of
Schur polynomials.

To compute each interpolant for a specified Schur polynomial� of
degreen, we need to solve an optimization problem [2], [3]

min
q2Q

J�(q); J�(q) := hq + q�; w + w�i

� log (q + q�) ;
���

���
: (2)

Here,� is a fixed real polynomial of degreen which depends on the
interpolation points as� (z) := n

j=1(z � z�1j ), the domainQ+ is
defined by

Q+ := q := �

�
;

� : real polynomial of degreen
q ei� + q e�i� > 0; 8� 2 [��; �]

(3)

q�(z) := q(z�1),w is any real function that is analytic injzj � 1 and
satisfies the interpolation constraintsw(zj) = wj , j = 0; 1; . . . ; n and
the inner productha; bi is defined for two realLz functionsa andb by
ha; bi :=

�

��
a(ei�)b(e�i�)d�=2�. With the optimal solutionq, the

interpolantf is obtained by spectral factorization

q(z) + q z�1 =
�(z)� z�1

� (z)� (z�1)
(4)

by solving��� + ��� = ��� and by settingf = �=�.
It was shown in [3] that (2) is a convex optimization problem with a

unique interior minimum, i.e., stationary point. To find the stationary
point numerically, an algorithm based on Newton’s method was pro-
posed in [2] and [3]. This algorithm involves a system of linear equa-
tions. The system of linear equations in this algorithm can be ill-condi-
tioned and the solution may be numerically inaccurate if the condition
number of the HessianH is large. This occurs whenq is close to the
boundary of the regionQ+, since it is known (see [3]) that the function
J�(q) has an infinite gradient at the boundary. In addition, the spec-
tral factorization in (4) is often numerically hard to solve when roots
of the polynomial� lie near the unit circle, in which case,q is near the
boundary ofQ+. These disadvantages are crucial since engineering ap-
plications often require suchq, generating a sharp peak of frequency
responses (see [2] and [12]). Thus, a new solver which overcomes the
drawbacks needs to be developed. This is the subject of this note.

We employ coefficients of� in (4) as variables in the optimization
to avoid the spectral factorization. Although this yields a nonconvex
objective function in a nonconvex region, it turns out that the function
has a unique stationary point in the region and that it is locally convex
around the stationary point. To find the stationary point, we apply the
Euler–Newton continuation method [1]. This idea was inspired by [6],
where the solver for the rational covariance extension problem with de-
gree constraint was developed with the continuation method. However,
as will be seen later, the objective function we treat is slightly different

from the one in [6] and, hence, one needs to use different treatments at
some parts.

The note is organized as follows. In Section II, we transformJ� in
(2) into a new function by means of a variable change. Section III dis-
cusses attractive properties of the new function from the optimization
viewpoint. Based on the properties, a continuation method is applied to
solve the minimization problem of the objective function in Section IV.
Section V gives one numerical example to illustrate the efficiency of
the proposed solver. A preliminary version of this note has appeared
in [13], [14]. The proposed solver will be useful in many important
engineering problems which are reducible to the Nevanlinna–Pick in-
terpolation problems, e.g., the problems presented in [2], [4], [5], [9],
[10], and [17].

II. FORMULATION IN TERMS OF THECOEFFICIENTS OF�

In [2, Appendix B], it was shown that the first term ofJ� in (2) does
not depend on a particular choice of the functionw and that it can be
represented in terms ofP in (1) as

hq + q�; w + w�i = HP (5)

if the unique (modulo�1) minimum-phasea, derived by

q(z) + q z�1 = a(z)a z�1 (6)

for someq 2 Q+, is expressed in terms of Cauchy kernels asa(z) =
n

j=0 jz=(z � �z�1j ) and if we define the coefficient vector as :=

[0; 1; . . . ; n]
T 2 � n.

We will further transformJ� to express it in terms of coefficients of
� in (4). By comparing (4) and (6), we can expressa as

a(z) =
�(z)

� (z)
=:

�0z
n + �1z

n�1 + � � �+ �n
zn + �1zn�1 + � � �+ �n

: (7)

Then, it can be shown that the coefficient vector��� :=
[�0; �1; . . . ; �n]

T 2 n+1 is expressed by

��� = LnV  (8)

where the invertible matricesV andLn are defined by

V :=

1 1 � � � 1

�z�10 �z�11 � � � �z�1n

...
...

...
�z�n0 �z�n1 � � � �z�nn

Ln :=

1

�1 1
...

. . .
. . .

�n � � � �1 1

:

Due to (5)–(8), the functionJ� in (2) becomes

J�(q) = ���TK���� 2 hlog j�j;	i+ 2 hlog j� j;	i (9)

where	 := ���=��� and the positive–definite matrix

K := L�Tn V �1
H
PV �1L�1n 2 (n+1)�(n+1) (10)

is completely determined by the interpolation data. Since the last term
in (9) is constant, it does not affect the minimization problem. Noting
hlog j�j;	i = hlog�;	i for any real polynomial�, we define

g�(���) := ���TK���� 2hlog�;	i: (11)

We also define the Schur stability region by

Sn := ��� 2 n+1 :
�(z) := n

k=0 �kz
n�k 6= 0;8jzj � 1;

�0 > 0
:

The Schur stability region is open and nonconvex forn � 3. Since
spectral factorization (4) defines a one-one correspondence between
points inSn andQ+, the problems of finding the minimizerq 2 Q+

of J�(q) in (2) and of finding the minimizer��� 2 Sn of g�(���) in (11)



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 1, JANUARY 2003 115

are equivalent. Thus, instead of (2), the rest of this note focuses on the
problem

min
���2S

g�(���); where g�(���) = ���TK���� 2hlog�;	i: (12)

Remark II.1: The optimization problem (12) is nonconvex, which is
generally considered to be more difficult than the convex one. However,
there are advantages here to solve the nonconvex problem. Namely, we
can avoid numerical difficulties caused by spectral factorization and
ill-conditioning of a system of linear equations. Besides, we can still
solve the nonconvex problem (12) in an efficient way, as explained in
Section IV.

Remark II.2: This objective function differs from the one dealt with
in [6] in that	 in (11) is a ratio of pseudo polynomials, not just a pseudo
polynomial. Because of this difference, the approach in [6] cannot be
adopted directly here.

III. PROPERTIES OF THEFUNCTION g�

In this section, we derive some attractive properties ofg� in (11),
which are relevant to the optimization problem (12).

A. Unique Stationary Point

We first state a lemma which implies thatthe search for the global
optimizer ofg� is equivalent to finding the unique stationary point.

Lemma III.1: The functiong� has a unique stationary point̂��� in
Sn. In addition, the point̂��� corresponds to the minimizer̂q 2 Q+ of
J�(q) via spectral factorization (4).

Proof: First, for a vectorvvv = [v0; v1; . . . ; vn]
T , introduce the

operator

Tvvv :=

v0 � � � vn
... . .

.

vn

+

v0 � � � vn
. . .

...
v0

which is known to be invertible whenevervvv is in Sn. For an��� 2 Sn,
there exists a unique strictly positive real functionq 2 Q+ such that
(4) holds. Define a vectorqqq which consists of the Markov parameters
of the uniqueq asqqq = [q0; q1; . . . ; qn]

T , whereq(z) = q0+ q1z
�1 +

� � �+qnz
�n+ � � �. Then, the vectorqqq can be explicitly written in terms

of ��� (by using [2, p. 3193, eq. (3.12)]) as

qqq =
L�1n T�1��� T������

2
(13)

where ��� := [1; �1; . . . ; �n]
T . It is straight-forward to verify that

@qqq=@��� = L�1n T�1��� T���. Then, due to the chain rule, we have
@g�
@���

= L�1n T�1��� T���
T @g�

@qqq
:

We know from [3] that the functionJ� has a unique stationary point in
Q+. Suppose that the Markov parameter vector of the unique stationary
point is denoted bŷqqq. Then, it satisfies@g�=@qqqjqqq=q̂qq = 0 and hence
@g�=@���j���=�̂�� = 0, where�̂�� is a unique point inSn which corresponds
via (4) toq̂qq. On the other hand, for each pointq 2 Q+ other than̂qqq, let
us denote a unique point inSn corresponding to theq via (4) as���� and
define�qqq by (13) with��� = ����. Then, we can conclude@g�=@���j���=���� 6=
0, sinceL�1n T�1��� T ���� is nonsingular and@g�=@qqqjqqq=�qqq 6= 0.

B. Nonconvexity ofg�

The functionJ� is strictly convex onQ+ (see [3]), but the global
convexity is lost for the new objective functiong�. Here, one example
is given to illustrate this statement.

Consider the interpolation data(z0; w0) = (1; 3) and(z1; w1) =
(2; 1:5). When we set�(z) = z � 0:9, the cost functiong� is repre-
sented for an appropriate matrixK as

g�(���) = ���TK���� 2 log�;
(z � 0:9) z�1 � 0:9

(z � 0:5) (z�1 � 0:5)
:

We will show that the Hessian is not positive definite at some particular
point. Take~��� = [0:1; 0:05]T , which is obviously inS1. Then, the
smallest eigenvalue of the Hessian ofg� at ~��� becomes negative. (The
detail of the calculation is presented in [14]). Hence,the functiong� is
not globally convex in general on the regionSn.

C. Local Convexity ofg� Around the Optimum

We next give another lemma which motivates us to resort to the pro-
cedure based on a continuation method to solve (12).

Lemma III.2: The functiong� is strictly convex in a neighborhood
of the global minimum.

Proof: With a lengthy calculation, we can show that the Hessian
H��� is expressed by

H��� =
@qqq

@���

T

Hqqq
@qqq

@���
+

@g�
@qqq

T
@2qqq

@�l@�k

n

k;l=0

(14)

where the second term denotes the(n + 1) � (n + 1) matrix whose
(k + 1; l + 1) entry appears in the bracket. SinceHqqq is positive defi-
nite and@g�=@qqq vanishes at the optimal point (see [3]) and also since
(@qqq=@���) = L�1n T�1��� T��� is invertible at the optimum,H��� is positive
definite at the optimum. By continuity of the HessianH���, H��� is pos-
itive definite in a neighborhood of the optimum.

IV. CONTINUATION METHOD

Recall that our goal is to find, for a given positive–definite matrixK
and a given	 = ���=���, the global minimizer of the optimization
problem (12). Owing to Lemma III.1, this is equivalent to finding the
unique stationary point��� inSn. This point is characterized as a solution
of the system of nonlinear equations

r���g�(���) :=
@g�(���)

@���
= 2K���� 2

1

�
zzz;	 = 0 (15)

wherezzz := [zn; zn�1; . . . ; 1]T and, with abuse of notation, the inner
product means component-wise inner products, that is

1

�
zzz;	 :=

z

�
;	

z

�
;	

...
1

�
;	

:

For an arbitrarily specified Schur polynomial�, the solution��� of
(15) must be determined in an iterative way. Because of the lack of
global convexity ofg�, the initial point of the iteration must be chosen
sufficiently close to the (unknown) solution, which is generally hard.
On the other hand, if� equals� , then	 � 1 and the solution of the
system

2K���� 2
1

�
zzz; 1 = 0 (16)

is well-known as the so-calledcentral solution, which is easy to obtain.
(Indeed, the solution of (15) in this case can be obtained by solving
a system of linear equations; see [2]). Therefore, by starting with the
central solution, we shall apply a continuation method [1] to solve (15).
The method is tailored so that each point of iterations from the central
solution stays in a region of convexity of a family of optimization prob-
lems tending to (12). This removes the problem caused by the lack of
global convexity of the functiong�.

A. Problem Normalization

Before explaining the continuation method, for technical reasons, we
normalize	 by defining a new function

	1(z) :=
	(z)

h	; 1i
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so thath	1; 1i = 1. This normalization can be interpreted as a scaling
of � by 1= h	; 1i. Here, we should note thath	; 1i > 0. It can be
verified that a solution��� of the system

2K���� 2
1

�
zzz;	1 = 0 (17)

is a multiple of the solution of (15) by the same scaling1= h	; 1i
and so is� obtained via��� + ��� = ���. Hence, this scaling does
notaffect the solutionf = �=� of NPDC. Therefore, we can shift our
attention from (15) to the normalized problem (17).

B. Continuation Method

The continuation method that we apply to solve (17) uses a homo-
topy

hhh(���; �) : [0; 1] ! n+1

such thathhh(���; 0) = 0 andhhh(���; 1) = 0 coincide respectively with (16)
and (17). Recall that we want to solvehhh(���; 1) = 0, whereashhh(���; 0) =
0 is easy to solve. The idea of the continuation method is sketched
as follows. First, we solve a system of linear equationshhh(���; 0) = 0.
Next, we consider a slightly different systemhhh(���; �) = 0with a small-
positive�. This is a nonlinear system and, hence, an iterative method is
necessary to obtain the solution. We shall apply Newton’s method here.
The initial point of the iteration is determined based on the solution of
the previous systemhhh(���; 0) = 0 and this step is called thepredictor
step, while the step of solving the new systemhhh(���; �) = 0 is called the
corrector step. After solvinghhh(���; �) = 0, we increase the value of�
and go through the predictor and corrector steps again. We repeat this
procedure until� becomes one, that is, until we obtain the solution of
hhh(���; 1) = 0. In the following, we first construct the homotopyhhh(���; �)
and explain the predictor and corrector steps later.

Now, let us define a class of functions

�(z; �) := 1 + � (	1(z)� 1) ; � 2 [0; 1]:

Note that�(z; 0) = 1, �(z; 1) = 	1(z) and due to the problem
normalization,h1;�(z; �)i = 1; 8� 2 [0; 1]. Since�(ei�; 0) � 1 >
0 and�(ei�; 1) = 	1(e

i�) > 0 for all � 2 [��; �], it is easy to verify
that�(ei�; �) > 0 for all � 2 [��; �] and� 2 [0; 1]. Hence, for
each�, there exists a unique Schur polynomial�� satisfying�(z; �) =
���

�
�=��

�. (In fact, we do not need to determine�� in our procedure;
see [14]). Due to Lemma III.1, for each� 2 [0; 1], the optimization
problem

min
���2S

g� (���) g� (���) := ���TK���� 2hlog�;�(z; �)i

has a unique minimizer inSn, characterized by

hhh(���; �) := r���g� (���) = 2K���� 2
1

�
zzz;�(z; �) = 0: (18)

Sincehhh(���; 0) = 0 andhhh(���; 1) = 0 are exactly (16) and (17), respec-
tively, we have constructed the desired homotopyhhh(���; �) in (18).

For each� 2 [0; 1], denote the unique solution of (18) inSn by
�̂��(�). The class of vectorsf�̂��(�) : � 2 [0; 1]g forms a trajectory in
the (n + 1)-dimensional Euclidean space and the role of the predictor
and corrector steps is to follow the trajectory from� = 0 to � = 1.

Before describing the predictor and corrector steps, we state one im-
portant fact for trajectory following, which is the direct consequence
of the implicit function theorem [15]. Note that the Hessian ofg� (���),
r2
���g� (���) = @hhh=@���(���; �) is positive definite (and hence invertible)

on the trajectoryf�̂��(�)g1�=0 due to Lemma III.2.
Lemma IV.1: The function�̂��(�) is continuously differentiable with

respect to� over the interval [0, 1]. Besides, the derivative is given by

d�̂��

d�
(�) = �

@hhh

@���
(���; �)

�1
@hhh

@�
(���; �)

���=�̂��(�)

:

C. Predictor Step

We will apply Euler’s methodin this step. To be more specific, for
a given point�̂��(�) and a step size��, we move the point̂���(�) in the
direction

ddd (�̂��(�)) := �
@hhh

@���
(���; �)

�1
@hhh

@�
(���; �)

���=�̂��(�)

(19)

by the step size��, that is

���(� + ��) = �̂��(�) + ddd (�̂��(�)) ��: (20)

This predictor step approximates the trajectory curve by a straight line.
Note that the notation��� is used in the left-hand side of (20) instead of
�̂��, since the point after the predictor step is not guaranteed to lie on the
trajectory. To obtain���(� + ��), we need to calculateddd(�̂��(�)) and to
choose step size��.

First, the computation of the vectorddd(�̂��(�)) in (19) is explained.
The first part is the inverse of the Hessian ofg� at��� = �̂��(�) and can
be computed according to the procedure presented in [14]. The second
part becomes as follows:

@hhh

@�
(���; �)

���=�̂��(�)
= r���~g (�̂��(�))� 2K�̂��(�) (21)

where the function~g is defined by

~g(���) := ���TK���� 2 log�;
��� + ���

���

where�(z) := [zn�1; zn�2; . . . ; 1]Ln�1   . The gradient term in (21)
can be determined by the same calculation as in [14].

Next, a reasonable method is proposed to determine the step length
�� such that the updated point���(� + ��) does not deviate from the
(unknown) point̂���(�+ ��) on the trajectory too much. A small devia-
tion from the trajectory is necessary, due to the lack of global convexity
and Lemma III.2, for convergence of the Newton’s iteration in the cor-
rector step which follows this predictor step. Since, for any� in [0, 1],
the point�̂��(�) satisfies the identity

�̂��(�)Tr���g� (�̂��(�)) = 2�̂��(�)TK�̂��(�)� 2h1;�(z; �)i � 0

due to (18) and since the inner product term equals one due to the nor-
malization, the trajectorŷ���(�) lies on a hyper-ellipsoid in the (n +
1)-dimensional Euclidean space, namely

�̂��(�)TK�̂��(�) � 1; 8� 2 [0; 1]: (22)

Hence, the direction vectorddd(�̂��(�)) is orthogonal to the normal vector
K�̂��(�) of the hyper-ellipsoid, that is,ddd(�̂��(�))TK�̂��(�) = 0. From this
and the relation (22), we obtain the following:

���(� + ��)TK���(� + ��) = 1 + ddd(�̂��(�))TKddd(�̂��(�))(��)2: (23)

SinceK is positive definite, the point���(� + ��) lies on an enlarged
version of the hyper-ellipsoid (22) unlessddd(�̂��(�)) = 0. Keeping the
last term in (23) small will be helpful to get the small deviation from the
original hyper-ellipsoid (22) and hence, from the trajectory. Therefore,
for a prespecified small constant" > 0, we set�� as

�� =
"

ddd(�̂��(�))TKddd (�̂��(�))

1=2

: (24)

Remark IV.2: We would like to maintain the positivity of the Hes-
sian ofg� at the point���(� + ��) generated in the predictor step,
for convergence of Newton’s method in the corrector step. Therefore,
in the case where the Hessian is not positive at���(�+ ��), we decrease
�� from (24) until it becomes positive.

D. Corrector Step

Using the point���(� + ��) in (20) as an initial point and fixing�
at � + ��, we applyNewton’s methodto pull ���(� + ��) back to the
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trajectory and to obtain̂���(� + ��). Since the functiong� (���) is
strictly convex around the trajectory due to Lemma III.2, it is expected
that the Newton’s iteration converges as long as the initial point is not
far from the trajectory, that is, the value" in (24) is chosen appropriately
small.

In Newton’s method, we need the values of the gradient and the Hes-
sian ofg� (���) with respect to���. The details of the calculations are
given in [14]. To increase the robustness of the algorithm, we perform
an inaccurate line search by means of the Wolfe test (see [11, p. 214]
for a detailed exposition). See [13] and [14] for the whole procedure of
the corrector step.

V. NUMERICAL EXAMPLE

In this section, we will give one example which illustrates the effi-
ciency and the robustness of the proposed solver. We tackle a Nevan-
linna–Pick interpolation problem with degree constraint that will be
difficult to solve by the previous solver.

We assume the self-conjugate interpolation data

D = (1; 0:6499); (1:1; 1)

(0:8709� 0:8967i; 1:0363� 0:3338i)

(0:3344� 1:2044i;0:7085� 0:4738i)

(�0:6474� 0:8893i;1� i) :

We can verify that the corresponding Pick matrix is positive definite.
Since the number of interpolation constraints is eight, our goal is

to find any positive-real interpolantf that is real rational of degree at
most seven, by specifying seven spectral zeros in the open unit disc.
When the spectral zeros off (in other words, roots of�) are selected at
locationsz = 0:95e�1:22i; 0:95e�2:3i;�0:99;�0:99i, the proposed
solver finds a solutionf(z) = �(z)=�(z), where

�(z) :=1:3852z7 � 1:8896z6 + 1:5410z5 � 0:5285z4

� 0:6206z3 + 1:5499z2 � 1:9570z + 1:2167

�(z) :=2:1315z7 � 3:7752z6 + 3:8690z5 � 2:5704z4

+ 2:7296z3 � 3:8681z2 + 3:7799z � 1:8708:

We can check that the interpolation constraints are satisfied with pre-
cision 7

j=0
jwj � f(zj)j

2 < 10�6. The poles off are located at
z = �0:6798�0:7334i,0:3607�0:9327i, 0.9003,0:7545�0:6369i,
some of which are almost on the unit circle. Such Nevanlinna–Pick in-
terpolation problems with degree constraint are considered to be hard to
solve numerically. In particular, it is almost impossible for such prob-
lems to be solved accurately by the previous solver. Indeed, the con-
dition numbers1 of the HessianH��� of g�(���) andHqqq of J�(qqq) at the
optimum are calculated as

cond(H���) = 86:95� cond(Hqqq) = 2:38� 1010:

Additionally, our continuation procedure does not converge without
the Wolfe test in this example. On the other hand, the proposed solver
with the Wolfe test has an ability to solve such hard problems as this
example, which enables us to fully exploit the freedom of the solution
set of NPDC in applications.

VI. CONCLUSION

A new solver for Nevanlinna–Pick interpolation with degree
constraint has been presented. The solver relies on a continuation

1We calculated the 2-norm condition number, i.e., the ratio of the largest sin-
gular value of a matrix to the smallest one.

method consisting of Euler–Newton predictor-corrector steps. A
change of variables has been introduced in order to remove numerical
difficulties caused by the inaccuracy of spectral factorization and
the ill-conditioning of a system of linear equations in the previous
algorithm. Even though estimates of the condition number of the
Hessian and a convergence proof for the algorithm are missing,
numerical experiments show that the proposed solver performs in an
efficient and numerically robust manner.
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