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A Shaping Limitation of Rational Sensitivity Functions
With a Degree Constraint

Ryozo Nagamune

Abstract—This note concerns a certain shaping limitation of sensitivity
functions. The focus is on a frequency-wise infimumof gains of rational sen-
sitivity functions with a degree constraint. An explicit infimum is derived
for a special case. The result is useful for determining the inability of sen-
sitivity functions of low degrees to achieve a specification in the frequency
domain, and thus for motivating the use of higher degree sensitivity func-
tions to fulfill the specification.

Index Terms—Degree constraint, rationality, sensitivity function,
shaping limitation.

I. INTRODUCTION

The sensitivity functionS := 1=(1 + PC),whereP is a plantmodel
and C is a controller, plays an important role in representing various
performances of feedback systems. Many results on performance limi-
tations have been derived in terms ofS; see, e.g., [1], [3], [6], [7], and the
references therein. If a given specification contradicts such performance
limitations, it is not achievable by any stabilizing feedback controller,
which motivates us to change specifications and/or a plant model P .
Since any existing controller design method, such as QFT [4] and H1

[2], relies on design iterations based on trial-and-error, it is significant to
know what is not achievable in advance for avoiding unnecessary trials.

So far, most of the results on performance limitations of S are con-
cerned with both rational and irrational sensitivity functions. However,
in many practical applications, we are interested in rational sensitivity
functions of low degrees, since they typically correspond to simple con-
trollers. It is natural to expect that the rationality and degree restriction
may provide tighter and practically more useful limitations than the
performance limitations known today. This is the topic of this note.

In this note, by imposing a degree constraint on rational sensitivity
functions, we will consider a shaping limitation problem to derive the
infimum of the gain jSj at each frequency. The obtained infimum will
be useful for determining if we need S of higher degrees to achieve
specifications. We will give an explicit frequency-wise infimum of jSj
in a certain special case. In general, however, the formulated problem
is nonconvex, and thus hard to solve.

This note is organized as follows. In Section II, we will introduce the
set of rational sensitivity functions with a degree constraint. For this set,
in Section III, we will formulate a shaping limitation problem which
will be solved in a special case. In Section IV, we will give a numerical
example to illustrate the result of Section III. We will mainly deal with
the discrete-time case, but as will be remarked later, the results can be
translated into a version for the continuous-time case.

II. SET OF RATIONAL SENSITIVITY FUNCTIONS WITH A

DEGREE CONSTRAINT

Suppose that a given plant P is a scalar real rational proper transfer
function that has relative degree r > 0, and has unstable poles pj of
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multiplicity `j , j = 1; . . . ; �, and unstable zeros qj of multiplicitymj ,
j = 1; . . . ; �. (Since P is real rational, the unstable poles and zeros
are self-conjugate, including multiplicities.) Then, it is known that, for
internal stability of the closed-loop system, the sensitivity function S
must be stable and satisfy interpolation conditions (see [3] and [6])

d

dz
S(z)

z=p
=0; k=0; . . . ; `j � 1, j=1; . . . ; �

d

dz
[S(z)� 1]

z=q
=0; k=0; . . . ;mj � 1, j=1; . . . ; �

d

dz
S(z�1)� 1

z=0
=0; k=0; . . . ; r � 1.

(1)
In addition, if P is rational, then we are often interested in ra-
tional sensitivity functions, since these will correspond to rational
controllers. A rational S should be proper to meet the requirement
S(z�1)� 1

z=0
= 0. Therefore, the set of acceptable sensitivity

functions when P is real rational is expressed by

S := fS 2 RH1 : S satis�es (1)g (2)

whereRH1 denotes the set of real rational proper stable transfer func-
tions.

We usually prefer sensitivity functions of low degrees in practice,
since such sensitivity functions typically lead to simple controllers. For
this reason, in this note, we will focus on a subset of S which has a
degree constraint

SD := S \ fS : degS � ng : (3)

The degree bound n is chosen to be the total number of interpolation
conditions minus one

n := `+m+ r � 1 ` :=

�

j=1

`j m :=

�

j=1

mj : (4)

The choice of this bound is motivated by the work in [5], where we have
proposed a method of searching for a function with a desired shape of
the frequency response from a subset of SD , namely ŜD := SD \
S 2 RH1 : kSk

1
<  for some H1 norm bound  > 0. If we

know a limitation of SD , that is also a limitation of ŜD .
The set SD in (3) can be expressed more explicitly. First, since each

element S in SD is a real rational proper function with degS � n, we
can parameterize such S as

S(z) :=
bbbTzzzn

[ 1 aaaT ] zzzn
(5)

where zzzn := [zn; zn�1; . . . ; 1]T , aaa 2 n and bbb 2 n+1. Secondly,
S in SD must be stable since S 2 RH1. The stability condition is
represented as

aaa 2 An := faaa 2 n : [ 1 aaaT ] zzzn 6= 0; 8 jzj � 1g (6)

where An is the Schur stability region in the n-dimensional space. It
is well-known thatA1 = fa 2 : jaj < 1g andA2 depicted in Fig. 1
are convex sets, while An for n � 3 are nonconvex.

Lastly, S in SD must satisfy the interpolation conditions (1). Using
the parameterization in (5), we can write these conditions in terms of
coefficient vectors aaa and bbb as

bbb = Z
�1
WZ

1

aaa
: (7)

Here, Z is an invertible matrix of size (n+ 1)� (n+ 1) defined by

Z :=
[Anb An�1b . . . b ]

Ir 0r�(n+1�r)

Fig. 1. Schur stability region A (inside the triangle).

which consists of a block diagonal matrix A :=

blockdiag A
(` )
p ; . . . ; A

(` )
p ; A

(m )
z ; . . . ; A

(m )
z and a vector b :=

e(` ); . . . ; e(` ); e(m ); . . . ; e(m )
T

with

A
(k)
z :=

z

1
. . .
. . .

. . .

1 z

k

e
(k) := [1; 0; . . . ; 0

k

]:

The matrix W is a (n + 1)� (n + 1) matrix

W :=
0` 0

0 Im+r
: (8)

Due to (5)–(7), we have the following.
Proposition 2.1: The set SD in (3) can be expressed as

SD = S : S(z) =
[ 1 aaaT ] (Z�1WZ)Tzzzn

[ 1 aaaT ] zzzn
; aaa 2 An : (9)

Before formulating a shaping limitation problem for this set, we will
present a case where the set SD reduces to a singleton.
Proposition 2.2: Suppose that a plant P has no unstable pole. Then,

the set SD is a singleton expressed by

SD = fS : S � 1g : (10)

Proof: In the case that a plant has no unstable pole, ` = 0 and
hence the matrixW in (8) reduces to the identity matrix. From (9), the
assertion follows immediately.

Since S � 1 (or equivalently, C � 0) is never satisfactory in ap-
plications, this proposition implies that if there is no unstable plant
pole (` = 0), then we have to use sensitivity functions of degree
degS � n + 1 = r + m, i.e., at least the relative degree (r) plus
the number of unstable plant zeros including multiplicities (m).

III. SENSITIVITY SHAPING LIMITATION

Now, we will formulate the shaping limitation problem to be consid-
ered in this note.
Problem 3.1: For each frequency � 2 [0; �], determine the infimum

of the gains of functions in the set SD . In other words, for each fixed
�, solve the optimization problem

inf
S2S

S(ei�)
2

: (11)

Remark 3.2: If we require a lower gain than this infimum at some
frequencies, then we need to use sensitivity functions of degrees higher
than n.

Since the set SD is represented in terms of the vector aaa in (9), we
can rewrite the optimization problem (11) as

inf
aaa2A

f�(aaa) (12)
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where the cost functional f� , defined for each �, is given by

f�(aaa) := S(ei�)
2

=

[ 1 aaaT ] (Z�1WZ)Teee�eee
H
� Z

�1WZ
1

aaa

[ 1 aaaT ] eee�eeeH�
1

aaa

(13)

with eee� := [ein�; . . . ; ei�; 1]T . Here, the superscriptH means the Her-
mitian transpose.

Since the functional f� is nonconvex and the Schur stability region is
a nonconvex set in general, (12) is generally a nonconvex optimization
problem that is hard to solve. However, under some assumptions on a
plant, we can solve it analytically, and this will be explained next.

Now, we assume the following.
Assumption 3.3: The plant has relative degree one (r = 1), no un-

stable zero (m = 0) and at least one unstable pole (` � 1).
Remark 3.4: The case of ` = 0 has already been covered in Propo-

sition 2.2.
We will state the main result in this note.
Theorem 3.5: Under Assumption 3.3, the optimal value of the opti-

mization problem (12) is

inf
aaa2A

f�(aaa) =
n�

[2(1 + jcos �j)]n

where n� is defined by

n� := [ 1 k1 . . . kn ]

�

1 cos � . . . cosn�

cos �
. . .

. . .
...

...
. . .

. . . cos �

cosn� . . . cos � 1

1

k1
...
kn

(14)

and fkjg
n
j=1 are determined from given unstable plant poles as

�

j=1

(z � pj)
` =: zn + k1z

n�1 + � � �+ kn:

For the proof of this theorem, we need the following.
Lemma 3.6: Denote the denominator of f� in (13) by d� . Then

sup
aaa2A

d�(aaa) = [2(1 + jcos �j)]n : (15)

Proof: We use a well-known fact that any real polynomial can
always be factored into real polynomials of degree at most two. Then,
the optimization problem supaaa2A d�(aaa) is equivalent to another op-
timization problem as shown in (16) at the bottom of the page, where
eee
(1)
� := [ei�; 1]T and eee

(2)
� := [e2i�; ei�; 1]T . We will show next an

analytical solution to each optimization problem in (16).

First, consider the problem supa2A [1; a]eee
(1)
�

2

. Since A1 =

fa 2 : jaj < 1g (as was mentioned before), and

[ 1 a ] eee
(1)
�

2

= [ 1 a ]
1 cos �

cos � 1

1

a

= a
2 + 2a cos � + 1

it is easy to verify

sup
a2A

[ 1 a ] eee
(1)
�

2

= 2(1 + jcos �j): (17)

Next, consider the problem supaaa2A [1; aaaT ]eee
(2)
�

2

. The domainA2 is
a convex polytope (triangle), as shown in Fig. 1. In addition, we have

[ 1 aaaT ] eee
(2)
�

2

= [ 1 aaaT ]

1 cos � cos 2�

cos � 1 cos �

cos 2� cos � 1

1

aaa

=aaa
T 1 cos �

cos � 1
aaa

+ 2 [ cos � cos 2� ]aaa+ 1:

Since the coefficient matrix of the quadratic term is nonnegative defi-
nite, the supremum of this functional is attained at one of the vertices
ofA2. By some calculations, we can obtain the value of the functional
at each vertex as

[ 1 aaaT ] eee
(2)
�

2

=

4(1 + cos �)2; aaa = [2; 1]T

4(1� cos �)2; aaa = [�2; 1]T

4 sin2 �; aaa = [0;�1]T .

By taking the maximum of these three values, we obtain

sup
aaa2A

j[ 1 aaaT ] eee�j
2 = [2(1 + jcos �j)]2 : (18)

Substitution of (17) and (18) into (16) gives (15). (The result does not
distinguish even and odd n.)

Proof of Theorem 3.5: Under Assumption 3.3, since m = 0 and
r = 1 [and, thus, n = ` due to (4)], the matrices W and Z become

W =
0n

1
Z =

[Anb . . . Ab b ]

1 01�n

and, hence, the relation between bbb and aaa is simplified as

bbb =Z
�1
WZ

1

aaa

=Z
�1 0n�1

1
=

1

� [An�1b . . . b ]�1Anb
:

This means that the numerator of f� is independent of the vector aaa.
Indeed, the numerator of f� can be simplified as in (14). This can be
seen from the fact that S in SD can be parameterized as

S(z) =

�
j=1(z � pj)

`

zn + a1zn�1 + � � �+ an
:

Therefore, the minimization of f� is equivalent to the maximization of
d� as

inf
aaa2A

f�(aaa) =
n�

supaaa2A d�(aaa)
:

Consequently, due to Lemma 3.6, the proof is complete.
Remark 3.7: A plant P , that has relative degree zero and one real

unstable zero q1 of multiplicity one, can be transformed into a plant P̂
with relative degree one and no unstable zero, via a linear fractional
transformation of the variable z:

P̂ (z) := P
1 + q1z

z + q1
: (19)

sup
aaa2A

d�(aaa) =

supaaa2A [ 1 aaaT ] eee
(2)
�

2 n=2

; if n is even

supa2A [ 1 a ] eee
(1)
�

2

� supaaa2A [ 1 aaaT ] eee
(2)
�

2 (n�1)=2

; if n is odd

(16)
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Note that P̂ (1) = P (q1) = 0. Since the outside of the unit circle is
mapped into itself bijectively by this variable change, it does not intro-
duce any extra unstable zero in P̂ , and unstable poles are mapped into
the outside of the unit circle. Therefore, we can apply Theorem 3.5 to
P̂ and obtain the frequency-wise infimum of jSj, denoted by l̂(�). By
scaling the infimum l̂(�)with the inverse transformation of (19), we can
compute the frequency-wise infimum l(�) for the original plant P as

l(�) = l̂
1

i
log

1 + q1e
i�

ei� + q1
:

Remark 3.8 (The Continuous-Time Case): A shaping limitation in
the continuous-time case can also be derived as follows. First, we re-
duce the continuous-time plant to the discrete-time plant via a bilinear
transformation z = (1+ s)=(1� s). Secondly, we apply Theorem 3.5
to the discrete-time plant for computing the gain infimum at each fre-
quency �. Finally, we scale the discrete-time frequency back to the con-
tinuous one ! by

ei� =
1 + i!

1� i!
:

IV. A NUMERICAL EXAMPLE

In this section, the result of Section III is illustrated by a numerical
example. The plant treated in this example is described by

P (z) =
1

z + 1:1

which has relative degree one and one unstable pole at z = �1:1.
The interpolation conditions (1) in this case are simply S(1) = 1
and S(�1:1) = 0. Suppose that we are given a specification that the
sensitivity function must satisfy

S(ei�) < u(�) :=
0:6; � 2 [0; 0:3]

2; � 2 [0:3; �].
(20)

Due to Bode integral formula in the discrete-time case [7], it is neces-
sary to have (see [6, Cor. 3.4.6])

kSk
1
�

1

0:6

0:3=(��0:3)

j1:1j�=(��0:3) � 1:1727:

This necessary condition does not contradict the uniform bound in (20).
However, it does not give any insight how S can be simple to achieve
the specification.

Now, consider the set

SD := S 2 RH1 : S(1) = 1

S(�1:1) =0; deg(S) � 1 :

The limitation of this set can be obtained by Theorem 3.5 and is shown
in Fig. 2, with frequency responses of several elements in SD . We can
see in the figure that all the frequency responses are above the fre-
quency-wise infimum.

In Fig. 3(a), we see that u(�) is smaller than the infimum for SD
over low frequencies. Therefore, the specification (20) cannot be met
by any sensitivity function of degree one, and hence we have to increase
the degree of S to achieve (20).

In increasing the degree of S, we introduce the additional interpola-
tion condition S(1:1) = 0, and consider the new set

Snew
D := S 2 RH1 : S(1) = 1

S(�1:1) =S(1:1) = 0; deg(S) � 2 :

Fig. 2. Frequency-wise infimum of frequency responses of elements in S
(solid line) and frequency responses of several elements in S (dashed lines).

(a)

(b)

Fig. 3. Relationship between the infimum l(�) (solid lines) and the
specification  (�) (dashed lines).

There are two reasons for the introduction of the additional condition;
one is to make the new set SnewD in a form that Theorem 3.5 is appli-
cable, and the other is to decrease the infimal curve at low frequencies.
Due to Theorem 3.5, the limitation of the set SnewD can be computed
and is shown in Fig. 3(b). The figure shows that the infimum for SnewD

is indeed under the specification over all frequencies. Hence, we cannot
rule out the possibility that there is an S in SnewD which achieves (20).
Therefore, we should search for an appropriate S in SnewD . Note that
we cannot guarantee that there does exist an appropriate S in SnewD be-
forehand.
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Fig. 4. Frequency response of the sensitivity function (21) (solid line) which
meets the specification (dashed line).

We have used the method proposed in [5] to find a satisfactory sen-
sitivity function. One sensitivity function in SnewD which satisfies the
specification (20) was found as

S(z) =
z2 � 1:21

z2 + 0:57z � 0:30
(21)

and the corresponding controller was computed by

C(z) =
1� S(z)

P (z)S(z)
=
�0:57z � 0:91

z
:

Fig. 4 shows that the sensitivity function (21) indeed meets the speci-
fication (20).

This example suggests that we can use additional interpolation con-
ditions for changing the shape of the infimal curve of the sensitivity
gain, and for making given specifications to be achievable.

V. CONCLUSION

In this note, we have formulated a shaping limitation problem for
rational sensitivity functions with a degree constraint as an optimiza-
tion problem. An analytic solution to this problem was presented in a
special case where a plant has some unstable poles, relative degree one
and no unstable zero. The result is useful, especially in the approach
proposed in [5], for circumventing unnecessary search for appropriate
sensitivity functions of low degrees, and for motivating us to utilize the
functions with higher degrees.

The shaping limitation problem for general cases (with arbitrary rel-
ative degree and arbitrary number of unstable zeros in a plant) amounts
to solving a nonconvex optimization problem, as can be seen in (13).
To solve the problem, we need to devise an efficient numerical method
or we have to be content with some estimate of the optimum. This will
be a subject of future research.
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Closed-Loop Shaping Based on Nevanlinna–Pick
Interpolation With a Degree Bound

Ryozo Nagamune

Abstract—This note presents a novel method for shaping the frequency
response of a single-input–single-output closed-loop system, based on
the theory of Nevanlinna–Pick interpolation with degree constraint. The
method imposes a degree bound on the closed-loop transfer function and
searches for a function with a desired frequency response. Numerical
examples illustrate the potential of the method in designing controllers
with lower degrees than the ones obtained by conventional controller
design methods with weighting functions.

Index Terms—Closed-loop shaping, degree bound, control, Nevan-
linna–Pick interpolation.

I. INTRODUCTION

The objective of this note is to propose a new method for shaping
the closed-loop frequency response in a HHH1 control framework.
The shaping method is based on a recently developed theory of
Nevanlinna–Pick interpolation with degree constraint ([1], [2]). The
main difference from conventional methods in HHH1 control (see e.g.,
[3], [4], [6], and [12]) is that, in shaping frequency responses, we do
not use weighting functions. The main advantage in our approach is
that we typically obtain controllers of degree lower than the controller
degree designed via conventionalHHH1 control methods. Moreover, the
closed-loop frequency response, which discontinuously depends on
the choice of weighting functions in general, smoothly depends on
our design parameters, which will facilitate controller design based on
trial-and-error.

It is well-known that the suboptimal solution set to a scalarHHH1 con-
trol problem is equivalent to the solution set to the classical Nevan-
linna–Pick interpolation problem [3]

SSSNP: = fTcl 2 RRRHHH
1: kTclk1 < ; Tcl(zj) = wj ;

j = 0; 1; . . . ; ng :

Here, f(zj ; wj)g
n
j=0 are given self-conjugate pairs of complex num-

bers with zj in an unstable region,  is a given positive number and
RRRHHH1 is the set of real rational proper stable functions. The interpolant
Tcl represents some closed-loop transfer function in control problems.
Henceforth, we assume that the set SSSNP is nonempty. The condition
of this nonemptyness can actually be expressed by the positivity of a
Hermitian matrix, called the Pick matrix (see, e.g., [11]).
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