Autumn 2011

Extremal Combinatorics examples sheet 4

There are also exercises in the notes; some of these are included below and some are not, but you should attempt all exercises to ensure a thorough understanding of the course material. The examples sheets are unassessed, but you are welcome to hand in your attempts for feedback.

- 1. Prove the upper-shadow form of the Kruskal-Katona theorem stated in lectures.
- 2. Show that if $\mathcal{A} \subseteq {\binom{X}{r}}$ is a set system and $\mathcal{C} \subseteq {\binom{X}{r}}$ is an initial segment of colex of size $|\mathcal{C}| = |\mathcal{A}|$ then $|\partial^t \mathcal{A}| \ge |\partial^t \mathcal{C}|$ whenever $1 \le t \le r$. Conclude that if $|\mathcal{A}| = {\binom{k}{r}}$ then $|\partial^t \mathcal{A}| \ge {\binom{k}{r-t}}$.
- 3. Show that an initial segment \mathcal{C} of the cube order on $\mathcal{P}(X)$ is *i*-compressed for each $i \in X$ that is, $C_i(\mathcal{C}) = \mathcal{C}$ for each *i*.
- 4. For a graph G and a subset $S \subseteq V(G)$ we define the *t*-neighbourhood of S to be $N^t(S) = \{x \in V(G) : d(x, S) \leq t\},$

where $d(x, S) = \min_{y \in S} d(x, y)$ is the number of edges in a shortest path between x and a vertex in S. Show that if $\mathcal{A} \subseteq V(Q_n) = \mathcal{P}(X)$ has

$$|\mathcal{A}| \geqslant \sum_{i=0}^{r} \binom{n}{i}$$

then, for any $1 \leq t \leq n - r$,

$$|N^{t}(\mathcal{A})| \geqslant \sum_{i=0}^{r+t} \binom{n}{i}.$$

5. Show that an initial segment of the binary order on $\mathcal{P}(X)$ is *i*-binary-compressed (in the natural sense) for each $i \in X$.

Please let me know if you have any comments or corrections.

E-mail address: O.Sisask@qmul.ac.uk