Exercise V

November 9, 2007

Let R be commutativ and with 1.

Exercise 1

Let $S \subseteq R$ be a multiplicatively closed subset with 1. For any *R*-module M we define $S^{-1}M$ as the set of pairs (m, s) with $m \in M$ and $s \in S$, modulo the equivalence relation $(m, s) \cong (n, t)$ if there exist $u \in S$ such that u(tm - sn) = 0 in M. We have an induced *R*-linear map $M \longrightarrow S^{-1}M$. Show that if $f: M \longrightarrow N$ is an *R*-linear map, we get a commutative diagram of *R*-modules

Show that if $0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$ is a short exact sequence of R-modules, then the induced sequence

$$0 \longrightarrow S^{-1}M' \longrightarrow S^{-1}M \longrightarrow S^{-1}M'' \longrightarrow 0$$

is short exact.

Show finally that we have a natural map $M \otimes_R S^{-1}R \longrightarrow S^{-1}M$ which is an isomorphism. Conclude that $S^{-1}R$ is a flat *R*-module.

Exercise 2

For any *R*-module M we let S(M) denote the symmetric quotient of the tensor algebra. Show that $S(M \oplus N)$ is isomorphic to $S(M) \otimes_R S(N)$. We have that, for any module M, the symmetric algebra S(M) is naturally graded. Use the isomorphism deduced above, to describe the induced grading on $S(M) \otimes_R S(N)$.