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Abstract. We give an explicit construction, for a flat map X →
S of algebraic spaces, of an ideal in the n’th symmetric product of
X over S. Blowing up this ideal is then shown to be isomorphic to
the schematic closure in the Hilbert scheme of length n subschemes
of the locus of n distinct points. This generalises Haiman’s corre-
sponding result ([14]) for the affine complex plane. However, our
construction of the ideal is very different from that of Haiman,
using the formalism of divided powers rather than representation
theory.

In the non-flat case we obtain a similar result by replacing the
n’th symmetric product by the n’th divided power product.

The Hilbert scheme, HilbnX/S, of length n subschemes of a scheme X
over some S is in general not smooth even if X → S itself is smooth.
Even worse, it may not even be (relatively) irreducible. In the case of
the affine plane over the complex numbers (where the Hilbert scheme is
smooth and irreducible) Haiman (cf. [14]) realised the Hilbert scheme
as the blow-up of a very specific ideal of the n’th symmetric prod-
uct of the affine plane. It is the purpose of this article to generalise
Haiman’s construction. As the Hilbert scheme in general is not irre-
ducible while the symmetric product is (for a smooth geometrically
irreducible scheme over a field say) it does not seem reasonable to hope
to obtain a Haiman like description of all of HilbnX/S and indeed we will
only get a description of the schematic closure of the open subscheme of
n distinct points. With this modification we get a general result which
seems very close to that of Haiman. The main difference from the ar-
guments of Haiman is that we need to define the ideal that we want to
blow up in a general situation and Haiman’s construction seems to be
too closely tied to the 2-dimensional affine space in characteristic zero.

As a bonus we get that our constructions work very generally. We
have thus tried to present our results in a generality that should cover
reasonable applications (encouragement from one of the referees has
made us make it more general than we did in a previous version of this
article).
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There are some rather immediate consequences of this generality.
The first one is that we have to work with algebraic spaces instead
of schemes as otherwise the Hilbert scheme (as well as the symmetric
product) may not exist. A second consequence is that we find ourselves
in a situation where existing references do not ensure the existence of
HilbnX/S and we give an existence proof in the generality required by
us (which is a rather easy patching argument to reduce it to known
cases).

It turns out that the key to constructing the ideal to blow up is to
use the formalism of divided powers. Recall that if A is a commutative
ring and F a flat A-algebra, then the subring of Sn-invariants of F⊗An

is isomorphic to the n’th divided power algebra ΓnA(F ) (through the
map that takes γn(r) to r⊗n).

Using the fact that Γn(F ) is the degree n component of the divided
power algebra Γ∗(F ) we can define an ideal in Γn(F ) (this graded com-
ponent of the divided power algebra becomes an algebra using the
multiplication of F ) which is our candidate to be blown up. Note
that in the definition of this ideal we are using in an essential way
the multiplication in the divided power algebra Γ∗(F ) forcing us to
carefully distinguish between the multiplication in this graded algebra
and the multiplication of its graded component Γn(F ) induced by the
multiplication on F . On the upside it is exactly this interplay that
allows us to define, in a generality outside of Haiman’s case, the ideal.
Furthermore, the excellent formal properties of Γn(F ) allows us to de-
fine an analogue of the symmetric product of Spec(F ) → Spec(A) as
Spec(Γn(F )) → Spec(A) in the case when A → F is not flat. This
makes our arguments go through without problems in the case when
Spec(F )→ Spec(A) is not necessarily flat. (We also need to extend the
construction of Spec(Γn(F )) to the non-affine case; the gluing argument
needed to make this extension uses results of David Rydh, [21].)

In more detail this paper has the following structure: We start with
some preliminaries on divided powers and recall of the Grothendieck-
Deligne norm map. The main technical result is to be found in Sections
5 and 6. There we first find a (local) formula for the multiplication
of the tautological rank n-algebra over the configuration space of n
distinct points of X. We then note that this formula makes sense over
the blow-up of a certain ideal in the full symmetric product. This gives
us a family of length n subschemes of X over this blow-up and hence
a map of it to the Hilbert scheme. Once having constructed it, it is
quite easy to show that it gives an isomorphism of the blow-up to the
schematic closure of the subspace of n distinct points of the Hilbert
scheme. The proof first does this in the case X → S is affine and then
discusses the patching (and limit arguments) needed to extend it to
the more general case.
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We finish by tying some loose ends. First we generalise the result of
Fogarty on the smoothness of HilbnX/S for X → S smooth of relative
dimension 2 removing the conditions on the base S needed by Fogarty.
Finally, we discuss how one can, under suitable conditions, embed the
blow-up in a Grassmannian as Haiman does.
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1. Divided powers and norm

In this section we first recall some properties for the ring of divided
powers. The standard reference is Roby [19] and [20], but see also [5]
and [9]. Algebras in this note are commutative and unital.

1.1. The ring of divided powers. Let A be a commutative ring and
M an A-module. The ring of divided powers ΓAM is constructed as
follows. We consider the polynomial ring over A[γn(x)](n,x)∈N×M , where
the variables γn(x) are indexed by the set N×M , where N is the set
of non-negative integers. Then the ring ΓAM is obtained by dividing
out the polynomial ring by the following relations

γ0(x)− 1(1.1.1)

γn(λx)− λnγn(x)(1.1.2)

γn(x+ y)−
n∑
j=0

γj(x)γn−j(y)(1.1.3)

γn(x)γm(x)−
(
n+m

n

)
γn+m(x)(1.1.4)

for all integers m,n ∈ N, all x, y ∈M , and all λ ∈ A. The residue class
of the variable γn(x) in ΓAM we denote by γnM(x), or simply γn(x) if no
confusion is likely to occur. The ring ΓAM is graded where γn(x) has
degree n, and with respect to this grading we write ΓAM =

⊕
n≥0 ΓnAM .

1.2. Polynomial laws. Let A be a ring, and let M and N be two fixed
A-modules. Assume that we for each A-algebra B have a map of sets
gB : M

⊗
AB −→ N

⊗
AB such that for any A-algebra homomorphism
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u : B −→ B′ the following diagram is commutative

M
⊗

AB

��

gB // N
⊗

AB

��
M
⊗

AB
′ gB′ // N

⊗
AB

′,

where the vertical maps are the canonical homomorphisms. Such a
collection of maps is called a polynomial law from M to N , and we
denote the polynomial law with {g} : M −→ N .

Definition 1.3 (Norms). Let A be a ring, M and N two A-modules.

(1) A polynomial law {g} : M −→ N is homogeneous of degree n
if for any A-algebra B we have that gB(bx) = bngB(x), for any
x ∈M

⊗
AB and any b ∈ B.

(2) A polynomial law {g} : F −→ E between two A-algebras F and
E, is multiplicative if gB(xy) = gB(x)gB(y) for any x and y in
F
⊗

AB, for any A-algebra B. Furthermore, we require that
gB(1) = 1.

A norm (of degree n) from an A-algebra F to an A-algebra E is a
homogeneous multiplicative polynomial law of degree n.

1.4. Universal norms. Let n be a non-negative integer. For any A-
algebra B we have that ΓnA(M)

⊗
AB is canonically identified with

ΓnB(M
⊗

AB). It follows that we have a polynomial law {γn} : M −→
ΓnAM and by (1.1.2) the law is homogeneous of degree n. The poly-
nomial law {γn} : M −→ ΓnAM is universal in the sense that the as-
signment u 7→ {u ◦ γn} gives a bijection between the A-module homo-
morphisms u : ΓnAM −→ N and the set of polynomial laws of degree n
from M to N .

Furthermore, if F is an A-algebra then ΓnAF is an A-algebra and
then the polynomial law {γn} : F −→ ΓnAF is the universal norm of
degree n ([20, Thm. p. 871], [9, 2.4.2, p. 11] ). The norm {γn} is
compatible with the product, that is γnB(xy) = γnB(x)γnB(y), for all A-
algebras B.“Universal” here means in the sense as described above, but
for A-algebra homomorphisms from ΓnAF .

1.5. The different products. The product structure on ΓAF we refer
to as the external structure. We will denote the external product with ∗
in order to distinguish the external product from the product structure
on each graded component ΓnAF defined in the previous section. (Note
that our convention is the reverse of the one used in [9].)

1.6. The canonical homomorphism. An important norm is the fol-
lowing. Let E be an A-algebra that is locally free of finite rank n > 0
as an A-module. For any A-algebra B we have the determinant map
dB : E

⊗
AB −→ B sending x ∈ E

⊗
AB to the determinant of the



RECOVERING THE GOOD COMPONENT OF THE HILBERT SCHEME 5

B-linear endomorphism e 7→ ex on E
⊗

AB. It is clear that the de-
terminant maps give a multiplicative polynomial law {d} : E −→ A,
homogeneous of degree n = rankAE. By the universal properties (1.4)
of ΓnAE we then have an A-algebra homomorphism

(1.6.1) σE : ΓnAE −→ A,

such that σE(γn(x)) = det(e 7→ ex) for all x ∈ E. We call σE the canon-
ical homomorphism ([7, Section 6.3, p.180], [15, Section 1.4, p.13]).

Proposition 1.7. Let E be an A-algebra such that E is free of finite
rank n > 0 as an A-module. For any element x ∈ E the characteristic
polynomial det(t − x) ∈ A[t] of the endomorphism e 7→ ex on E is
tn +

∑n
j=1(−1)jtn−jσE(γj(x) ∗ γn−j(1)). In particular we have

Trace(e 7→ ex) = σE(γ1(x) ∗ γn−1(1)).

Proof. Let t be an independent variable over A, and write E[t] =
E
⊗

AA[t]. By the defining property of the canonical homomorphism
σE[t] we have that the characteristic polynomial det(t−x) = σE[t](γ

n(t−
x)). We now use the defining relations (1.1.2) and (1.1.3) in the A[t]-
algebra ΓnA[t]E[t] and obtain

γn(t− x) =
n∑
j=0

(−1)jγj(x) ∗ γn−j(t)

=
n∑
j=0

(−1)jtn−jγj(x) ∗ γn−j(1).

We have that ΓnA(R)
⊗

AB = ΓnB(R
⊗

AB) and that σE[t] = σE ⊗
idA[λ]. Consequently σE[t] acts trivially on the variable t and that the
action otherwise is as σE. Thus we obtain that σE(γj(x)∗γn−j(1)) in A
is the j’th coefficient of the characteristic polynomial of e 7→ ex which
proves the claim. �

2. Discriminant and ideal of norms

In this section we define the important ideal of norms and show their
connection with discriminants.

Definition 2.1. Let F be an A-algebra. For each integer n ≥ 0 we
consider the A-module homomorphism

δ : Λn
AF
⊗

A Λn
AF // ΓnA(F )

that sends x = x1 ∧ · · · ∧ xn and y = y1 ∧ · · · ∧ yn to

δ(x, y) := det∗(γ1(xiyj)) :=
∑
σ∈Sn

sign(σ)γ1(x1yσ(1)) ∗ · · · ∗ γ1(xnyσ(n)).
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(Here we use det∗ to denote the determinant with respect to the ∗-
product. We also allow n = 0, the determinant of a 0× 0-matrix being
equal to 1.)

Remark 2.2. Note that for each element z ∈ F the element γ1(z) is in
Γ1
AF = F , but the product γ1(z1) ∗ · · · ∗ γ1(zn) is in ΓnAF .

Remark 2.3. Since F is commutative we have that δ(x, y) = δ(y, x).

2.4. As a preparation for the next lemma we make the following ob-
servation. If F is the product ring F ′ × F ′′ then if e′, f ′ ∈ F ′ and
e′′, f ′′ ∈ F ′′ and s′, s′′, t′, t′′ are polynomial variables we may expand
γn(s′e′ + s′′e′′) · γn(t′f ′ + t′′f ′′) = γn(s′t′e′f ′ + s′′t′′e′′f ′′) and conclude
that the decomposition ΓnA(F ′×F ′′) =

∏
i+j=n ΓiAF

′⊗
A ΓjAF

′′ is a de-

composition as rings and that the ring structure on ΓiAF
′⊗

A ΓjAF
′′ is

the tensor product of the ring structures of ΓiAF
′ and ΓjAF

′′. In partic-
ular, for the A-algebra F =

∏m
i=1Aei we get that ΓnAF is the product

of copies of A with the primitive idempotents being the DP-monomials
γk1(e1) ∗ γk2(e2) ∗ · · · ∗ γkn(en), where 0 ≤ ki and

∑
i ki = n.

Lemma 2.5. Let x1, . . . , xn and y1, . . . , yn, n ≥ 0, be 2n-elements in
F . Then we have

δ(x, y) = det(γ1(xiyj) ∗ γn−1(1))1≤i,j≤n.

Proof. We first note that the right hand side has the same transforma-
tional properties as δ giving rise to an A-linear map Λn

AF
⊗

A Λn
AF →

ΓnAF . Furthermore, the statement is compatible with changes in both
A and F so we may assume that A = Z and that F is the polyno-
mial ring in the variables xi and yi. We may then replace Z by an
algebraically closed field K of characteristic zero. Now, the formula to
proven involves only elements of Λn

KF
′ where F ′ ⊆ F is the subspace

spanned by the xi and yj, with 1 ≤ i, j ≤ n. This means that we may
replace F by any algebra quotient F → F ′′ into which F ′ injects. Since
K is algebraically closed, we may assume that F =

∏m
i=1 Kei. As we

want to show equality of two K-linear maps Λn
KF

⊗
K Λn

KF → ΓnKF
we may assume that xi = eri and yj = esj for r1 < r2 < · · · < rn and
s1 < s2 < · · · < sn. However, unless ri = si for all i both matrices
(γ1(xiyj)) and (γ1(xiyj) ∗ γn−1(1)) will contain a zero row or column
and hence their determinants will both be zero. Hence we may assume
ri = si and then also that m = n and ri = si = i. This means that
the matrix (γ1(xiyj)) will be diagonal with diagonal entries γ1(ei) and
its determinant is therefore γ1(e1) ∗ · · · ∗ γ1(en). On the other hand we
have that 1 = e1 + · · ·+ en and hence (γ1(xiyj) ∗ γn−1(1)) will also be
a diagonal matrix whose i’th diagonal entry consists of all the degree
n monomials in the γj(ek) which contain γ1(ei). As the determinant is
the product of these diagonal entries and these monomials are orthog-
onal idempotents we see that the only term that survives is the term
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γ1(e1)∗ · · · ∗γ1(en) from each diagonal entry and their product is again
γ1(e1) ∗ · · · ∗ γ1(en). �

Lemma 2.6. Let x1, . . . , xn, n > 0, and f be elements in an A-algebra
F . Then we have that γ1(x1f

n) ∗ γ1(x2) ∗ · · · ∗ γ1(xn) equals
n∑
c=1

(−1)c+1(γc(f) ∗ γn−c(1)) · (γ1(x1f
n−c) ∗ γ1(x2) ∗ · · · ∗ γ1(xn)).

Proof. Using that γn(1) is the identity element with respect to the
internal product on ΓnF , the equality above is equivalent to

0 =
n∑
c=0

(−1)c+1(γc(f) ∗ γn−c(1)) · (γ1(x1f
n−c) ∗ γ1(x2) ∗ · · · ∗ γ1(xn)).

As in the proof of Lemma (2.5) we may assume that F =
∏m

i=1Aei, that
x1 = e1 and each xi, i > 1, is equal to some ej and we may further write
f =

∑m
i=1 λiei. Then, for 0 ≤ c ≤ n, γ1(x1f

n−c) ∗ γ1(x2) ∗ · · · ∗ γ1(xn)
equals λn−c1 γ1(x1)∗γ1(x2)∗ · · · ∗γ1(xn) and hence the sum to be shown
to be equal to zero equals

(−1)n+1(γ1(x1) ∗ γ1(x2) ∗ · · · ∗ γ1(xn)) ·
n∑
c=0

(γc(f) ∗ γn−c(−λ1)).

The right multiplicand equals γn(f − λ1) and as f − λ1 =
∑m

i=2(λi −
λ1)ei we get that γn(f − λ1) is a linear combination of DP-monomials
γk1(e1) ∗ γk2(e2) ∗ · · · ∗ γkn(en) with k1 = 0. On the other hand, as
x1 = e1, γ1(x1) ∗ γ1(x2) ∗ · · · ∗ γ1(xn) is an integer multiple of a DP-
monomial γk1(e1) ∗ γk2(e2) ∗ · · · ∗ γkn(en) with k1 > 0 and as different
DP-monomials have internal product equal to zero we conclude. �

Definition 2.7 (The ideal of norms). Let n > 0 be a fixed integer, and
let V ⊆ F be an A-submodule of an A-algebra F . We define IV ⊆ ΓnAF ,
the ideal of norms associated to V , as the ideal generated by

δ(x, y) ∈ ΓnAF

for any 2n-elements x = x1, . . . , xn and y = y1, . . . , yn in V ⊆ F .

Remark 2.8. Both the symmetric product and the Hilbert scheme make
sense when n = 0. However, our results become trivial in that case so
we shall from now assume that n > 0.

Lemma 2.9. Let A −→ B be a homomorphism of rings, and let V ⊆ F
be an A-submodule of an A-algebra F . The extension of the ideal IV by
the A-algebra homomorphism ΓnAF −→ ΓnA(F )

⊗
AB equals the ideal

IVB ; the ideal of norms associated to the B-submodule Im(V
⊗

AB −→
F
⊗

AB).

Proof. Via the canonical identification ΓnA(F )
⊗

AB = ΓnB(F
⊗

AB)
the element δ(x, y)⊗1B is identified with δ(x⊗1B, y⊗1B), from which
the lemma follows. �
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Lemma 2.10. Let F = A[T1, . . . , Tr] be the polynomial ring in r > 0
variables, and let V ⊂ F be the A-module spanned by those monomials
whose degree in each of the variables is less than n. Then the ideals of
norms associated to V and F are equal; that is IV = IF . Furthermore,
if n! is invertible in A then IW = IF , where W ⊂ F is the A-module
spanned by monomials of degree less than n.

Proof. Given x1, . . . , xn and f in F we write x(c) = x1f
c, x2, . . . , xn.

For any y1, . . . , yn we then obtain from the equality given in Lemma
(2.6) that

δ(x(n), y) =
n∑
c=1

(−1)c+1(γc(f) ∗ γn−c(1)) · δ(x(n− c), y).

The first assertion of the lemma follows from the above equality. When
n! is invertible, the n’th powers of linear forms span the module gen-
erated by degree n monomials, and the above equality then also yields
the second assertion. �

2.11. Discriminant. Let E be an A-algebra that is free of finite rank
n as an A-module. The trace map E → A sends an element x ∈ E to
the trace of the endomorphism e 7→ ex of the A-module E. There is an
associated map E −→ HomA(E,A) taking y ∈ E to the trace tr(xy),
for any x ∈ E.

The discriminant ideal DE/A ⊆ A is defined (see e.g. [1, p. 124]) as
the ideal generated by the determinant of the associated map E −→
Hom(E,A).

Proposition 2.12. Let E be an A-algebra that is free of finite rank n
as an A-module. Then we have for any elements x = x1, . . . , xn and
y = y1, . . . , yn in E that

σE(δ(x, y)) = det(tr(xiyj)),

where σE is the canonical homomorphism σE : ΓnAE −→ A, and (tr(xiyj))
is the (n× n) matrix with entries tr(xiyj). In particular the extension
of IV , the ideal of norms associated to V = E, by σE is the discrimi-
nant ideal and we have that the extension σE(IV )A = A if and only if
Spec(E) −→ Spec(A) is étale.

Proof. Let x = x1, . . . , xn be an A-module basis of E = V . We have
that the ideal IV is generated by the single element δ(x, x). By Lemma
(2.5) we have the identity δ(x, x) = det(γ1(xixj)∗γn−1(1)) in ΓnAF . As
σE is an algebra homomorphism we have

σE det(γ1(xixj) ∗ γn−1(1)) = det(σE(γ1(xixj) ∗ γn−1(1))).

By Proposition (1.7) we have σE(γ1(xixj) ∗ γn−1(1)) = Trace(e 7→
exixj). Thus we have a matrix with entries Trace(e 7→ exixj), and the
determinant is then the discriminant. �
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3. Connection with symmetric tensors

3.1. A norm vector. Let F be an A-algebra, and let n be a fixed
positive integer. We let T nAF = F

⊗
A · · ·

⊗
A F be the tensor product

with n copies of F . For any element x ∈ F we use the following
notation

x[j] = 1⊗ · · · ⊗ x⊗ · · · ⊗ 1,

where the x occurs at the j’th component of T nAF . The group Sn of
permutations of n letters acts on T nAF by permuting the factors. For
any n-elements x = x1, . . . , xn in F we define the norm vector

ν(x) = ν(x1, . . . , xn) = det((xi)[j]) ∈ T nAF.

Expanding the determinant we also get that ν(x) =
∑

σ∈Sn sign(σ)xσ(1)⊗
· · · ⊗ xσ(n). It is clear that ν extends to a linear map ν : Λn

AF → T nAF
and that the image lies in the vectors that are anti-symmetric with
respect to the action of Sn given by permutation of factors of Tn

A F .

3.2. Let TSnA F denote the invariant ring of Tn
A F by the natural action

of the symmetric group Sn in n-letters that permutes the factors. We
have the map F −→ Tn

A F sending x 7→ x⊗· · ·⊗x, and it is clear that
the map factors through the invariant ring TSnA F . The map F −→
TSnA F determines a norm of degree n, as one readily verifies, hence
there exist an A-algebra homomorphism

(3.2.1) αn : ΓnAF −→ TSnA F

such that αn(γn(x)) = x⊗ · · · ⊗ x, for all x ∈ F .

3.3. The shuffle product. When F is an A-algebra that is flat as an
A-module, or if n! is invertible in A, then the A-algebra homomorphism
αn (3.2.1) is an isomorphism ([19, IV, §5. Proposition IV.5], [5, Exercise
8(a), AIV. p.89]). In those cases we can identify ΓAF as the graded
sub-module

ΓAF =
⊕
n≥0

TSnA F ⊆
⊕
n≥0

Tn
A F = TA F.

The external product structure on ΓAF is then identified with the
shuffle product on the full tensor algebra TA F . The shuffle product of
an n-tensor x⊗ · · ·⊗x and an m-tensor y⊗ · · ·⊗ y is the m+n-tensor
given as the sum of all possible different shuffles of the n copies of x
and m copies of y ([5, Exercise 8 (b), AIV. p.89]).

Proposition 3.4. Let F be an A-algebra, and let x, y ∈ Λn
AF . The A-

algebra homomorphism αn : ΓnAF −→ TSnA F (3.2.1) has the property

αn(δ(x, y)) = ν(x)ν(y).
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Proof. We may assume that x = x1 ∧ · · · ∧ xn and y = y1 ∧ · · · ∧ yn
and then we have by Lemma (2.5) that δ(x, y) is the determinant of
the matrix (γ1(xiyj) ∗ γn−1(1)). Hence αn(δ(x, y)) is the determinant
of (αn(γ1(xiyj) ∗ γn−1(1))). This matrix is the product ((xi)[j])((yi)[j])

t

(where ((yi)[j])
t = ((yj)[i]) denotes the transpose) and using multiplica-

tivity of determinants we get the formula. �

Corollary 3.5. For any x, y, z and w in Λn
AF we have δ(x, y)δ(z, w) =

δ(x, z)δ(y, w). In particular we have δ(x, y)2 = δ(x, x)δ(y, y).

Proof. We may reduce to the case when F is flat over A, and then
we have that αn : ΓnAF → TSnA F is injective. By the proposition we
have αn(δ(x, y)δ(z, w)) = αn(δ(x, y))αn(δ(z, w)) = ν(x)ν(y)ν(z)ν(w)
and rearranging the last product and working backwards we get the
desired formula. �

Remark 3.6. We have used two methods to prove universal relations
in ΓnAF and Λn

AF ; reducing to the case when F is a finite product of
copies of A and explicit computation using primitive idempotents, and
reducing to a computation in T nAF . It would have been possible to only
use the first (and no doubt to only use the second) but we felt that both
techniques were worthwhile illustrating. It should also be mentioned
that in a version of this article we used a third method of computing
directly in ΓnAF . However, it led to rather non-transparent combina-
torial calculations which we ultimately felt obscured the underlying
arguments too much.

3.7. We have a map αn + ν : ΓnAF
⊕

Λn
AF → Tn

A F whose image is a
subring under the product induced from that of F . Even though we
shall not use it we can use δ to define a commutative ring structure
on the source making the map a ring homomorphism. Indeed the ring
structure will be Z/2-graded with respect to the direct sum decomposi-
tion, the product ΓnAF×ΓnAF → ΓnAF the interior product, the product
Λn
AF×Λn

AF → ΓnAF will be given by δ and the map ΓnAF×Λn
AF → Λn

AF
by γn(x) · y1 ∧ · · · ∧ yn := xy1 ∧ · · · ∧ xyn. With the aid of Proposition
(3.4) it is easy to verify that αn + ν is multiplicative and when A = Z
and F is A-flat it is also injective and as one can reduce to that case
we get associativity for the operation.

Corollary 3.8. Let α̃ : ΓnAF −→ Tn
A F denote the composition of the

map αn and the inclusion TSnA F ⊆ Tn
A F . Let I ⊆ Tn

A F denote the
extension of the ideal of norms IF by α̃, and let J ⊆ Tn

A F denote the

ideal of the schematic union of the diagonals. Then we have
√
I =
√
J .

Proof. Let ϕ : Tn
A F −→ L be a morphism with L a field, and let

ϕi : F −→ L be the composition of ϕ and the i’th co-projection F −→
Tn
A F , where i = 1, . . . , n. If ϕ corresponds to a point in the open

complement of the diagonals then all the maps ϕi are different. That
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is, no pi = ker(ϕi) is contained in another pj. Furthermore, since the
kernels also are prime ideals there exists, for each i, an element xi not
in pi, but where xi ∈ pj when j 6= i. We then have that ϕj(xi) = 0
for j 6= 0, and that ϕi(xi) 6= 0. Hence there are elements x1, . . . , xn in
F such that det(ϕj(xi)) 6= 0. Then also the image of ν(x1, . . . , xn) is
non-zero in L, and we have that the point ϕ is in the open complement
of the scheme defined by I ⊆ Tn

A F .
Conversely, if ϕ corresponds to a point on the diagonals then at

least two of the maps ϕi are equal. Consequently, for any elements
x1, . . . , xn in F we have that ϕ(ν(x1, . . . , xn)) = 0. It follows that
I ⊆ kerϕ, proving the claim. �

4. Grothendieck-Deligne norm map

In this section we recall the Grothendieck-Deligne norm map fol-
lowing Deligne ([7]), and we discuss briefly the related Hilbert-Chow
morphism. Furthermore we define the notion of sufficiently big sub-
modules.

4.1. The Hilbert functor of n-points. We fix an A-algebra F , and
a positive integer n. We let HilbnF denote the covariant functor from
the category of A-algebras to sets, that sends an A-algebra B to the
set

HilbnF (B) = {ideals in F
⊗

AB such that the quotient E is

locally free of rank n as a B-module}.

4.2. The Grothendieck-Deligne norm. If E is an B-valued point
of HilbnF we have the sequence

F // F
⊗

AB
// E,

from where we obtain the A-algebra homomorphisms ΓnAF −→ ΓnBE
that sends γn(x) to γn(x̄⊗ 1), where x̄⊗ 1 is the residue class of x⊗ 1
in E. Furthermore, when we compose the homomorphism ΓnAF −→
ΓnBE with the canonical homomorphism σE : ΓnBE −→ B we obtain
an assignment that is functorial in B; that is we have a morphism of
functors

(4.2.1) nF : HilbnF −→ HomA-alg(ΓnAF,−).

The natural transformation nF we call the Grothendieck-Deligne norm
map.

Remark 4.3. The Hilbert functor HilbnF can in a natural way be viewed
as a contra-variant functor from the category of schemes (over Spec(A))
to sets. In that case the functor HilbnF is representable by a scheme (see
e.g. [13]). If X = Spec(F ) −→ S = Spec(A) we write nX : HilbnX/S −→
Spec(ΓnAF ) for the morphism that corresponds to the natural transfor-
mation (4.2.1).



12 TORSTEN EKEDAHL AND ROY SKJELNES

4.4. The geometric action. Let A = K be an algebraically closed
field, and let E be a finitely generated Artinian K-algebra. As E is
Artinian it is a product of local rings E =

∏p
i=1Ei, and we let ρi : E −→

K denote the residue class map that factors via Ei. Letmi = dimK(Ei),
and let n = dimK(E) = m1 + · · ·+mp. Iversen ([15, Proposition 4.7])
shows that the canonical homomorphism σE : ΓnKE = TSnK E −→ K
factors via the homomorphism ρ : T nKE −→ K, where

ρ = (ρ1, . . . , ρ1, . . . , ρp, . . . , ρp),

and where each factor ρi is repeated mi-times.

4.5. Hilbert-Chow morphism. Assume that the base ring A = K is
a field, and letX = Spec(F ). Then we can identify Spec(ΓnKF ) with the
symmetric quotient Symn(X) := Spec(TSnK F ). Furthermore we have
that the Spec(K)-valued points of HilbnX correspond to closed zero-
dimensional subschemes Z ⊆ X of length n. When K is algebraically
closed we have by (4.4) that the Grothendieck-Deligne norm map sends
an K-valued point Z ⊆ X to the “associated” zero-dimensional cycle

nX(Z) =
∑
P∈|Z|

dimK(OZ,P )[P ],

where the summation runs over the points in the support of Z. Hence
we see that the norm morphism nX has the same effect on geometric
points as the Hilbert-Chow morphism. The Hilbert-Chow morphism
that appears in [10] and [8] requires that the Hilbert scheme is reduced,
whereas the Hilbert-Chow morphism that appears in [17] requires that
the Hilbert scheme is (semi-) normal. As the morphism nX does not
require any hypothesis on the source we have chosen to refer to that
morphism with a different name; the Grothendieck-Deligne norm map.

Lemma 4.6. Let A = K be a field of characteristic zero, and let
F = K[T ] be the polynomial ring in a finite set of variables T1, . . . , Tr.
For n > 0 the K-algebra ΓnKF is generated by

γ1(m) ∗ γn−1(1),

for monomials m ∈ K[T ] of degree deg(m) ≤ n.

Proof. The identification αn : ΓnKK[T ] −→ TSnK K[T ] identifies, for any
m ∈ K[T ], the element γ1(m) ∗ γn−1(1) with the shuffled product of
α1(m) = m and αn−1(1) = 1⊗ · · · ⊗ 1. That is

αn(γ1(m) ∗ γn−1(1)) = m⊗ 1 · · · ⊗ 1 + · · ·+ 1⊗ · · · 1⊗m = P (m).

By a well-known result of Weyl ([22, II 3]) the invariant ring TSnK F is
generated by the power sums P (m) of monomials m ∈ K[T ] of degree
less or equal to n. �
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Definition 4.7 (Sufficiently big modules). Let us fix an A-algebra F .
An A-submodule V ⊆ F is n-sufficiently big if the composite B-module
homomorphism

V
⊗

AB
// F
⊗

AB
// E

is surjective for all A-algebras B, and all B-valued points E of the
Hilbert functor HilbnF .

Remark 4.8. Sufficiently big submodules always exist as we can take
V = F .

Remark 4.9. If V is sufficiently big then we clearly have a morphism
of functors

HilbnF −→ GrassnV

from the Hilbert functor of rank n-families, to the Grassmannian of
locally free rank n-quotients of V .

Theorem 4.10. Let F be an A-algebra, n a positive integer and let
V ⊆ F be an n-sufficiently big submodule. Then we have for any A-
algebra B, and any B-valued point E of HilbnF that the extension of IV ,
the ideal of norms associated to V , by the Grothendieck-Deligne norm
map nF : ΓnAF −→ B is the discriminant ideal of E over B. That is

nF (IV )B = DE/B ⊆ B.

Proof. As discriminant ideals are compatible with base change, we may
assume that B is a local ring. Let K denote the residue field of B. By
assumption the composite map

V
⊗

AK
// F
⊗

AK
// E
⊗

AK

is surjective as K-vector spaces. Let x1, . . . , xn in V be such that the
residue classes of x1⊗idK , . . . , xn⊗idK in E⊗AK form a K-vector space
basis. It then follows from Nakayama’s Lemma that the residue classes
of x1 ⊗ idB, . . . , xn ⊗ idB form a B-module basis of E

⊗
AB = EB.

By Lemma (2.9) we have that the extension of IV by the composition
ΓnAF −→ ΓnB(EB) is the ideal of norms associated to EB. The result
then follows from Proposition (2.12).

�

5. Families of distinct points

5.1. The canonical morphism. The map F −→ F
⊗

A Γn−1
A F send-

ing z to z⊗γn−1(z) determines a norm of degree n. Consequently there
is a unique A-algebra homomorphism ΓnAF −→ F

⊗
A Γn−1

A F that takes
γn(z) to z ⊗ γn−1(z). Let

(5.1.1) πn : Spec(F )×Spec(A) Spec(Γn−1
A F ) −→ Spec(ΓnAF )
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denote the corresponding morphism of schemes. Furthermore, we let
∆ ⊆ Spec(ΓnAF ) denote the closed subscheme corresponding to the
ideal of norms associated to F .

Proposition 5.2. Let U = Spec(ΓnAF ) \∆ denote the open set where
the ideal sheaf of norms equals the structure sheaf. Then the induced
morphism

πn| : π
−1
n (U) −→ U

is étale of rank n.

Proof. Let Un ⊆ Spec(Tn
A F ) denote the open complement of the di-

agonals. The group of permutations of n letters, Sn, acts freely on
Un and the quotient map Un −→ Un/Sn is étale of rank n! = |Sn|.
The morphism Spec(αn) : Spec(TSnA F ) −→ Spec(ΓnAF ) is an isomor-
phism when restricted to Un/Sn (see e.g. [21, Prop. 4.2.6]). It fol-
lows from Corollary (3.8) that Spec(Tn

A F ) −→ Spec(ΓnAF ) is étale
over Spec(ΓnAF ) \ ∆. Furthermore, after a faithfully flat base change
A −→ A′ we can assume that ΓnA(F )

⊗
AA

′ = ΓnA′(F
⊗

AA
′) is gener-

ated by elements of the form γn(z) ([9, Lemma 2.3.1]). Then clearly
the diagram

Spec(Tn
A F )

α̃n //

1×α̃n−1 ))TTTTTTTTTTTTTTT
Spec(ΓnAF )

Spec(F )× Spec(Γn−1
A F )

πn
55kkkkkkkkkkkkkkk

is commutative. As 1×α̃n−1 is étale of rank (n−1)! on the complement
of π−1

n (∆), it follows that πn is étale of rank n over U . �

5.3. Notation. We have the ordered sequence x = x1, . . . , xn of ele-
ments in F fixed. Let UA(x) be ΓnAF localized at the element δ(x, x),
and consider the induced map

UA(x) // (F
⊗

A Γn−1
A F )

⊗
ΓnAF

UA(x) = MA(x)

obtained by localization of (5.1.1).

Lemma 5.4. The images of the elements x = x1, . . . , xn by the map
F −→ F

⊗
A UA(x) −→MA(x) form an UA(x)-module basis for MA(x).

Proof. By Proposition (5.2) we have that MA(x) is Zariski locally free
of rank n over UA(x). To show that MA(x) is free it suffices to show
that the images of x1, . . . , xn form a basis locally. Hence we may assume
that M is a free U -module, where U is some localization of UA(x). Let
e = e1, . . . , en be a basis of M , and let q(z) denote the image of z ∈ F
in M . There exist scalars ai,j ∈ U such that q(xi) =

∑n
j=1 ai,jej for

i = 1, . . . , n. Let q(x) = q(x1), . . . , q(xn), and let A = (ai,j) denote the
matrix of the scalars. From the Definition (2.1) we obtain

δ(q(x), q(x)) = det(A2)δ(e, e) in ΓnUM.
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The element δ(x, x) ⊗ 1 in ΓnA(F )
⊗

ΓnAF
U = ΓnU(F

⊗
A U) is invert-

ible by definition. The natural morphism F
⊗

A U −→ M induces a
morphism ΓnU(F

⊗
A U) −→ ΓnUM sending δ(x, x) ⊗ 1 to the invert-

ible element δ(q(x), q(x)). Then also det(A) must be invertible, and
consequently we have that q(x1), . . . , q(xn) form a basis of MA(x). �

Definition 5.5. The functor H et
F (x) is the covariant functor from the

category of A-algebras to sets that maps an A-algebra B to the set
of ideals in F

⊗
AB such that corresponding quotients Q satisfy the

following

(1) The elements q(x1), . . . , q(xn) in Q form a B-module basis,
where q : F −→ F

⊗
AB −→ Q is the composite map.

(2) The algebra homomorphism B −→ Q is étale.

Lemma 5.6. Let B be an A-algebra, and Q a B-valued point of H et
F (x).

Then we have the following commutative diagram of algebras

(5.6.1) ΓnAF //

can
��

ΓnBQ

σQ

��
UA(x) : = (ΓnAF )δ(x,x)

// B.

Proof. The composite morphism F −→ F
⊗

AB −→ Q induces a mor-
phism of A-algebras ΓnAF −→ ΓnBQ that sends the element δ(x, x) to
δ(q(x), q(x)), where q(x) = q(x1), . . . , q(xn) in Q. By assumption the
elements q(x) form a basis of Q and that Q is étale. Then, by Propo-
sition (2.12) we that the image of δ(q(x), q(x)) by the canonical map
σQ : ΓnBQ −→ Q is a unit, and the commutativity of the diagram (5.6.1)
follows. �

5.7. Universal coefficients. For each pair of indices 1 ≤ i, j ≤ n we
look at the product xixj in F , and for each k = 1, . . . , n we consider
the sequence

(5.7.1) xi,jk = x1, . . . , xk−1, xixj, xk+1, . . . , xn

where the k’th element is replaced with the product xixj. We now
define the universal coefficient

αi,jk =
δ(x, xi,jk )

δ(x, x)
in UA(x) = (ΓnAF )δ(x,x).

Proposition 5.8. Let Q be a Spec(B)-valued point of H et
F (x), and

let q : F −→ F
⊗

AB −→ Q denote the composite map. For each

k = 1, . . . , n, let bi,jk be the unique elements in B such that

q(xixj) =
n∑
k=1

bi,jk q(xk)
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in Q. Then bi,jk is the specialization of the element αi,jk under the natural
map UA(x) −→ B of Lemma (5.6), for each i, j, k = 1, . . . , n. In
particular we have that MA(x)

⊗
UA(x) B = Q as quotients of F

⊗
AB.

Proof. Having the triplet i, j, k fixed, we let xi,jk denote the sequence

(5.7.1) of elements in F . Consider the element δ(q(x), q(xi,jk )) in ΓnBQ.

We replace the element q(xixj) in Q with
∑
bi,jk q(xk), and obtain

δ(q(x), q(xi,jk )) = bi,jk δ(q(x), q(x)) ∈ ΓnBQ.

The element δ(q(x), q(x)) is the image of δ(x, x) by the induced map
ΓnAF −→ ΓnBQ. It follows from the commutative diagram (5.6.1) that
bi,jk in B is the image of αi,jk . �

Corollary 5.9. The pair (UA(x),MA(x)) represents H et
F (x).

Proof. It follows from Proposition (5.2) and Lemma (5.4) that M :=
MA(x) is a U := UA(x)-valued point of H et

F (x). If Q is any B-valued
point of H et

F (x) we have by Proposition (5.8) one morphism U −→ B
with the desired property, and we need to establish uniqueness of that
map. Therefore, let ϕi : U −→ B (i = 1, 2), be two A-algebra homo-
morphisms such that both extensions M

⊗
U B equal Q as quotients of

F
⊗

AB. We then have that the natural map

ΓnUM // ΓnU(M)
⊗

U B = ΓnBQ

is independent of the maps ϕi : U −→ B. And in particular the
canonical section σQ = σM⊗1 : ΓnBQ −→ B is independent of the maps
ϕi, (i = 1, 2). For any element u ∈ U we have that σM(uγn(1)) = u,
and then also that σQ(uγn(1) ⊗ 1B) = ϕi(u). Thus ϕ1 = ϕ2, and we
have proven uniqueness. �

5.10. Étale families. We let H et,n
F denote the functor of étale fami-

lies of the Hilbert functor HilbnF of n-points on F . That is, we consider
the co-variant functor from A-algebras to sets whose B-valued points
are

H et,n
F (B) = {I ∈ HilbnF (B) | B // F

⊗
AB/I is étale} .

It is clear that H et,n
F is an open subfunctor of HilbnF and we will end

this section by describing the corresponding open subscheme of the
Hilbert scheme.

Proposition 5.11. Let F be an A-algebra. Let ∆ ⊆ Spec(ΓnAF ) be
the closed subscheme defined by the ideal of norms IF , and let U =
Spec(ΓnAF )\∆ denote its open complement. The family πn| : π

−1
n (U) −→

U of Proposition (5.2) represents H et,n
F .

Proof. Clearly the functors H et
F (x), for different choices of elements

x = x1, . . . , xn in F , give an open cover of H et,n
F . By Corollary (5.9)
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the restriction of the family πn| : π
−1
n (U) −→ U to the open subscheme

Spec(UA(x)) ⊆ U represents H et
F (x). From Proposition (2.12) we get

that the intersection Spec(UA(x)) ∩ Spec(UA(y)), for x = x1, . . . , xn
and y = y1, . . . , yn, equals H et

F (x) ∩H et
F (y). And finally by Corollary

(3.5) we have that he union of the schemes Spec(UA(x)), for different
x = x1, . . . , xn, is the scheme U . �

6. Closure of the locus of distinct points

We will continue with the notation from the preceding sections. In
this section we will construct universal families, not for the locus of
distinct points as in Section 5, but for its closure.

6.1. Notation. Let F be an A-algebra, and let R =
⊕

m≥0 I
m
F denote

the graded ring where IF ⊆ ΓnAF is the ideal of norms associated to
V = F . We let x = x1, . . . , xn be n-elements in F , and we denote
by R(x) = R(δ(x,x)) the degree zero part of the localization of R at
δ(x, x) ∈ IF . Finally we let E denote the free R(x)-module of rank n.
We will write

(6.1.1) E =
n⊕
i=1

R(x)[xi],

where [xi] is our notation for a basis element pointing out the i’th
component of the direct sum E . As ΓnAF is an A-algebra we have that
E is an A-module. We define the A-module homomorphism

[ ] : F −→ E

in the following way. For any y ∈ F , and any i = 1, . . . , n, we let

xiy = x1, . . . , xi−1, y, xi+1, . . . , xn

denote the n-elements in F where the i’th element xi is replaced with
y. Then we define the value of the map (6.1.3) on the element y ∈ F
as

(6.1.2) [y] =
n∑
i=1

δ(x, xiy)

δ(x, x)
[xi] in E .

Note that when y = xi the notation of (6.1.1) is consistent with the
notation of (6.1.2). As determinants are linear in its columns (and
rows) it follows that the map [ ] : F −→ E defined above is an A-module
homomorphism. We get a R(x)-module homomorphism R(x) −→ E
that sends r 7→ r · [1], and then also an A-module homorphism

(6.1.3) F
⊗

AR(x) // E

sending y ⊗ r 7→ r · [y].
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6.2. Universal multiplication. With the notation as above we de-
fine now the R(x)-bilinear map E × E −→ E by defining its action on
the basis as

(6.2.1) [xi][xj] := [xixj] for i, j ∈ {1, . . . , n}.
We will show that the above defined bilinear map gives E the structure
of a commutative R(x)-algebra. We first observe the following sim-
ple but important fact. Consider E as a sheaf on Spec(R(x)), and let
U ⊂ Spec(R(x)) be a quasi-compact subscheme of Spec(R(x)). Assume
furthermore that the bilinear map (6.2.1) restricted to EU gives a ring
structure on EU . That is the product (6.2.1) is associative, has an multi-
plicative identity and is distributive, then we also have a ring structure
on EŪ , where Ū is the scheme theoretic closure of U ⊆ Spec(R(x)).
We will apply this observation to a scheme theoretic dense open subset
U ⊆ Spec(R(x)).

Proposition 6.3. Let F be an A-algebra. We have that (6.1.2) defines
an algebra structure on E and that the map (6.1.3) is a surjective R(x)-
algebra homomorphism.

Proof. Let R =
⊕

n≥0 I
n
F , where IF ⊆ ΓnAF is the ideal of norms. We

have that Spec(R(x)) is an affine open subset of Proj(R), where

ρ : Proj(R) −→ Spec(ΓnAF )

is the blow-up with center ∆ = Spec((ΓnAF )/IF ). The open com-
plement Proj(R) \ ρ−1(∆) of the effective Cartier divisor ρ−1(∆) is
schematically dense. Hence

U := Spec(R(x)) \ ρ−1(∆) ∩ Spec(R(x))

is schematically dense in Spec(R(x)). By (6.2) it suffices to show the
statements over U . However we have that U = Spec(UA(x)) as defined
in (5.6.1), and that the restriction of E|U coincides with the family
Spec(MA(x)). In other words, we have that restriction of the multipli-
cation map (6.1.3) to the open U coincides with the universal multipli-
cation map of Proposition (5.11).

�

Corollary 6.4. We have that E (x) is an R(x)-valued point of the
Hilbert functor HilbnF .

Proof. The proposition gives that Spec(E ) is a closed subscheme of
Spec(F

⊗
AR(x)). By construction the R(x)-module E is free of rank

n. �

Corollary 6.5. The schemes Spec(R(x)), for different choices of x =
x1, . . . , xn in F , form an affine open cover of Proj(R), and the families
Spec(E (x)) −→ Spec(R(x)) glue together to a Proj(R)-valued point of
the Hilbert functor HilbnF .
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Proof. The first statement follows from Lemma (3.5). To prove the
second assertion it suffices to see that the families glue over an open
schematically dense set. Let U = Proj(R)\ρ−1(∆), where ρ : Proj(R) −→
Spec(ΓnAF ) is the blow-up with center ∆. Then we have that Spec(R(x))∩
U = Spec(UA(x)) for any n-elements x = x1, . . . , xn in F , and the result
follows. �

7. The good component

7.1. When X −→ S is an algebraic space we have the Hilbert functor
HilbnX/S of closed subspaces of X that are flat and finite of rank n over
the base. If U −→ X is an étale map we define the subfunctor H n

U→X
of HilbnU/S by assigning to any S-scheme T the set

H n
U→X(T ) = {Z ∈ HilbnU/S(T ) such that the composite map

Z ⊆ U ×S T −→ X ×S T is a closed immersion}.

Proposition 7.2. Let X −→ S be a separated quasi-compact algebraic
space over an affine scheme S, and let U −→ X be an étale repre-
sentable cover with U an affine scheme, and let R = U ×X U . Then
we have the following

(1) The functor H n
U→X is representable by a scheme.

(2) The natural map H n
U→X −→ HilbnX/S is representable, étale and

surjective.
(3) The two maps H n

R→X
// //H n

U→X form an étale equivalence re-
lation, and the quotient is HilbnX/S.

Proof. Since X −→ S is separated the composition Z −→ U ×S T −→
X ×S T will be finite, for any Z ∈ HilbnU/S(T ), any S-scheme T . It
is then clear that H n

U→X is an open subfunctor of HilbnU/S where the
latter is known to be representable ([13]). This shows the first assertion.
To see that the map H n

U→X −→ HilbnX/S is representable we let T −→
HilbnX/S be a morphism, with T some S-scheme. Let Z ⊆ X×ST denote
the corresponding closed subscheme, and let ZU = Z×X U . It is easily
verified that the set of T -points of the fiber product H n

U→X ×HilbnX/S
T

equals the set of sections of ZU −→ Z. Thus the fibred product equals
the Weil restriction of scalars RZ/T (ZU) of ZU with respect to Z −→ T .
If T is an affine scheme then so is U ×S T and ZU . In particular the
fiber of ZU −→ T over any point t ∈ T is contained in some affine
open subscheme of ZU . Therefore [4, Thm. 7:4] applies, and the Weil
restriction RZ/T (ZU) is representable by a scheme. Hence the map

H n
U→X −→ HilbnX/S is representable. Étaleness of the map follows

from [4, Prop. 7:5], and surjectivity follows as any T -valued point of
HilbnX/S étale locally lifts to U . It is easy to see that the natural map
H n

R→X −→H n
U→X ×HilbnX/S

H n
U→X is an isomorphism. The result then

follows from (2). �
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Corollary 7.3. Let X −→ S be a separated map of algebraic spaces.
Then HilbnX/S is an algebraic space.

Proof. It suffices to show the statement for affine base S. Let X ′ ⊆ X
be an open immersion. Then as X −→ S is assumed separated we have
a map HilbnX′/S −→ HilbnX/S which is a representable open immersion.
Furthermore, as

HilbnX/S = ind. lim
X′⊆X

open, q-compact

HilbnX′/S

we may assume that X −→ S is quasi-compact as well. Then the result
follows from the proposition. �

Remark 7.4. For a quasi-projective scheme X −→ S over a Noetherian
base scheme S it was proven by Grothendieck that the Hilbert functor
HilbnX/S is representable by a scheme ([12]). For a separated algebraic
space X −→ S locally of finite presentation, Artin proved that HilbnX/S
is an algebraic space ([2]). The proof of the general result above show-
ing that HilbnX/S is an algebraic space for any separated algebraic space
X −→ S was suggested to us by one of the referees.

7.5. The good component. Let X −→ S be a separated algebraic
space, and let Z −→ HilbnX/S be the universal family, which by def-
inition is finite, flat of rank n. The discriminant DZ ⊆ HilbnX/S is a

closed subspace with the open complement U et
X/S parameterizing length

n étale subspaces of X. We define Gn
X/S ⊆ HilbnX/S as the schematic

closure of the open subspace U et
X/S. We call Gn

X/S the good or principal
component.

Remark 7.6. Let f : Z −→ H be a morphism of algebraic spaces which
is a finite and flat morphism of rank n. Then the set U ⊆ H above
which f is étale is an open subset being the complement of the dis-
criminant DZ/H . The scheme theoretic closure of U ⊆ H is then the
largest closed subspace of H over which the discriminant of f is a non-
zero-divisor.

Theorem 7.7. Let X = Spec(F ) −→ S = Spec(A) be a morphism
of affine schemes, and let ∆ ⊆ Spec(ΓnAF ) be the closed subscheme
defined by the ideal of norms. Then we have that the good component
Gn
X/S is isomorphic to the blow-up Bl(∆) of Spec(ΓnAF ) along ∆. The

isomorphism

bX : Gn
X/S

' // Bl(∆),

is induced from restricting the norm map nX : HilbnX/S −→ Spec(ΓnAF )
to the good component Gn

X/S.

Proof. By Theorem (4.10) we have that the inverse image n−1
X (∆) is

the discriminant DZ ⊆ HilbnX/S of the universal family Z −→ HilbnX .
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Consequently we have that the local equation of the closed immersion

Gn
X/S ∩ n−1

X (∆) ⊆ Gn
X/S,

is not a zero divisor. Therefore, by the universal properties of the blow-
up, we get an induced morphism bX : Gn

X/S −→ Bl(∆). A morphism
we will show is an isomorphism.

We have by Corollary (6.5) the Bl(∆)-valued point E of the Hilbert
functor HilbnF . From the defining properties of the Hilbert scheme we
then have a morphism fE : Bl(∆) −→ HilbnX/S such that the pull-back
of the universal family is E . When restricting E to the open set U =
Spec(ΓnAF ) \∆ we have an étale family – by construction of E . Hence
the image fE (U) is contained in U et

X/S. It follows that the schematic

closure U et
X/S = Gn

X/S contains the image of the schematic closure of

U = Bl(∆). Consequently we have a morphism fE : Bl(∆) −→ Gn
X/S,

a morphism we claim is the inverse to the map bX : Gn
X/S −→ Bl(∆).

By Proposition (5.11) we have that the restriction of fE to U is the
inverse of the restriction of bX to U et

X/S. As both U in Bl(∆) and U et
X/S

in Gn
X/S are open complements of effective Cartier divisors it follows

that fE is the inverse of bX . �

7.8. For a separated map of algebraic spaces X −→ S there exists an
algebraic space ΓnX/S that naturally globalize the affine situation with

Spec(ΓnAF ) ([21]). For the convenience of the reader we will give a
description of this space for X quasi-compact over an affine base. Not
only is the quasi-compact case technically easier to handle, but it turns
out to be sufficient in order to generalize Theorem (7.7).

7.9. Pro-equivalence. We will say that two sequences (indexed by
the non-negative integers) of ideals {Im} and {Jm} in a ring B are pro-
equivalent if for each m there exists an integer m′ ≥ 0 such Im′ ⊆ Jm,
and Jm′ ⊆ Im.

Lemma 7.10. Let G be a finite group acting on a Noetherian ring
B and let a ⊆ B be an invariant ideal. Assume furthermore that the
invariant ring BG is Noetherian, and that B is a finite module over
the invariant ring. Then, as ideals in BG, we have that {(aG)m} is
pro-equivalent with {(am)G}.

Proof. Clearly (aG)m
′ ⊆ (am)G for all m′ ≥ m, and consequently it

suffices to show that (am
′
)G ⊆ (aG)m for some m′. An element x ∈ B

is a root of the monic polynomial mx(t) =
∏

g∈G(t − gx). Since a is

G-invariant this gives that for any x ∈ a we have x|G| ∈ aG. If now a
is generated by r elements this implies that

am
′ ⊆ (aG)mB,
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where m′ = (r(|G| − 1) + 1)m. By assumption B is a finitely gener-
ated BG-module, and consequently by the Artin-Rees Lemma ([3, Cor.
10.10]) there exists an integer k ≥ 0 such that for m ≥ k we have that

(aG)mB ∩BG = (aG)m−k
(
(aG)kB ∩BG

)
⊆ (aG)m−k.

Hence (am
′+k)G ⊆ (aG)m. �

Lemma 7.11. Let F be an A-algebra of finite type, and let I ⊆ F be
a finitely generated ideal. For each m > 0 we let Jm denote the kernel
of the natural map ΓnA(F ) −→ ΓnA(F/Im). Then {Jm} is pro-equivalent
with {Jm1 }.

Proof. We first show a special case. Let X = x1, . . . , xr and T =
t1, . . . , ts be variables over A = Z, the integers, and let F = Z[X,T ],
and I = (T ). Let am denote the kernel of Tn

A F −→ Tn
A(F/Im). It

is easily checked that {am} is pro-equivalent with {am1 }. The group
Sn acts on Tn

A F , and it follows that {(am1 )Sn} is pro-equivalent with
{aSnm }. By Lemma (7.10) we have that {(am1 )Sn} is pro-equivalent with
{(aSn1 )m}. As F/Im is free, and in particular flat Z-module for all
m > 0, we have that ΓnA(F/Im) = TSnA(F/Im). In particular we get
that

ker(ΓnAF −→ ΓnA(F/Im)) = (am)Sn ,

and we have proven the lemma in the special case. Since we have
that ΓnZZ[X,T ]

⊗
ZA = ΓnAA[X,T ] the lemma is also proven for F =

A[X,T ], and I = (T ). In the general case we let ϕ : A[X,T ] −→ F
denote the A-algebra homomorphism that sends X to a set of gener-
ators of F , and T to a set of generators of the ideal I ⊆ F . For each
m > 0 we have induced surjective maps ϕm : A[X,T ]/(T )m −→ F/Im

and Γ(ϕm) : ΓnAA[X,T ]/(T )m −→ ΓnAF/I
m. An element in ker(Γ(ϕm))

is of the form ([19, Prop. IV.8, p. 284])

γc(f̄) ∗ γn−c(ḡ)

where ḡ ∈ A[X,T ]/(T )m and f̄ ∈ ker(ϕm). Clearly we can find ele-
ments f and g in A[X,T ], with f ∈ ker(ϕ), that restricts to f̄ and ḡ by
the canonical map. Thus the induced map ker(Γn(ϕ)) −→ ker(Γn(ϕm))
is surjective for all m > 0. It follows that the induced map from

am = ker
(
ΓnAA[X,T ] −→ ΓnA(A[X,T ]/(T )m)

)
to Jm = ker(ΓnAF −→ ΓnA(F/Im)) is surjective. In particular a1 surjects
to J1, so am1 surjects to Jm1 . The lemma now follows by lifting elements
to am and am1 , where the result holds. �

7.12. FPR-sets. Let G be a finite group acting on a separated al-
gebraic space X. By a result of Deligne the geometric quotient X/G
exists as an algebraic space. We will make use of that result, but
we need also to recall the notion of fixed-point-reflecting (abbreviated
FPR) sets.
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Following ([16, p.183]) we say that an equivariant map f : X −→ Y
is FPR at a point ϕ : Spec(L) −→ X, where L is a field, if for all
σ ∈ G we have that σ(fϕ) = fϕ implies that σ(ϕ) = ϕ. An equivalent
condition is that we have an equality of stabilizer groups Gϕ = Gfϕ.

An open invariant subspace U ⊆ X is called a FPR set if f : X −→ Y
is FPR at all points x of U .

Let A be a directed set. A subset S ⊆ A is eventually upwards
closed if there exists an index α ∈ A such that for all β ≥ α we have
β ∈ S. Note that if A is non-empty, then a subset S ⊆ A that is
eventually upwards closed is also non-empty.

Lemma 7.13. i) Suppose f : X → Y and g : Y → Z are G-morphisms,
h their composite and x a point of X. Then h is FPR at x precisely
when f is FPR at x and g is FPR at f(x).

ii) Suppose that {Xα} is an inverse system with affine transition
maps of G-spaces. For every point x of X := lim←−αXα the set Sx :=

{α | pα is FPR at x}, where pα : X → Xα is the structure map, is
eventually upwards closed.

iii) Suppose that also {Yα} is an inverse system with affine transition
maps of G-spaces over the same index set and that {fα : Xα → Yα} is
a G-morphism of directed systems. Set Y := lim←−α Yα, f := lim←−α fα and

assume that f is FPR at the point x of X. Then {α | fα is FPR at xα}
is eventually upwards closed.

Proof. For the first part we always have that Gx ⊆ Gf(x) ⊆ Gh(x) so
that if h is FPR at x, i.e., Gx = Gh(x), then f is FPR at x and g is
FPR at f(x) and clearly conversely.

Assume that α /∈ Sx. By definition the structure map pα : X −→ Xα

is not FPR at x, and therefore we have Gx 6= Gxα , where xα = pα(x).
For any g /∈ Gx we have gx 6= x, hence there is an index αg such
that gxαg 6= xαg . Since Gx is finite we can find an β ≥ αg such that
gxα 6= xα, for all g 6= Gx. Then Gxβ = Gx, and we have β ∈ Sx. It
follows by (i) that for any β′ ≥ β we have β′ ∈ Sx, so Sx is eventually
upwards closed.

Finally, we get from ii) that there exists an α such that for all β ≥ α
we have that p′β : Y → Yβ is FPR at f(x). If f is FPR at x, then by i)
we have that p′β ◦ f is FPR at x. Since p′β ◦ f = fβ ◦ pβ it follows by i)
again, that fβ is FPR at xβ, for all β ≥ α. �

7.14. We have the induced map (idX , σ) : X −→ X×X, for any group
element σ ∈ G. By taking the inverse image of the diagonal of a
separated algebraic space X −→ S, via the map (idX , σ) we get a
closed subspace Xσ ⊆ X. If f : X −→ Y is a G equivariant map, we
have a closed immersion Xσ ⊆ f−1(Y σ).

Definition-Lemma 7.15. If the equivariant map f : X −→ Y is sep-
arated and unramified, then Xσ is both open and closed in f−1(Y σ).
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Hence if Y is also separated over some S on which G acts trivially,
there is a maximal open FPR-subspace of X, which we call the FPR-
locus of f .

In the particular case when U −→ X is an unramified separated map
and X is separated over S, we will denote the FPR-locus of the induced
Sn-map Un

S −→ Xn
S by ΩU→X ⊆ Un

S .

Proof. We have a map f−1(Y σ) → X ×Y X given by x 7→ (x, σx)
and Xσ is the inverse image of the diagonal. As f is unramified and
separated, the diagonal is open and closed in X ×Y X and hence so is
Xσ in f−1(Y σ). If Y is also separated, then f−1(Y σ) is closed in X and
hence the complement of Xσ in f−1(Y σ) is closed in X and removing
such subsets for all σ gives the FPR-locus. �

Lemma 7.16. Let F −→ F ′ be an étale morphism of A-algebras, where
F and F ′ are of finite type over a Noetherian, strictly Henselian local
ring A. Let ϕ : Tn

A F
′ −→ L be a map to a field L, and let ϕi : F

′ −→ L
be the co-projections of ϕ (with i = 1, . . . , n). Define the ideals J =
∩ kerϕi in F ′ and I = ∩ kerϕi|F in F . Assume that ϕ is a closed point
in the FPR-locus ΩF→F ′ of Spec(Tn

A F
′) −→ Spec(Tn

A F ), lying above
the closed point of Spec(A). Then the induced map

F/Im −→ F ′/Jm

is an isomorphism, for all m > 0.

Proof. Since A/mA is separably closed, we have for each maximal ideal
m of F , lying above mA, that the field extension F/m is purely insepa-
rable. Consequently, since F −→ F ′ is étale, we have that F ′/mF ′ is a
product of trivial extensions of F/m. In particular, for each maximal
ideal m′ of F ′/J that contracts to m in F/I, we have that the m-adic
completion of F/I is isomorphic to the m′-adic completion of F ′/J . To
prove the result we need only show that we have a bijection between
the maximal ideals in F ′/J and the maximal ideals in F/I.

Since F ′ is of finite type over A, and the point ϕ : Tn
A F

′ −→ L is
closed, we may assume that L is a finite field extension of the residue
field A/mA. It follows that the ideals kerϕi ⊂ F ′, and similarily the
ideals kerϕi|F ⊂ F , are maximal ideals (i = 1, . . . , n). As the point ϕ is
in the FPR-locus ΩF→F ′ we have that ϕi = ϕj if and only if ϕi|F = ϕj|F .
Hence, there is a bijection between the maximal ideals of F/I and the
maximal ideals of F ′/J . �

7.17. Notation. Assume now that the base scheme S = Spec(A)
is affine, and that X is a quasi-compact, separated, algebraic space.
Let U = Spec(F ) −→ X be an étale cover. We have the FPR-locus
ΩU→X ⊆ Un

S , and we let

Ω′U→X ⊆ Un
S/Sn
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denote the image of ΩU→X by the quotient map Un
S −→ Un

S/Sn. More-
over, the morphism Spec(α) : Spec(TSnA F ) −→ Spec(ΓnAF ) is a home-
omorphism (see e.g. [21, Corollary 4.2.5]), and we let

Ω′′U→X ⊆ Spec(ΓnAF )

denote the open set given as the image of Ω′U→X by the morphism
Spec(α).

Proposition 7.18. Let F −→ F ′ be an étale morphism of A-algebras,
with F and F ′ of finite type over a Noetherian, strictly Henselian local
ring A. Let ξ ∈ Ω′′F→F ′ be a closed point lying over the closed point of
Spec(A). Then the induced map of completions

(ΓnAF )
f̂(ξ)
−→ (ΓnAF

′)ξ̂

is an isomorphism, where f(ξ) is the image of ξ by the induced map
Spec(ΓnAF

′) −→ Spec(ΓnAF ).

Proof. It suffices to show that there are ideals I1 ⊂ ΓnAF and J1 ⊂
ΓnAF

′ contained in the ideals corresponding to the points f(ξ) and ξ,
respectively, such that I1 maps to J1 and the induced map of formal
neighborhoods

(7.18.1) lim
←−

(ΓnAF )/Im1 −→ lim
←−

(ΓnAF
′)/Jm1

is an isomorphism. As the morphism Spec(TSnA F
′) −→ Spec(ΓnAF

′) is
a homeomorphism the point ξ lifts to a point of Spec(Tn

A F
′). Let

ϕ : Tn
A F

′ −→ L′ be a lifting of ξ = Spec(L), with L′ some field
extension of L. Write ϕ = (ϕ1, . . . , ϕn), and define the ideal J =
∩ ker(ϕi) in F . We let Jm = ker(ΓnAF

′ −→ ΓnA(F ′/Jm)). As the map
ΓnAF

′ −→ L factors via ΓnA(F/J) we have that J1 is contained in the
ideal ker(ΓnAF

′ −→ L). We let Im = ker(ΓnAF −→ ΓnA(F/Im)) where
I = ∩ ker(ϕi|F ), and we consider the induced map (7.18.1).

By Lemma (7.11) we have the limit of the system {(ΓnAF )/Im1 } equals
the limit of the system {(ΓnAF )/Im = ΓnA(F/Im)}. By Lemma (7.16)
we have that F/Im = F ′/Jm, and it follows that the map (7.18.1) is
an isomorphism. �

Corollary 7.19. Let F −→ F ′ be an étale morphism of A-algebras,
and let IF ⊆ ΓnAF and IF ′ ⊆ ΓnAF

′ be the ideals of norms associated
to F and F ′, respectively. These two ideals, IFΓnAF

′ and IF ′, are equal
when restricted to the open subscheme Ω′′F→F ′ ⊆ Spec(ΓnAF

′).

Proof. Assume first that the result is true when F (and hence F ′)
is a finitely presented A-algebra. We can write f : F −→ F ′ as a
limit by a directed set of étale maps fα : Fα −→ F ′α of finitely pre-
sented A-algebras, such that F ′α

⊗
Fα
Fβ w F ′β for all α and all β ≥ α.

This means that Spec(Tn
A F

′) → Spec(Tn
A F ) can be thought of as

lim←−β Spec(Tn
A F

′
β)→ lim←−β Spec(Tn

A Fβ) and similarly for Tn replaced by
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TSn (as directed direct limits commute with taking invariants) and Γn.
The equality to be proven is one of equality of stalks so we may focus
on a particular point x′′ ∈ Ω′′F→F ′ which is the image of some point
x ∈ ΩF→F ′ . Let y ∈ Spec(Tn

A F ) denote the image of x under the map
Spec(Tn

A F
′) −→ Spec(Tn

A F ). By Lemma (7.13) ii) we may assume
that all projection maps pα : Spec(Tn

A F ) −→ Spec(Tn
A Fα) are FPR at

y. Then by Lemma (7.13) i) the two compositions

Spec(Tn
A F

′) //

p′α
��

Spec(Tn
A F )

pα

��
Spec(Tn

A F
′
α) // Spec(Tn

A Fα)

are FPR at x for all α. By Lemma (7.13) i) again, we have that
Spec(Tn

A F
′
α) −→ Spec(Tn

A Fα) is FPR at p′α(x), which means that
p′α(x) ∈ ΩFα→F ′α . But then x′′α, the image of x′′ under the projec-
tion map Spec(ΓnAF

′) −→ Spec(ΓnAF
′
α), is in Ω′′Fα→F ′α . Hence we get

the equality IFαΓnAF
′
α = IF ′αΓnAF

′
α at x′′α and taking the direct limit of

sheaves in α gives the corollary at x′′ and hence in Ω′′F→F ′ .
We are therefore left with the case when F is a finitely presented

A-algebra. By another (simpler) limit argument we reduce to the case
when A is Noetherian. Assume, by way of contradiction, that we have
a closed point ξ ∈ Ω′′F→F ′ at which IF ′ and IFΓnAF

′ differ. Let Â denote
the localizing and strictly Henseliziation of A at the image of ξ. Let
F̂ = F ⊗A Â and let F̂ ′ = F ′ ⊗A Â. By the proposition the two ideals
IF̂ ′ and IF̂Γn

Â
F̂ ′ are equal at the completion of every closed point of

Ω′′
F̂→F̂ ′ , hence equal on Ω′′

F̂→F̂ ′ . But, then it follows that also the ideals
IF ′ and IFΓnAF

′ are equal at ξ, and therefore equal at Ω′′F→F ′ . �

Corollary 7.20. Let F −→ F ′ be an étale morphism of A-algebras.
The induced maps Ω′F→F ′ −→ Spec(TSnA F ) and Ω′′F→F ′ −→ Spec(ΓnAF )
are étale.

Proof. We only show that Ω′′F→F ′ −→ Spec(ΓnAF ) is étale, the case
with Ω′F→F ′ is similar. Assume first that F and F ′ are finite type

over a Noetherian ring A. Étaleness can be checked at a point, and
by localization and Henselization we may assume that A is strictly
Henselian and that the point lies in the special fiber. We can then
reduce the question of étaleness to the case with the point being closed,
and then the result follows from the proposition.

In the general case we write, as in the previous proof, f : F −→ F ′

as a limit of a directed set fα : Fα −→ F ′α of finitely presented algebras,
where F ′α

⊗
Fα
Fβ = F ′β. We may assume that A is Noetherian.
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Let pα,β : Spec(ΓnAF
′
β) −→ Spec(ΓnAF

′
α) denote the induced map. We

have the commutative diagram

(7.20.1) p−1
α,β(Ω′′Fα→F ′α) //

��

Spec(ΓnAFβ)

��
Ω′′Fα−→F ′α

// Spec(ΓnAFα).

The corollary is proven if we show that the diagram is Cartesian. The
lower horizontal map in (7.20.1) is étale by what just proven above. One
checks that we have an inclusion of open sets p−1

α,β(Ω′′Fα→F ′α) ⊆ Ω′′Fβ→F ′β
.

And consequently the upper horizontal map in (7.20.1) is also étale. As
the horizontal maps in the diagram (7.20.1) are étale, it suffices to check
Cartesianity for maps from Spec(k), with k algebraically closed fields.
Since the map Spec(TSnA F ) −→ Spec(ΓnAF ) is a homeomorphism, we
can reduce the question of Cartesianity to the corresponding statement
with Ω′ and TSnA replacing Ω′′ and ΓnA, respectively, in (7.20.1). But,
to check that we lift everything to Ω and Tn

A, where it is clear. �

Corollary 7.21. Let X −→ S be a quasi-compact separated algebraic
space over an affine base S. Write X as a quotient R

////U , with
affine schemes U and R. Then we have that Ω′′R→X

////Ω′′U→X is an
étale equivalence relation.

Proof. The étale maps ΩR→X
s //

t
//ΩU→X are Sn-equivariant, and form

an equivalence relation. After taking the quotients modulo the Sn-

action, we get induced maps Ω′R→X
s′ //

t′
//Ω′U→X . It is readily checked

that the two projections s′ and t′ will satisfy the reflexivity and sym-
metry condition. To verify the transitivity condition we first form the
fiber product R2 = R×U R given by the maps defining the equivalence
relation on U . We then obtain the commutative diagram

(7.21.1) ΩR2→X
//

��

ΩR→X

s

��
ΩR→X t

// ΩU→X ,

which one can verify is Cartesian. Thus ΩR2→X consists of pairs (x, y)
with x and y in ΩR→X such that t(x) = s(y). Transitivity of s′ and t′

is reduced to showing that the commutative diagram

(7.21.2) Ω′R2→X
//

��

Ω′R→X

s′

��
Ω′R→X

t′ // Ω′U→X
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obtained by taking the Sn-quotients of the Cartesian diagram (7.21.1)
remains Cartesian. It follows by Corollary (7.20) that the arrows in
(7.21.2) are étale. Thus one checks that the diagram (7.21.2) is Carte-
sian by looking at geometric points, where it is clear. Since the projec-
tions s′ and t′ are étale, the morphism

(7.21.3) Ω′R→X −→ Ω′U→X × Ω′U→X

is unramified. We have that (7.21.3) is injective on field valued points,
hence it is a monomorphism ([11, Proposition 17.2.6]). That is, we

have an étale equivalence relation Ω′R→X
s′ //

t′
//Ω′U→X .

We invoke the same arguments again: Applying the morphism Spec(α)

gives induced maps Ω′′R→X
s′′ //

t′′
//Ω′′U→X . By Corollary (7.20) the arrows

in the corresponding diagram with Ω′′ replacing Ω′ in (7.21.2), are étale.
By looking at geometric points one then obtains that Ω′′R2→X equals the
fiber product of Ω′′R→X ×Ω′′U→X

Ω′′R→X via the two projections s′′ and t′′.
This proves the transitivity axiom, and reflexitivity and symmetry is
clear. Finally, the

(7.21.4) Ω′′R→X −→ Ω′′U→X × Ω′′U→X

is unramfied. Since Spec(α) is a universal homeomorphism we have
that (7.21.4) is radical, hence a monomorphism, and we have proven
the claim. �

Proposition 7.22. Let X −→ S be a separated quasi-compact alge-
braic space over an affine scheme S = Spec(A). Let U = Spec(F ) −→
X be an étale affine cover, and let R = U ×X U . Define ΓnX/S as the

quotient of the étale equivalence relation Ω′′R→X
// //Ω′′U→X .

(1) We have a cartesian diagram

H n
U→X

nU

��

// HilbnU/S

nU
��

Ω′′U→X // ΓnU/S = Spec(ΓnA(F )).

(2) In the diagram below we have nU ◦ pi = qi ◦ nR , i = 1, 2, and
consequently there is an induced map nX : HilbnX/S −→ ΓnX/S:

H n
R→X

nR

��

p1 //
p2

// H n
U→X

nU

��

p // HilbnX/S

nX
��

Ω′′R→X
q1 //
q2

// Ω′′U→X
q // ΓnX/S

Moreover, the commutative diagrams above are cartesian.
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Proof. Let us first consider the special case with S = Spec(k), where k
is an algebraically closed field. A k-valued point Z ⊆ U of the Hilbert
functor HilbnU/S has support at a finite number of points ξ1, . . . , ξp. By
(4.4) the associated cycle nU(Z) consists of the points ξ1, . . . , ξp counted
with multiplicities m1, . . . ,mp. We have that the cycle nU(Z) is in the
FPR-set Ω′′U→X if and only if the closed subscheme Z ⊆ U also is a
closed subscheme of X.

Now, let us prove the proposition. In the first diagram (1) the hor-
izontal maps are open immersions. To see that it is commutative and
cartesian it suffices to establish the equality of the two open sets H n

U→X
and n−1

U (Ω′′U→X) of HilbnU/S. This we can be checked by reducing to
S = Spec(k), with k algebraically closed. Then we are in the special
case considered above from which Assertion (1) follows.

In particular we have proven that the restriction of the norm map
nU to the open subset H n

U→X has Ω′′U→X as range. We therefore ob-
tain the two leftmost diagrams in (2). Since the horizontal maps in
these diagram are étale (Proposition (7.2) and Corollary (7.21)) we
can prove the diagrams are cartesian by evaluation over algebraically
closed points. We are then again reduced to the special case considered
above, which proves assertions in (2). �

Proposition 7.23 (Rydh). Let X −→ S be a separated map of al-
gebraic spaces. Then there exists an algebraic space ΓnX/S −→ S such
that

(1) When X −→ S is quasi-compact with S an affine scheme, the
space ΓnX/S coincides with the one constructed above (7.22).

(2) For any base change map T −→ S we have a natural identifi-
cation ΓnX/S ×S T = ΓnX×ST/T .

(3) For any open immersion X ′ ⊆ X we have an open immersion
ΓnX′/S ⊆ ΓnX/S, and moreover

ΓnX/S = lim
X′⊆X

open, q-compact

ΓnX′/S.

(4) There is a universal homeomorphism Xn
S/Sn −→ ΓnX/S, which

is an isomorphism when X −→ S is flat, or when the charac-
teristic is zero.

Proof. All results can be found in ([21]): Existence of the space ΓnX/S
is Theorem (3.4.1), whereas Assertion (4) is Corollary (4.2.5), and the
statement about open immersions in (3) is a special case of Proposi-
tion (3.1.7). The functorial description of ΓnX/S given by David Rydh

immediately gives Assertion (2) and that ΓnX/S is the union of ΓnX′/S
with quasi-compact X ′ ⊆ X. Assertion (1) follows as our Ω′′U→X is
what Rydh denotes with Γn(U/S)|reg/f (see Proposition (4.2.4), and
the proof of Theorem (3.4.1), loc. cit.). �
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7.24. The ideal sheaf of norms. For X −→ S quasi-compact and
separated over an affine base we have by Corollary (7.19) that the
ideals of norms patch together to form an ideal sheaf IX on ΓnX/S. As
these ideals clearly commute with open immersions and base change
we obtain by (3) and (1) of Proposition (7.23), an ideal sheaf of norms
IX on ΓnX/S, for any separated algebraic space X −→ S. Let

∆X ⊆ ΓnX/S

denote the closed subspace defined by the ideal sheaf of norms.

Theorem 7.25. Let X −→ S be a separated morphism of algebraic
spaces. Then the good component Gn

X/S of HilbnX/S is isomorphic to the
blow-up of ΓnX/S along the closed subspace ∆X ⊆ ΓnX/S, defined by the
ideal of norms associated to X −→ S. Moreover, if X −→ S is flat
then Gn

X/S is obtained by blowing-up the geometric quotient Xn
S/Sn.

Proof. The Hilbert scheme HilbnX/S and ΓnX/S commute with arbitrary
base change. The good component Gn

X/S as well as blow-ups, commute
with flat, and in particular étale base change. We may therefore assume
that the base S is an affine scheme.

For any open immersion X ′ ⊆ X, with X ′ quasi-compact, we have
a norm map nX′ : HilbnX′/S −→ ΓnX′/S which, by varying X ′, form a

norm map nX : HilbnX/S −→ ΓnX/S. We claim now that the inverse

image n−1
X (∆X) is locally principal, which we can verify on an open

cover. Moreover, given that we obtain an induced map from the good
component Gn

X/S to the blow-up of ΓnX/S along ∆X . To verify that
the induced map is an isomorphism, we also reduce to an open cover.
Consequently we may assume that X itself is quasi-compact.

When X is quasi-compact we choose an étale affine cover U −→ X.
Then by using the cartesian diagrams (2) and (1) of Proposition (7.22)
one establishes using Theorem (4.10) that n−1

X (∆X) is locally principal.
By Theorem (7.7) we have that the blow-up of ∆U ⊆ ΓnU/S yields the
good component Gn

U/S, and the isomorphism is induced by the norm

map nU . It then follows by the two cartesian diagrams (2) and (1)
of Proposition (7.22), that the map induced map from Gn

X/S to the
blow-up of ∆X ⊆ ΓnX/S is an isomorphism. �

7.26. The case of surfaces. Before we give a corollary to this re-
sult we need a generalisation of a result of Fogarty on the smoothness
of the Hilbert scheme ([10, Theorem 2.9]). Fogarty proves that the
Hilbert scheme of a smooth map X −→ S of relative dimension 2 is
smooth provided that S is a Dedekind scheme. As the Hilbert scheme
commutes with base change and flatness can be verified in the integral
Noetherian case by pulling back to Dedekind bases it follows that the
result of Fogarty is valid when the base S is integral. However, as
we will see, no conditions on the base is needed for that statement.
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We shall give a direct proof by proving formal smoothness using the
infinitesimal lifting criterion and the Hilbert-Burch theorem.

Proposition 7.27. Let X −→ S be a smooth and separated morphism
of relative dimension 2. Then HilbnX/S −→ S is smooth for all n.

Proof. As HilbnX/S commutes with base change we can assume that
the base is Noetherian. It is enough to show formal smoothness so the
statement would follow if we could show that for every small thickening
T ⊂ T ′ of local Artinian S-schemes, any T -flat finite subscheme Z ⊆
X ×S T can be extended to a T ′-flat finite subscheme of X ×S T ′. Let
s be the closed point in S. The obstruction for the existence of such
a lifting is an element α ∈ Ext1

OXs
(IZs ,OXs/IZs). We have an exact

“local-to-global” sequence

H1(Xs,H omOXs
(IZs ,OXs/IZs))→ Ext1

OXs
(IZs ,OXs/IZs)→

H0(Xs,Ext1
OXs

(IZs ,OXs/IZs)).

As H omOXs
(IZs ,OXs/IZs) has finite support, the left term of the

above sequence is 0, and consequently it suffices to show that the image
of the obstruction element α in H0(Xs,Ext1

OXs
(IZs ,OXs/IZs)) is zero.

As Z is a disjoint union of points we have that α =
∏
αzi , where

at a point z ∈ Z the factor αz is the obstruction for lifting Spec OZ,z,
which is a closed flat subscheme of Spec OX×ST ,z, to a flat subscheme of
Spec OX×ST ′,z. It is thus enough to show that these local obstructions
vanish. Hence our situation is as follows: We have a surjection of local
Artinian rings R′ −→ R whose kernel is 1-dimensional over the residue
field, an essentially smooth 2-dimensional local R′-algebra S ′, and a
quotient S := S ′

⊗
R′ R −→ T such that T is a finite flat R-module.

We then want to lift T to a quotient S ′ −→ T ′ which is a flat R′-
module. We first claim that T has projective dimension 2 over S. As
T is R-flat it is enough to check T has projective dimension 2 over S,
where (−) denotes reduction modulo the maximal ideal of R. In that
case we have that T is a Cohen-Macaulay module over the regular local
ring S with support of codimension 2 and the result follows.

By [18, Thm. 7.15] (cf. also the original proof in [6]) it then follows
that the ideal IT defining T is the determinant ideal of n × n-minors
of an n + 1 × n-matrix M and that the grade (the maximal length of
S-regular sequence contained in IT ) of IT is 2. We then (arbitrarily)
lift M to a matrix M ′ over S ′ and let T ′ be defined by n × n-minors
of M ′. What remains to show is that T ′ is R′-flat. The grade of IT ′
is also 2 as we may lift an S-regular sequence in IT to elements of IT ′
which then give an S ′-regular sequence and hence by [18, Thm. 7.16],
the sequence

0 −→ (S ′)n −→ (S ′)n+1 −→ S ′ −→ T ′ −→ 0



32 TORSTEN EKEDAHL AND ROY SKJELNES

is exact, where (S ′)n −→ (S ′)n+1 is given by the lifted matrix and
(S ′)n+1 −→ S ′ by its minors (with appropriate signs). For the same
reason this sequence tensored with the residue field of R′ remains exact
which shows that T ′ is R′-flat. �

Corollary 7.28. Let X −→ S be a smooth, separated morphism of pure
relative dimension 2. Then we have that the Hilbert scheme HilbnX/S is
the blow-up of ΓnX/S along ∆X .

Proof. As in the proof of Corollary (7.3) we may reduce to the case
when S is affine and X −→ S is quasi-compact. If we can prove
that the open locus U et of HilbnX/S is schematically dense then we are

finished by the Theorem. As the defining ideal of the complement of U et

is locally principal and as HilbnX/S −→ S is flat by the proposition this
can be checked fibre by fibre so we may assume that S is the spectrum
of a field k. Now, in that case HilbnX/S is smooth by the proposition
or by Fogarty’s result. For the density statement we may reduce to
the base field k being algebraically closed. Write X = ti=1,...,pXi as a
disjoint union of integral surfaces. We then have that HilbnX/S is the

disjoint union tn1+···+np=n

∏
i Hilbni(Xi). As U et is non-empty in each

of the components Hilbni(Xi) that are irreducible ([10, Propositions
2.3-4]), this implies that it is schematically dense in HilbnX/S. �

Remark 7.29. As pointed out by the referee, there is a small inaccu-
racy in ([10, Propositions 2.3-4]) concerning the connectedness of the
Hilbert scheme in that the Hilbert scheme of a connected scheme is not
necessarily connected. The proof had to take that into account.

8. The good component for affine varieties

We will in this last section generalize the approach Haiman gives
in [14], using the fact that the Hilbert scheme HilbnY , for a projective
scheme Y , can be embedded as a closed subscheme of the Grassmannian
of rank n-quotients of H0(Y,OY (N)), when N is large enough. To
simplify we assume that our base Spec(A) is Noetherian.

Proposition 8.1. Let X = Spec(F ) −→ S = Spec(A) be a finite type
morphism of affine schemes, and let V ⊆ F be an n-sufficiently big A-
submodule. Let IV and IF be the ideals of norms associated to V and
F , respectively. The natural morphism

⊕
m≥0 I

m
V →

⊕
m≥0 I

m
F induces

a morphism

ϕ : Gn
X/S = Proj(

⊕
m≥0

ImF ) −→ BlIV (ΓnAF ) = Proj(
⊕
m≥0

ImV )

which is finite.

Proof. Let U respectively U ′, be the complement of Spec(ΓnAF ) in
Spec(

⊕
m≥0 I

m
F ) respectively Spec(

⊕
m≥0 I

m
V ). That the map on Proj’s
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is well-defined means that the map on spectra maps U into U ′. Assume
therefore, by way of contradiction, that we have a point x of U that does
not map into U ′. This gives us a field valued point of HilbnSpec(F )/ Spec(A),
i.e., an n-dimensional quotient F

⊗
A k → R. However, the assumption

that the image of x does not lie in U ′ means that the image of V does
not span R. This however contradicts the assumption that V is n-
sufficiently big.

For graded elements f in a graded ring R we let D+(f) denote the
basic open affine given as the spectrum of the degree zero part of the
localized ring Rf . We have, for any f ∈ IV that ϕ−1(D+(f)) = D+(f),
hence the morphism ϕ is an affine morphism. Since F is assumed
of finite type it follows from Lemma (2.10) that IF is of finite type,
and consequently Gn

X/S is proper over Spec(ΓnAF ). Since BlIV (ΓnAF ) is
separated it follows that ϕ is proper. Thus the morphism ϕ is both
proper and affine, hence finite. �

When V ⊆ F is n-sufficiently big we have an induced morphism

h : HilbnX/S −→ GrassnV

from the Hilbert scheme to the Grassmannian.

Lemma 8.2. Let X = Spec(F ) −→ S = Spec(A) be of finite type, and
let V ⊂ F be n-sufficiently big, finitely generated A-module. We have
a commutative diagram

Gn
X/S

ϕ

��

// HilbnX/S

h
��

BlIV (ΓnAF ) // GrassnV .

Proof. Since V is finitely generated we can use the Plücker coordinates
to embed GrassnV as a closed subscheme of P(ΛnV ). Composition with
the diagonal embedding and the Segre embedding yields the closed
immersion ι1 given as the composite

GrassnV ⊂ P(Λn
AV ) ⊂ P(Λn

AV )×P(Λn
AV ) ⊂ P(Λn

AV
⊗

A Λn
AV ) .

The natural map of A-modules ΛnV
⊗

A ΛnV −→ IV will by definition
hit all the generators for the ideal IV , and consequently determine a
closed immersion ι2 : BlIV (ΓnAF ) −→ P(Λn

AV
⊗

A Λn
AV )×Spec(ΓnA(F )).

We now have the commutative diagram

Gn
X/S

ϕ

��

// HilbnX/S
h // GrassnV

ι1

��
BlIV (ΓnAF )

p1◦ι2 // P(Λn
AV
⊗

A Λn
AV ),

where p1 is the projection on the first factor. The inverse image ϕ−1(E)
of the exceptional divisor E ⊆ BlIV (ΓnAF ) is the exceptional divisor of
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Gn
X/S, and on the open complement we have that ϕ is an isomorphism.

Consequently p1◦ι2 : BlIV (ΓnAF ) −→ P(Λn
AV
⊗

A Λn
AV ) factors through

GrassnV since it does so on the complement of a Cartier divisor. �

8.3. Consider now Y = Pr
S, and let g : Y −→ S denote the structure

map. For any closed subscheme Z ⊆ Y that is flat, locally free of rank
n over S, the induced map

g∗OY (N) −→ g∗OZ(N)

is easily seen to be surjective for N ≥ n − 1. Furthermore, the ideal
sheaf IZ twisted with N ≥ n is regular, that is Rpg∗IZ(N − p) = 0
for p > 0 when N ≥ n. It follows ([12]) that the induced morphism

(8.3.1) HilbnY/S −→ Grassng∗OY (N)

is a closed immersion for N ≥ n.

Proposition 8.4. Let F be an A-algebra generated by t1, . . . , tr, let
V ⊆ F be spanned by the monomials of degree ≤ n in the t1, . . . , tr.
Then the morphism

ϕ : Gn
X/S −→ BlIV (ΓnAF )

is an isomorphism.

Proof. We embed X = Spec(F ) in Y = Pr
S using (1 : t1 : · · · : tr). We

have natural maps h : HilbnX/S −→ GrassnV and GrassnV → Grassng∗(OY (N)),
N ≥ n, where the latter is a closed immersion. As HilbnX/S immerses
into HilbnY/S, and the map (8.3.1) is an immersion, it follows that the
map h : HilbnX/S −→ GrassnV is an immersion.

By Lemma (8.2) we have that the restriction of h to Gn
X/S factors

through

ϕ : Gn
X/S −→ BlIV (ΓnAF ),

hence ϕ must be an immersion as well. However, by Proposition (8.1)
the map ϕ is proper, and consequently we have that the map ϕ must
be a closed immersion. Furthermore, since ϕ is an isomorphism over
the complement of a Cartier divisor, it is an isomorphism. �
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