COMPUTING HASSE-SCHMIDT DERIVATIONS AND WEIL RESTRICTIONS OVER JETS

ROY MIKAEL SKJELNES

Abstract

We give an explicit and compact description of the Hasse-Schmidt derivations, using Fitting ideals and symmetric tensor algebras. Finally we verify the localization conjecture [Tra03].

1. Introduction

The higher order derivations were introduced by Hasse and Schmidt, and generalizes the usual notion of derivations. We will in this short note give a new description of the higher order derivations, a description using Fitting ideals and symmetric tensor algebras. We obtain in this way a compact presentation of the higher order derivations, naturally relating the order n derivations with those of order $n-1$. Finally we verify that the Hasse-Schmidt derivations behave well under localization, and thereby showing that the localization conjecture [Tra03] holds.

Let R and A^{\prime} be two (commutative) A-algebras. A higher order derivation ([Mat86]), of order n, is a sequence $\partial_{n}=\left(d_{0}, \ldots, d_{n}\right)$ of A linear maps $d_{p}: R \longrightarrow A^{\prime}$, where d_{0} is an algebra homomorphism, and where

$$
d_{p}(x y)=\sum_{i+j=p} d_{i}(x) d_{j}(y),
$$

for all $1 \leq p \leq n$. A higher order derivation is also called HasseSchmidt derivation, and works relating these to ordinary derivations can be found in e.g. [Say86], [FLNM03].

We let $\operatorname{Der}_{R / A}^{n}\left(A^{\prime}\right)$ denote the set of all higher order derivations from R to A^{\prime}. By composition one obtains that the set of higher order derivations form a functor $\operatorname{Der}_{R / A}^{n}(-)$, from the category of A-algebras to sets. One can construct the representing object $\mathrm{HS}_{R / A}^{n}$ as a polynomial ring, over R, in $|R|^{\times n}$-variables, modulo all the expected relations, see e.g.[Voj07],

We will in this short note give a different, and a more compact, description of the representing object $\mathrm{HS}_{R / A}^{n}$. It is well-known that Hasse-Schmidt derivations are equivalently described by jets and arc

Key words and phrases. Weil restriction, Fitting ideals, Hasse-Schmidt derivations, jets, localization conjecture.
spaces. An A-algebra homomorphism

$$
u: R \longrightarrow A^{\prime}[t] /\left(t^{n+1}\right)=A^{\prime} \otimes_{A} A[t] /\left(t^{n+1}\right)
$$

encodes the same information as a higher order derivation from R to A^{\prime}. In other words the higher order derivations is given as the functor $\operatorname{Hom}_{A \text {-alg }}(R, E)$, with co-domain the arc of jets $E=A[t] /\left(t^{n+1}\right)$.

The functors $\operatorname{Hom}_{A \text {-alg }}(R, E)$ we described quite explicitely using Fitting ideals in [Skj12], and the results in the present paper are obtained by specializing to $E=A[t] /\left(t^{n+1}\right)$. With this specific co-domain $E=A[t] /\left(t^{n+1}\right)$ we will write down explicitely the representing object, and use the explicit presentation to extract new information as well as answer questions about the Hasse-Schmidt derivations.

Our explicit presentation is as follows. Write the A-algebra $R=$ $A[x, y, \ldots, z] /\left(f_{1}, \ldots, f_{m}\right)$, that is as a quotient of a polynomial ring modulo some relations (for notational simplicity we present the result only using finitely many variables and relations). Then the HasseSchmidt derivations of order n is represented by $\mathrm{HS}_{R / A}^{n}$ which is the algebra

$$
\operatorname{HS}_{R / A}^{n-1}\left[d_{n} x, d_{n} y, \ldots, d_{n} z\right] /\left(d_{n} f_{1}, \ldots, d_{n} f_{m}\right)
$$

where $d_{n} x, d_{n} y, \ldots, d_{n} z$ are variables over $\mathrm{HS}_{R / A}^{n-1}$, and where $d_{n} f$ is a the n 'th order derivation of $f \in A[x, y, \ldots, z]$. In particular we recover that $\mathrm{HS}_{R / A}^{1}$ equals the symmetric tensor algebra of the R-module of differentials $\Omega_{R / A}^{1}$.

As the Weil restriction of $A[t] /\left(t^{n+1}\right)$-algebras is closely related, we also write explicit presentations for these rings as well. The Weil restrictions are important objects within algebraic geometry, and it might be of interest to see explicit presentations of these algebras as well.

In the last section we focus on Hasse-Schmidt derivations and localizations. We show that the functor of Hasse-Schmidt derivations $\mathrm{HS}_{R / A}^{\infty}$ is representable, and that it behaves well under localizations. We give two proofs for that claim. One proof is obtained by identifying the Hasse-Schmidt derivations as the direct limit of the Hasse-Schmidt derivations of finite order, of which we have an explicit description. The other proof is based on identifying the Hasse-Schmidt derivations with the infinite tensor product. The question concerning the localization property for the Hasse-Schmidt derivations was conjectured in [Tra03], apparently motivated by [BK72].

2. Hasse-Schmidt derivations

We will first give a description of the ring of Hasse-Schmidt derivations of order n, and thereafter relate that ring with the Hasse-Schmidt derivations of order $n-1$. All rings and algebras considered are commutative and with unit.
2.1. Parameterizing algebra homomorphisms. As a prelude to our description of Hasse-Schmidt derivations, we will consider the following functor. Let R and E be two A-algebras. Then we have the functor $\operatorname{Hom}_{A}(R, E)$ from the category of A-algebras to sets, sending an A-algebra A^{\prime} to the set

$$
\underline{\operatorname{Hom}}_{A}(R, E)\left(A^{\prime}\right)=\operatorname{Hom}_{A-\mathrm{alg}}\left(R, E \bigotimes_{A} A^{\prime}\right) .
$$

2.2. Symmetric algebra. Let E be an A-algebra that is free of finite rank. It is well-known, and readily checked, that the symmetric tensor algebra $\mathrm{S}_{A}\left(V \bigotimes_{A} E^{\star}\right)$ represents the functor $\operatorname{Hom}_{A}\left(\mathrm{~S}_{A}(V), E\right)$, where E^{\star} denotes the dual module $E^{\star}=\operatorname{Hom}_{A}(E, A)$. We denote by

$$
\begin{equation*}
u: \mathrm{S}_{A}(V) \longrightarrow E \otimes_{A} \mathrm{~S}_{A}\left(V \bigotimes_{A} E^{\star}\right) \tag{2.2.1}
\end{equation*}
$$

the universal element.
2.3. Universal map and grading. We fix a basis e_{0}, \ldots, e_{n} for E, and let $e_{0}^{\star}, \ldots, e_{n}^{\star}$ denote its dual basis. Then the universal element u 2.2.1 is the A-algebra homomorphism determined by sending elements $x \in V$ to

$$
u(x)=\sum_{i=0}^{n} e_{i} \otimes x \otimes e_{i}^{\star}
$$

Having the basis of E fixed we also get an induced grading on the A module $\mathrm{S}_{A}\left(V \bigotimes_{A} E^{\star}\right)$. We let elements of the form $x \otimes e_{i}^{\star}$ in $V \bigotimes_{A} E^{\star}$ have degree

$$
\operatorname{deg}\left(x \otimes e_{i}^{\star}\right)=i \quad \text { for } \quad i=0, \ldots, n
$$

Definition 2.4. Let $d: \mathrm{S}_{A}(V) \longrightarrow \mathrm{S}_{A}\left(V \bigotimes_{A} E^{\star}\right)$ denote the A-algebra homomorphism determined by sending $x \in V$ to $d(x)=\sum_{i=0}^{n} x \otimes e_{i}^{\star}$. For each integer $0 \leq k \leq n$ we define the map

$$
d_{k}: \mathrm{S}_{A}(V) \longrightarrow \mathrm{S}_{A}\left(V \bigotimes_{A} E^{\star}\right)
$$

by letting $d_{k}(x)=(d(x))_{k}$ denote the degree k-part of the A-algebra homomorphism d.
2.5. Notation. We let E_{n} denote the A-algebra $E_{n}=A[\epsilon] /\left(\epsilon^{n+1}\right)$. The basis we fix is given by powers of the variable ϵ, so e_{0}, \ldots, e_{n} with $e_{i}=\epsilon^{i}$ is an A-module basis of E_{n}. Note that with this convention we have that the products of the basis elements are given as

$$
e_{i} \cdot e_{j}=\left\{\begin{array}{cl}
e_{i+j} & \text { if } i+j \leq n \tag{2.5.1}\\
0 & \text { otherwise }
\end{array}\right.
$$

Lemma 2.6. Let $E_{n}=A[\epsilon] /\left(\epsilon^{n+1}\right)$, and where the basis is given by the powers of the variable ϵ. For monomials $x=x_{1} \otimes \cdots \otimes x_{m}$ in $\mathrm{S}_{A}(V)$ we have that

$$
\begin{equation*}
d_{k}(x)=\sum_{i_{1}+\cdots+i_{m}=k}\left(x_{1} \otimes e_{i_{1}}^{\star}\right) \cdots\left(x_{m} \otimes e_{i_{m}}^{\star}\right) \tag{2.6.1}
\end{equation*}
$$

In particular, for any $x \in \mathrm{~S}_{A}(V)$ we get that

$$
\begin{equation*}
u(x)=\sum_{k=0}^{n} e_{k} \otimes d_{k}(x) \tag{2.6.2}
\end{equation*}
$$

where u is the universal map (2.2.1).
Proof. The expression 2.6.1 follows if we prove that the equation 2.6.2 holds. As u is A-linear, it suffices to show the statement for monomial elements $x=x_{1} \otimes \cdots \otimes x_{m}$ of $\mathrm{S}_{A}(V)$. Then, by definition, we have that

$$
u(x)=\left(\sum_{k=0}^{n} e_{k} \otimes x_{1} \otimes e_{k}^{\star}\right) \cdots\left(\sum_{k=0}^{n} e_{k} \otimes x_{m} \otimes e_{k}^{\star}\right) .
$$

Expanding the product gives

$$
u(x)=\sum_{\substack{0 \leq k_{i} \leq n \\ i=1, \ldots, m}} e_{k_{1}} \cdots e_{k_{m}} \otimes\left(x_{1} \otimes e_{k_{1}}^{\star}\right) \cdots\left(x_{m} \otimes e_{k_{m}}^{\star}\right) .
$$

Now, using the product on E_{n}, displayed in 2.5.1, we get that the k 'th component of $u(x)$, written out with respect to the basis e_{0}, \ldots, e_{n}, is

$$
\sum_{i_{1}+\cdots+i_{m}=k}\left(x_{1} \otimes e_{i_{1}}^{\star}\right) \cdots\left(x_{m} \otimes e_{i_{m}}^{\star}\right),
$$

proving the claim.
Lemma 2.7. The sequence $\partial_{n}=\left(d_{0}, \ldots, d_{n}\right)$ is a higher order derivation, of length n, from $\mathrm{S}_{A}(V)$ to $\mathrm{S}_{A}\left(V \bigotimes_{A} E_{n}^{\star}\right)$. In particular we have that $d_{0}: \mathrm{S}_{A}(V) \longrightarrow \mathrm{S}_{A}\left(V \bigotimes_{A} E_{n}^{\star}\right)$ is an A-algebra homomorphism, and $d_{1}: \mathrm{S}_{A}(V) \longrightarrow \mathrm{S}_{A}\left(V \bigotimes_{A} E^{\star}\right)$ is an A-linear derivation.

Proof. The universal map $u: \mathrm{S}_{A}(V) \longrightarrow E_{n} \bigotimes_{A} \mathrm{~S}_{A}\left(V \otimes E_{n}^{\star}\right)$ 2.2.1 is an A-algebra homomorphism. The codomain is simply $B[\epsilon] /\left(\epsilon^{n+1}\right)$, where $B=\mathrm{S}_{A}\left(V \bigotimes_{A} E_{n}^{\star}\right)$. By Lemma 2.6.2 we have $u(x)$ expressed in terms of the basis e_{0}, \ldots, e_{n} as $u(x)=\sum_{k=0}^{n} d_{k}(x) e_{k}$. This is equivalent with ∂_{n} being a higher derivation of order n, over A, see e.g.[Mat86].

Example 2.8. For $x \in V$, let $x_{i}=x \otimes e_{i}^{\star}$, for $i \geq 0$, and where $\operatorname{deg}\left(x_{i}\right)=i$. For any monomial $x \otimes y \otimes \cdots \otimes z$, we consider the product

$$
\left(x_{0}+x_{1}+\cdots\right)\left(y_{0}+y_{1}+\cdots\right) \cdots\left(z_{0}+z_{1}+\cdots\right)
$$

We have that $d_{k}(x \otimes y \otimes \cdots \otimes z)$ equals the degree k term of the expansion of the product above. In particular with $x \otimes x \otimes y=x^{2} y$ we get that $d_{0}\left(x^{2} y\right)=x_{0}^{2} y_{0}$, that $d_{1}\left(x^{2} y\right)=2 x_{1} y_{0}+x_{0}^{2} y_{1}$, and that

$$
d_{2}\left(x^{2} y\right)=2 x_{2} x_{0} y_{0}+x_{1}^{2} y_{0}+2 x_{0} x_{1} y_{1}+x_{0}^{2} y_{2}
$$

Definition 2.9. For any ideal $I \subseteq \mathrm{~S}_{A}(V)$ we let $\partial_{n} I \subseteq \mathrm{~S}_{A}\left(V \otimes_{A} E_{n}^{\star}\right)$ denote the ideal generated by

$$
\partial_{n} I=\left\{d_{0}(f), \ldots, d_{n}(f) \mid f \in I\right\} .
$$

Proposition 2.10. Let $E_{n}=A[\epsilon] /\left(\epsilon^{n}\right)$, and let $R=\mathrm{S}_{A}(V) / I$ be an A-algebra. Then the functor $\operatorname{Hom}_{A}\left(R, E_{n}\right)$ is represented by

$$
\mathrm{HS}_{R / A}^{n}:=\mathrm{S}_{A}\left(V \bigotimes_{A} E_{n}^{\star}\right) / \partial_{n} I
$$

The universal element is induced by u (2.2.1).
Proof. We have (see e.g. [Skj12]) that the representing object is given as the quotient algebra

$$
\mathrm{S}_{A}\left(V \bigotimes_{A} E_{n}^{\star}\right) / \operatorname{Fitt}(u(I)),
$$

where $\operatorname{Fitt}(u(I))$ is the $n-1$-st Fitting ideal of the $\mathrm{S}_{A}\left(V \bigotimes_{A} E_{n}^{\star}\right)$ cokernel module $u(I) \subseteq E \bigotimes_{A} \mathrm{~S}_{A}\left(V \bigotimes_{A} E_{n}^{\star}\right)$. Let $f \in I$ be an element. By Lemma 2.6.2 we have that $u(f)=\sum_{k=0}^{n} d_{k} e_{k}$. We then get that

$$
\operatorname{Fitt}(u(f))=\left(d_{0}(f), \ldots, d_{n}(f)\right)
$$

and the claim follows.
2.11. Hasse-Schmidt derivations. A Hasse-Schmidt derivation, of order n on an A-algebra R, is an A-algebra homomorphism

$$
\partial_{n}: R \longrightarrow R[\epsilon] /\left(\epsilon^{n+1}\right)
$$

that decomposed $\partial_{n}=\left(d_{0}, \ldots, d_{n}\right)$ is such that $d_{0}=\mathrm{id}$. The HasseSchmidt derivation becomes in a natural way a functor $\operatorname{Der}_{R / A}(-)$ from the category of A-algebras to sets.

Corollary 2.12. Let R be an A-algebra. Then the Hasse-Schmidt derivations $\operatorname{Der}_{R / A}(-)$ is represented by the pair $\left(\operatorname{HS}_{R / A}^{n}, \partial_{n}^{R}\right)$, where ∂_{n}^{R} is induced by the sequence ∂_{n}.

Proof. By the usual properties of the tensor product we have that an A-algebra homomorphism $R \longrightarrow R \bigotimes_{A} A^{\prime}$ is a pair (ι, ∂) of A-algebra homomorphisms $\iota: R \longrightarrow R$ and $\partial: R \longrightarrow A^{\prime}$. As the A-algebra homomorphism $\iota: R \longrightarrow R$ is assumed to be the identity, we see that a Hasse-Schmidt derivation is nothing but an A-algebra homomorphism $R \longrightarrow A^{\prime}[\epsilon] /\left(\epsilon^{n+1}\right)$.
2.13. Iterations. We have a canonical morphism $E_{n} \longrightarrow E_{n-1}$. Having the basis of E_{n} fixed, we get an identification $E_{n}=E_{n}^{\star}$. Hence we have an induced map $E_{n}^{\star} \longrightarrow E_{n-1}^{\star}$ of A-modules. We then have a, non-canoncial, induced A-algebra homomorphism

$$
p_{n}^{V}: \mathrm{S}_{A}\left(V \bigotimes_{A} E_{n}^{\star}\right) \longrightarrow \mathrm{S}_{A}\left(V \bigotimes_{A} E_{n-1}^{\star}\right)
$$

If $d_{k}^{n}: \mathrm{S}_{A}(V) \longrightarrow \mathrm{S}_{A}\left(V \bigotimes_{A} E_{n}^{\star}\right.$ denotes the degree operator 2.4, where we now have added the superscript to keep track of n. Then, for every $0 \leq k \leq n-1$ we have that $p_{n}^{V} \circ d_{k}^{n}=d_{k}^{n-1}$. Thus we have that

$$
\begin{equation*}
p_{n}^{V} \circ \partial_{n}=\partial_{n-1} . \tag{2.13.1}
\end{equation*}
$$

Proposition 2.14. Write an A-algebra R as a quotient of a polynomial ring $R=A\left[x_{\alpha}\right] /\left(f_{\beta}\right)_{\alpha \in \mathscr{A}, \beta \in \mathscr{B}}$, and set $A:=\mathrm{HS}_{R / A}^{-1}$. Then we have, for each integer $n \geq 0$, that $\mathrm{HS}_{R / A}^{n}$ is the quotient of the polynomial ring in the variables $\left\{d_{n} x_{\alpha}\right\}_{\alpha \in \mathscr{A}}$ over $\mathrm{HS}_{R / A}^{n-1}$, modulo the ideal generated by $\left\{d_{n} f_{\beta}\right\}_{\beta \in \mathscr{B}}$; that is

$$
\operatorname{HS}_{R / A}^{n}=\operatorname{HS}_{R / A}^{n-1}\left[d_{n} x_{\alpha}\right] /\left(d_{n} f_{\beta}\right)_{\alpha \in \mathscr{A}, \beta \in \mathscr{B}}
$$

In particular we have that $\mathrm{HS}_{R / A}^{0}=R$, and that $\mathrm{HS}_{R / A}^{1}=\mathrm{S}_{R}\left(\Omega_{R / A}^{1}\right)$.
Proof. With the basis of E_{n}^{\star} fixed, we get an isomorphism $V=V_{i}$, where V_{i} is the A-module generated by tensors of the form $x \otimes e_{i}^{\star}$, where $x \in V$, for each $i=0, \ldots, n$. Then we get an induced A-module isomorphism $V \bigotimes_{A} E^{\star}=\bigoplus_{i=0}^{n} V_{i}$, and an isomorphism of A-algebras

$$
\begin{equation*}
\mathrm{S}_{A}\left(V \bigotimes_{A} E^{\star}\right)=\bigotimes_{i=0}^{n} \mathrm{~S}_{A}\left(V_{i}\right) \tag{2.14.1}
\end{equation*}
$$

Let I be an ideal in $S_{A}(V)$, and for each integer $0 \leq k \leq n$ we let $\partial_{n}^{k} I \subseteq \mathrm{~S}_{A}\left(V \bigotimes_{A} E_{n}^{\star}\right)$ denote the ideal generated by the $k+1$-first components of $\partial_{n} I$. That is $\partial_{n}^{k} I$ is the ideal generated by $\left(d_{0} f, d_{1} f, \ldots, d_{k} f\right)$, with $f \in I$. Under the isomorphism 2.14.1 we have that

$$
\mathrm{S}_{A}\left(V \bigotimes_{A} E_{n}^{\star}\right) / \partial_{n}^{k} I=\left(\bigotimes_{i=0}^{k} \mathrm{~S}_{A}\left(V_{i}\right)\right) / \partial_{n}^{k} I \bigotimes_{i=k+1}^{n} \mathrm{~S}_{A}\left(V_{i}\right)
$$

From the equality 2.13 .1 combined with Proposition 2.10, it follows that

$$
\bigotimes_{i=0}^{k} \mathrm{~S}_{A}\left(V_{i}\right) / \partial_{n}^{k} I=\mathrm{HS}_{R / A}^{k}
$$

where $R=\mathrm{S}_{A}(V) / I$. The result then follows by letting V be a free A-module, and chosing $k=n-1$.
Example 2.15. Consider the A-algebra $R=A[x, y] /\left(x^{2} y\right)$, and identify $x=d_{0} x$ and $y=d_{0} y$. We get

$$
\mathrm{HS}_{R / A}^{1}=R\left[d_{1} x, d_{1} y\right] /\left(2 x y \cdot d_{1} x+x^{2} \cdot d_{1} y\right)=\mathrm{S}_{R}\left(\Omega_{R / A}^{1}\right)
$$

And we have that $\operatorname{HS}_{R / A}^{2}$ equals the quotient of the polynomial ring $\operatorname{HS}_{R / A}^{1}\left[d_{2} x, d_{2} y\right]$ modulo the ideal generated by $d_{2}\left(x^{2} y\right)$ which we have computed in Example 2.8 as

$$
y \cdot\left(d_{1} x\right)^{2}+2 x \cdot d_{1} x \cdot d_{1} y+2 x y \cdot d_{2} x+x^{2} \cdot d_{2} y
$$

Remark 2.16. In the previous example, note that $d_{2}\left(x^{2} y\right)$ is not expressed in terms of $d_{2} x$ and $d_{2} y$. The expression for $\mathrm{HS}_{R / A}^{1}$ as symmetric tensor algebra of a module, appears to be coincidential, and not the first order step of a more general pattern.

3. Weil Restriction

The Weil restriction of a homomorphism $E_{n} \longrightarrow R$ is closely related to the Hasse-Schmidt derivations considered in the previous section. We will include a similar description of these Weil restrictions.
3.1. Weil restriction. Let $E \longrightarrow R$ be an A-algebra homomorphism. The Weil restriction, see e.g. [BLR90] that we denote by $\mathfrak{R}_{E / A}(R)$, is the functor from the category of A-algebras to sets, that takes an A-algebra A^{\prime} to the set

$$
\mathfrak{R}_{E / A}(R)\left(A^{\prime}\right)=\operatorname{Hom}_{A \text {-alg }}\left(R, E \bigotimes_{A} A^{\prime}\right)
$$

Proposition 3.2. Let R be an A-algebra, and let $E_{n}=A[\epsilon] /\left(\epsilon^{n+1}\right)$. Then $\mathrm{HS}_{R / A}^{n}$ represents the Weil restriction $\mathfrak{R}_{E_{n} / A}\left(R \bigotimes_{A} E_{n}\right)$. The universal element is obtained by extension of scalars of the universal map 2.2.1.

Proof. An A-algebra homomorphism $R \longrightarrow A^{\prime}$ is equivalent with an A-algebra homomorphism $R \bigotimes_{A} A^{\prime} \longrightarrow A^{\prime}$ being the identity on A^{\prime}, from which the result follows.
3.3. Extended grading. We will introduce some notation before we continue with the general situation with E_{n}-algebras in general. Let V be an A-module, and let E be a free A-module of finite rank. We fix a basis e_{0}, \ldots, e_{n} for the A-module E, and similarly we fix the dual basis for the dual module E^{\star}. For each integer $0 \leq k \leq n$ we have the A-linear map $d_{+}^{k}: V \longrightarrow V \bigotimes_{A} E^{\star}$ sending $x \in V$ to

$$
d_{+}^{k}(x)=\sum_{i=0}^{n-k} x \otimes e_{i+k}^{\star} .
$$

The map is simply a shift of the map d described in Definition 2.4. Together these maps give an A-module map

$$
\left(d_{+}^{0}, d_{+}^{1}, \ldots, d_{+}^{n}\right): \bigoplus_{i=0}^{n} V \longrightarrow V \bigotimes_{A} E^{\star}
$$

The induced A-algebra homomorphism is denoted

$$
d_{+}: \bigotimes_{i=0}^{n} \mathrm{~S}_{A}(V) \longrightarrow \mathrm{S}_{A}\left(V \bigotimes_{A} E^{\star}\right)
$$

Recall that we in Section 2.3, introduced a grading on $\mathrm{S}_{A}\left(V \bigotimes_{A} E^{\star}\right)$ induced by the basis. Similar to the Definition 2.4 we next extend the graded operators d_{k}.

Definition 3.4. For each integer $0 \leq k \leq n$ we define the map

$$
D_{k}^{n}: \bigotimes_{i=0}^{n} \mathrm{~S}_{A}(V) \longrightarrow \mathrm{S}_{A}\left(V \bigotimes_{A} E_{n}^{\star}\right)
$$

by letting $D_{k}^{n}(F)=\left(d_{+}(F)\right)_{k}$ denote the degree k-part of the A-algebra homomorphism d_{+}.

Remark 3.5. It is clear that we have $q_{n}^{V} \circ D_{k}^{n}=D_{k}^{n-1}$, for each integer $0 \leq k \leq n-1$. We will therefore in the sequel skip the reference to E_{n} in the notation of the degree map, and simply write D_{k} instead of D_{k}^{n}.

Lemma 3.6. Let $E_{n}=A[\epsilon] /\left(\epsilon^{n+1}\right)$, and identify the $\mathrm{S}_{A}(V)$-modules $\mathrm{S}_{A}(V) \bigotimes_{A} E_{n}=\bigotimes_{i=0}^{n} \mathrm{~S}_{A}(V)$. For any $F \in \mathrm{~S}_{A}(V) \bigotimes_{A} E_{n}$ we have that

$$
u_{n}(F)=\sum_{k=0}^{n} D_{k}(F) e_{k}
$$

where $u_{n}: \mathrm{S}_{A}(V) \bigotimes_{A} E_{n} \longrightarrow E_{n} \bigotimes_{A} \mathrm{~S}_{A}\left(V \bigotimes_{A} E_{n}^{\star}\right)$ is the universal map in 3.2. Moreover, write $F=\sum_{i=0}^{n} F_{i} e_{i}$, with $F_{i} \in \mathrm{~S}_{A}(V)$, then we have that

$$
D_{k}(F)=D_{k}\left(\sum_{i=0}^{n} F_{i} e_{i}\right)=\sum_{j=0}^{k} d_{j}\left(F_{k-j}\right)
$$

where $\left(d_{0}, \ldots, d_{n}\right)=\partial_{n}$ is the higher order derivation introduced earlier.
Proof. As $\mathrm{S}_{A}(V) \bigotimes_{A} E_{n}=\bigoplus_{i=0}^{n} \mathrm{~S}_{A}(V) e_{i}$, we get that the universal map

$$
u_{n}: \bigoplus_{i=0}^{n} \mathrm{~S}_{A}(V) e_{i} \longrightarrow \bigoplus_{i=0}^{n} \mathrm{~S}_{A}\left(V \bigotimes_{A} E^{\star}\right) e_{i}
$$

is $n+1$-copies $u_{n}=(u, \ldots, u)$ of the universal map 2.2.1. We therefore have that $u_{n}(F)=\sum_{i=0}^{n} u\left(F_{i}\right) e_{i}$. Now, using Lemma 2.6.2 together with the relations 2.5.1, we get that

$$
\sum_{i=0}^{n} u\left(F_{i}\right) e_{i}=\sum_{i=0}^{n}\left(\sum_{k=0}^{n} d_{k}\left(F_{i}\right) e_{k}\right) e_{i},=\sum_{k=0}^{n}\left(\sum_{j=0}^{k} d_{j}\left(F_{k-j}\right)\right) e_{k}
$$

We then have that $\sum_{j=0}^{k} d_{j}\left(F_{k-j}\right) e_{k}$ is the degree k part of $u_{n}(F)$, and we have proven the statements of the lemma.

Definition 3.7. If $I \subseteq \mathrm{~S}_{A}(V) \bigotimes_{A} E_{n}$ is an ideal, we define the ideal $\Delta_{n} I \subseteq \mathrm{~S}_{A}\left(V \bigotimes_{A} E_{n}^{\star}\right)$ as the ideal generated by $D_{k}(f)$, with $k=$ $0, \ldots, n$, for each $f \in I$.

Proposition 3.8. Let $E_{n} \longrightarrow R$ be an A-algebra homomorphism. Write R as a quotient $R=\mathrm{S}_{A}(V) \bigotimes_{A} E_{n} / I$. Then the Weil restriction $\mathfrak{R}_{E_{n} / A}(R)$ is represented by the A-algebra

$$
\mathrm{R}_{E_{n} / A}(R):=\mathrm{S}_{A}\left(V \bigotimes_{A} E_{n}^{\star}\right) / \Delta_{n} I
$$

The universal element is induced by u_{n}.
Proof. We have by Proposition 3.2, together with Proposition 2.10 that $\mathrm{S}_{A}\left(V \bigotimes_{A} E_{n}^{\star}\right)$ represents $\left.\mathfrak{R}_{E_{n} / A}\left(\mathrm{~S}_{A}(V) \bigotimes_{A} E_{n}\right)\right)$. We need only to verify that $\Delta_{n} I$ is the $n-1$-th Fitting ideal of the $\mathrm{S}_{A}\left(V \bigotimes_{A} E_{n}^{\star}\right)$ module $u_{n}(I)$, where $u_{n}: \mathrm{S}_{A}(V) \bigotimes_{A} E_{n} \longrightarrow \mathrm{~S}_{A}\left(V \bigotimes_{A} E_{n}^{\star}\right)$ is the universal map. By Lemma 3.6 we have that $u_{n}(F)$, for any element F, is $\sum_{k=0}^{n} D_{k}(F) e_{k}$, and the result follows.

Example 3.9. As an example, consider the polynomial ring in two variables x and y over E_{1}, that is the A-algebra $A[x, y, \epsilon] /\left(\epsilon^{2}\right)$. Let $F=F_{0}+F_{1} \cdot \epsilon$ be the element

$$
F=x y+x^{2} y \cdot \epsilon
$$

Identify, furthermore, $d_{0} x=x$ and $d_{0} y=y$, so that $A\left[V \bigotimes_{A} E_{1}^{\star}\right]$ is the polynomial ring $A\left[x, y, d_{1} x, d_{1} y\right]$. We have that $D_{0}(F)=F_{0}=x y$, and that

$$
D_{1}(F)=d_{0} F_{1}+d_{1} F_{0}=x^{2} y+2 x y d_{1} x+x^{2} d_{1} y
$$

Then the Weil restriction of $E_{1} \longrightarrow R=A[x, y, \epsilon] /\left(\epsilon^{2}, x y+x^{2} y \epsilon\right)$ is the A-algebra

$$
\mathrm{R}_{E_{1} / A}(R)=A\left[x, y, d_{1} x, d_{1} y\right] /\left(x y, x^{2} y+2 x y d_{1} x+x^{2} d_{1} y\right)
$$

4. Localization of Hasse-Schmidt derivations

We end this note by verifying that the Hasse-Schmidt derivations behave well under localization.

Proposition 4.1. For any A-algebra R, and any multiplicatively closed subset $S \subseteq R$ we have that

$$
\mathrm{HS}_{S^{-1} R / A}^{n}=\mathrm{HS}_{R / A}^{n} \otimes_{R} S^{-1} R
$$

In order words, the Hasse-Schmidt derivations of order n, commute with localization.

Proof. As tensor product commutes with direct limit it suffices to show the proposition in the particular case with $S=\left\{1, f, f^{2}, \ldots,\right\}$, that is the multiplicatively closed set generated by an element $f \in R$. Then $S^{-1} R=R[t] /(F)$, where $F=f t-1$. Take a presentation $R=A\left[x_{\alpha}\right] /\left(f_{\beta}\right)_{\alpha \in \mathscr{A}, \beta \in \mathscr{B}}$, so $S^{-1} R=A\left[x_{\alpha}, t\right] /\left(f_{\beta}, F\right)_{\alpha \in \mathscr{A}, \beta \in \mathscr{B}}$. By iterative use of Propositon 2.14 we get that the ring $\mathrm{HS}_{S^{-1} R / A}^{n}$ has the following presentation

$$
S^{-1} R\left[d_{p} x_{\alpha}, d_{p} t\right] /\left(d_{p} f_{\beta}, d_{p} F\right) \quad \text { where } \quad p=1, \ldots, n, \alpha \in \mathscr{A}, \beta \in \mathscr{B} .
$$

Again, using $S^{-1} R=R[t] /(F)$ and the presentation given in Proposition 2.14, we see that we can re-arrange the presentation of $\mathrm{HS}_{S^{-1} R / A}^{n}$ as

$$
\begin{equation*}
\left(\mathrm{HS}_{R / A}^{n} \bigotimes_{R} S^{-1} R\left[d_{1} t, \ldots d_{n} t\right]\right) /\left(d_{1} F, \ldots, d_{n} F\right) \tag{4.1.1}
\end{equation*}
$$

A property of a higher order derivation $\left(d_{0}, \ldots, d_{n}\right)$ is that for each $1 \leq p \leq n$ we have that $d_{p}(x y)=\sum_{i+j=p} d_{i}(x) d_{j}(y)$. Applying this property, and that the map d_{p} is linear, to $F=f t-1$ gives us for each $p=1, \ldots, n$ that $d_{p}(f t-1)=\sum_{i=0}^{p} d_{i} f d_{p-i} t-1$. We have that $t=f^{-1}$, so in the quotient ring 4.1.1 we have the identity

$$
\begin{equation*}
d_{p} t=t\left(1-t \cdot d_{p} f-d_{1} t \cdot d_{p-1} f-\cdots-d_{p-1} t \cdot d_{1} f\right) \tag{4.1.2}
\end{equation*}
$$

Since $f \in R$, we have that $d_{p} f \in \mathrm{HS}_{R / A}^{n}$ for all $p=1, \ldots, n$. We claim that we can eliminate the variables $d_{1} t, \ldots, d_{n} t$, starting with the lowest. We have, for $p=1$, that $d_{1} t=t-t^{2} \cdot d_{1} f$, and therefore we can eliminate the variable $d_{1} t$, expressing it as an element of $\mathrm{HS}_{R / A}^{n} \bigotimes_{R} S^{-1} R$. By induction we carry on this elimination. In the elimination process we see that for each $p=1, \ldots, n$, all the terms on the right hand side of the equation 4.1.2 are elements of the ring $\mathrm{HS}_{R / A}^{n} \bigotimes_{R} S^{-1} R$. That is, the two rings $\mathrm{HS}_{S^{-1} R / A}^{n}$ and $\mathrm{HS}_{R / A}^{n} \bigotimes_{R} S^{-1} R$ are naturally isomorphic.
4.2. Hasse-Schmidt derivations. Having the A-algebra R fixed, a Hasse-Schmidt derivation is an A-algebra homomorphism $R \longrightarrow A[[t]]$, where $A[[t]]$ denote the formal power series ring in one variable t over A. This notion is naturally made functorial in the following way. For any A-algebra A^{\prime} we consider the set of A-algebra homomorphisms

$$
\operatorname{HS}_{R / A}^{\infty}\left(A^{\prime}\right)=\operatorname{Hom}_{A \text {-alg }}\left(R, A^{\prime}[[t]]\right) .
$$

For any element φ in $\operatorname{HS}_{R / A}^{\infty} A^{\prime}$, and any A-algebra homomorphism $A^{\prime} \longrightarrow A^{\prime \prime}$, we compose the map $\varphi \otimes 1$ with the natural map

$$
A^{\prime}[[t]] \otimes_{A} A^{\prime \prime} \longrightarrow A^{\prime \prime}[[t]] .
$$

Then $\mathrm{HS}_{R / A}^{\infty}(-)$ becomes a functor.
Remark 4.3. Note that the functor $\mathrm{HS}_{R / A}^{\infty}$ is not the inverse limit of the Hasse-Schmidt derivations of finite order. There exists no natural map $\mathrm{HS}_{R / A}^{n+1} \longrightarrow \mathrm{HS}_{R / A}^{n}$, so the notion of inverse limit does not naturally arise.
4.4. Direct limit. The natural map corresponding to truncating a order $(n+1)$-derivation, that is sending $\left(d_{0}, d_{1}, \ldots, d_{n+1}\right)$ to $\left(d_{0}, d_{1}, \ldots, d_{n}\right)$ gives an A-algebra homomorphism $\mathrm{HS}_{R / A}^{n} \longrightarrow \mathrm{HS}_{R / A}^{n+1}$. In fact, truncating the universal derivation corresponds to the natural map

$$
\varphi_{n}: \mathrm{HS}_{R / A}^{n} \longrightarrow \mathrm{HS}_{R / A}^{n}\left[d_{n+1} x_{\alpha}\right] /\left(d_{n+1} f_{\beta}\right)=\operatorname{HS}_{R / A}^{n+1}
$$

described in Proposition 2.14. Any morphism from $\mathrm{HS}_{R / A}^{n+1}$ corresponds to a derivation of lenght $n+1$. Composing that given morphism with the natural map $\mathrm{HS}_{R / A}^{n} \longrightarrow \mathrm{HS}_{R / A}^{n+1}$ corresponds to truncating that particular derivation.

Proposition 4.5. For any A-algebra R we have that the direct limit

$$
\lim _{n \rightarrow \infty}\left\{\mathrm{HS}_{R / A}^{n}, \varphi_{n}\right\}
$$

is the A-algebra representing the Hasse-Schmidt derivations $\mathrm{HS}_{R / A}^{\infty}$. In particular we have that $\mathrm{HS}_{R / A}^{\infty}$ commutes with localization.

Proof. Let H denote the direct limit $\lim _{n \rightarrow \infty}\left\{\operatorname{HS}_{R / A}^{n}\right\}$, and let A^{\prime} be an A-algebra. Then, by definition, an A^{\prime}-valued point of H is a collection of A-algebra homomorphisms $u_{n}: \mathrm{HS}_{R / A}^{n} \longrightarrow A^{\prime}$ such that $u_{n}=$ $u_{n+1} \circ \varphi$. By the defining properties of $\mathrm{HS}_{R / A}^{n}$ we have that each u_{n} corresponds to an A-algebra homomorphism $\delta_{n}: R \longrightarrow A^{\prime} \bigotimes_{A} A[t] /\left(t^{n}\right)$. And, where δ_{n+1} composed with the projection $A^{\prime}[t] /\left(t^{n+1}\right) \longrightarrow A^{\prime}[t] /\left(t^{n}\right)$ equals δ_{n}, for all n. In other words we have commutative diagrams

That is an A-algebra homomorphism from R to the inverse limit of the horizontal arrows of the diagram 4.5.1 above, that is $A^{\prime}[[t]]=$ $\lim _{\leftarrow}\left\{A^{\prime}[t] /\left(t^{n}\right)\right\}$. Thus any A^{\prime}-valued point of H gives naturally an A^{\prime} valued point of the Hasse-Schmidt derivations $\mathrm{HS}_{R / A}^{\infty}$. But also conversely; an A^{\prime}-valued point of $\mathrm{HS}_{R / A}^{\infty}$ is given by a diagram 4.5.1, which gives an A^{\prime}-valued point of H. The last statement about localization follows as direct limit commute with tensor product, combined with Proposition 4.1.

Remark 4.6. The localization conjeture was stated by Traves [Tra03], who verified it for monomial rings. The conjecture was stated for finite type algebras, but holds without finiteness assumptions.

Remark 4.7. If one is attempted of looking at the set

$$
F\left(A^{\prime}\right)=\operatorname{Hom}_{A-\operatorname{alg}}\left(R, A[[t]] \otimes_{A} A^{\prime}\right)
$$

of A-algebra homomorphisms from R to the ring $A[[t]] \otimes_{A} A^{\prime}$, for any given A-algebra A^{\prime}. That does not appear to be a good functor to consider, we have namely that when R is the polynomial ring $A[X]$, then the functor F is not representable: Assume conversely, that F is representable by the pair (H, u), where $u: A[X] \longrightarrow A[[t]] \otimes_{A} H$ is the universal element. Then

$$
u(X)=\sum_{i=1}^{N} f_{i} \otimes_{A} x_{i}
$$

is a finite sum, with $f_{i} \in A[[t]]$ and $x_{i} \in H$. Let $F \in A[[t]]$ be a power series which is not a linear combination of the f_{i} 's, that is an element $F \neq \sum_{i=1}^{N} a_{i} f_{i}$, with $a_{i} \in A$. Such elements exist. Then we have an A-valued point of F, namely the A-algebra homomorphism $A[X] \longrightarrow$ $A[t]]$ determined by sending $X \mapsto F$. However, by assumption on F the element will not be a specialization of $u(X)$, and in particular there exists no A-algebra homomorphism $\varphi: H \longrightarrow A$ that specializes to the one constructed. So, the functor F is not representable.
4.8. Infinte tensor products and Hasse-Schmidt derivations. In this last section, we will take a closer look at the A-algebra that represents $\mathrm{HS}_{R / A}^{\infty}$, and in particular give another proof of the localization conjecture.

Lemma 4.9. Let E_{i} be finitely generated and projective A-modules $(i \in \mathscr{I})$. Denote by $E_{i}{ }^{\star}=\operatorname{Hom}_{A}\left(E_{i}, A\right)$ their duals, and $E=\prod_{i} E_{i}$ the direct product. For any A-module V we have natural isomorphisms

$$
\operatorname{Hom}_{A}(V, E)=\prod_{i \in \mathscr{I}}\left(V \bigotimes_{A} E_{i}^{\star}\right)^{\star}=\left(\bigoplus_{i \in \mathscr{I}} V \bigotimes_{A} E_{i}^{\star}\right)^{\star}
$$

Proof. Since E is the direct product, we have that $\operatorname{Hom}_{A}(V, E)$ equals the direct product $\prod_{i} \operatorname{Hom}_{A}\left(V, E_{i}\right)$. As E_{i} is finitely generated and projective, we have $\operatorname{Hom}_{A}\left(V, E_{i}\right)=\operatorname{Hom}_{A}\left(V \bigotimes_{A} E_{i}^{\star}, A\right)$, proving the first identity. The second identity is follows from the general fact that the dual of a direct sum, is the direct product of the duals of all the components in the direct sum.

Proposition 4.10. Let V be an A-module, and let $\mathrm{S}_{A}(V)$ denote the symmetric tensor algebra. Then the A-algebra $\mathrm{S}_{A}\left(\bigoplus_{i \geq 1} V\right)$ represents the functor $\mathrm{HS}_{\mathrm{S}_{A}(V) / A}^{\infty}$. The universal family

$$
u: \mathrm{S}_{A}(V) \longrightarrow \mathrm{S}_{A}\left(\bigoplus_{i \geq 1} V\right)[[t]],
$$

is the algebra homomorphism $u=\left(u_{1}, u_{2}, \ldots,\right)$ that on each degree i is the map u_{i} induced by identifying V as the degree i component of $\bigoplus_{i \geq 1} V$.
Proof. Let A^{\prime} be an A-algebra, and let $\varphi^{\prime}: \mathrm{S}_{A}(V) \longrightarrow A^{\prime}[[t]]$ be an A^{\prime}-valued point. Such an A-algebra homomorphism is the same as an A^{\prime}-module map $\varphi: V \bigotimes_{A} A^{\prime} \longrightarrow \prod_{i \geq 1} A^{\prime}$. By Lemma 4.9 such a map equals a collection of A^{\prime}-module maps $\left\{\varphi_{i}: V \bigotimes_{A} A^{\prime} \longrightarrow A^{\prime}\right\}$. That is a collection of A-algebra homomorphism $u_{i}^{\prime}: \mathrm{S}_{A}(V) \bigotimes_{A} A^{\prime} \longrightarrow A^{\prime}$, or equivalently an A-algebra homomorphism

$$
u^{\prime}: \mathrm{S}_{A}\left(\bigoplus_{i \geq 1} V\right) \longrightarrow A^{\prime}
$$

It is clear that such an element is the specialization of the morphism u described in the proposition. So, u is the universal element, and $\mathrm{S}_{A}\left(\bigoplus_{i \geq 1} V\right)$ is the representing object.
Corollary 4.11. For any A-algebra R, the functor $\mathrm{HS}_{R / A}^{\infty}$ is represented by the infinite tensor product

$$
\bigotimes_{A}^{\infty} R=\lim _{n \rightarrow}\left(\bigotimes_{A}^{n} R\right)
$$

Proof. Write $R=\mathrm{S}_{A}(V) / I$ for some ideal I, and some A-module V. Write $H=\mathrm{S}_{A}\left(\bigoplus_{i \geq 1} V\right)$, then H is the infinite tensor product $H=\bigotimes_{A}^{\infty} \mathrm{S}_{A}(V)$. Let $u: \mathrm{S}_{A}(V) \longrightarrow H[[t]]$ denote the universal map described in the proposition. It is clear that $H / u(f)$, for all $f \in I$,
will be the representing object of $\mathrm{HS}_{R / A}^{\infty}$, and where the map induced by u will be the universal element. We have furthermore that the map $u=\left(u_{1}, u_{2}, \ldots\right)$, where $u_{i}: \mathrm{S}_{A}(V) \longrightarrow H$ is the i 'th co-projection map that identifies $\mathrm{S}_{A}(V)$ with the i factor of H. It follows that $\mathrm{S}_{A}(V) / u_{i}(f)=\mathrm{S}_{A}(V) / f$, and that $H / u(I)=\bigotimes_{A}^{\infty} R$.

Corollary 4.12. The Hasse-Schmidt derivations commute with localization, that is

$$
\mathrm{HS}_{R / A}^{\infty} \otimes_{R} S^{-1} R=\mathrm{HS}_{S^{-1} R / A}^{\infty},
$$

for any multiplicatively closed subset $S \subseteq R$.
Proof. The direct product of rings is the direct product of the underlying modules, and the algebra structure is naturally induced. Since tensor product commutes with direct limit of modules, we get that $\left(\bigotimes_{A}^{\infty} R\right) \bigotimes_{R} S^{-1} R$ is the direct limit

$$
\lim _{n \rightarrow}\left(\bigotimes_{A}^{n} R \bigotimes_{R} S^{-1} R\right)=\lim _{n \rightarrow}\left(\bigotimes_{A}^{n} S^{-1} R\right)
$$

Hence the localization $\operatorname{HS}_{R / A}^{\infty} \bigotimes_{R} S^{-1} R$ equals the infinite tensor product $\bigotimes_{A}^{\infty} S^{-1} R$, which by the corollary above is $\mathrm{HS}_{S^{-1} R / A}^{\infty}$.

References

[BK72] William C. Brown and Wei-eihn Kuan, Ideals and higher derivations in commutative rings, Canad. J. Math. 24 (1972), 400-415. pages 2
[BLR90] Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud, Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21, Springer-Verlag, Berlin, 1990. pages 7
[FLNM03] M. Fernández-Lebrón and L. Narváez-Macarro, Hasse-Schmidt derivations and coefficient fields in positive characteristics, J. Algebra 265 (2003), no. 1, 200-210. pages 1
[Mat86] Hideyuki Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986, Translated from the Japanese by M. Reid. pages 1, 4
[Say86] Sadi Abu Saymeh, On Hasse-Schmidt higher derivations, Osaka J. Math. 23 (1986), no. 2, 503-508. pages 1
[Skj12] Roy Mikael Skjelnes, Weil restrictions and the quot scheme, arXiv:1111.4814. pages 2, 5
[Tra03] William N. Traves, Localization of the Hasse-Schmidt algebra, Canad. Math. Bull. 46 (2003), no. 2, 304-309. pages 1, 2, 11
[Voj07] Paul Vojta, Jets via Hasse-Schmidt derivations, Diophantine geometry, CRM Series, vol. 4, Ed. Norm., Pisa, 2007, pp. 335-361. pages 1
E-mail address: skjelnes@kth.se

