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Abstract. We give an explicit and compact description of the
Hasse-Schmidt derivations, using Fitting ideals and symmetric ten-
sor algebras. Finally we verify the localization conjecture [Tra03].

1. Introduction

The higher order derivations were introduced by Hasse and Schmidt,
and generalizes the usual notion of derivations. We will in this short
note give a new description of the higher order derivations, a descrip-
tion using Fitting ideals and symmetric tensor algebras. We obtain in
this way a compact presentation of the higher order derivations, natu-
rally relating the order n derivations with those of order n− 1. Finally
we verify that the Hasse-Schmidt derivations behave well under local-
ization, and thereby showing that the localization conjecture [Tra03]
holds.

Let R and A′ be two (commutative) A-algebras. A higher order
derivation ([Mat86]), of order n, is a sequence ∂n = (d0, . . . , dn) of A-
linear maps dp : R −→ A′, where d0 is an algebra homomorphism, and
where

dp(xy) =
∑
i+j=p

di(x)dj(y),

for all 1 ≤ p ≤ n. A higher order derivation is also called Hasse-
Schmidt derivation, and works relating these to ordinary derivations
can be found in e.g. [Say86], [FLNM03].

We let DernR/A(A′) denote the set of all higher order derivations from
R to A′. By composition one obtains that the set of higher order
derivations form a functor DernR/A(−), from the category of A-algebras
to sets. One can construct the representing object HSnR/A as a polyno-

mial ring, over R, in |R|×n-variables, modulo all the expected relations,
see e.g.[Voj07],

We will in this short note give a different, and a more compact,
description of the representing object HSnR/A. It is well-known that
Hasse-Schmidt derivations are equivalently described by jets and arc
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spaces. An A-algebra homomorphism

u : R −→ A′[t]/(tn+1) = A′
⊗

AA[t]/(tn+1)

encodes the same information as a higher order derivation from R to
A′. In other words the higher order derivations is given as the functor
HomA-alg(R,E), with co-domain the arc of jets E = A[t]/(tn+1).

The functors HomA-alg(R,E) we described quite explicitely using
Fitting ideals in [Skj12], and the results in the present paper are ob-
tained by specializing to E = A[t]/(tn+1). With this specific co-domain
E = A[t]/(tn+1) we will write down explicitely the representing object,
and use the explicit presentation to extract new information as well as
answer questions about the Hasse-Schmidt derivations.

Our explicit presentation is as follows. Write the A-algebra R =
A[x, y, . . . , z]/(f1, . . . , fm), that is as a quotient of a polynomial ring
modulo some relations (for notational simplicity we present the result
only using finitely many variables and relations). Then the Hasse-
Schmidt derivations of order n is represented by HSnR/A which is the
algebra

HSn−1R/A[dnx, dny, . . . , dnz]/(dnf1, . . . , dnfm),

where dnx, dny, . . . , dnz are variables over HSn−1R/A, and where dnf is a

the n’th order derivation of f ∈ A[x, y, . . . , z]. In particular we recover
that HS1

R/A equals the symmetric tensor algebra of the R-module of

differentials Ω1
R/A.

As the Weil restriction of A[t]/(tn+1)-algebras is closely related, we
also write explicit presentations for these rings as well. The Weil re-
strictions are important objects within algebraic geometry, and it might
be of interest to see explicit presentations of these algebras as well.

In the last section we focus on Hasse-Schmidt derivations and lo-
calizations. We show that the functor of Hasse-Schmidt derivations
HS∞R/A is representable, and that it behaves well under localizations.
We give two proofs for that claim. One proof is obtained by identifying
the Hasse-Schmidt derivations as the direct limit of the Hasse-Schmidt
derivations of finite order, of which we have an explicit description.
The other proof is based on identifying the Hasse-Schmidt derivations
with the infinite tensor product. The question concerning the local-
ization property for the Hasse-Schmidt derivations was conjectured in
[Tra03], apparently motivated by [BK72].

2. Hasse-Schmidt derivations

We will first give a description of the ring of Hasse-Schmidt deriva-
tions of order n, and thereafter relate that ring with the Hasse-Schmidt
derivations of order n− 1. All rings and algebras considered are com-
mutative and with unit.
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2.1. Parameterizing algebra homomorphisms. As a prelude to
our description of Hasse-Schmidt derivations, we will consider the fol-
lowing functor. Let R and E be two A-algebras. Then we have the
functor HomA(R,E) from the category of A-algebras to sets, sending
an A-algebra A′ to the set

HomA(R,E)(A′) = HomA-alg(R,E
⊗

AA
′) .

2.2. Symmetric algebra. Let E be an A-algebra that is free of finite
rank. It is well-known, and readily checked, that the symmetric tensor
algebra SA(V

⊗
AE

?) represents the functor HomA(SA(V ), E), where
E? denotes the dual module E? = HomA(E,A). We denote by

(2.2.1) u : SA(V ) −→ E
⊗

A SA(V
⊗

AE
?)

the universal element.

2.3. Universal map and grading. We fix a basis e0, . . . , en for E,
and let e?0, . . . , e

?
n denote its dual basis. Then the universal element u

2.2.1 is the A-algebra homomorphism determined by sending elements
x ∈ V to

u(x) =
n∑
i=0

ei ⊗ x⊗ e?i .

Having the basis of E fixed we also get an induced grading on the A-
module SA(V

⊗
AE

?). We let elements of the form x⊗ e?i in V
⊗

AE
?

have degree
deg(x⊗ e?i ) = i for i = 0, . . . , n.

Definition 2.4. Let d : SA(V ) −→ SA(V
⊗

AE
?) denote the A-algebra

homomorphism determined by sending x ∈ V to d(x) =
∑n

i=0 x ⊗ e?i .
For each integer 0 ≤ k ≤ n we define the map

dk : SA(V ) −→ SA(V
⊗

AE
?)

by letting dk(x) = (d(x))k denote the degree k-part of the A-algebra
homomorphism d.

2.5. Notation. We let En denote the A-algebra En = A[ε]/(εn+1).
The basis we fix is given by powers of the variable ε, so e0, . . . , en with
ei = εi is an A-module basis of En. Note that with this convention we
have that the products of the basis elements are given as

(2.5.1) ei · ej =

{
ei+j if i+ j ≤ n,

0 otherwise.

Lemma 2.6. Let En = A[ε]/(εn+1), and where the basis is given by the
powers of the variable ε. For monomials x = x1 ⊗ · · · ⊗ xm in SA(V )
we have that

(2.6.1) dk(x) =
∑

i1+···+im=k

(x1 ⊗ e?i1) · · · (xm ⊗ e
?
im).
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In particular, for any x ∈ SA(V ) we get that

(2.6.2) u(x) =
n∑
k=0

ek ⊗ dk(x),

where u is the universal map (2.2.1).

Proof. The expression 2.6.1 follows if we prove that the equation 2.6.2
holds. As u is A-linear, it suffices to show the statement for monomial
elements x = x1⊗· · ·⊗xm of SA(V ). Then, by definition, we have that

u(x) =
( n∑
k=0

ek ⊗ x1 ⊗ e?k
)
· · ·
( n∑
k=0

ek ⊗ xm ⊗ e?k
)
.

Expanding the product gives

u(x) =
∑

0≤ki≤n
i=1,...,m

ek1 · · · ekm ⊗ (x1 ⊗ e?k1) · · · (xm ⊗ e
?
km).

Now, using the product on En, displayed in 2.5.1, we get that the k’th
component of u(x), written out with respect to the basis e0, . . . , en, is∑

i1+···+im=k

(x1 ⊗ e?i1) · · · (xm ⊗ e
?
im),

proving the claim. �

Lemma 2.7. The sequence ∂n = (d0, . . . , dn) is a higher order deriva-
tion, of length n, from SA(V ) to SA(V

⊗
AE

?
n). In particular we have

that d0 : SA(V ) −→ SA(V
⊗

AE
?
n) is an A-algebra homomorphism, and

d1 : SA(V ) −→ SA(V
⊗

AE
?) is an A-linear derivation.

Proof. The universal map u : SA(V ) −→ En
⊗

A SA(V
⊗

E?
n) 2.2.1 is

an A-algebra homomorphism. The codomain is simply B[ε]/(εn+1),
where B = SA(V

⊗
AE

?
n). By Lemma 2.6.2 we have u(x) expressed in

terms of the basis e0, . . . , en as u(x) =
∑n

k=0 dk(x)ek. This is equivalent
with ∂n being a higher derivation of order n, overA, see e.g.[Mat86]. �

Example 2.8. For x ∈ V , let xi = x ⊗ e?i , for i ≥ 0, and where
deg(xi) = i. For any monomial x⊗y⊗· · ·⊗z, we consider the product

(x0 + x1 + · · · )(y0 + y1 + · · · ) · · · (z0 + z1 + · · · ).
We have that dk(x ⊗ y ⊗ · · · ⊗ z) equals the degree k term of the
expansion of the product above. In particular with x⊗ x⊗ y = x2y we
get that d0(x

2y) = x20y0, that d1(x
2y) = 2x1y0 + x20y1, and that

d2(x
2y) = 2x2x0y0 + x21y0 + 2x0x1y1 + x20y2.

Definition 2.9. For any ideal I ⊆ SA(V ) we let ∂nI ⊆ SA(V ⊗A E?
n)

denote the ideal generated by

∂nI = {d0(f), . . . , dn(f) | f ∈ I}.
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Proposition 2.10. Let En = A[ε]/(εn), and let R = SA(V )/I be an
A-algebra. Then the functor HomA(R,En) is represented by

HSnR/A := SA(V
⊗

AE
?
n)/∂nI.

The universal element is induced by u (2.2.1).

Proof. We have (see e.g. [Skj12]) that the representing object is given
as the quotient algebra

SA(V
⊗

AE
?
n)/Fitt(u(I)) ,

where Fitt(u(I)) is the n − 1-st Fitting ideal of the SA(V
⊗

AE
?
n) co-

kernel module u(I) ⊆ E
⊗

A SA(V
⊗

AE
?
n). Let f ∈ I be an element.

By Lemma 2.6.2 we have that u(f) =
∑n

k=0 dkek. We then get that

Fitt(u(f)) = (d0(f), . . . , dn(f)),

and the claim follows. �

2.11. Hasse-Schmidt derivations. A Hasse-Schmidt derivation, of
order n on an A-algebra R, is an A-algebra homomorphism

∂n : R −→ R[ε]/(εn+1)

that decomposed ∂n = (d0, . . . , dn) is such that d0 = id. The Hasse-
Schmidt derivation becomes in a natural way a functor DerR/A(−) from
the category of A-algebras to sets.

Corollary 2.12. Let R be an A-algebra. Then the Hasse-Schmidt
derivations DerR/A(−) is represented by the pair (HSnR/A, ∂

R
n ), where

∂Rn is induced by the sequence ∂n.

Proof. By the usual properties of the tensor product we have that an
A-algebra homomorphism R −→ R

⊗
AA

′ is a pair (ι, ∂) of A-algebra
homomorphisms ι : R −→ R and ∂ : R −→ A′. As the A-algebra ho-
momorphism ι : R −→ R is assumed to be the identity, we see that a
Hasse-Schmidt derivation is nothing but an A-algebra homomorphism
R −→ A′[ε]/(εn+1). �

2.13. Iterations. We have a canonical morphism En −→ En−1. Hav-
ing the basis of En fixed, we get an identification En = E?

n. Hence we
have an induced map E?

n −→ E?
n−1 of A-modules. We then have a,

non-canoncial, induced A-algebra homomorphism

pVn : SA(V
⊗

AE
?
n) −→ SA(V

⊗
AE

?
n−1).

If dnk : SA(V ) −→ SA(V
⊗

AE
?
n denotes the degree operator 2.4, where

we now have added the superscript to keep track of n. Then, for every
0 ≤ k ≤ n− 1 we have that pVn ◦ dnk = dn−1k . Thus we have that

(2.13.1) pVn ◦ ∂n = ∂n−1.
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Proposition 2.14. Write an A-algebra R as a quotient of a polynomial
ring R = A[xα]/(fβ)α∈A , β∈B, and set A := HS−1R/A. Then we have, for

each integer n ≥ 0, that HSnR/A is the quotient of the polynomial ring

in the variables {dnxα}α∈A over HSn−1R/A, modulo the ideal generated by

{dnfβ}β∈B; that is

HSnR/A = HSn−1R/A[dnxα]/(dnfβ)α∈A , β∈B.

In particular we have that HS0
R/A = R, and that HS1

R/A = SR(Ω1
R/A).

Proof. With the basis of E?
n fixed, we get an isomorphism V = Vi,

where Vi is the A-module generated by tensors of the form x ⊗ e?i ,
where x ∈ V , for each i = 0, . . . , n. Then we get an induced A-module
isomorphism V

⊗
AE

? =
⊕n

i=0 Vi, and an isomorphism of A-algebras

(2.14.1) SA(V
⊗

AE
?) =

⊗n
i=0 SA(Vi) .

Let I be an ideal in SA(V ), and for each integer 0 ≤ k ≤ n we let
∂knI ⊆ SA(V

⊗
AE

?
n) denote the ideal generated by the k+ 1-first com-

ponents of ∂nI. That is ∂knI is the ideal generated by (d0f, d1f, . . . , dkf),
with f ∈ I. Under the isomorphism 2.14.1 we have that

SA(V
⊗

AE
?
n)/∂knI =

(⊗k
i=0 SA(Vi)

)
/∂knI

⊗n
i=k+1 SA(Vi) .

From the equality 2.13.1 combined with Proposition 2.10, it follows
that ⊗k

i=0 SA(Vi)/∂
k
nI = HSkR/A,

where R = SA(V )/I. The result then follows by letting V be a free
A-module, and chosing k = n− 1. �

Example 2.15. Consider the A-algebra R = A[x, y]/(x2y), and iden-
tify x = d0x and y = d0y. We get

HS1
R/A = R[d1x, d1y]/(2xy · d1x+ x2 · d1y) = SR(Ω1

R/A).

And we have that HS2
R/A equals the quotient of the polynomial ring

HS1
R/A[d2x, d2y] modulo the ideal generated by d2(x

2y) which we have
computed in Example 2.8 as

y · (d1x)2 + 2x · d1x · d1y + 2xy · d2x+ x2 · d2y.

Remark 2.16. In the previous example, note that d2(x
2y) is not ex-

pressed in terms of d2x and d2y. The expression for HS1
R/A as symmet-

ric tensor algebra of a module, appears to be coincidential, and not the
first order step of a more general pattern.

3. Weil restriction

The Weil restriction of a homomorphism En −→ R is closely related
to the Hasse-Schmidt derivations considered in the previous section.
We will include a similar description of these Weil restrictions.
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3.1. Weil restriction. Let E −→ R be an A-algebra homomorphism.
The Weil restriction, see e.g. [BLR90] that we denote by RE/A(R),
is the functor from the category of A-algebras to sets, that takes an
A-algebra A′ to the set

RE/A(R)(A′) = HomA-alg(R,E
⊗

AA
′) .

Proposition 3.2. Let R be an A-algebra, and let En = A[ε]/(εn+1).

Then HSnR/A represents the Weil restriction REn/A(R
⊗

AEn). The

universal element is obtained by extension of scalars of the universal
map 2.2.1.

Proof. An A-algebra homomorphism R −→ A′ is equivalent with an
A-algebra homomorphism R

⊗
AA

′ −→ A′ being the identity on A′,
from which the result follows. �

3.3. Extended grading. We will introduce some notation before we
continue with the general situation with En-algebras in general. Let
V be an A-module, and let E be a free A-module of finite rank. We
fix a basis e0, . . . , en for the A-module E, and similarly we fix the dual
basis for the dual module E?. For each integer 0 ≤ k ≤ n we have the
A-linear map dk+ : V −→ V

⊗
AE

? sending x ∈ V to

dk+(x) =
n−k∑
i=0

x⊗ e?i+k.

The map is simply a shift of the map d described in Definition 2.4.
Together these maps give an A-module map

(d0+, d
1
+, . . . , d

n
+) :

⊕n
i=0 V −→ V

⊗
AE

? .

The induced A-algebra homomorphism is denoted

d+ :
⊗n

i=0 SA(V ) −→ SA(V
⊗

AE
?) .

Recall that we in Section 2.3, introduced a grading on SA(V
⊗

AE
?)

induced by the basis. Similar to the Definition 2.4 we next extend the
graded operators dk.

Definition 3.4. For each integer 0 ≤ k ≤ n we define the map

Dn
k :
⊗n

i=0 SA(V ) −→ SA(V
⊗

AE
?
n)

by letting Dn
k (F ) = (d+(F ))k denote the degree k-part of the A-algebra

homomorphism d+.

Remark 3.5. It is clear that we have qVn ◦Dn
k = Dn−1

k , for each integer
0 ≤ k ≤ n− 1. We will therefore in the sequel skip the reference to En
in the notation of the degree map, and simply write Dk instead of Dn

k .
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Lemma 3.6. Let En = A[ε]/(εn+1), and identify the SA(V )-modules
SA(V )

⊗
AEn =

⊗n
i=0 SA(V ). For any F ∈ SA(V )

⊗
AEn we have

that

un(F ) =
n∑
k=0

Dk(F )ek,

where un : SA(V )
⊗

AEn −→ En
⊗

A SA(V
⊗

AE
?
n) is the universal

map in 3.2. Moreover, write F =
∑n

i=0 Fiei, with Fi ∈ SA(V ), then we
have that

Dk(F ) = Dk(
n∑
i=0

Fiei) =
k∑
j=0

dj(Fk−j),

where (d0, . . . , dn) = ∂n is the higher order derivation introduced earlier.

Proof. As SA(V )
⊗

AEn =
⊕n

i=0 SA(V )ei, we get that the universal
map

un :
⊕n

i=0 SA(V )ei −→
⊕n

i=0 SA(V
⊗

AE
?)ei

is n+1-copies un = (u, . . . , u) of the universal map 2.2.1. We therefore
have that un(F ) =

∑n
i=0 u(Fi)ei. Now, using Lemma 2.6.2 together

with the relations 2.5.1, we get that

n∑
i=0

u(Fi)ei =
n∑
i=0

(
n∑
k=0

dk(Fi)ek)ei,=
n∑
k=0

(
k∑
j=0

dj(Fk−j))ek.

We then have that
∑k

j=0 dj(Fk−j)ek is the degree k part of un(F ), and
we have proven the statements of the lemma. �

Definition 3.7. If I ⊆ SA(V )
⊗

AEn is an ideal, we define the ideal
∆nI ⊆ SA(V

⊗
AE

?
n) as the ideal generated by Dk(f), with k =

0, . . . , n, for each f ∈ I.

Proposition 3.8. Let En −→ R be an A-algebra homomorphism.
Write R as a quotient R = SA(V )

⊗
AEn/I. Then the Weil restriction

REn/A(R) is represented by the A-algebra

REn/A(R) := SA(V
⊗

AE
?
n)/∆nI .

The universal element is induced by un.

Proof. We have by Proposition 3.2, together with Proposition 2.10
that SA(V

⊗
AE

?
n) represents REn/A(SA(V )

⊗
AEn)). We need only

to verify that ∆nI is the n − 1-th Fitting ideal of the SA(V
⊗

AE
?
n)-

module un(I), where un : SA(V )
⊗

AEn −→ SA(V
⊗

AE
?
n) is the uni-

versal map. By Lemma 3.6 we have that un(F ), for any element F , is∑n
k=0Dk(F )ek, and the result follows. �



HASSE-SCHMIDT DERIVATIONS AND WEIL RESTRICTIONS 9

Example 3.9. As an example, consider the polynomial ring in two
variables x and y over E1, that is the A-algebra A[x, y, ε]/(ε2). Let
F = F0 + F1 · ε be the element

F = xy + x2y · ε.
Identify, furthermore, d0x = x and d0y = y, so that A[V

⊗
AE

?
1 ] is the

polynomial ring A[x, y, d1x, d1y]. We have that D0(F ) = F0 = xy, and
that

D1(F ) = d0F1 + d1F0 = x2y + 2xyd1x+ x2d1y.

Then the Weil restriction of E1 −→ R = A[x, y, ε]/(ε2, xy+x2yε) is the
A-algebra

RE1/A(R) = A[x, y, d1x, d1y]/(xy, x2y + 2xyd1x+ x2d1y).

4. Localization of Hasse-Schmidt derivations

We end this note by verifying that the Hasse-Schmidt derivations
behave well under localization.

Proposition 4.1. For any A-algebra R, and any multiplicatively closed
subset S ⊆ R we have that

HSnS−1R/A = HSnR/A
⊗

R S
−1R.

In order words, the Hasse-Schmidt derivations of order n, commute
with localization.

Proof. As tensor product commutes with direct limit it suffices to show
the proposition in the particular case with S = {1, f, f 2, . . . , }, that
is the multiplicatively closed set generated by an element f ∈ R.
Then S−1R = R[t]/(F ), where F = ft − 1. Take a presentation
R = A[xα]/(fβ)α∈A , β∈B, so S−1R = A[xα, t]/(fβ, F )α∈A , β∈B. By it-
erative use of Propositon 2.14 we get that the ring HSnS−1R/A has the
following presentation

S−1R[dpxα, dpt]/(dpfβ, dpF ) where p = 1, . . . , n, α ∈ A , β ∈ B.

Again, using S−1R = R[t]/(F ) and the presentation given in Proposi-
tion 2.14, we see that we can re-arrange the presentation of HSnS−1R/A

as

(4.1.1)
(
HSnR/A

⊗
R S
−1R[d1t, . . . dnt]

)
/(d1F, . . . , dnF ) .

A property of a higher order derivation (d0, . . . , dn) is that for each
1 ≤ p ≤ n we have that dp(xy) =

∑
i+j=p di(x)dj(y). Applying this

property, and that the map dp is linear, to F = ft − 1 gives us for
each p = 1, . . . , n that dp(ft − 1) =

∑p
i=0 difdp−it − 1. We have that

t = f−1, so in the quotient ring 4.1.1 we have the identity

(4.1.2) dpt = t(1− t · dpf − d1t · dp−1f − · · · − dp−1t · d1f).
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Since f ∈ R, we have that dpf ∈ HSnR/A for all p = 1, . . . , n. We
claim that we can eliminate the variables d1t, . . . , dnt, starting with
the lowest. We have, for p = 1, that d1t = t − t2 · d1f , and there-
fore we can eliminate the variable d1t, expressing it as an element of
HSnR/A

⊗
R S
−1R. By induction we carry on this elimination. In the

elimination process we see that for each p = 1, . . . , n, all the terms
on the right hand side of the equation 4.1.2 are elements of the ring
HSnR/A

⊗
R S
−1R. That is, the two rings HSnS−1R/A and HSnR/A

⊗
R S
−1R

are naturally isomorphic. �

4.2. Hasse-Schmidt derivations. Having the A-algebra R fixed, a
Hasse-Schmidt derivation is an A-algebra homomorphism R −→ A[[t]],
where A[[t]] denote the formal power series ring in one variable t over
A. This notion is naturally made functorial in the following way. For
any A-algebra A′ we consider the set of A-algebra homomorphisms

HS∞R/A(A′) = HomA-alg(R,A
′[[t]]) .

For any element ϕ in HS∞R/AA
′, and any A-algebra homomorphism

A′ −→ A′′, we compose the map ϕ⊗ 1 with the natural map

A′[[t]]
⊗

AA
′′ −→ A′′[[t]].

Then HS∞R/A(−) becomes a functor.

Remark 4.3. Note that the functor HS∞R/A is not the inverse limit of the
Hasse-Schmidt derivations of finite order. There exists no natural map
HSn+1

R/A −→ HSnR/A, so the notion of inverse limit does not naturally
arise.

4.4. Direct limit. The natural map corresponding to truncating a or-
der (n+1)-derivation, that is sending (d0, d1, . . . , dn+1) to (d0, d1, . . . , dn)
gives an A-algebra homomorphism HSnR/A −→ HSn+1

R/A. In fact, trun-

cating the universal derivation corresponds to the natural map

ϕn : HSnR/A −→ HSnR/A[dn+1xα]/(dn+1fβ) = HSn+1
R/A

described in Proposition 2.14. Any morphism from HSn+1
R/A corresponds

to a derivation of lenght n+ 1. Composing that given morphism with
the natural map HSnR/A −→ HSn+1

R/A corresponds to truncating that

particular derivation.

Proposition 4.5. For any A-algebra R we have that the direct limit

lim
n→∞
{HSnR/A, ϕn}

is the A-algebra representing the Hasse-Schmidt derivations HS∞R/A. In
particular we have that HS∞R/A commutes with localization.
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Proof. Let H denote the direct limit limn→∞{HSnR/A}, and let A′ be
an A-algebra. Then, by definition, an A′-valued point of H is a collec-
tion of A-algebra homomorphisms un : HSnR/A −→ A′ such that un =
un+1◦ϕ. By the defining properties of HSnR/A we have that each un cor-
responds to an A-algebra homomorphism δn : R −→ A′

⊗
AA[t]/(tn).

And, where δn+1 composed with the projectionA′[t]/(tn+1) −→ A′[t]/(tn)
equals δn, for all n. In other words we have commutative diagrams

(4.5.1) R
δn+1

wwooooooooooooo

δn
��

δn−1

''OOOOOOOOOOOOO

A′[t]/(tn+1) // A′[t]/(tn) // A′[t]/(tn−1)

That is an A-algebra homomorphism from R to the inverse limit of
the horizontal arrows of the diagram 4.5.1 above, that is A′[[t]] =
lim←{A′[t]/(tn)}. Thus any A′-valued point of H gives naturally an
A′ valued point of the Hasse-Schmidt derivations HS∞R/A. But also con-
versely; an A′-valued point of HS∞R/A is given by a diagram 4.5.1, which
gives an A′-valued point of H. The last statement about localization
follows as direct limit commute with tensor product, combined with
Proposition 4.1. �

Remark 4.6. The localization conjeture was stated by Traves [Tra03],
who verified it for monomial rings. The conjecture was stated for finite
type algebras, but holds without finiteness assumptions.

Remark 4.7. If one is attempted of looking at the set

F (A′) = HomA-alg(R,A[[t]]
⊗

AA
′),

of A-algebra homomorphisms from R to the ring A[[t]]
⊗

AA
′, for any

given A-algebra A′. That does not appear to be a good functor to
consider, we have namely that when R is the polynomial ring A[X],
then the functor F is not representable: Assume conversely, that F is
representable by the pair (H, u), where u : A[X] −→ A[[t]]

⊗
AH is the

universal element. Then

u(X) =
N∑
i=1

fi ⊗A xi

is a finite sum, with fi ∈ A[[t]] and xi ∈ H. Let F ∈ A[[t]] be a power
series which is not a linear combination of the fi’s, that is an element
F 6=

∑N
i=1 aifi, with ai ∈ A. Such elements exist. Then we have an

A-valued point of F , namely the A-algebra homomorphism A[X] −→
A[[t]] determined by sending X 7→ F . However, by assumption on F
the element will not be a specialization of u(X), and in particular there
exists no A-algebra homomorphism ϕ : H −→ A that specializes to the
one constructed. So, the functor F is not representable.
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4.8. Infinte tensor products and Hasse-Schmidt derivations. In
this last section, we will take a closer look at the A-algebra that rep-
resents HS∞R/A, and in particular give another proof of the localization
conjecture.

Lemma 4.9. Let Ei be finitely generated and projective A-modules
(i ∈ I ). Denote by Ei

? = HomA(Ei, A) their duals, and E =
∏

iEi
the direct product. For any A-module V we have natural isomorphisms

HomA(V,E) =
∏

i∈I (V
⊗

AEi
?)? = (

⊕
i∈I V

⊗
AEi

?)?.

Proof. Since E is the direct product, we have that HomA(V,E) equals
the direct product

∏
i HomA(V,Ei). As Ei is finitely generated and

projective, we have HomA(V,Ei) = HomA(V
⊗

AEi
?, A), proving the

first identity. The second identity is follows from the general fact that
the dual of a direct sum, is the direct product of the duals of all the
components in the direct sum. �

Proposition 4.10. Let V be an A-module, and let SA(V ) denote the
symmetric tensor algebra. Then the A-algebra SA(

⊕
i≥1 V ) represents

the functor HS∞SA(V )/A. The universal family

u : SA(V ) −→ SA(
⊕

i≥1 V )[[t]],

is the algebra homomorphism u = (u1, u2, . . . , ) that on each degree i
is the map ui induced by identifying V as the degree i component of⊕

i≥1 V .

Proof. Let A′ be an A-algebra, and let ϕ′ : SA(V ) −→ A′[[t]] be an
A′-valued point. Such an A-algebra homomorphism is the same as an
A′-module map ϕ : V

⊗
AA

′ −→
∏

i≥1A
′. By Lemma 4.9 such a map

equals a collection of A′-module maps {ϕi : V
⊗

AA
′ −→ A′}. That is

a collection of A-algebra homomorphism u′i : SA(V )
⊗

AA
′ −→ A′, or

equivalently an A-algebra homomorphism

u′ : SA(
⊕

i≥1 V ) −→ A′.

It is clear that such an element is the specialization of the morphism
u described in the proposition. So, u is the universal element, and
SA(
⊕

i≥1 V ) is the representing object. �

Corollary 4.11. For any A-algebra R, the functor HS∞R/A is repre-
sented by the infinite tensor product⊗∞

A R = limn→(
⊗n

AR).

Proof. Write R = SA(V )/I for some ideal I, and some A-module
V . Write H = SA(

⊕
i≥1 V ), then H is the infinite tensor product

H =
⊗∞

A SA(V ). Let u : SA(V ) −→ H[[t]] denote the universal map
described in the proposition. It is clear that H/u(f), for all f ∈ I,
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will be the representing object of HS∞R/A, and where the map induced
by u will be the universal element. We have furthermore that the map
u = (u1, u2, . . .), where ui : SA(V ) −→ H is the i’th co-projection
map that identifies SA(V ) with the i factor of H. It follows that
SA(V )/ui(f) = SA(V )/f , and that H/u(I) =

⊗∞
A R. �

Corollary 4.12. The Hasse-Schmidt derivations commute with local-
ization, that is

HS∞R/A
⊗

R S
−1R = HS∞S−1R/A,

for any multiplicatively closed subset S ⊆ R.

Proof. The direct product of rings is the direct product of the under-
lying modules, and the algebra structure is naturally induced. Since
tensor product commutes with direct limit of modules, we get that
(
⊗∞

A R)
⊗

R S
−1R is the direct limit

limn→(
⊗n

AR
⊗

R S
−1R) = limn→(

⊗n
A S
−1R).

Hence the localization HS∞R/A
⊗

R S
−1R equals the infinite tensor prod-

uct
⊗∞

A S−1R, which by the corollary above is HS∞S−1R/A. �
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