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Chapter 1

Preliminaries

In the beginning the Universe

was created. This has made a lot

of people very angry and has

been widely regarded as a bad

move.

Douglas Adams
The Restaurant at the End of

the Universe

1.1. Order theory

Before we can start off we need to define some different orderings of n-tuples
occuring later in the paper. We start off with some basic definitions. Most
of these definitions are versions of definitions found in the books [9], [22]
and [10].

Definition 1.1. A relation on a set X is a property that holds for some of
the pairs in X ×X. If ∼ is a relation on X, we write x ∼ y to indicate that
∼ holds for the pair (x, y) ∈ X ×X

Now we can define ordering relations on sets.

Definition 1.2. A total order on a set X is a relation ≤ that satisfy the
following for given arbitrary elements x, y, z ∈ X

(i) x ≤ x (reflexive)

(ii) If x ≤ y and y ≤ x, then x = y (antisymmetric)

(iii) If x ≤ y and y ≤ z, then x ≤ z (transitive)

1



2 1. Preliminaries

(iv) x ≤ y or y ≤ x (totality)

A partial order on a set X is a relation ≤ that only satisfies (i), (ii) and
(iii). Thus a partial order has no requirement for totality.
A set together with a partial order on it is called a partially ordered set

or short a poset. A set together with a total order on it is called a totally

ordered set. We will use the notation (P,≤) to denote a partially ordered
set P together with its partial order ≤.
In (P,≤), then x < y means that x and y satisfy x ≤ y but x �= y. If we
have either x ≤ y or x ≥ y in our poset (P,≤) we say that the two elements
are comparable. Otherwise the elements are said to be incomparable.
Let I be a subset of (P,≤). An element x of I is maximal with respect to
the partial order if for any y ∈ I x ≤ y can hold only if x = y. The set
of all maximal elements of I with respect to ≤ will be denoted max<(I).
Similiarly we have that an element x of I is minimal with respect to the
partial order if for any y ∈ I x ≥ y can hold only if x = y. The set of all
minimal elements of I with respect to ≤ will be denoted min<(I)

Example 1.3. The set of all integers Z is a totally ordered set. The total
order on Z is the standard one (. . . < −1 < 0 < 1 < 2 < . . .). This total
order on Z will often be written ≤ without any subscript.

It will be interesting to consider special subsets of posets called filters

(or dual order ideals)

Definition 1.4. A filter of a poset (P,≤) is a subset I of X such that if
x ∈ I and y ≥ x, then y ∈ I.

When dealing with filters of finite posets we have this nice property

Proposition 1.5. A filter of a finite poset is completely defined by its min-

imal elements. A filter of a finite totally ordered set is defined by a single

minimal element.

Proof. Since P is finite so is I. Thus it must have minimal elements, since
otherwise we could find infinitely many distinct elements xi ∈ I, i = 1, 2, . . .
all satisfying xi ≥ xi+1.
Let x1, x2, . . . , xr be the minimal elements of I. Then we clearly have I =�r

i=1Xi where Xi = {y ∈ P : y ≥ xi}.
Now let ≤ be a total order and let x and y be two minimal elements of I.
Then by totality we must have either x ≥ y or x ≥ y. But then since both
elements are minimal this implies that x = y, thus we can only have one
minimal element. �

A very simple consequence of the proposition is that if (P,≤) is a finite
totally ordered set, then the cardinality of the filter with minimal element
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x is given by |{y ∈ P : y ≥ x}| which thus also defines the filter. We
summarize this in a corollary

Corollary 1.6. A filter I of a finite totally ordered set (P,≤) is defined by

it’s cardinality.

A related type of subsets is the order ideals

Definition 1.7. An order ideal of a poset (P,≤) is a subset I of X such
that if x ∈ I and y ≤ x, then y ∈ I.

Now we continue with the orderings of n-tuples.

Definition 1.8. A n-tuple is a ordered list of n elements from a given set
X and is represented as

(a1, a2, . . . , an)

The length of a tuple denotes the number of elements in the tuple. Thus a
n-tuple has length n. The set of all n-tuples with elements from the set X
will be denoted X

n.

The n-tuples that we will be working with in this paper are mostly those
consisting of integervalued elements. Thus when talking about n-tuples it
will often be understood that we are talking about n-tuples with elements
from Z or N depending on context. For these n-tuples we have that the sum
of (a1, a2, . . . , an) ∈ Zn (or Nn) is simply the sum

�n
i=1 ai. Further the set

of all n-tuples in Zn and Nn with sum equal to d will be denoted Zn
d and Nn

d
respectively.
Now we define some orderings on our n-tuples we will be using later on:

Definition 1.9. The lexicographical order, denoted ≤lex, on the set Zn (or
Nn) is a total order defined as follows: Let a = (a1, a2, . . . , an) and b =
(b1, b2, . . . , bn) be two elements of Zn (or Nn). Then a <lex b iff a �= b and
aj < bj , where j = min{i : ai �= bi}

Example 1.10. In Nn we have that (0, 3, 0) <lex (1, 1, 1) since 0 < 1.

Definition 1.11. The (degree) reverse lexicographical order, denoted ≤rlex,
on the set Zn (or Nn) is a total order defined as follows: Let a = (a1, a2, . . . , an)
and b = (b1, b2, . . . , bn) be two elements of Zn (or Nn). Then a <rlex b

iff
�n

i=1 ai <
�n

i=1 bi or a �= b,
�n

i=1 ai =
�n

i=1 bi and aj > bj , where
j = max{i : ai �= bi}

Example 1.12. In Nn we have that (1, 1, 1) <rlex (0, 3, 0) since 1+1+1 = 3
and 1 > 0. This combined with Example 1.10 implies that the lexiographical
order and the reverse lexiographical order in general differs in Nn and even
in Nn

d . However we will se that if n ≤ 2 then the lexiographical order and
the reverse lexiographical order on Nn

d will coincide.
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Next we want to define a special partial order on Nn. But before we can
do this we need to define a family of functions on Nn.

Definition 1.13. A strongly stable redistributing function is a function of
the form, for given a ∈ Nn and i, j ∈ {1, . . . , n}.

µi,j(a) =

�
(a1, . . . , ai + 1, . . . , aj − 1, . . . , an) if i < j and aj ≥ 1
a otherwise

One can note that if i ≥ j then µi,j equals the identity function on Nn.
Now we’re ready to define our partial order.

Definition 1.14. The strongly stable order, denoted ≤str, on the set Nn

is a partial order defined as follows: Let a = (a1, a2, . . . , an) and b =
(b1, b2, . . . , bn) be two elements of Nn. Then a <str b if and only if a �= b

and b = µi1,j1 ◦ · · · ◦µir,jr(a), where µik,jk are strongly stable redistributing
functions for k = 1, . . . , r.

Example 1.15. To see that ≤str does not exhibit the totality property one
can check that we have neither (1, 3, 0) ≤str (2, 1, 1) nor (1, 3, 0) ≥str (2, 1, 1)
in N3. The example even shows that we don’t have totality in N3

4 since we
have 2 + 1 + 1 = 1 + 3. It’s clear that ≤str differs from ≤lex and ≤rlex in
general since it lacks totality.

Motivated by our claim in Example 1.12 we now prove our first propo-
sition

Proposition 1.16. Let d, n ∈ N so that n ≤ 2. Then the orders ≤lex, ≤rlex

and ≤str all coincide on the set Nn
d

Proof. If n = 1 then Nd = {(d)}. There’s only one way you can order a
single element, thus all orders on Nd coincide.
Now let n = 2 and let a = (a1, a2) and b = (b1, b2) be two distinct elements
of N2

d. Since a �= b we have a1 �= b1 and a2 �= b2 since otherwise we would
have a1 = b1 and thus a2 = d − a1 = d − b1 = b2 or a2 = b2 and thus
a1 = d− a2 = d− b2 = b1, which yields a = b in both cases.
We start by showing that the orders ≤lex and ≤rlex coincide. Assume that
a <lex b. Then by definition a1 < b1 which gives a2 = d− a1 > d− b1 = b2

and a <rlex b. By exchanging the indices we get by the exact same argument
that a <rlex b gives a <lex b.
Now we show that the orders ≤str and ≤lex coincide. Assume that a <lex b.
Then by definition a1 < b1. Put δ = b1−a1. Then we have that b = µ

δ
1,2(a)

where µ
δ
1,2 means µ1,2 composed δ times. Thus a <str b. Now assume

a <str b. Then we must have b = µ
δ
1,2(a) for some positive δ since µ1,2 is the

only strongly stable redistributing function in N2 not equal to the identity.
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But then by definition of the strongly stable redistributing functions we have
a1 = b1 − δ which gives us a1 < b1 and a <lex b. �

Later on when dealing with filters with respect to the strongly stable
order it will be interesting to consider the set-theorectical complement of
the filters

Proposition 1.17. Let n ∈ N and let I be an filter of the poset (Nn
,≤str).

Then the set-theoretical complement of I, Nn \ I, is denoted I
C

and is a

order ideal of the poset.

Proof. Let a,b ∈ Nn be arbitrary distinct elements such that a �∈ I and
a = µi1,j1 ◦ · · · ◦ µir,jr(b), where µik,jk are strongly stable redistributing
functions for k = 1, . . . , r. Now if b ∈ I then we would get that a ∈ I which
is a contradiction. Thus b �∈ I and we get that if a ∈ I

C and b ≤str a then
b ∈ I

C . Thus by Defintion 1.7 I
C is a order ideal. �

1.2. Combinatorics

We will need some combinatoric facts later working on the main subject of
the paper. Thus we take our time to get acquainted with the underlying
combinatorics that make out the foundation of Green’s hyperplane restric-
tion theorem. Many definitions we will use are slightly modified versions of
those that can be found in [7], [17],[1], [22] and [10], made to fit our setting.
We start by examining the number of ways of writing integers.

Definition 1.18. Let n ∈ N be an integer. A partition of n is sequence
of positive integers {λi}ki=1 such that

�
λi = n and λ1 ≥ · · · ≥ λk. The

integers λi are called parts.

Even though the subject of partitions of an integer is interesting in its
own right, the type of partitions we will meet in this paper is a bit more
restricted.

Definition 1.19. Let n ∈ N be an integer. A partition of n into distinct

parts is a sequence of positive integers {λi}ki=1 such that
�

λi = n and
λ1 > · · · > λk. The number of partition into distinct parts of n is given by
the function p̂(n). For convenience one sets p̂(0) = 1.

One can show, which Leonard Euler did in 1748 (see [3]), that the num-
ber of partitions with distinct parts is equal to the number of partitions with
odd parts. We will not state the proof of this here, but the interested reader
is encouraged to read the article [4]. Also a detailed list of the first 2000
values of the function p̂(n), and more information can be found at [19].
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When working with dimensional bounds in graded algebras it is more
interesting to represent integers as sums of binomial coefficents. We recall
the definition of the binomial coefficient

�k
l

�
.

Definition 1.20. Let k ∈ C and l ∈ N. Then we define the binomial

coefficient
�k
l

�
in the following way
�
k

l

�
=

�
1
l!k(k − 1) · · · (k − l + 1) if l ≥ 1
1 if l = 0

We note that
�k
l

�
= 0 if k ∈ N and 0 ≤ k < l. From the definition of the

binomial coefficients one can directly acquire the famous Pascal’s triangle.

Proposition 1.21. (Pascal’s triangle)

Let k ∈ N and l ∈ N such that 1 ≤ l ≤ k. Then
�
k

l

�
=

�
k − 1

l − 1

�
+

�
k − 1

l

�

Proof. If l = 1 then we have that
�k
l

�
= k = 1+ (k − 1) =

�k−1
l−1

�
+
�k−1

l

�
so

assume that 2 ≤ l. We have by definition�k
l

�
= 1

l!k(k − 1) · · · (k − l + 1) = 1
(l−1)!(k − 1) · · · (k − l + 1)kl =

1
(l−1)!(k − 1) · · · (k − l + 1)(1 + k−l

l ) = 1
(l−1)!((k − 1) · · · (k − l + 1) +

(k − 1) · · · (k − l)1l ) = 1
(l−1)!(k − 1) · · · (k − l + 1) + 1

l!(k − 1) · · · (k − l) =
�k−1
l−1

�
+
�k−1

l

�
�

Now we can define our representation of integers

Definition 1.22. Let d be a positive integer. Then for c ∈ N the d-binomial

expansion of c is the unique expression

c =

�
kd

d

�
+

�
kd−1

d− 1

�
+ · · ·+

�
k1

1

�

where kd > kd−1 > · · · > k1 ≥ 0. We call kd, kd−1, . . . , k1 the d-binomial

coefficients of c.

To convince the reader that this representation seems plausible we will
include a proof of why such a representation exists and is unique, following
the outline of the proof from [7, Lemma 4.2.6]

Proposition 1.23. Let d be a positive integer. Then any c ∈ N can be

written uniquely in the form

c =

�
kd

d

�
+

�
kd−1

d− 1

�
+ · · ·+

�
k1

1

�

where kd > kd−1 > · · · > k1 ≥ 0.
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Proof. In order to prove the existence, we use induction on c. For c = 1 we
have c =

�d
d

�
+

�d−1
i=1

�i−1
i

�
. So assume c > 1. Now we choose kd maximal

such that
�kd
d

�
≤ c. If c =

�kd
d

�
, then c =

�d
i=1

�ki
i

�
with ki = i − 1 for

i = 1, . . . , d − 1. So assume that c
� = c −

�kd
d

�
> 0. By the induction

hypothesis we may assume that c
� =

�d−1
i=1

�ki
i

�
with kd−1 > kd−2 > · · · >

k1 ≥ 0. It remains to show that kd > kd−1. But since
�kd+1

d

�
> c it follows

from Pascal’s identity that
�

kd

d− 1

�
=

�
kd + 1

d

�
−
�
kd

d

�
> c

� ≥
�
kd−1

d− 1

�

Hence kd > kd−1.
To be able to show uniqueness we start by showing the following: if c =�d

i=1

�ki
i

�
with kd > kd−1 > · · · > k1 ≥ 0, then kd is the single largest

integer with
�kd
d

�
≤ c. We prove this statement by induction on c. For c = 1

the assertion is trivial. Now assume that c > 1, and
�kd+1

d

�
≤ c. Then

d−1�

i=1

�
ki

i

�
≥

�
kd + 1

d

�
−
�
kd

d

�
=

�
kd

d− 1

�
≥

�
kd−1 + 1

d− 1

�

and this contradicts the induction hypothesis.
Now we can show uniqueness by once again using induction on c. For c = 1
the sum c =

�d
d

�
+

�d−1
i=1

�i−1
i

�
is unique since kd must zero or d. But if

kd = 0 then we must have kd−1 < 0 which is wrong by definition. With
kd = d there is only one choice for the ki’s that satisfies the inequalties
kd > kd−1 > · · · > k1 ≥ 0. So assume c > 1. If c =

�d
i=1

�ki
i

�
=

�d
i=1

�k�i
i

�

Then we have by our earlier argument that kd = k
�
d is the singe largest integer

with
�kd
d

�
≤ c. Thus

�d−1
i=1

�ki
i

�
=

�d−1
i=1

�k�i
i

�
and by induction ki = k

�
i for all

i. �

Now given a integer c denote δ = min{i : ki ≥ i} and ∆i = ki − i where
ki denotes the n-binomial coefficients of c for i = 1, 2, . . . , n. Then we have

c =

�
kn

n

�
+

�
kn−1

n− 1

�
+ · · ·+

�
k1

1

�
=

=

�
kn

n

�
+

�
kn−1

n− 1

�
+ · · ·+

�
kδ

δ

�
+

�
δ − 2

δ − 1

�
+ · · ·+

�
0

1

�
=

=

�
n+∆n

n

�
+

�
(n− 1) +∆n−1

n− 1

�
+ · · ·+

�
δ +∆δ

δ

�
+

�
(δ − 1)− 1

δ − 1

�
+

+ · · ·+
�
1− 1

1

�
=

=

�
n+∆n

n

�
+

�
(n− 1) +∆n−1

n− 1

�
+ · · ·+

�
δ +∆δ

δ

�
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Where we have ∆n ≥ ∆n−1 ≥ . . . ≥ ∆δ ≥ 0 . And since by Proposition 1.23
this expression is unique, thus it makes sense to define the following alternate
unique representation

Definition 1.24. Let d be a positive integer and c ∈ N as before. Then we
define the d

th
Macaulay difference tuple of c to be the tuple of length d:

Md(c) = (∆d,∆d−1, . . . ,∆δ,−1,−1, . . . ,−1)

where δ and ∆i are defined as above. We denote the positive length of the
d
th Macaulay difference tuple of c to be the number of non-negative elements

of the tuple. With the above notation we have that the positive length is
equal to d− δ + 1.

To simplify the notation of the d
th Macaulay difference tuple we will

often write

(∆d,∆d−1, . . . ,∆δ,−1,−1, . . .) = (∆d,∆d−1, . . . ,∆δ)

where it is understood that we have δ − 1 number of −1 at the end of the
tuple. We will also use the notation

Md(0) = (−1,−1, . . . ,−1) = (−)

for the d
th Macaulay difference tuple of 0 consisting of d elements of −1.

Note that even though there is a indexing used in Definition 1.24 this in-
dexing is different from the one used when viewing the Macaulay difference
tuples as ordered tuples and these two should not be confused. The indexing
of ordered tuples only depends on which order the elements appear in the
tuple.

Remark 1.25. Our Defintion 1.24 differs from its origin given in the article
[1, p. 3], because it includes a trail of negative ones. This is beacuse this
defintion makes lexicographical comparison easier.

The d-binomial coefficients of integers and their respective Macaulay
difference tuples have the following nice properties

Proposition 1.26. Let kd, . . . , k1, respectively k
�
d, . . . , k

�
1 be the d-binomial

coefficients of a, respectively a
�
.

Then the following statements are equivalent:

(i) a > a
�

(ii) (kd, . . . , k1) >lex (k�d, . . . , k
�
1)

(iii) Md(a) >lex Md(a�)
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Proof. The equvialence of (i) and (ii) is proven in [7, Lemma 4.2.7.] and
in [17, Proposition 5.5.4] so it’s enough to prove the equivalence of (ii) and
(iii). We denoteMd(a) = (∆d,∆d−1, . . . ,∆1) andMd(a�) = (∆�

d,∆
�
d−1, . . . ,∆

�
1).

Now if we have (ii) then there exists a j such that j = max{i : ki �= k
�
i}, so

we get:

kj > k
�
j =⇒ kj−j > k

�
j−j =⇒ ∆j > ∆�

j =⇒ Md(a) >lex Md(a
�)

But if we have (iii) then there exists a j such that
j = max{i ∈ {d, d− 1, . . . , 1} : ∆i �= ∆�

i}, so we get:

∆j > ∆�
j =⇒ kj − j > k

�
j − j =⇒ kj > k

�
j =⇒ (kd, . . . , k1) >lex (k�d, . . . , k

�
1)

�

Now we recall two important combinatoric constructions when dealing
with bounds of Hilbert functions:

Definition 1.27. Let d be a positive integer and c ∈ N as before. Then we
define

c
<d> =

�
kd + 1

d+ 1

�
+

�
kd−1 + 1

d

�
+ · · ·+

�
k1 + 1

2

�

where kd, kd−1, . . . , k1 denotes the d-binomial coefficients of c.

Definition 1.28. Let d be a positive integer and c ∈ N as before. Then we
define

c<d> =

�
kd − 1

d

�
+

�
kd−1 − 1

d− 1

�
+ · · ·+

�
kδ − 1

δ

�
+

�
kδ−1

δ − 1

�
+ · · ·+

�
k1

1

�
=

=

�
kd − 1

d

�
+

�
kd−1 − 1

d− 1

�
+ · · ·+

�
kδ − 1

δ

�
+

�
δ − 2

δ − 1

�
+ · · ·+

�
0

1

�

where kd, kd−1, . . . , k1 denotes the d-binomial coefficients of c and δ = min{i :
ki ≥ i}.

Remark 1.29. The reason why we only subtract from the d-binomial coef-
ficients with index bigger than δ in Definition 1.28 is because the numbers
are meant to represent dimensions of graded algebras. If one chooses to
subtract from all coefficients then we would have the counterexample

1 =

�
2

2

�
+

�
0

1

�
⇒ 1<2> =

�
1

2

�
+

�
−1

1

�
= −1

With such a definition we would have to allow negative dimensions. Thus
we only subtract from the d-binomial coefficients with index bigger than
δ. An interesting note is that the book [7, p. 162] unfortunately falls into
this trap of defining possible ”negative dimensions”, even though it uses the
correct definiton later on.
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Remark 1.30. Let kd, kd−1, . . . , k1 denote the d-binomial coefficients of c.
We then have

Md+1(c
<d>) =

= ((kd + 1)− (d+ 1), (kd−1 + 1)− d, . . . , (k1 + 1)− (1 + 1),−1) =

= (kd − d, kd−1 − (d− 1), . . . , k1 − 1,−1) =

= (Md(c),−1)

Further if δ = min{i : ki ≥ i} and ∆i = ki − i then

Md(c<d>) = (∆d − 1,∆d−1 − 1, . . . ,∆δ − 1,−1, . . . ,−1)

Now we’re ready to prove a combinatoric fact about integer-valued func-
tions that will come in handy later when dealing with Hilbert-functions. The
following proposition is based on a unproved claim from the article [1, p.
6] which stated that the proposition is ”not difficult to see” since it follows
from a ”good look at Pascal’s triangle”.

Proposition 1.31. Let h : N → N be a numerical function that has h(0) = 1
and satisfies

h(n+ 1) ≤ h(n)<n>

for all n ≥ 1. Then there exists an integer d such that for all j ≥ d we have

h(j + 1) = h(j)<j>

Proof. We prove by contradiction. So lets assume the proposition is false.
Thus given any n ∈ N we can find infinitely many distinct integers l1, l2, . . .
such that . . . > l2 > l1 ≥ n and h(li + 1) < h(li)<li> for all i = 1, 2, . . ..
We can choose our set {li}i such that h(k + 1) = h(k)<k> for all k �∈ {li}i
whenever k ≥ n.

Now fix an arbitrary n ≥ 1 such that h(n) �= 0 and let l1, l2, . . . be
defined as above. Denote Mn(h(n)) = (an, an−1, . . . , aδ). We want to prove
that

(1.1) ∃n0 > n ⇒ Mn0(h(n0)) ≤ (an, an−1, . . . , aδ+1)

lexicographically. We prove this by induction on aδ:
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For aδ = 0 we have that n0 = l1 + 1 since by construction and Re-
mark 1.30 we have

h(l1 + 1) < h(l1)
<l1> ⇒ h(l1 + 1) ≤ h(l1)

<l1> − 1 =

= h(l1)
<l1> −

�
(l1 + 1− n) + δ + aδ

(l1 + 1− n) + δ

�
=

= · · ·+
�
(l1 + 1− n) + δ + aδ

(l1 + 1− n) + δ

�
−
�
(l1 + 1− n) + δ + aδ

(l1 + 1− n) + δ

�
=

=

�
l1 + 1 + an

l1 + 1

�
+ · · ·+

�
(l1 + 1− n) + δ + 1 + aδ+1

(l1 + 1− n) + δ + 1

�

By Proposition 1.26 we thus get Ml1+1(h(l1 + 1)) ≤ (an, an−1, . . . , aδ+1).
So assume such an integer n0 exists for aδ − 1 ≥ 0. Now we have by
construction

h(l1+1) ≤ h(l1)
<l1>−1 =

�
l1 + 1 + an

l1 + 1

�
+ · · ·+

�
(l1 + 1− n) + δ + aδ

(l1 + 1− n) + δ

�
−1

We set δ0 = l1 + 1 − n + δ. Then by repetitive use of Pascal’s identity we
get

�
δ0 + aδ

δ0

�
=

�
δ0 − 1 + aδ

δ0

�
+

�
δ0 − 2 + aδ

δ0 − 1

�
+ · · ·+

�
aδ

1

�
+ 1

⇒
�
δ0 + aδ

δ0

�
− 1 =

�
δ0 + aδ − 1

δ0

�
+

�
δ0 + aδ − 2

δ0 − 1

�
+ · · ·+

�
aδ

1

�

⇒ h(l1)
<l1> − 1 =

�
l1 + 1 + an

l1 + 1

�
+ · · ·+

�
δ0 + aδ − 1

δ0

�
+ · · ·+

�
aδ

1

�

⇒ Ml1+1(h(l1 + 1)) ≤ (an, . . . , aδ+1, aδ − 1, aδ − 1, . . . , aδ − 1)

where we have δ0 copies of aδ − 1 in the tail. But by our induction step we
know that there exists a n0 > l1 such that

Mn0(h(n0)) ≤ (an, . . . , aδ+1, aδ − 1, aδ − 1, . . . , aδ − 1)

where we now instead have δ0 − 1 copies of aδ − 1 in the tail. By repetitive
use of our induction step we thus can find a n1 > n0 such that

Mn1(h(n1)) ≤ (an, . . . , aδ+1)

And thus we’re finished with the induction.

Now by repetitive use of (1.1) we get that there exists a d such that

Md(h(d)) ≤ (−) ⇒ h(d) ≤ 0 ⇒ h(d) = 0

But then for all j ≥ d we have

h(j + 1) ≤ h(j)<j> = h(d)<d> = 0 ⇒ h(j + 1) = h(j)<j>
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But this is a contradiction to our assumption that the proposition was false,
thus the proposition must be true. �

Whether or not this proof serves as a ”good look at Pascal’s triangle”,
we leave to the reader to decide.

1.3. Commutative algebra

We need to start off with some basic notation and definitions from commu-
tative algebra before we can continue to the interesting results. The reader
is assumed to be familiar with basic abstract algebra. Most definitions are
versions of those from the books [10], [16], [17], [18] and [13].
For the remainder of the text we will have that, unless stated otherwise, K
is an arbitrary infinite field and K[x1, x2, . . . , xn] will denote the polynomial
ring in n variables (or indeterminates) over the field K.

Since we will be dealing alot with ideal in the paper we remind us what
a ideal is

Definition 1.32. A ideal of a ring R is a additative subgroup I of R such
that if r ∈ R and s ∈ I then rs ∈ I. An ideal I is said to be generated by a
subset S ⊂ I if every element t ∈ I can be written in the form

t =
m�

i=1

risi

where ri ∈ R and si ∈ S. We write �S� for the ideal generated by S or
equivalently �s1, . . . , sm� if S = {s1, . . . , sm}.

Later when dealing with the geometric background of the thesis we will
see that is useful to define the the radical of an ideal.

Definition 1.33. Let I be an ideal of a ring R. The radical of I, denoted√
I, is defined as

√
I = {f ∈ R : fd ∈ I for some d > 0}

If
√
I = I then I is said to be radical.

In this paper we’re mostly interested in polynomial rings over fields
and, as we will see, they will often prove to have a nice property of being
Noetherian.

Definition 1.34. A ring is said to be Noetherian if all its ideals are finitely
generated.

Proposition 1.35. If a ring R is Noetherian, then the polynomial ring

R[x1, x2, . . . , xn] is Noetherian. Especially we get that K[x1, x2, . . . , xn] is
Noetherian, whenever K is a field.



1.3. Commutative algebra 13

Proof. See [10, Theorem 1.2] for a proof of why R[x] is Noetherian if R
is, then use induction on the number of variables and use the fact that
R[x1, . . . , xn] = R[x1, . . . , xn−1][xn].
If K is a field then the only possible ideals of K is K itself and {0}, since
every non-zero element is a generator of K. �

Thus in our investigation of ideals in K[x1, x2, . . . , xn] we only need to
consider finitely generated ideals. Before continuing we need a notion of
rings that will be used a lot in the paper

Definition 1.36. A graded ring (or N-graded ring) is a ring R together
with a decomposition

R =
∞�

i=0

Ri

such that R0, R1, . . . are additative subgroups of R and satisfy

RiRj ⊆ Ri+j ∀ i, j ∈ N

The elements f ∈ Ri are called homogeneous of degree i or i-forms. A
1-form will be called a linear form. The degree of f is denoted deg f . An
arbitrary element f ∈ R has a unique representation f =

�
i fi as a sum of

homogeneous elements fi ∈ Ri. The elements fi are called the homogeneous

components of f . A ideal, I, is called a homogeneous ideal if it is generated
by only homogenous elements.

One can find many different gradings that would make K[x1, x2, . . . , xn]
into a graded ring (see e.g. [7, Examples 1.5.3]), but the one we will use
is the intuitive one, namely that degree of a homogeneous polynomial f ∈
K[x1, x2, . . . , xn] coincide with the degree of f when viewing it as a element
of a graded ring. Thus if R = K[x1, . . . , xn] in Definition 1.36 then Rd

denotes the vector space of homogeneous polynomials of degree d (when
viewed as polynomials). Especially we get that R0 = K and deg xi = 1
for all i = 1, . . . , n. This is called the standard grading of K[x1, x2, . . . , xn].
Let’s make this explicit.

Definition 1.37. A monomial in K[x1, x2, . . . , xn] is a product xa =
x
a1
1 x

a2
2 · · ·xann , where (a1, . . . , an) ∈ Nn. If ai ≥ 1 we say that xa is divisble

by xi. This is written x
a|xi. If ai = 0 we write x

a � xi. The degree of xa is
the sum

�n
i=1 ai and is written deg(xa).

With this definition we get that a polynomial f ∈ K[x1, x2, . . . , xn] can
be represented as a sum of monomials,

(1.2) f =
�

a∈Nn

cax
a
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where we have ca ∈ K and only finitely many of the coefficients ca can be
non-zero.

Definition 1.38. The standard grading of R = K[x1, x2, . . . , xn] is the rep-
resentation

R =
∞�

i=0

Ri

where we have Rd = {
�

a∈Nn cax
a ∈ R : deg(xa) = d whenever ca �= 0}.

A special ideal that we will meet often in K[x1, x2, . . . , xn] is the irrele-

vant ideal

Definition 1.39. The irrelevant ideal of K[x1, x2, . . . , xn], denoted m, is
defined as m = �x1, x2, . . . , xn�.

Remark 1.40. Note that we have for k ∈ N that mk = �Mk�, where Mk

denotes all monomials of degree k, since mk denotes all possible elements
when choosing k arbitrary elements from m and multiplying them.

When studying homgeneous ideals it’s interesting to study their satura-
tion. But to define the saturation we need a notion of ideal quotients

Definition 1.41. Let I, J ⊆ K[x1, x2, . . . , xn] be homogeneous ideals. The
ideal quotient of I with J is defined as

(I : J) = {f ∈ K[x1, x2, . . . , xn] : fs ∈ I for all s ∈ J}

Now we can define the saturation of a ideal I

Definition 1.42. Let I be an ideal of K[x1, x2, . . . , xn]. If (I : m) = I then
I is said to be saturated. The saturation of I, denoted I

sat is defined as

I
sat =

∞�

k=0

(I : mk)

I is m-saturated if Id = I
sat
d for all d ≥ m. The satiety of I, denoted sat(I),

is the smallest m for which I is m-saturated.

1.4. Monomial orders

It’s interesting to consider the set of monomials in our polynomial ring.
Thus we let M denote the set of all monomials in K[x1, x2, . . . , xn]. Further
we let Md ⊂ M denote all monomials of degree d. Now by Definition 1.37
we see that each monomial can represented by a element in Nn. Thus it
comes as no suprise that the orders defined for Nn in our first section carries
over to the monomials
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Proposition 1.43. Let ≤P be a relation on Nn
. Then we define the relation

≤P � on M for elements x
a
,x

b ∈ M as: x
a ≤P � xb

if and only if a ≤P b in

Nn
.

Now if ≤P is a partial order on Nn
then ≤P � is a partial order on M. If ≤P

exhibits totality so does ≤P �.

Proof. The proposition follows from the bijection x
a �→ a. �

Thanks to the discussion in our first section we now have three different
orderings of the monomials at our disposal namely ≤lex’ ≤rlex’ and ≤str’. We
get rid of the cumbersome notation and just write ≤lex ≤rlex and ≤str for
the orders on M as well. It will be understood by the context which type of
order we mean.
Armed with our orders on the set of monomials we are ready to define some
special subspaces of R = K[x1, x2, . . . , xn]. Remember that Rd denotes the
vector space of homogeneous polynomials of degree d.

Definition 1.44. A filter of the poset (Md,≤lex) is called a lex-segment.
A K-vector subspace V of Rd is called a lex-segment space if V ∩ Md is a
K-basis of V and a lex-segment.

The lex-segment spaces are extremly interesting in this paper since they
will be seen to always exhibit equality in Green’s hyperplane restriction
theorem.
In Chapter 3 we will reduce Green’s hyperplane restriction theorem to a
simpler case when K has characteristic zero. In this reduced form Green’s
theorem will be seen to have a strong connection with strongly stable subsets.

Definition 1.45. A non-empty subset V of R is called strongly stable if
V ∩M is a filter of the poset (M,≤str).

Now we have the following nice connection between lex-segments and
strongly stable subsets:

Proposition 1.46. Every lex-segment is strongly stable.

Proof. Let V denote a lex-segement of Md and let x
a ∈ V and x

b ∈ Md

such that x
a
<str x

b. Then we have that b = µi1,j1 ◦ · · · ◦ µir,jr(a) where
µik,jk are strongly stable redistributing functions for k = 1, . . . , r. We can
assume that all our strongly stable redistributing functions differs from the
identity since we can remove all those functions from the composition that
don’t. Let i = min{i1, . . . , ir}. Then we have that ai < bi since there is at
least one function µi,j for some j, acting on a such that bi ≥ ai + 1 > ai.
And since i was the smallest integer of the ik’s we have that bk = ak for
k < i. Thus we get that i = min{k : ak �= bk} and thus since ai < bi we get
x
a
<lex x

b so x
b ∈ V . Since x

b was arbitrary V is strongly stable. �
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Since monomials inherit algebraic structure from their connection with
the polynomial ring one often demand that the orderings of monomials in
some way preserve this structure. Orders on the set of monomials that do
this are called monomial orderings.

Definition 1.47. A monomial ordering is a total order ≤P on M that also
satisfies the following conditions for all xa

,x
b
,x

c ∈ M, with 1 = x
0:

(i) If xa ≤P x
b then x

a · xc ≤P x
b · xc

(ii) 1 ≤P x
a

Proposition 1.48. ≤lex and ≤rlex are both monomial orderings.

Proof. Let xa �= x
b and x

c be arbitrary. Denote c =
�

ci

Now if xa
<lex x

b then we have that aj < bj , where j = min{i : ai �= bi}.
Now we have cj + aj < cj + bj , where j = min{i : ci + ai �= ci + bi}. Thus
x
a · xc

<lex x
b · xc. Now if x

a �= 1 then there exists a aj > 0, where
j = min{i : ai �= 0}. Thus xa

>lex 1.
Now let x

a
<rlex x

b. Then we either have that
�

ai <
�

bi which gives
c
�

ai < c
�

bi and thus xa · xc
<rlex x

b · xc, or aj > bj , where j = max{i :
ai �= bi}. Now we have cj +aj > cj + bj , where j = max{i : ci+ai �= ci+ bi}.
Thus xa ·xc

<rlex x
b ·xc. Now if xa �= 1 then

�
ai > 0. Thus xa

>rlex 1. �

Equipped with monomial orderings we can define a special construction,
called the inital ideal, which we will need when reducing Green’s theorem
in Chapter 3. We start by defining the initial term or leading term of a
polynomial with respect to monomial ordering ≤P

Definition 1.49. Let f ∈ K[x1, x2, . . . , xn] and let ca be defined as in 1.2.
The initial term of f with respect to a monomial ordering ≤P , denoted
inP (f), is defined

inP (f) = max
<P

({xb ∈ M : cb �= 0})

In words the inital term of a polynomial is the biggest monomial with
respect to the given monomial ordering in the representation of said poly-
nomial as a sum of monomials.
Now we can define the initial ideal

Definition 1.50. Let I ⊂ K[x1, x2, . . . , xn] be a ideal. The initial ideal of
I with respect to the monomial ordering ≤P , denoted inP (I), is defined

inP (I) = �inP (f) : f ∈ I�
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1.5. Algebraic geometry

The most important reason as to why one wants to study polynomial rings
comes from geometry. To fully motivate and to understand the results pre-
sented in this paper we thus need to represent the structures of our poly-
nomial rings in a geometric way, so that one can use all the machinery
developed here to apply in on geometric objects. That is the goal for alge-
braic geometry. Most definitions in this section are versions of those from
the books [10], [15] and [20]. The reader is assumed to be familiar with
basic knowledge about vector-spaces. In this section we will assume that
the field K is algebraically closed.

The geometric representation in algebraic geometry is achieved by look-
ing on the zero sets of ideals of polynomials

Definition 1.51. Given an ideal I of K[x1, x2, . . . , xn] the set of zeros or
zero-set of I is defined as

ZK(I) = {(a1, . . . , an) ∈ Kn : f(a1, . . . , an) = 0 ∀f ∈ I}

When viewed as a geometric object ZK(I) is called an affine algebraic variety

or just in short affine variety.

The geometry of affine varities is beautiful in its own right but it’s often
more rewarding to study another type of varities that behaves more nicely,
namely the projective varities. Before the definition we remind ourselves of
what a projective space is (as a set).

Definition 1.52. The Projective n-space over K, denoted Pn
K, is the set of

all one-dimensional subspaces of the vector space Kn+1.

Remark 1.53. It’s often convenient to view the points in projective space
as equivalence classes defined, given a fixed representative point
(a1, a2, . . . , an+1) ∈ Kn+1 \ {0}, as

[a1 : a2 : · · · : an+1] = {(λa1,λa2 . . . ,λan+1) ∈ Kn+1 : λ ∈ K}

With this interpretation the points of Pn
K can be viewed as lines in Kn+1

through the origin.

Now if f is an arbitrary polynomial in K[x1, x2, . . . , xn] and L is a point
of Pn−1

K , there exist no logical way of evaluating f at the point L, since the
value f(a1, . . . , an) depends on the representative (a1, . . . , an) of L. But if
we demand that f is a homogeneous polynomial of degree d, then we get for
λ ∈ K

f(λa1,λa2, . . . ,λan) = λ
d
f(a1, a2, . . . , an)
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Thus if f(a1, a2, . . . , an) = 0 for some representative (a1, a2, . . . , an) of L,
then for λ ∈ K we have f(λa1,λa2, . . . ,λan) = 0. Thus f can be evaluated
as being zero, or vanish, at L if f is a homogeneous polynomial, since as
we saw the evaluation was independent of the representative. Thus the
following defintion makes sense.

Definition 1.54. Given a homogeneous ideal I of K[x1, x2, . . . , xn], the
projective set of zeros or projective zero-set of I is defined as

ZP(I) = {[a1 : · · · : an] ∈ Pn−1
K : f(a1, . . . , an) = 0

for all homogeneous f ∈ I}

When viewed as geometric object ZP(I) is called a projective algebraic variety
or just in short projective variety. If V ⊂ Pn−1

K is a projective variety and
W ⊂ Pn−1

K is projective variety such that W ⊂ V then W is said to be a
projective subvariety of V .

We have the following special cases of projective vareties

Definition 1.55. Let be F be any homogeneous polynomial ofK[x1, x2, . . . , xn]
and denote IF the ideal generated by F . Thus IF = �F �. Then the pro-
jective variety ZP(IF ) is called a hypersurface. If F is a linear form of
K[x1, x2, . . . , xn] then ZP(IF ) is called a hyperplane.
Let f1, f2, . . . , fr all be linear homogeneous forms of K[x1, x2, . . . , xn] and
denote If = �f1, f2, . . . , fr�. Then the projective variety ZP(If ) is called a
projective linear variety or in short linear variety.
Let be F be any homogeneous polynomial and let f1, f2, . . . , fr all be linear
homogeneous polynomials inK[x1, x2, . . . , xn]. Denote IF = �F, f1, f2, . . . , fr�.
Then the projective variety ZP(IF ) is called a hypersurface in a linear sub-

space of Pn−1
K .

Given a projective variety V we can define the related ring-structure of V
called the coordinate ring. First we need the to define a related construction
to the zero-set

Definition 1.56. Let V ⊆ Pn−1
K be a projective variety. Then the homoge-

neous vanishing ideal of V is defined to be

I(V ) = {f ∈ K[x1, x2, . . . , xn] : f(p) = 0 ∀p ∈ V }

It is clear that the homogeneous vanishing ideal of V actually is a ho-
mogeneous ideal (see [20, pp. 19 and 40] to convince you otherwise). Now
there exists a deep connection between the homogeneous vanishing ideal of
V and its defining ideal
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Theorem 1.57. (Hilbert’s Homogeneous Nullstellensatz) For any

homogeneous ideal I ⊂ K[x1, x2, . . . , xn], except m, we have

I(ZP(I)) =
√
I

Proof. See [10, Theorem 1.6 pp.134-135] combined with the discussion at
[20, pp. 39-40]. �
Remark 1.58. The reason why we don’t allow our ideal to be m is since
the zero-set of m in Kn is the origin, 0, which is not an element of Pn−1

K .
This is the reason why m is called the irrelevant ideal.

Now we’re ready to define the coordinate ring of V , which will be one
of our prime subjects of investigation in the paper

Definition 1.59. Let V ⊆ Pn−1
K be a projective variety. Then the homoge-

nous coordinate ring of V is defined to be the ring

R[V ] =
K[x1, x2, . . . , xn]

I(V )

Later when we will apply Green’s hyperplane restriction theorem to the
homogenous coordinate rings of a projective varieties we will see that a lot of
geometric information about the projective varieties and their embeddings
in projective space can be read from the cases where we have equality in
Green’s theorem. Thus we take some time to get aquinted with the geomet-
ric properties of projective varieties.
The dimension of vector spaces can easily be defined by counting the car-
dinality of the basis of the vector space. When dealing with varieties the
setting is different and we need the notion of irreducibility to define dimen-
sion

Definition 1.60. Let V ⊆ Pn−1
K be a projective variety. Then V is ir-

reducible if it cannot be written as the nontrivial union of two projective
subvarieties.

Remark 1.61. In some literature the defintion of a projective variety in-
volves it being irreducible. Here the word projective algebraic set instead
defines what we have choosen to call a projective variety. In this thesis we’ve
chosen the same naming convention as the book [20]. This should be taken
in to consideration when reading other literature e.g. [15].

We have a nice decomposition of varieties into irreducible components.

Proposition 1.62. Let V ⊆ Pn−1
K be a projective variety. Then V can be

written as the finite union of irreducible projective subvarieties, V = ∪r
i=1Vi.

The Vi’s are called the irreducible components of V .
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Proof. Use the proof of [10, Theorem 3.10] combined with the discussion
[10, p. 88] or use [15, Proposition 1.5] together with [15, Exercise 2.5]. �

Now we can define the dimension of a projective variety

Definition 1.63. Let V ⊆ Pn−1
K be a projective variety. Then the dimension

of V , denoted dimV , is defined as

dimV = max{d ∈ N : V ⊇ Vd � Vd−1 � · · · � V1 � V0}

where we demand that all Vi’s are nonempty irreducible subvarieties of V .

An interesting special case of varieties are the equidimensional varieties.

Definition 1.64. Let V ⊆ Pn−1
K be a projective variety. Then V is equidi-

mensional if all of it’s irreducible components have the same dimension.

Another property that tells us something about the projective varieties
is the degree

Definition 1.65. Let V ⊆ Pn−1
K be a projective variety. Then the degree of

V , denoted deg V , is defined as

deg V = max{|V ∩ L| < ∞ : L is a linear variety , dimL+ dimV = n− 1}

Thus the degree of V is the greatest possible finite number of intersection
points of V with a linear variety of dimension equal to the codimension of
V .

Remark 1.66. If I is a homogeneous ideal ofK[x1, x2, . . . , xn] then Hilbert’s
Nullstellensatz puts a restriction on what possible rings K[x1, x2, . . . , xn]/I
will be able to give a geometric interpretation as the coordinate rings for
projective varieties, namely that I must be radical. Fortunatly there ex-
ists a generalization of the concept of a projective variety called schemes

that makes it possible to give a geometric interpretation to any ring of the
form K[x1, x2, . . . , xn]/I where I is any homogeneous saturated ideal (see
[15, Exercise 5.10(d)]), which is a much larger class of ideals. Unfortunatly
the treatment of schemes would make this paper even more lengthy than
it already is, and thus we only note that the generalization exists and thus
also the geometric interpretation of K[x1, x2, . . . , xn]/I where I is any ho-
mogeneous saturated ideal. The interested reader is encouraged to read the
book [15] for more information about schemes.
Later in the paper when we study arbitrary homogeneous ideals this is well
supported geometrically since the saturation of a arbitrary homogeneous
ideal can only give rise to one (closed) scheme, even though the motivation
is not in this paper. Also the theorems presented from articles on the subject
in Chapter 2 will often be originally written in the languages of schemes, but
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here they will be presented as theorems revolving around projective varieties
so that an overview of this vast subject can be achieved. In the language
of schemes the projective varieties are reduced closed subschemes (see [15,
Proposition 4.10]).

1.6. The Zariski topology

To understand the underlaying geometry in commutative algebra we need
to define the topology used in commutative algebra. First we recall what a
topology is

Definition 1.67. A topology on a set X is a collection of subsets U of X
satisfy the following

(i) ∅, X ∈ U

(ii) If {Ui}∞i=0 is a collection of sets from U, then
�∞

i=0 Ui ∈ U

(iii) If {Ui}ri=0 is a collection of sets from U, then
�r

i=0 Ui ∈ U

The sets in U are called open and their complements will be called closed.
A space X equipped with a topology U is called a topological space.
If Y is a subset of a topological space X with topology U then the induced

topology on Y is the topology defined by τY = {Y ∪ U : U ∈ U}.

It is also useful to know the following property

Definition 1.68. A subset U of a topological space X is dense if every
nonempty open set in X contains a element of U

Now we can define the Zariski topology on Kn and on Pn−1
K . We have

the notation R = K[x1, x2, . . . , xn]

Definition 1.69. The Zariski topology on Kn is the topology with open sets
equal to the the complements of affine varieties, and the closed sets equal
to the affine varities.
Similarly the Zariski topology on Pn−1

K is the topology with open sets equal
to the the complements of projective varieties, and the closed sets equal to
the projective varities.

For a proof of why this actually defines a topology on Kn see [17, Propo-
sition 5.5.20]. The case of Pn−1

K is treated the same way.
Earlier in Definition 1.60 we defined what a irreducible variety was. This def-
inition is actually a special case of a more general definition of irreducibility,
which we state here.

Definition 1.70. Let Y be a nonempty subset of a topological space X.
Then Y is irreducible if it cannot be written as the nontrivial union of two
closed subsets of Y .
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Finally we’re ready to define a keyword needed to understand Green’s
hyperplane restriction theorem.

Definition 1.71. Let P be a property of elements in Kn (or Pn−1
K ). We say

that P hold generically in Kn (or Pn−1
K ), or for a generic element of Kn (or

Pn−1
K ), if there exists a non-empty Zariski open subset U of Kn (or Pn−1

K )
such that P holds for all elements of U .
Especially we have that a property P holds for a generic linear form h ∈ R1,
if there exists non-empty Zariski open subset U of Kn such that P holds for
all elements a1x1 + · · ·+ anxn ∈ R1 with coefficients (a1, . . . , an) ∈ U .

The reason for the use of the word generic is because every Zariski open
subset happens to be dense. To prove this we need first to prove the follow-
ing.

Proposition 1.72. Every nonempty open subset of an irreducible topological

space is dense.

Proof. Let X be an irreducible topological space. Now assume the propo-
sition is false. Then we can find a nonempty open subset U1 that is not
dense. Since U1 is not dense there also exists another nonempty open subset
U2 such that U1 ∩ U2 = ∅. Denote the complement of U1 as U

C
1 and the

complement of U2 as UC
2 . But then we have that UC

1 ∪UC
2 = X and both U

C
1

and U
C
2 are closed proper subsets of X, since U1 ⊂ U

C
2 and vice versa. Thus

X cannot be irreducible, which is a contradiction. Thus the proposition is
true. �
Proposition 1.73. Kn

and Pn−1
K are both irreducible topological spaces and

thus every nonempty Zariski open subset U of Kn
or Pn−1

K is dense.

Proof. See [15, Example 1.4.1 & Excercise 2.4(c)]. �
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Green’s theorem

We are ready for any unforeseen

event that may or may not

occur.

Dan Quayle
44th Vice President of the
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Mathematics follows the path of

maximal irony

Mark Green

This chapter is dedicated to present the main subject of this thesis and also
the research available on the subject that could be found. The research ma-
terial is mostly gathered from the article [1] and its very insightful theorems
concerning the subject.
Just as in our first chapter we will have that, unless stated otherwise, K is
an arbitrary infinite field and R = K[x1, x2, . . . , xn] is standard graded.

2.1. Hilbert functions

A lot of the motivation of why one would like to study Green’s hyperplane
restriction theorem comes from its applications to Hilbert functions. Thus
we get aquinted with these functions in this section.

Definition 2.1. Let I be a homogeneous ideal of R. Define

(R/I)d = {
�

a∈Nn

cax
a ∈ R/I : deg(xa) = d whenever ca �= 0}

23



24 2. Green’s theorem

Then the numerical function H(R/I,−) : N → N defined for d ∈ N as

H(R/I, d) = dimK(R/I)d

is called the Hilbert function of R/I.

The Hilbert functions of quotient rings will be our main subject in this
chapter since they make the formualtion of Green’s hyperplane restriction
theorem so much simpler, which we will see in the following section. But
before that we state a proposition about Hilbert functions of initial ideals
that will come in handy in the next chapter

Proposition 2.2. Let I be a homogeneous ideal of R and ≤P a monomial

ordering. Then for any d ∈ N we have

H(R/I, d) = H(R/(inP (I)), d)

Thus the ideal and it’s initial ideal define the same corresponding Hilbert

function.

Proof. See [13, Proposition 1.11]. �

2.2. Green’s hyperplane restriction theorem

We’re now ready to formulate the main theorem of this whole thesis. The
theorem was first proved by Mark Green in his paper [12] from 1988 and is
therefore named after him.

Theorem 2.3. (Green’s hyperplane restriction theorem)

Let d ∈ N and let V ⊆ Rd be a K-vector subspace. Further let � ∈ R1 be a

generic linear form and denote V� the image of V in R/���. Then we have

codimK(V�) ≤ codimK(V )<d>

and equality holds if V is a Lex-segment space.

Proof. See [17, Theorem 5.5.25], [7, Theorem 4.2.12] or [13, Theorem 3.4]
for some modern approaches to the Theorem. Alternatively see the original
proof in [12, Theorem 1] �

For simplicity we will often refer to this theorem as Green’s theorem in
the thesis since it’s understood that we don’t mean the famous theorem from
integral calculus.
A closely related theorem is that of Macaulay.

Theorem 2.4. (Macaulay’s theorem)

Let d ∈ N and let V ⊆ Rd be a K-vector subspace. Then we have

codimK(R1 · V ) ≤ codimK(V )<d>

Here equality holds if V is a Lex-segment space.
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Proof. See [17, Theorem 5.5.27] or [7, Theorem 4.2.10]. Note that in
Macaulay’s theorem one does not need the assumption that K is infinite. �

Both these theorems translates easily into the languages of Hilbert func-
tions. We get

Corollary 2.5. Let I be a homogeneous ideal of R. For a generic linear

form � ∈ R1 and d ∈ N and we have

(a) H(R/(I + ���), d) ≤ H(R/I, d)<d> (Green)

(b) H(R/I, d+ 1) ≤ H(R/I, d)<d>
(Macaulay)

Here equality holds if Id is a Lex-segment space, with the added condition

that we have Id+1 = R1 · Id for equality in Macaulay’s theorem.

See [17, Corollary 5.5.26] and [17, Corollary 5.5.28] to convince you of
why these are the natural translation of the aforementioned theorems.

2.3. Persistent extremal behavior for large degrees

With Green’s hyperplane restriction theorem finally formualted we can now
indulge into the investigations of which this thesis is supposed to cover,
namely when this theorem achieves equality.
We start by using our result from Chapter 1 to prove a fact about the
persistent behavior of Hilbert-functions.

Proposition 2.6. Let I be a homogeneous ideal of R. Then there exists an

integer d such that for all j ≥ d we have

H(R/I, j + 1) = H(R/I, j)<j>

Proof. If I = R then H(R/I, n) = 0 for all n ≥ 0. Thus assume I � R.
Then we have that I0 = ∅ and thus H(R/I, 0) = dimK K = 1. Combined
with Macaulay’s theorem this enables us to use Proposition 1.31 and the
proposition is proven. �

Remark 2.7. The conventional way of proving Proposition 2.6 is by using
an argument based on the fact that K[x1, x2, . . . , xn] is Noetherian. See e.g.
the proof of [17, Corollary 5.5.34] or of [7, Corollary 4.2.14]. With the use
of Proposition 1.31 we managed to reduce this to a combinatorical problem
instead.

Proposition 2.6 deals with equality in Macaulay’s theorem, but we’re
mainly interested in equality in Green’s theorem. Fortunatly there is a close
connection between the two of them



26 2. Green’s theorem

Lemma 2.8. Let I be a homogeneous ideal in R, � ∈ R1 be a generic linear

form and j be an integer such that j ≥ sat(I). Further let

Mj+1(H(R/I, j + 1)) = (∆j+1,∆j , . . . ,∆δ)

be the (j+1)th Macaulay difference tuple of H(R/I, j+1). Then the following

statements are equivalent:

(i) H(R/I, j + 1) = H(R/I, j)<j>

(ii) δ > 1 and H(R/(I + ���), j + 1) = H(R/I, j + 1)<j+1>

Proof. See [2, Theorem 3.3]. �

Equipped with this lemma we can prove a statement about equality in
Green’s theorem equivalent to that of Proposition 2.6.

Proposition 2.9. Let I be a homogeneous ideal of R and let � ∈ R1 be a

generic linear form. Then there exists an integer d such that for all j ≥ d

we have

H(R/(I + ���), j) = H(R/I, j)<j>

Proof. The following proof is a just a rigorous restatement of [1, Remark
2.11] and other arguments spread out in the same article.
Let d0 be the integer from Proposition 2.6 such that H(R/I, j + 1) =
H(R/I, j)<j> for all j ≥ d0. Now define d = 2 + max{d0, sat(I)}. Then
by Proposition 2.6 we have that H(R/I, j) = H(R/I, j − 1)<j−1> for all
j ≥ d− 1. Now write

Md−1(H(R/I, d− 1)) = (∆d−1,∆d−2, . . . ,∆δ)

Now for any j ≥ d we have from Remark 1.30 that

Mj(H(R/I, j)) = (∆j ,∆j−1, . . . ,∆δ+j−d+1)

And since j > d − 1 we have j − d + 1 > 0 and thus δ + j − d + 1 > 1
so by Lemma 2.8 we now have that this implies that H(R/(I + ���), j)
= H(R/I, j)<j> for all j ≥ d and we’re done. �

Now we want to turn our eyes to the possible geometric interpretations
of equality in Green’s and Macualays theorems, so from here on we will have
that, unless stated otherwise, V is an arbitrary projective variety (reduced
closed subscheme), and I(V) will denote its homogeneous vanishing ideal.
Thus we have that R[V] = R/I(V) is the homogeneous coordinate ring of
V. Note that for any linear form � ∈ R1 we have that R/(I(V) + ���) =
R[V]/�R[V].
Motivated by Proposition 2.6 and Proposition 2.9 it makes sense to make
the following definitions
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Definition 2.10. We defineM(V) to be the the least integer d such that the
Hilbert function of R[V] achieves its extremal value in Macaulay’s theorem
for all degrees ≥ d. Thus

M(V) = min{d ∈ N : H(R[V], j + 1) = H(R[V], j)<j>
, ∀j ≥ d}

In the same way define G(V) to be the least integer d such that the Hilbert
function ofR[V] achieves its extremal value in Green’s theorem for all degrees
≥ d. Thus

G(V) = min{d ∈ N : H(R[V]/�R[V], j) = H(R[V], j)<j>, ∀j ≥ d}

Remark 2.11. In Defintion 2.10 we have switched the naming convention
of the two functions from how they appear in the article [1], where M(V) is
defined as the least integer for which Green’s theorem achieves it’s extremal
value and G(V) is the corresponding integer for Macualay’s theorem. This is
because we want to stress the connection of the two with their corresponding
theorems. The reason for the confusing name-convention in [1] is probably
because G(V) seems to be named after Gotzmann which studied these types
of numbers a lot and M(V) seems to be named after Macaulay.

Now since projective varieties have saturated defining ideals (see [15,
Exercise 5.10(c)]) we have that sat(I(V)) = 0 and thus by the proof of 2.9
we get that G(V) ≤ M(V) + 2. Note that the article [1, p. 12] incorrectly
writes this conclusion asG(V) ≤ M(V)+1, since they don’t take into account
their own remark 2.11. However this inequality can be greatly improved.

Proposition 2.12. Let V be a projective variety. Then either G(V) = M(V)
or G(V) = 1.

Proof. See [1, Proposition 3.1] and [1, Proposition 3.6].
Note: The original formulation of these propositions states that V is a closed
subscheme and need not be reduced. �

The immediate question one asks after seeing this result is if there is
some geometric interpretation to the two different cases of possible G(V).
Fortunatly for us there is one whenever V is equidimensional

Theorem 2.13. Let V be a equidimensional projective variety. Then either

M(V) = degV or G(V) = M(V).
Further G(V) = 1 if and only if V is a hypersurface in a linear subspace of

Pn−1
K .

Proof. See [1, Corollary 4.5] and [1, Corollary 4.6]. �

By Theorem 2.13 we thus get a complete characterization of the equality
G(V) = 1 for equidimensional projective varities, showing the geometric
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use of looking at the persistent equality of Green’s hyperplane restriction
theorem.

2.4. Equality of Green’s theorem for general degrees

We’ve seen that Green’s hyperplane restriction theorem eventually has equal-
ity for all degrees large enough. But Green’s theorem may of course achieve
equality before this happends, and in this section we will see in what cases
we can interpret what this means.
In the section when we say that a projective variety V achieves equality in

Green’s theorem in degree d we will mean that we have the following for a
generic linear form, � ∈ R1

H(R[V]/�R[V], d) = H(R[V], d)<d>

In his original article [12], where the hyperplane restriction theorem
originated, Mark Green included two theorems of what could be said when
the theorem achieved equality, [12, Theorem 3] and [12, Theorem 4]. In
the article [1, Theorem 3.10] a very beautiful generalisation of these two
theorems is proved, which we will state here.

Theorem 2.14. Let d be an integer and V be a projective variety that

achieves equality in Green’s theorem in degree d. If one can find integers

l and r such that 1 ≤ l ≤ d, r ≥ 1 and

Md(H(R[V], d)) = (r, r, . . . , r)

where the d
th

Macaulay difference tuple has positive length l then

I(V)d = �F,L1, . . . , Ln−(r+1)�d
where F is a homogeneous form of degree l and L1, . . . , Ln−(r+1) are linear

forms. Thus the ideal of V has the same structure in degree d as the ideal

of a hypersurface of degree l in some (r + 1)-dimensional linear subspace of

Pn−1
K

Proof. See [1, Theorem 3.10]
Note: The original formulation of the theorem states that V is a closed
subscheme and need not be reduced. �

This is the most general theorem of what happends when we achieve
equality in Green’s theorem. But if we define some functions operating on
the Macaulay difference tuple of a given degree we can formulate some less
general theorems revolving around the equality.

Definition 2.15. Let I be a homogeneous ideal in R and x an arbitrary in-
teger. The positive length of the dth Macaulay difference tuple of H(R/I, d)
will be denoted L(R/I, d).
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Considering Md(H(R/I, d)) as a multiset, the number of elements equal to
x in Md(H(R/I, d)) will be deonted Cx(R/I, d).

Example 2.16. If we have the situation described in Theorem 2.14 we
have that L(R[V], d) = Cr(R[V], d) = l and for any positive integer x �= r

Cx(R[V], d) = 0.

With these tools we can formulate the final theorems concerning equality
in Green’s theorem

Theorem 2.17. Let d be an integer and V be a projective variety that

achieves equality in Green’s theorem in degree d. Further let

Md(H(R[V], d)) = (∆d,∆d−1, . . . ,∆δ)

be the d
th
Macaulay difference tuple of H(R/I, d) and assume that C0(R[V], d) =

0.
Then if L(R[V], d) > C∆d(R[V], d) we have that

I(V)∆d = �L1, . . . , Ln−(∆d+1)�∆d

Furthermore if δ > 1, there is a homogeneous polynomial, F , of degree

C∆d(R[V], d) such that

I(V)j ⊂ �F,L1, . . . , Ln−(∆d+1)�j
for every j ≥ d

Proof. See [1, Theorem 4.2]
Note: The original formulation of the theorem states that V is a closed
subscheme and need not be reduced. �

Theorem 2.17 is quite messy on its own, but it has a very nice corollary
for equidimensional projective varieties.

Corollary 2.18. Let d be an integer and V be a equidimensional projective

variety of dimension r that achieves equality in Green’s theorem in degree d.

Further let

Md(H(R[V], d)) = (∆d,∆d−1, . . . ,∆δ)

be the d
th

Macaulay difference tuple of H(R/I, d) and assume that ∆d = r

and C0(R[V], d) = 0. Then V is a hypersurface in a linear subspace of Pn−1
K .

Proof. See [1, Corollary 4.4] �
Remark 2.19. The alert reader may have noticed the similarites of Corol-
lary 2.18 and Theorem 2.13, and the fact is that Corollary 2.18 is used to
prove Theorem 2.13 in the article [1]. Both are stated here since they are
both intersting by themself, even though they are very much connected.
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One very important construction when dealing with the algebra and com-
binatoris of an ideal is the intial ideal which we encountered in Definition
1.50. Unfortunately the initial ideal depend on the choice of coordintates
for our polynomial ring. The solution to this problem is the generic intial
ideal of an ideal. Mark Green himself recognised it’s usefulness in [13].
In this Chapter we will see how Green’s theorem can reduced using the
generic initial ideals with respect to reverse lexicographical order. The re-
duction will result in a case where we will only need to consider strongly
stable subset and to check if we have equality in Green’s theorem one only
needs to count the number of elements that are divisible by xn. In Chapter
4 we will make use of the results from this chapter, so the results in this
chapter will be used a lot later on.
The reduction is only valid when K has characteristic zero, so throughout
this chapter we will have unless stated otherwise that K is a field with char-
acteristic zero and R = K[x1, x2, . . . , xn] is standard graded. We also have
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that M denotes the set of all monomials in R as before. We will also have
that if I is an ideal of R that achieves equality in Green’s theorem in degree

d we will mean that we have the equality H(R/(I+ ���), d) = H(R/I, d)<d>

for a generic linear form � ∈ R1.
The definitions of this chapter are mostly gathered from [13], [10] and [18].
The careful reader may note that in [13] the defintions and theorems are
constructed for the case where we have that our field K = C. One can
check that despite this the results from [13] are valid for any field K with
characteristic zero.

3.1. Generic initial ideals

The main idea by the generic initial ideals compared to intial ideals is that
one wishes to get rid of the dependence on the coordinates x1, x2, . . . in
the polynomial ring. To to do this we need to be able to ”change the
coordinates” of an ideal in R. We let the general linear group act on our
polynomials to achieve this. First we remind ourselves of what the general
linear group is.

Definition 3.1. The general linear group of degree n over K is the group
consisting of invertible n × n matrices with entries in K and with matrix
multiplication as its binary operation. It is denoted by GLn(K).

Now we can define the action of GLn(K), and hence all its subgroups,
on R in the following way

Definition 3.2. Let g = (gij) ∈ GLn(K) be a arbitrary matrix and let
f ∈ R be a arbitrary polynomial. We will denote by g · f the standard
action of GLn(K) on R which is defined by

g · f = f(gx1, gx2, . . . , gxn), where gxi =
n�

j=1

gijxj

If I is an ideal of R then we define the action g · I by

g · I = {g · f : f ∈ I}

We’re interested in a particular subgroup of the general linear group and
its action on ideals. The subgroup is called the Borel subgroup

Definition 3.3. The Borel subgroup of GLn(K) is the defined as the sub-
group consisting of all lower triangular matrices and will be denoted Bn(K).
More explicitly we have

Bn(K) = {(gij) ∈ GLn(K) : gij = 0 for j > i}
If I is an ideal of R and we have b · I = I for all b ∈ Bn(K) then we say that
I is Borel-fixed.
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Remark 3.4. There seems to be some confusion as to whether the Borel
subgroup should consist of the lower triangular matrices or the upper trian-
gular matrices in the literature. In [13, Definition 1.22] the Borel subgroup
is defined as the lower triangular matrices and in [10, p. 352] it’s defined as
the upper triangular matrices. Both books however comes to correct con-
clusions since they both define the action of GLn(K) differently. The action
of GLn(K) in [13] is consistent with our defintion but in [10] the action is
instead defined by the substitution gxj =

�n
i=1 gijxi.

However not all literature is as lucky as these two. The book [18, pp.21-
22] makes the unfortunate mistake to mix the defintions and thus have the
action of GLn(K) defined as in [13] but the Borel subgroup defined as in
[10]. This mistake becomes even more unfortunate when one takes in con-
sideration that the whole chapter where the defintions are made is about
Borel-fixed monomial ideals. To [18]’s defense the proofs in the chapter are
all correct, since they all seem to ignore the incorrect definition.
The thesis [11] has borrowed the faulty definitions from [18] and thus makes
the same mistake.

Viewing the matrices inGLn(K) as vectors with n
2 coordinates,GLn(K)

can be seen as a subset of Kn2
. Thus we can use the Zariski topology from

Kn2
in the obvious way on GLn(K), so it makes sense to talk about Zariski

open and closed sets in GLn(K).
This allows us to formulate the following beautiful result which will motivate
us to examine the Borel-fixed ideals.

Theorem 3.5. (Galligo’s Theorem)

Let ≤P be any monomial ordering on M and let I be any homogeneous

ideal of R. Then there exists a Zariski open subset U ⊆ GLn(K) such that

inP (g · I) is constant and Borel-fixed for all g ∈ U .

Proof. See [13, Theorem 1.27] or [10, Theorem 15.18 & Theorem 15.20].
�

With Galligo’s Theorem formulated we now can define the generic intial
ideal

Definition 3.6. Let ≤P be any monomial ordering on M and let I be any
homogeneous ideal of R. Then the intial ideal which is constant and Borel-
fixed on a Zariski open subset of GLn(K), as given by Galligo’s Theorem, is
called the generic initial ideal of I with respect to ≤P and will be denoted
ginP (I).

Now Borel-fixed ideals are closely related to the strongly stable monomial
ideals as seen by the following result
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Proposition 3.7. Let I be a monomial ideal of R. Then I is Borel-fixed if

and only if I is strongly stable.

Proof. See [5, Proposition 2.7] �

Thus Galligo’s Theorem together with Proposition 3.7 now gives us the
pleasant result that all generic intitial ideals are strongly stable.
The most interesting monomial ordering when dealing with restrictions to
hyperplanes turns out to be the reverse lexicographical order. To give a
motivation to this claim we present the following result.

Proposition 3.8. Let I be a homogeneous ideal of R. Further let � ∈ R1 be

a generic linear form and denote I� the image of I in R/���. Then we have

that

ginrlex(I�) = (ginrlex(I))xn

where (ginrlex(I))xn denotes the image of ginrlex(I) in R/�xn�.

Proof. See [13, Corollary 2.15]. �

Thus we see that a generic hyperplane restriction can via the generic
initial ideals with respect to the reverse lexicographical order be made in to
a restriction made simply by the hyperplane defined by xn, which is a great
improvement.

3.2. The reduction

We saw that the Hilbert function corresponding to any intial ideal is equal
to the ideal defining the initial ideal by Proposition 2.2. This is especially
true for the generic intial ideal. Combine this with Proposition 3.8 and the
following reduction of Green’s theorem should come as no surprise.

Theorem 3.9. Let d be a positive integer and let B be any strongly stable

subset of Md. Then the number of monomials in Md \ B, that are not

divisible by xn, is at most |Md \B|<d>.

Proof. To see a proof that this theorem indeed is a reduction of Green’s
Theorem for the case of generic intial ideals see [11, Theorem 6] or use the
argument from the proof of [13, Proposition 3.5]. �

We have this nice corollary

Corollary 3.10. For d ∈ N let I be a homogeneous ideal of R with generic

initial ideal ginrlex(I) (with respect to the reverse lexicographical order) and

let B = ginrlex(I) ∩ Md. Then I achieves equality in Green’s theorem in

degree d if and only if we have that the number of monomials in Md \B that

are not divisible by xn, is exactly |Md \B|<d>.
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Proof. Since Theorem 3.9 is a reduction of Green’s theorem to the generic
initial ideal-case we have by using the same argument as in the proof of [11,
Theorem 6] or [13, Proposition 3.5] that equality in Green’s theorem for a
homogeneous ideal implies equality in Theorem 3.9 and vice versa. �

Now we want to examine all possible generic intial ideals that attain
equality in Theorem 3.9 and thus the possible generic intial ideals for arbi-
trary homogeneous ideals that attain equality in Green’s theorem. First we
need to count the number of monomials divisible by xn in a monomial ideal.

Definition 3.11. Let d be a positive integer. For any subset M ⊆ Md we
define

÷n(M) = |{m ∈ M : xn � m}|

Now we can formulate and prove the classification of what possible
generic initial ideals (with respect to the reverse lexicographical order) there
can exists for ideals that attain equality in Green’s theorem for degree d.

Proposition 3.12. Let d be a positive integer and let B be any strongly

stable subset of Md. Then B attains equality in Theorem 3.9 if and only if

there exists a lex-segment Λ ⊆ Md, such that |Λ| = |B| and ÷n(B) = ÷n(Λ),

Proof. See [17, Proposition 5.5.18] or [11, Proposition 7] to see why a lex-
segment Λ always attains equality in Theorem 3.9.
Now if B attains equality then ÷n(B) = |B|<d>. Now if we take the lex-
segment Λ with the same size as B, thus |Λ| = |B|, we get since lex-segments
always attains equality in Theorem 3.9 that ÷n(Λ) = |Λ|<d> = |B|<d> =
÷n(B).
Now assume there exists a lex-segment Λ ⊆ Md, such that |Λ| = |B| and
÷n(B) = ÷n(Λ). Then we have, since lex-segments always attains equality
in Theorem 3.9 that ÷n(Λ) = |Λ|<d> = |B|<d> = ÷n(B). �

3.3. Strongly stable subsets

Motivated by the beforementioned reduction of Green’s theorem we take
some time to study the property of being strongly stable. Remember that we
have thatMd denotes the set of monomials of degree d in K[x1, . . . , xn]. First
we show that there exists an alternate definition for strongly stable subsets
apart from Definition 1.45, that hopefully contribute to the understanding
of strongly stable subsets (actually this is the conventional definition):

Proposition 3.13. A non-empty subset B of K[x1, . . . , xn] is strongly stable

if and only if, given any monomial m ∈ B and indices i, j ∈ {1, . . . , n}, it
holds that if xj |m and i < j, then m

xi
xj

∈ B also.



36 3. Reduction of Green’s theorem in characteristic zero

Proof. First let B be a strongly stable set and let m = x
a ∈ B be arbi-

trary. By Definition 1.45 B ∩ M is an filter of the poset (M,≤str). Now
assume we can find indices i, j ∈ {1, . . . , n}, such that xj |xa and i < j. By
Definition 1.13 we have

x
a xi

xj
= x

a1
1 · · ·xai+1

i · · ·xaj−1
j · · ·xann = x

µi,j(a)

Now by Definition 1.14 and Proposition 1.43 we thus get that m xi
xj

>str m,

and by the defintion of an filter this implies m xi
xj

∈ B.

Now let B be a subset that satisfies the conditions of our proposition, let
x
b ∈ B and let x

a be a arbitrary element such that x
a

<str x
b. By

Definition 1.14 we thus have b = µi1,j1 ◦ · · · ◦ µir,jr(a), where µik,jk are
strongly stable redistributing functions for k = 1, . . . , r. We can assume
that all our strongly stable redistributing functions differs from the iden-
tity since we can remove all those functions from the composition that
don’t. But now since B satisfies the conditions from our proposition we
must have that x

µir,jr (a) = xir
xjr

x
a and thus x

µir,jr (a) ∈ B. But then by

the same reasoning x
µir−1,jr−1◦µir,jr (a) ∈ B and so on until we conclude

x
b = x

µi1,j1◦···◦µir,jr (a) ∈ B. Thus B ∩M is an filter of the poset (M,≤str)
and we’re finished. �

It’s a simple consequence of Proposition 3.13 and Definition 1.7 that the
following also is true.

Corollary 3.14. Let B be a non-empty subset of K[x1, . . . , xn]. Then B∩M
is a order ideal of the poset (M,≤str) if and only if, given any monomial

m ∈ B and indices i, j ∈ {1, . . . , n} it holds that if xj |m and i > j then

m
xi
xj

∈ B also.

If B ∩ M is a order ideal of the poset (M,≤str) we say that B is dually
strongly stable.

Now we can restate some facts using our new terminology.

Proposition 3.15. The set-theoretical complement of a strongly stable sub-

set is dually strongly stable. Further a dually strongly stable subset becomes

strongly stable and vice versa using the index-bijection i �→ n− i+ 1. Thus

there exists two natural bijections between strongly stable subsets and dually

strongly stable subsets.

Proof. The first assertion is just a restatment of Proposition 1.17. For the
other assertions we note that with the given index-bijection one gets that if
i, j ∈ {1, . . . , n} such that i < j then n − i + 1 > n − j + 1 and the claim
follows from the definition.
To see that both these operations induces bijections, one notes that taking
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complements is a bijective operation and so is a bijective change of variables,
since the variables uniquely define the monomials. �

3.4. Classifying equality in the monomial case of Greens
theorem

Since in the reduced form Green’s hyperplane restriction theorem revolves
around strongly stable subsets, and we’ve seen that the lex-segments al-
ways achieve equality in Green’s theorem it’s interesting to investigate which
strongly stable subsets share the properties of the lex-segments that make
them attain equality, namely the cardinality and the number of monomials
not divisible by xn. Therefore it’s natural to make the following definition

Definition 3.16. Let d be a positive integer, let Md denote the set of
monomials of degree d in K[x1, . . . , xn], let Λ ⊆ Md be a lex-segment and
let B be the set of all strongly stable subsets of Md. Then we define

B(Λ) = {B ∈ B : |Λ| = |B|, ÷n(B) = ÷n(Λ)}

Remark 3.17. We see that if B ∈ B(Λ) then B attains equality in Theo-
rem 3.9 by Proposition 3.12.
Further we also note that xd1 ∈ Λ since x

d
1 is the maximal monomial of Md

with respect to the lexigraphical order and x
d
1 ∈ B since if xa11 x

a2
2 · · ·xann is

any element in B, then since B is strongly stable we have that xa1+a2+···+an
1

is in B. But a1 + a2 + · · ·+ an = d and thus xd1 ∈ B.

We now classify all such sets belonging to B(Λ) for small values on n.

The case n=1,2.

Proposition 3.18. Let d be a positive integer, let Md denote the set of

monomials of degree d in K[x1, . . . , xn], where n is either 1 or 2. Then a

subset is strongly stable if and only if it is a Lex-segment.

Thus if Λ ⊆ Md is a lex-segment we have |B(Λ)| = 1. Further we have that

÷n(Λ) = 0 if n = 1 and ÷n(Λ) = 1 if n = 2.

Proof. We have by Proposition 1.16 and Proposition 1.43 that the orders
≤lex and ≤str coincide on Md. Thus both orders are total and since Md is
finite we have by Corollary 1.6 that |B| = |Λ| implies B = Λ.
To see that ÷n(Λ) = 0 if n = 1 one notes that in this case we have Md =
{xd1}. To see that ÷n(Λ) = 1 if n = 2 one combines Remark 3.17 with the
fact that in Md x

d
1 is the only monomial not divisible by x2. �

It seems like the cases n = 1, 2 were very simple ones. This is due to the
fact that the lexicographical order and the strongly stable order coincided
there. Unfortunatly that is not the case when n > 2.
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The case n=3. By Example 1.15 we see that that the lexicographical or-
der and the strongly stable order no longer coincide. Thus we need to look
closer on how the strongly stable subsets look when n = 3.
By Proposition 1.5 we have that a strongly stable subset is completely de-
fined by its minimal elements. It turns out that in K[x1, x2, x3] we can in a
very neat way express what these minimal elements look like

Proposition 3.19. Let d be a positive integer, let Md denote the set of

monomials of degree d in K[x1, x2, x3] and let B be a strongly stable subset

of Md. Then there are two sequences of positive integers {αi}ri=1 and {βi}ri=1
that satisfies

(i) 0 ≤ αr < αr−1 < · · · < α1 ≤ β1 < β2 < · · · < βr ≤ d

(ii) ÷3(B) = βr + 1

(iii) |B| = ÷3(B) + α1(β1 +
1−α1

2 ) +
r�

i=2

αi(βi − βi−1)

(iv) {xd−β1
1 x

β1−α1
2 x

α1
3 , . . . , x

d−βr
1 x

βr−αr
2 x

αr
3 } are the defining minimal ele-

ments of B

Proof. We start by choosing our α1 so that it’s the maximal exponent of
x3 for any monomial in B. Thus

α1 = max{α ∈ N : xα3 |m for some m ∈ B}

We choose our β1 in a corresponding way but with the exponent of x3 fixed
to α1

β1 = max{β ∈ N : xβ−α1
2 x

α1
3 |m for some m ∈ B}

Now we define

B1 = {m ∈ B : m ≤str x
d−β1
1 x

β1−α1
2 x

α1
3 } =(3.1)

= {xd−i
1 x

i−α1+j
2 x

α1−j
3 ∈ B : (α1 − j) ≤ i ≤ β1, 0 ≤ j ≤ α1, i, j ∈ N}(3.2)

We now have by construction

÷3 (B1) = |{i ∈ N : xd−i
1 x

i
2 ∈ B1}| = β1 + 1

Keeping j fixed in the definition of B1 we see that there are β1 −α1 + j +1
different integer choices for i. Thus we get

|B1| =
α1�

j=0

β1 − α1 + j + 1 = α1(β1 − α1) + β1 + 1 +
α1�

j=0

j =

= α1(β1 − α1) + β1 + 1 +
α1(1 + α1)

2
= ÷3(B1) + α1(β1 +

1− α1

2
)
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Now since B is strongly stable we must have by construction B1 ⊆ B. Now
if B1 = B, β1 and α1 satisfies the properties of the proposition, by the above
calculations, and we’re done. Otherwise we can find a α2 and β2 such that

α2 = max{α ∈ N : xα3 |m for some m ∈ B \B1}

and

β2 = max{β ∈ N : xβ−α2
2 x

α2
3 |m for some m ∈ B \B1}

and we define in the same way as before

B2 = {m ∈ B \B1 : m ≤str x
d−β2
1 x

β2−α2
2 x

α2
3 } =

= {xd−i
1 x

i−α2+j
2 x

α2−j
3 ∈ B \B1 : (α2 − j) ≤ i ≤ β2, 0 ≤ j ≤ α2 for i, j ∈ N}

But since by definition α1 was the maximum exponent of x3 and by the
maximality of β1 we have that B1 contains all monomials divisible by x

α1
3 .

Thus we must have α2 < α1 and also β2 > β1, since otherwise the monomial
x
d−β2
1 x

β2−α2
2 x

α2
3 would be in B1 which is a contradiction. Thus α2 − j ≤

α2 < α1 ≤ β1 and we can write

B2 = {xd−i
1 x

i−α2+j
2 x

α2−j
3 ∈ B : β1 ≤ i ≤ β2, 0 ≤ j ≤ α2 for i, j ∈ N}

Keeping j fixed in the definition of B2 we see that there are β2−β1 different
integer choices for i. Thus we get

|B2| =
α2�

j=0

β2 − β1 = α2(β2 − β1) + β2 − β1

which gives us

÷3(B1 ∪B2) = |{i ∈ N : xd−i
1 x

i
2 ∈ B1 ∪B2}| = β2 + 1

and finally

|B1 ∪B2| = α1(β1 − α1) + β1 + 1 +
α1(1 + α1)

2
+ α2(β2 − β1) + β2 − β1 =

= α1(β1 − α1) + β2 + 1 +
α1(1 + α1)

2
+ α2(β2 − β1) =

= ÷3(B1 ∪B2) + α1(β1 +
1− α1

2
) + α2(β2 − β1)

Now since B is strongly stable we must have by construction B1 ∪B2 ⊆ B.
Now if B1 ∪ B2 = B, {β1,β2} and {α1,α2} satisfies the properties of the
proposition, by above calculations, and we’re done. Otherwise we continue
in the exact same way as before and define

αi = max{α ∈ N : xα3 |m for some m ∈ B \ (
i−1�

j=1

Bj)}
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and

βi = max{β ∈ N : xβ−αi
2 x

αi
3 |m for some m ∈ B \ (

i−1�

j=1

Bj)}

and

(3.3) Bi = {xd−l
1 x

l−αi+j
2 x

αi−j
3 ∈ B : βi−1 ≤ l ≤ βi, 0 ≤ j ≤ αi for l, j ∈ N}

Since |B| is finite our process must terminate for some r such that B =�r
i=1Br. Using induction and the same reasoning as before we thus get:

÷3(Λ) = ÷3(B) = |{i ∈ N : xd−i
1 x

i
2 ∈

r�

i=1

Bi}| = βr + 1

and

|Λ| = |B| = ÷3(Λ) + α1(β1 +
1− α1

2
) +

r�

i=2

αi(βi − βi−1)

And also 0 ≤ αr < αr−1 < · · · < α1 ≤ β1 < β2 < · · · < βr ≤ d. The
sequences {αi}ri=1 and {βi}ri=1 are thus seen to satisfy the properties of the
proposition.
The elements {xd−β1

1 x
β1−α1
2 x

α1
3 , . . . , x

d−βr
1 x

βr−αr
2 x

αr
3 } are seen to be the min-

imal elements of B with respect to ≤str by construction. �

Now we have by Proposition 1.46 that every lex-segment is a strongly
stable subset. Thus it’s interesting how the minimal elements of a lex-
segment with respect to ≤str look like.

Proposition 3.20. Let B be a strongly stable subset of K[x1, x2, x3] and let

{βi}ri=1 and {αi}ri=1 be it’s defining sequences from Lemma 3.19. Then B is

a lex-segment if and only if we have one of the following cases:

1) r = 1, β1 = α1 + 1

2) r = 1, β1 = α1

3) r = 2, β1 = α1, β2 = β1 + 1

Proof. In case 1) we get from (3.1) that

B = {xd−i
1 x

i−α1+j
2 x

α1−j
3 ∈ B : (α1 − j) ≤ i ≤ α1 + 1, 0 ≤ j ≤ α1, i, j ∈ N}

which is equal to all monomials bigger than x
d−α1−1
1 x

1
2x

α1
3 in the lexico-

graphic order and is a lex-segment.
In case 2) we get from (3.1) that

B = {xd−i
1 x

i−α1+j
2 x

α1−j
3 ∈ B : (α1 − j) ≤ i ≤ α1, 0 ≤ j ≤ α1, i, j ∈ N}

which is equivalent to all monomials bigger than x
d−α1
1 x

α1
3 in the lexico-

graphic order and is a lex-segment.
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In case 3) we get from (3.1) and (3.3) and case 2) that B is the union of all
monomials bigger than x

d−α1
1 x

α1
3 and all monomials smaller than x

d−α1
1 x

α1
3

but bigger than x
d−α1+1
1 x

α1+1−α2
2 x

α2
3 in the lexicographic order. This is a

lex-segment.
Now assume r ≥ 3. Then we have α2 < β2 so x

d−β2
1 x

β2
3 �∈ B but xd−β3

1 x
β3
2 ∈

B. Thus B is not a lex-segment since x
d−β2
1 x

β2
3 >lex x

d−β3
1 x

β3
2 .

Now assume r = 2 and that B is a lex-segment. Then β1 = α1 since other-
wise x

d−β1
1 x

β1
3 �∈ B but xd−β2

1 x
β2
2 ∈ B and x

d−β1
1 x

β1
3 >lex x

d−β2
1 x

β2
2 . Further

β2 = β1 + 1 since otherwise x
d−β1−1
1 x

β1+1
3 �∈ B but x

d−β2
1 x

β2
2 ∈ B and

x
d−β1−1
1 x

β1+1
3 >lex x

d−β2
1 x

β2
2 .

Now assume r = 1 and that α1 ≤ β1 − 2. Then x
d−β1+1
1 x

β1−1
3 �∈ B but

x
d−β1
1 x

β1−α1
2 x

α1
3 ∈ B so B is not a Lex-segment since x

d−β1+1
1 x

β1−1
3 >lex

x
d−β1
1 x

β1−α1
2 x

α1
3 . �

Now we’re almost ready to classify all elements of B(Λ). But first we
need a very beautiful result.

Lemma 3.21. Let d be a positive integer, let Md denote the set of mono-

mials of degree d in K[x1, x2, x3]. Further let t ≤ d be an integer and denote

B(t) the set of all strongly stable subset of Md with cardinality t. Then

we have |B(t)| = p̂(t) where p̂(t) denotes the number of partitions of t into

distinct parts as defined in Definition 1.19

Proof. We prove this by creating a bijection. Let P̂ (t) denote the set of all
partitions of t into distinct parts and let {λi}ki=1 ∈ P̂ (t) be arbitrary. Now
we define the bijection ϕ : P̂ (t) → B(t) in the following way

ϕ({λi}ki=1) =
k�

i=1

{xd−j
1 x

j−i+1
2 x

i−1
3 ∈ Md : i− 1 ≤ j ≤ λi + i− 1}

To see that ϕ({λi}ki=1) ∈ B(t) we denote B(λi) = {xd−j
1 x

j−i+1
2 x

i−1
3 ∈ Md :

i− 1 ≤ j ≤ λi + i− 1} and note that given l ∈ {1, 2, . . . , k} we have

{m ∈ Md : m ≤str x
d−λl+l−1
1 x

λl
2 x

l−1
3 } =

B(λl) ∪ (
l−1�

i=1

{xd−j
1 x

j−l+1+i
2 x

l−1−i
3 ∈ Md : l − 1− i ≤ j ≤ λl + l − 1})

But now for ϕ({λi}ki=1) to be strongly stable we must have that λl+ l− 1 ≤
λl−1 + l − 2 ≤ λl−2 + l − 3 ≤ · · · ≤ λ1 so we have that

{xd−j
1 x

j−l+1+i
2 x

l−1−i
3 ∈ Md : l − 1− i ≤ j ≤ λl + l − 1}) ⊆ B(λl−i)
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But since we have λl < λl−1 < λl−2 < · · · < λ1 this is the case and thus we
get that

{m ∈ Md : m ≤str x
d−λl+l−1
1 x

λl
2 x

l−1
3 } ⊆

l�

i=1

B(λi) ⊆
k�

i=1

B(λi) = ϕ({λi}ki=1)

So ϕ({λi}ki=1) is strongly stable. Further

|ϕ({λi}ki=1)| =
k�

i=1

|{xd−j
1 x

j−i+1
2 x

i−1
3 ∈ Md : i−1 ≤ j ≤ λi+i−1}| =

k�

i=1

λi = t

so ϕ({λi}ki=1) ∈ B(t). Now we only need to prove that ϕ is a bijection. It’s

easy to see that ϕ is injective since the sets {xd−j
1 x

j−i+1
2 x

i−1
3 ∈ Md : i− 1 ≤

j ≤ λi + i − 1} are unique given λi. To see that it’s surjective let B be
a strongly stable subset. Then we can find a sequence of positive integers,
{ai}ri=1 such that

B =
r�

i=1

{xd−j
1 x

j−i+1
2 x

i−1
3 ∈ Md : i− 1 ≤ j ≤ ai + i− 1}

but since for given l ∈ {1, 2, . . . , k} we demand that {m ∈ Md : m ≤str

x
d−al+l−1
1 x

al
2 x

l−1
3 } ⊂ B we must have that by the same reasoning as above

that al + l− 1 ≤ al−1 + l− 2 ≤ al−2 + l− 3 ≤ · · · ≤ a1 and thus al < al−1 <

al−2 < · · · < a1 and we see that we get ϕ−1(B) = {ai}ri=1 so ϕ is surjective
and thus bijective. �

Remark 3.22. A alternative proof of Lemma 3.21 is given by Snellman
in [21, Proposition 7.6]. The proof by Snellman was discovered after our
proof was written. The proof by Snellman uses a clever trick with recursion
and the proof thus follows by the simplicity of strongly stable subset in two
variables. Our proof could be considered a more straight forward approach
to the problem. The interested reader is encouraged to read the interesting
article [21].

Proposition 3.23. Let d be a positive integer, let Md denote the set of

monomials of degree d in K[x1, x2, x3], and let Λ ⊆ Md be a lex-segment.

Further let x
d−s
1 x

s−t
2 x

t
3 be the minimal element of Λ. Then ÷3(Λ) = s + 1

and we have a bijection between B(Λ) and the number of partitions of s− t

into distinct parts. Thus |B(Λ)| = p̂(s − t) where p̂(s − t) is defined as in

Definition 1.19.

Proof. If x
d−s
1 x

s−t
2 x

t
3 is the minimal element of Λ then since Λ is a lex-

segment we have that s = max{a ∈ N : xd−a
1 x

a
2|m for some m ∈ Λ}, since if

x
d−s−1
1 x

s+1
2 |m for some m then x

d−s
1 x

s−t
2 x

t
3 >lex m and m �∈ Λ. By Propo-

sition 3.19 and Proposition 3.20 we thus get that ÷3(Λ) = s+ 1.



3.4. Classifying equality in the monomial case of Greens theorem 43

Let B be a arbitrary element in B(Λ) and B
C it’s set-theoretical comple-

ment. Further let B(s− t) be defined as in Lemma 3.21.
By Proposition 3.19 and Definition 3.16 we have for our strongly stable sub-
set B we must have βr = s − 1, where {βi}ri=0 is the sequence defined in
Proposition 3.19. By the definition of βr (see proof of Proposition 3.19) we
thus get that all elements with the exponent of x1 being larger than d− s is
in B

C . Now by Proposition 3.15 B
C is a dually strongly stable subset. Now

we denote Λ0 = {xa11 x
a2
2 x

a3
3 ∈ Md : a1 > d − s}, then we can construct the

map ψ : Md \ Λ0 → Md

ψ(xa11 x
a2
2 x

a3
3 ) �→ x

a1−d+s
1 x

a2
2 x

a3+d−s
3

Since we demand that xa11 x
a2
2 x

a3
3 ∈ Md \ Λ0 we have that a1 ≤ d− s. Thus

a1 − d+ s ≥ 0 and the map is well defined.
Now we claim that ψ(BC \Λ0) is dually strongly stable. Let ψ(m) ∈ B

C \Λ0

and assume we can find indices i, j ∈ {1, . . . , n}, such that xj |ψ(m), i > j.

Then xj |m since ψ(mxj
) = ψ(m)

xj
. But then since B

C is dually strongly stable

and since ψ(m) xi
xj

= ψ(m xi
xj
) we have m

xi
xj

∈ B
C \ Λ0. Thus ψ(m) xi

xj
∈

ψ(BC \ Λ0) and ψ(BC \ Λ0) is dually strongly stable.
We construct the map ϕ : B(Λ) → B(s− t)

ϕ(B) = {xa3+d−s
1 x

a2
2 x

a1−d+s
3 ∈ Md : xa11 x

a2
2 x

a3
3 ∈ B

C \ Λ0}
We want to show that ϕ is a bijection. Now if we denote γ for the index-
bijection of the variables mentioned in Proposition 3.15 then ϕ can be seen
as the composition

ϕ(B) = γ ◦ ψ((BC) \ Λ0)

Now Proposition 3.15 combined with the fact that ψ(BC \ Λ0) was dually
strongly stable gives us that ϕ(B) is strongly stable.
Next we show that ϕ is injective. By earlier arguments all elements with
the exponent of x1 being larger than d − s is in B

C , thus if B1, B2 ∈ B(Λ)
are two distinct elements then B

C
1 and B

C
2 must differ outside Λ0. This

combined with Proposition 3.15 gives us that that the mapping (BC)\Λ0 is
injective. Now γ is injective by Proposition 3.15 and ψ is injective since we
only preform addition in the exponents which is a injective operation. Thus
ϕ is injective.
To see that ϕ(B) ∈ B(s − t) we now note that we have that |B \ Λ0| =
|Λ \ Λ0| = |{xd−s

1 x
s−t−1
2 x

t+1
3 , x

d−s
1 x

s−t−2
2 x

t+2
3 , . . . , x

d−s
1 x

s
3}| = s − t. By the

injectivity of ϕ we have |ϕ(B)| = s − t and since ϕ(B) was strongly stable
we have ϕ(B) ∈ B(s− t).
Now all that is left is to show that ϕ is surjective. Let Bt ∈ B(s− t) be an
arbitrary element. Then we have ϕ

−1(Bt) = (ψ−1 ◦ γ
−1(Bt) ∪ Λ0)C which

is a well-defined element of B(Λ) by the injectivity of all operations in the
composition.
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Finally since ϕ was a bijection we get from Lemma 3.21 that |B(Λ)| =
|B(s− t)| = p̂(s− t). �

3.5. Summary

We take a moment to summarize the work in the chapter. We have proven
the following

Theorem 3.24. Let I be a homogeneous ideal of K[x1, . . . , xn] where n is

either 1 or 2. Then I achieves equality in Green’s theorem in all degrees.

Proof. By Proposition 3.18, Galligo’s Theorem and Proposition 3.8 the
generic initial ideal of I is a lex-segment in all degrees. By Proposition 3.12
and Corollary 3.10 this implies that I achieves equality in Green’s theorem
in all degrees. �

And also the following

Theorem 3.25. Let I be a homogeneous ideal of K[x1, x2, x3], d ∈ N and

B = ginrlex(I) ∩ Md. Further let Λ ⊆ Md be the lex-segment such that

|Λ| = |B| and let x
a1
1 x

a2
2 x

a3
3 be the minimal element of Λ.

Then I achieves equality in Green’s theorem in degree d if and only if we can

find a partition, {λi}ki=1, of a2 into distinct parts such that ϕ
−1({λi}ki=1) =

B, where ϕ is the bijection from the proof of Proposition 3.23

Proof. By Proposition 3.23, Galligo’s Theorem and Proposition 3.8 the only
possible generic initial ideal that achieves equality in Theorem 3.9 in degree
d are those in the image of ϕ−1.
By Proposition 3.12 and Corollary 3.10 the theorem thus follows. �



Chapter 4

Computational Plücker
embeddings

Welcome, welcome. The Grass

Man is no longer popular, mm..

[...] Don’t you wanna watch the

Grass Man being eaten by a

demon? The cost is only 100

coin.

Man at Carnival-desk
Breath of Fire II, GBA

In Chapter 3 we characterized what possible generic initial ideals there
are for a homogeneous ideal that achieves equality in Green’s theorem for a
given degree. In this chapter we instead try to find the space of all possible
homogeneous ideals for a given generic intial ideal that achieves equality in
Green’s theorem. We will do this by computational means, by computing
the Plücker embeddings of the Grassmanian of such spaces in the computer
algebra system named CoCoA[8].
As earlier we will have that, unless stated otherwise, K is an arbitrary infinite
field and R = K[x1, x2, . . . , xn] is standard graded. We also have that M
denotes the set of all monomials in R, and thusMd will denote all monomials
of degree d for any d ∈ N. GLk(K) will denote the general linear group of
degree k over K and we also have that a pivot element of a matrix is a
non-zero entry of the matrix such that all entries in the same column are
zero.
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4.1. The Grassmannian

We first need to define what the Grassmannian and the Plücker embedding
is. The definitions from this section are versions of definitions found in the
books [13], [20] and [14].

Definition 4.1. Let V be a vector space. The Grassmannian Gr(k, V ) is
the set of all k-dimensional subspaces of the vector space V .

Example 4.2. By Definition 1.52 we have that Gr(1,Kn+1) = Pn
K.

To be able to extract the geometric information from the Grassmannian
one uses what is called the Plücker embedding.

Theorem 4.3. (The Plücker embedding)

Let V be a vector space over the field K with dimension d. Then Gr(k, V )

can then be embedded in P(
d
k)−1

K .

Proof. Since the Plücker embedding is vital to the chapter, we’re going to
outline its construction but leave the details to the interested reader. For
the proofs of the theorem see [20, pp. 72-73] or [14, pp. 209-211] (these
proofs are written for the case K = C, but are vaild for a arbitrary infinite
field aswell). Our construction follows the outline of the proof in [20].
Let W ∈ Gr(k, V ) be a k-dimensional subspace, and choose a ordered basis
{ej}dj=1 for V . Since W is a k-dimensional vectorsubspace we can find a

ordered basis {wi}ki=1 for W . Being a subspace of V we can find coefficients

wij such that wi =
�d

j=1wijej . Now the resulting matrix (wij), which will
be called the Plücker matrix of W , has full rank since its rows are linearly
independent by construction. Further we know from linear algebra that two
matrices of full rank (wij) and (vij) span the same subspace if and only if
there exists a matrix g ∈ GLk(K) such that (wij) = g · (vij). Thus we can
identify our subspace W with the equivalence class

[(wij)] = {g · (wij) : g ∈ GLk(K)}

Since the matrix representation of our subspace must be invariant under
matrix-multiplication with GLk(K) by above arguments.
Now we denote the k × k subdeterminant of (wij) formed by the columns
1 ≤ j1 < · · · < jk ≤ d by ∆(j1,...,jk). These determinants will be called the
Plücker coordinates. Then the Plücker embedding is given by the map

[(wij)] �→ [∆(1,...,k) : · · · : ∆(j1,...,jk) : · · · : ∆(d−k+1,...,d)] ∈ P(
d
k)−1

K
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This map is well-defined since we have for any g ∈ GLk(K)

[(wij)] = [g · (wij)] �→
�→ [det g ·∆(1,...,k) : · · · : det g ·∆(j1,...,jk) : · · · : det g ·∆(d−k+1,...,d)] =

= [∆(1,...,k) : · · · : ∆(j1,...,jk) : · · · : ∆(d−k+1,...,d)]

Thus since W could be identified with the equivalence class [(wij)] we have

that W can be imbedded in P(
d
k)−1

K via the Plücker embedding. And since
W was arbitrary the whole of Gr(k, V ) can be embedded. �

But one can prove an even stronger result than this namely thatGr(k, V )
is a projective variety.

Theorem 4.4. Let V be a vector space over the field K with dimension d.

Then Gr(k, V ) ⊂ P(
d
k)−1

K is a projective variety. The homogeneous polynomi-

als defining Gr(k, V ) as a projective variety are called the Plücker relations

Proof. See [14, pp. 209-211] (This proof is written for the case K = C, but
is vaild for a arbitrary infinite field aswell). �
Remark 4.5. A rigorous treatment of the Plücker relations would be too
lengthy for this paper, but since we will be working with computational
Plücker embeddings we can compute the relations in CoCoA. The complete
code can be seen in Appendix A, but the part that will compute the Plücker
relations is the following part.

Wmat := MakeMatByRows(SubDimm ,Dimm ,b[1 ,1]..b[SubDimm ,Dimm]);

ChoiceOfCol := Subsets (1..Dimm ,SubDimm);

PluckGen := [];

DetGen :=[];

For J := 1 To PluckDimm Do

Append(DetGen ,Det(Submat(Wmat ,1.. SubDimm ,ChoiceOfCol[J])));

Append(PluckGen ,p[J] - Det(Submat(Wmat ,1.. SubDimm ,ChoiceOfCol[J])))�
→;

EndFor;

PluckerRel := Gens(Elim5(b[1 ,1]..b[SubDimm ,Dimm],Ideal(PluckGen)));

Basically what the code does is that it constructs all possible subdetermi-
nants and identify each of them with a Plücker coordinate, p[J]. Then it
tells the computer to compute the relations between the Plücker coordinates
without any reference to the subdeterminants. The result is the Plücker re-
lations.

We summarize the terminology from the Plücker embedding

Definition 4.6. If W ⊆ V is a vectorsubspace, {ej}dj=1 is an ordered basis

for V , {wi}ki=1 is a ordered basis for W and wi =
�d

j=1wijej then the
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k × d matrix PW = (wij) is called the Plücker matrix of W with respect to

the basis {wi}ki=1. The determinant of the k × k minor of PW taking the
columns indexed by 1 ≤ j1 < · · · < jk ≤ d is denoted ∆(j1,...,jk)(PW ) and
called a Plücker coordinate of W. When its clear which Plücker matrix we
use for our Plücker coordinates we will simply write ∆(j1,...,jk).

4.2. Generic initial ideal space

Now when we are aquainted with the Grassmannian and the Plücker em-
bedding we can use it to create a representation of the space of our interest,
namely the space of all possible homogeneous ideals with a given generic
initial ideal. We will use the reverse lexicographical order when computing
generic initial ideals, since the generic initial ideals with respect to the re-
verse lexicographical order are well behaved as we saw in Chapter 3. Thus
when we write gin(I) for a homogeneous ideal I ⊂ R it will be understood
that we mean the generic initial ideal with respect to the reverse lexico-
graphical order, ginrlex(I).
Before continuing let’s define our object of interest for this chapter

Definition 4.7. Let d be a positive integer and let g be a strongly stable
subset of Md. Then we define

�(g) = {I ⊂ R : I is a homogeneous ideal and gin(Id) ∩Md = g}

Now if we choose g such that there exist a lex-segment Λ ⊂ Md such
that g ∈ B(Λ), where B(Λ) is defined as in Definition 3.16, then we know
by Proposition 3.12 and Corollary 3.10 that for any I ∈ �(g) we have that I
achieves equality in Green’s theorem in degree d. And this is exactly what
we are looking for, especially when we have already studied how B(Λ) looks
like in Chapter 3.
We want a way to represent our space �(g) and we will use the Plücker
embedding for this purpose. First we examine how the initial ideal affects
the Plücker embedding.

Proposition 4.8. Let d be a positive integer, g be a subset of Md =
{e1, . . . , ed0} where we have d0 = |Md| =

�n+d−1
d

�
and e1 >rlex · · · >rlex ed0.

Further let I be a homogeneous ideal of R.

Then if we have inrlex(Id) ∩Md = g there must exist a Plücker matrix of Id

(in reduced row echelon form) with pivot elements in the columns given by

the representation of g in the basis {ei}d0i=1.

Proof. Let {wi}ki=1 be a basis for the K vector space Id. We have by
construction that {e1, . . . , ed0} is a basis for the K vectorspace Rd.
Let inrlex(Id) ∩ Md = g. Then for our Plücker matrix of Id with respect
to the basis {wi}ki=1 we will have for row i that there exists a minimal j0
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such that ej0 = s · wij0 for some s ∈ K. Then we will have that wij = 0 for
all j < j0. Using Gauss-Jordan elimination one gets a pivot in the column
j0. Continuing this way for every basis element with a unique initial term
will give a pivot in the columns given by the initials terms of the basis
{wi}ki=1. These terms obviously belongs to inrlex(Id) and thus must belong
to g. Now if |{inrlex(w1), . . . , inrlex(wk)}| �= |g| then since the initial ideal
and the ideal share the same dimension in every degree by Proposition 2.2
we must have some monomial in g that is acquired as the initial term of
a polynomial created via addition and subtraction of basis elements. Thus
via Gauss-Jordan elimination we can acquire the pivot representing this
monomial, since Gauss-Jordan eliminiation is just addition and subtraction
of the rows representing the basis polynomials. Continuing with the Gauss-
Jordan elimination we finally get a pivot for every element of g.

�

Example 4.9. Let I be a homogeneous ideal of R = C[x1, x2, x3] with
I2 = �3x21 + x1x2, x1x2 + 9x23, 2x1x3 + 14x2x3�. Our Plücker matrix with
respect to this basis becomes

PI2 =




3 1 0 0 0 0
0 1 0 0 0 9
0 0 0 2 14 0





Notice how the columns are ordered by the reverse lexicographical order
x
2
1 >rlex x1x2 >rlex x

2
2 >rlex x1x3 >rlex x2x3 >rlex x

2
3.

We have that inrlex(I2) ∩ Md = �x21, x1x2, x1x3� ∩ Md = {x21, x1x2, x1x3}.
Proposition 4.8 gives us

g · PI2 =




1 0 0 0 0 −3
0 1 0 0 0 9
0 0 0 1 7 0





where we have

g =




1/3 −1/3 0
0 1 0
0 0 1/2





From Proposition 4.8 we see that the initial ideal clearly affects the
form of the Plücker matrix. In a similiar way the form of a Plücker matrix
is affected by the generic initial ideal. For a generic initial ideal we have by
Galligo’s Theorem that, when using the standard action of matrices (see Def-
inition 3.2), the initial ideal must be constant on a open subset of GLn(K).
Proposition 4.8 thus suggest that the pivot elements should be constant on
the same open subset. Fortunatly we only need to check invariance under a
smaller subset of GLn(K) namely the unipotent subgroup
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Definition 4.10. The unipotent subgroup of the Borel subgroup Bn(K) is
the defined as the subgroup consisting of all lower triangular matrices with
ones on the diagonal and will be denoted Un(K). More explicitly we have
that

Un(K) = {(gij) ∈ GLn(K) : gij = 0 for j > i and gii = 1 for all i}

The unipotent subgroup behaves nicely as we will se in the following
proposition

Proposition 4.11. Un(K) is a irreducible topological space under the (in-

duced) Zariski topology.

Proof. Use the same arguments as in [6, Proposition 5-2.2] combined with
the fact that Un(K) is generated by the lower elementary matrices. �

We will from here on use the induced (Zariski) topology on Un(K) be-
cause of this.
Now we ready to prove that it is enough to check invariance under the unipo-
tent subgroup when constructing the generic initial ideal, which will be very
useful when computing generic initial ideal later on.

Proposition 4.12. Let ≤P be any monomial ordering on M and let I be

any homogeneous ideal of R. Then there exists an dense open subset of

U ⊂ Un(K) where inP (g · I) = ginP (I) for all g ∈ U .

Proof. By Galligo’s Theorem we have that there exists a Zariski open subset
U0 such that inP (g · I) = ginP (I) for all g ∈ U0. We get from [10, Theorem
15.18] that this subset meets Un(K) nontrivially, thus U0 ∩ Un(K) �= ∅. We
denote U = U0∩Un(K). Now we have that inP (g ·I) = ginP (I) for all g ∈ U .
Further U is open in Un(K) by definition of the induced topology and since
it is nonempty we get from Proposition 1.72 and Proposition 4.11 that it is
dense in Un(K). �

Now we’re ready to see how the generic initial ideal will affect our Plücker
matrices. The generic initial ideal has a much more complicated affect on the
Plücker matrix than the initial ideal. Thus we will only examine a special
case of the generic initial ideals and see the affect on the Plücker matrices in
this case. More complex cases can be constructed in almost the same way,
but they will left for the curious reader to construct.

Proposition 4.13. Let d be a positive integer and let {e1, . . . , ed0} = Md

where we have d0 = |Md| =
�n+d−1

d

�
and e1 >rlex · · · >rlex ed0. Further let I

be a arbitrary homogeneous ideal of R and let dimgin(Id) = k.

Then the condition that gin(Id) ∩ Md �= {e1, . . . , ek} can be formulated as
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the vanishing of linear polynomials in the Plücker coordinates of the Plücker

embedding of Id.

Proof. Since I is supposed to be a arbitrary homogeneous ideal of R we
formulate this symbolically by having Id = �b11e1+ · · ·+b1d0ed0 , b21e1+ · · ·+
b2d0ed0 , . . . , bk1e1 + · · ·+ bkd0ed0�. We can view the bij ’s as indeterminates,
since we later on want to find linear polynomials in the Plücker coordinates.
Thus let (bij) denote our Plücker matrix filled with the indeterminates bij

for i = 1, 2, . . . , k and j = 1, 2, . . . , d0.
Now by Proposition 4.12 we have for a ”generic” choice of a matrix g ∈
Un(K) that inrlex(g · Id) = ginrlex(Id). We put

g =





1 0 · · · 0
g2 1 1 · · · 0
...

...
. . .

...
gn 1 gn 2 · · · 1





for this purpose, and we treat the gi j ’s as indeterminates, since we want g
to act as ”generic” as possible. The resulting polynomials, f ∈ g · Id, will be
polynomials of the ring K[x1, x2, . . . , xn, g2 1, g3 1, . . . , gn n−1] (or even more
precise of the ring K[x1, x2, . . . , xn, g2 1, g3 1, . . . , gn n−1, b11, b12, . . . , bkd0 ]),
but we treat them as polynomials of the ring K[x1, x2, . . . , xn], viewing the
indeterminates gi j (and bi j) as scalars in K. We denote the resulting basis
polynomials by {ui}ki=1.
Constructing the Plücker matrix, PgId for g · Id with respect to the basis
{ui}ki=1 we get by Proposition 4.8 that the pivot elements should be given
by the representation of gin(Id) ∩ Md in the basis {ei}d0i=1. Now since we
have gin(Id) ∩ Md �= {e1, . . . , ek} this means that ∆(1,...,k)(PgId) = 0. We
denote this first determinant of PgId by w = ∆(1,...,k)(PgId).
Since w = 0 for an open, hence dense, subset of Un(K) we know that w

must be zero no matter the value of the indeterminants gi j . Thus the co-
efficients for monomials constructed by the indeterminants gi j must all be
zero. But these coefficients are themselves polynomials in the indeterminates
b11, b12, . . . , bkd0 and even further they are homogeneous linear polynomials
in the Plücker coordinates. So by setting these coefficients to zero we have
formulated the condition that a arbitrary homogeneous ideal I of R will
satisfy gin(Id)∩Md �= {e1, . . . , ek} as the vanishing of linear polynomials in
the Plücker coordinates of the Plücker embedding of Id. �

We now have this nice corollary.



52 4. Computational Plücker embeddings

Corollary 4.14. Let d be a positive integer and let g be a strongly stable

subset of Md = {e1, . . . , ed0} with e1 >rlex · · · >rlex ed0. Then if g is the only

strongly stable subset of Md that satisfies |g| = k and g �= {e1, . . . , ek} then

�(g) can be embedded as a projective variety of P(
d0
k )−1

K .

Proof. Let I be a arbitrary homogeneous ideal of R with dimgin(Id) = k.
Since gin(Id) ∩ Md �= {e1, . . . , ek} implies gin(Id) ∩ Md = g we have that
the linear polynomials from Proposition 4.13 only vanishes for those ideals
I which satisfy gin(Id)∩Md = g. This is exactly the set �(g). Together with
the Plücker relations from Theorem 4.4 these linear polynomials makes �(g)

into a projective variety of P(
d0
k )−1

K . �

4.3. A worked example

In Corollary 4.14 we showed how one turn a special case of �(g) for g ⊂ Md

into a projective variety. Since the construction is a bit messy and the proof
barely describes the process we take some time to go through a worked
example of the construction.

The example we are going to check is the case g = {x21, x1x2, x1x3} ⊂ M2

in the ring K[x1, x2, x3]. Using our notation from Corollary 4.14 we have
e1 = x

2
1, e2 = x1x2, e3 = x

2
2, e4 = x1x3, e5 = x2x3 and e6 = x

2
3. Thus we see

that g �= {e1, e2, e3} = {x21, x1x2, x22}. Further g is the only strongly stable
subset satisfying |g| = 3 and g �= {e1, e2, e3}, since the only other strongly
stable subset in M2 of order 3 is {e1, e2, e3}. Thus we can use Corollary
4.14.
Now if Id = �b1 1e1+ · · ·+ b1 6e6, b2 1e1+ · · ·+ b2 6e6, b3 1e1+ · · ·+ b3 6e6� we
get the Plücker matrix

PId =




b1 1 b1 2 b1 3 b1 4 b1 5 b1 6

b2 1 b2 2 b2 3 b2 4 b2 5 b2 6

b3 1 b3 2 b3 3 b3 4 b3 5 b3 6





Our ”generic” matrix g ∈ U3(K) becomes

g =




1 0 0
r 1 0
s t 1





We’re now interested in the first 3 × 3 minor of the Plücker matrix PgId =
(ai j). This minor will have the following elements
a1 1 = b1 3r

2 + b1 5rs+ b1 6s
2 + b1 2r + b1 4s+ b1 1

a1 2 = b1 5rt+ 2b1 6st+ 2b1 3r + b1 5s+ b1 4t+ b1 2

a1 3 = b1 6t
2 + b1 5t+ b1 3

a2 1 = b2 3r
2 + b2 5rs+ b2 6s

2 + b2 2r + b2 4s+ b2 1
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a2 2 = b2 5rt+ 2b2 6st+ 2b2 3r + b2 5s+ b2 4t+ b2 2

a2 3 = b2 6t
2 + b2 5t+ b2 3

a3 1 = b3 3r
2 + b3 5rs+ b3 6s

2 + b3 2r + b3 4s+ b3 1

a3 2 = b3 5rt+ 2b3 6st+ 2b3 3r + b3 5s+ b3 4t+ b3 2

a3 3 = b3 6t
2 + b3 5t+ b3 3

Taking the determinant of this minor results in an enormous polynomial
which we only write out the beginning of

w = ∆(1,2,3)(PgId) = r
3
t
3(−b1 6b2 5b3 3 + b1 5b2 6b3 3 + b1 6b2 3b3 5−

− b1 3b2 6b3 5 − b1 5b2 3b3 6 + b1 3b2 5b3 6) + r
2
st

2(3b1 6b2 5b3 3 + · · ·

By identifying Plücker coordinates with their respective determinants from
the Plücker matrix PId , e.g. ∆(3,5,6)(PId) = ∆(3,5,6) = −b1 6b2 5b3 3+b1 5b2 6b3 3+
b1 6b2 3b3 5 − b1 3b2 6b3 5 − b1 5b2 3b3 6 + b1 3b2 5b3 6 , we can simplify our poly-
nomial

w = r
3
t
3∆(3,5,6) − r

2
st

2∆(3,5,6) + r
2
t
3(∆(2,5,6) +∆(3,4,6)) + 3rs2t∆(3,5,6)+

+ r
2
t
2(∆(2,3,6) +∆(3,4,5))− 2rst2(∆(2,5,6) +∆(3,4,6)) + rt

3(∆(1,5,6) +∆(2,4,6))−
− s

3∆(3,5,6) − 2rst(∆(2,3,6) +∆(3,4,5)) + s
2
t(∆(2,5,6) +∆(3,4,6))+

+ rt
2(2∆(1,3,6) +∆(2,4,5))− st

2(∆(1,5,6) +∆(2,4,6)) + t
3∆(1,4,6)+

+ s
2(∆(2,3,6) +∆(3,4,5)) + rt(∆(1,3,5) −∆(2,3,4))− st(2∆(1,3,6) +∆(2,4,5))+

+ t
2(∆(1,2,6) +∆(1,4,5)) + s(∆(2,3,4) −∆(1,3,5)) + t(∆(1,2,5) −∆(1,3,4)) +∆(1,2,3)

Now since w = 0 regardless of the values of r, s and t we get set all the
coefficients of monomials in K[r, s, t] to zero. Removing copies we get the
following relations

∆(2,5,6) +∆(3,4,6) = 0 ∆(2,3,6) +∆(3,4,5) = 0

∆(1,5,6) +∆(2,4,6) = 0 2∆(1,3,6) +∆(2,4,5) = 0

∆(1,3,5) −∆(2,3,4) = 0 ∆(1,2,6) +∆(1,4,5) = 0

∆(1,2,5) −∆(1,3,4) = 0 ∆(3,5,6) = 0

∆(1,4,6) = 0 ∆(1,2,3) = 0

Now these are our homogeneous linear polynomials in the Plücker coordi-
nates that must vanish whenever we have gin(Id) ∩Md = g for a homoge-
neous ideal I of K[x1, x2, x3].
Together with the Plücker relations, which can be computed by the process
described in Remark 4.5, these homogeneous polynomials make �(g) into a
projective variety.

Now we can verify our result in this case by comparing with what we
know about this case from Chapter 2. Let I ∈ �(g) be a homogeneous ideal.
Since we have thatH(R/I, d) = 6−3 =

�3
2

�
we get thatMd(H(R/I, d)) = (1)
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Table 1. Computation time for diffrent sizes of Plücker matrices

Plücker matrix dimension Computation time
3× 6 24 sec
3× 10 ≈ 45 min
4× 10 - (stopped manually after 12 hours)

so we can use Theorem 2.14 to conclude that Id = �L1, L2�d for some pair
of linear forms L1 and L2.
Now by using our computed projective variety for �(g) we
MATS SUPER FÖRKLARING HÄR...

4.4. Computation time

We have seen that we’re able to compute a Plücker embedding of our spaces
�(g) in CoCoA so now we should be able to use the tools in CoCoA to
evaluate some new cases of equality in Green’s theorem that wasn’t explored
fully in Chapter 2. Unfortunately for us there was a major drawback with
the approach developed in this chapter, namely computation time.

The hope was that the approach would open up for some new interesting
results concerning equality in Green’s theorem, but already at a testing stage
of the computations there we’re big issues with the computation time. A
lot of smaller problems was possible to fix with clever coding and some help
from the people of the CoCoATeam, but in the end there was still big issues
with computation time as can be seen in Table 1.

By Table 1 we can see that we were not able to compute the embeddings
for Plücker matrices of size larger than 3× 10 (the case 3× 10 corresponds
to the case of g = {x31, x21x2, x21x3} ⊂ M3 ⊂ K[x1, x2, x3]). The interesting
unexplored cases of equality in Green’s theorem require Plücker matrix sizes
of at least 5× 15, thus making our approach computationally impractical.

The explanation to why the computation time grows seemingly uncon-
trollably is because of the number of Plücker relations which proved to grow
extremely quick. This is illustrated in Table 2.
The conclusion thus is that the approach developed in this chapter holds
some theoretical merit but is unfortunately computationally impractical
when it comes to produce new insights into the subject of when Green’s
theorem achieves equality.
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Table 2. Number of Plücker relations for diffrent sizes of Plücker matrices

Plücker matrix dimension Number of Plücker relations
2× 4 1
3× 6 35
3× 10 2310
4× 10 -





Chapter 5

Future work

The future will be better

tomorrow

Dan Quayle
44th Vice President of the

United States

The natural questions at this point are: How do we go from here? What
can be done to continue the work in the thesis? What could’ve been done
differently?
These are the questions we will answer in this chapter.

5.1. Combinatorics

bajs

5.2. Ideals

Hej
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Appendix A

Algorithm code

With computers you can waste

time a lot faster

Darryl Mc Cullough

Following is the code used in CoCoA for the Plücker embedding of ideals.

A.1. The code

D:=2;

SubDimm :=3; --- Must be smaller than Bin (3+D-1, D)

Dimm:=Bin (3+D-1, D);

Use R1 ::= QQ[x,y,z,c[1.. Dimm],b[1.. SubDimm ,1.. Dimm],r,s,t], �
→DegRevLex;

KonvertToSupport := [];

For JJ := 1 To SubDimm Do

For J:= 1 To Dimm Do

Append(KonvertToSupport ,[b[JJ ,J],1]);

EndFor;

EndFor;

Set Indentation;

Use R0 ::= QQ[x,y,z], DegRevLex;

Polka := DensePoly(D);

Md0 := Ideal(Support(Polka));

Use R1;

59
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Naturlig := RMap(x, y, z);

Md := Image(Md0 , Naturlig);

Li := Support(BringIn(Polka));

For J:= 1 To Len(Li) Do

Insert(Li,J,Li[J]*c[J]);

Remove(Li,J+1);

EndFor;

Polka2 := Sum(Li);

Eqq := GenRepr(Subst(Polka2 , [[x,x], [y,r*x+y], [z,s*x+t*y+z]]), Md);

MatrixList := [];

Radkonvert := [];

For JJ := 1 To SubDimm Do

Radkonvert := [];

For J:= 1 To Dimm Do

Append(Radkonvert ,[c[J],b[JJ ,J]]);

EndFor;

For J:= 1 To Dimm Do

Append(MatrixList ,Subst(Eqq[J], Radkonvert));

EndFor;

EndFor;

M0 := MakeMatByRows(SubDimm , Dimm , b[1 ,1]..b[SubDimm ,Dimm]);

M := MakeMatByRows(SubDimm , Dimm , MatrixList);

FirstSubMatrix := Submat(M,1.. SubDimm ,1.. SubDimm);

GrassDet := Det(FirstSubMatrix);

CoeffGrass :=[];

DummyR := Coefficients(GrassDet , r);

For J := 1 To Len(DummyR) Do

DummyS := Coefficients(DummyR[J], s);

For JJ := 1 To Len(DummyS) Do

DummyT := Coefficients(DummyS[JJ], t);

For JJJ := 1 To Len(DummyT) Do

If DummyT[JJJ] <> 0 Then

Append(CoeffGrass ,DummyT[JJJ]);

EndIf;

EndFor;

EndFor;

EndFor;

MinCoeffGrass := Gens(Minimalized(Ideal(CoeffGrass)));

Len(MinCoeffGrass);

PluckDimm := Bin(Dimm , SubDimm);

W := Concat ([1,1,1], NewList(PluckDimm ,SubDimm),NewList(SubDimm*Dimm�
→,1));

Use R2 ::= QQ[x,y,z,p[1.. PluckDimm],b[1.. SubDimm ,1.. Dimm]],Weights(W)�
→;
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Wmat := MakeMatByRows(SubDimm ,Dimm ,b[1 ,1]..b[SubDimm ,Dimm]);

ChoiceOfCol := Subsets (1..Dimm ,SubDimm);

PluckGen := [];

DetGen :=[];

For J := 1 To PluckDimm Do

Append(DetGen ,Det(Submat(Wmat ,1.. SubDimm ,ChoiceOfCol[J])));

Append(PluckGen ,p[J] - Det(Submat(Wmat ,1.. SubDimm ,ChoiceOfCol[J])))�
→;

EndFor;

CoeffGrass2 := BringIn(MinCoeffGrass);

GrassGenKoord := [];

For J := 1 To Len(CoeffGrass2) Do

Append(GrassGenKoord ,GenRepr(CoeffGrass2[J],Ideal(DetGen)));

EndFor;

GrassGen := Flatten(List(Mat(GrassGenKoord)*Transposed(Mat([ p[1]..p[�
→PluckDimm] ]))));

PluckerRel := Gens(Elim5(b[1 ,1]..b[SubDimm ,Dimm],Ideal(PluckGen)));

Green := Ideal(ConcatLists ([GrassGen ,PluckerRel ]));

GreenGen := Gens(Green);

GreenGen;

Len(GreenGen);

Len(PluckerRel);

--Slut!
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