EXERCISE SET II

Exercise 1. Let R be a commutative ring with 1 , and let $\mathfrak{m}_{1}, \ldots, \mathfrak{m}_{n}$ be distinct maximal ideals in R. Show that, for any positive integers p_{1}, \ldots, p_{n} we have a natural isomorphism

$$
R / \mathfrak{m}^{p_{1}} \cdots \mathfrak{m}_{n}^{p_{n}} \longrightarrow \prod_{i=1}^{n} R / \mathfrak{m}_{i}^{p_{i}}
$$

Exercise 2. Let $S \subseteq R$ be a multiplicatively closed subset of a commutative ring R, and assueme $1 \in S$. Show the universal property for the morphism $\iota: R \rightarrow S^{-1} R$. That is, let $\varphi: R \rightarrow R^{\prime}$ be ring homomorphism of commutative rings, taking 1 to 1 , and sending any element $s \in S$ to a unit. Then there exist a unique homomorphism $f: S^{-1} R \longrightarrow R^{\prime}$ such that $\varphi=f \circ \iota$.

Exercise 3. Let $R=\mathbf{C}[x, y] /(x y)$, and let $S=\left\{x^{n}\right\}_{n \geq 0}$. Describe the ring $S^{-1} R$.

Exercise 4 (Exc. 16, p. 257). Let $x^{4}-16$ be an element of the polynomial ring $\mathbf{Z}[x]$, and let $E=\mathbf{Z}[x] /\left(x^{4}-16\right)$.
(1) Find a polynomial of degree ≤ 3 that is congruent to $7 x^{13}-$ $11 x^{9}+5 x^{5}-2 x^{3}+3$ modulo $\left(x^{4}-16\right)$.
(2) Prove that $x-2$ and $x+2$ are zero divisors in E.

E-mail address: skjelnes@math.kth.se

