EXERCISE SET II

Exercise 1. Let R be a commutative ring with 1, and let $\mathfrak{m}_1, \ldots, \mathfrak{m}_n$ be distinct maximal ideals in R. Show that, for any positive integers p_1, \ldots, p_n we have a natural isomorphism

$$R/\mathfrak{m}^{p_1}\cdots\mathfrak{m}_n^{p_n}\longrightarrow\prod_{i=1}^n R/\mathfrak{m}_i^{p_i}.$$

Exercise 2. Let $S \subseteq R$ be a multiplicatively closed subset of a commutative ring R, and assume $1 \in S$. Show the universal property for the morphism $\iota : R \to S^{-1}R$. That is, let $\varphi : R \to R'$ be ring homomorphism of commutative rings, taking 1 to 1, and sending any element $s \in S$ to a unit. Then there exist a unique homomorphism $f : S^{-1}R \longrightarrow R'$ such that $\varphi = f \circ \iota$.

Exercise 3. Let $R = \mathbb{C}[x, y]/(xy)$, and let $S = \{x^n\}_{n \ge 0}$. Describe the ring $S^{-1}R$.

Exercise 4 (Exc. 16, p. 257). Let $x^4 - 16$ be an element of the polynomial ring $\mathbf{Z}[x]$, and let $E = \mathbf{Z}[x]/(x^4 - 16)$.

(1) Find a polynomial of degree ≤ 3 that is congruent to $7x^{13} - 11x^9 + 5x^5 - 2x^3 + 3$ modulo $(x^4 - 16)$.

(2) Prove that x - 2 and x + 2 are zero divisors in E. E-mail address: skjelnes@math.kth.se

Date: Mar 10.