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Abstract. For flat modules M over a ring A we study the similarities between the
three statements, dimκ(P )(κ(P ) ⊗A M) = d for all prime ideals P of A, the AP -
module MP is free of rank d for all prime ideals P of A, and M is a locally free
A-module of rank d. We have particularly emphasized the case when there is an
A-algebra B, essentially of finite type, and M is a finitely generated B-module.

Introduction. The Quot functor QuotF/X/S for a morphism of schemes f : X →
S, and an OX -module F associates to a scheme T over S the OXT -module quotients
FT → G of the pull-back FT of F to XT = X ×S T , such that G is flat over S,
and where two quotients are equivalent if they have the same kernel. When X is
projective over S it is natural to study the open and closed subfunctor QuotPF/X/S

of quotients such that the restriction of G to the fiber f−1(t) has Hilbert polynomial
P for all points t in T . A. Grothendieck [G] proved that when X is projective over
S, and we consider locally noetherian schemes, then QuotPF/X/S is represented by
a scheme which is projective over S.

In many situations it is natural to study QuotF/X/S when X → S is a mor-
phism of affine schemes associated to an essentially finite A-algebra B, and when
F corresponds to a B-module M . In this situation we do not, in general, have a
Hilbert polynomial for the restrictions of the quotients to the fibers. When the
dimension dimκ(P )(κ(P ) ⊗B M) is finite for all primes P of A, where we have
written κ(P ) = AP /PAP , it is natural to use this dimension as a substitute for
the Hilbert polynomial. In our work on Hilbert schemes [L-S] and [S] we no-
ticed that there are several natural choices for the definition of the subfunctor of
QuotM/B/A = QuotfM/ Spec B/ Spec A

corresponding to an integer d. Even in the
case of the Hilbert functor HilbB/A = QuotOSpec B/ Spec B/ Spec A, which is the case
mostly considered in the literature, there are ambiguities. One reason for the con-
fusion is that most authors are not interested in the functor HilbB/A, but only in
its rational points (see [I1] and [I2]).

In this note we try to sort out the relations between the three statements
∗ M is a locally free A-module of rank d. That is, for every prime ideal P of A

there is an element s in A not in P such that Ms is a free As-module of rank d.
∗ MP is a free AP -module of rank d for all primes P of A.
∗ The A-module M is flat and dimκ(P )(κ(P )⊗A M) = d for all primes P of A.
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It is clear that the first assertion implies the second and the second the third.
When M is finitely generated and A is noetherian it is well known that these
concepts coincide. When A is noetherian and M is not finitely generated, or when
A is arbitrary and M is finitely generated they can differ considerably, and even in
the noetherian case there are differences between the local and the non-local rings.

We thank Daniel Ferrand for several useful comments concerning the material
at the end of Section (2). Thanks to Ferrand Lemma (1.2) also became coordinate
free, and Theorem (2.4) and its proof got a more attractive form.

The situation that appears most frequently in geometry is when we are given an
A-algebra B which is finitely generated, or more generally essentially of finite type,
and when M is a finitely generated B-module. In Section (3) we shall focus on
this situation and show that under these conditions some of the desirable relations
between properties of M and properties of the fibers κ(P )⊗A M for all prime ideals
P of A, still hold.

Throughout we have tried to make the presentation self-contained, in some cases
presenting proofs of known results.

1. Finitely generated flat modules.

1.1 Notation. Let A be a ring. For each prime ideal P in A we write κ(P ) =
AP /PAP .

The following result is one way of formulating the criterion for flatness by equa-
tions (see e.g. [M], Theorem 7.6, p. 49). We shall use this result instead of Lazard’s
Theorem ([La1], Theorem 1.2, p. 84) asserting that every flat module is the filtering
limit of finitely generated free modules. As was observed by Lazard the results are
indeed equivalent.

1.2 Lemma. Let A be a ring and M an A-module. The following assertions are
equivalent:

(1) The module M is flat over A.
(2) For any finitely presented module N , that is there is an exact sequence

Am → An → N → 0 of A-modules, the map

HomA(N, A)⊗A M → HomA(N, M) (1.2.1)

that sends u⊗ x to the A-linear map sending y to u(y)x is bijective.
(3) Any A-linear map N → M from a finitely presented A-module N factors

through a finitely generated free A-module.
(4) For every A-module homomorphism u:F → M from a finitely generated

free A-module F , and for every element e in the kernel of u, there is a
factorization u = vf of u via an A-module homomorphism f : F → G into
a finitely generated free A-module G such that f(e) = 0, and an A-module
homomorphism v: G → M .

Proof. For any A-module M the functors HomA(N,A) ⊗A M and HomA(N, M)
are additive and contravariant in N . Since the map (1.2.1) is bijective for N = A
it follows that it is bijective for N = An.

Assume that M is flat over A. Then the two functors are left exact. It follows
that the map (1.2.1) is an isomorphism for every finitely presented A-module N .
Hence the first assertion implies the second.
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Assume that the second assertion holds. Let u: N → M be an A-linear map
from a finitely presented A-module N . Then u is the image by (1.2.1) of an element∑n

i=1 ui⊗ xi of HomA(N, A)⊗A M . Hence u is the composite of the map N → An

sending y to (u1(y), . . . , un(y)), and the map An → M sending (a1, . . . , an) to∑n
i=1 aixi. Hence the third assertion follows from the second.
The fourth assertion follows from the third since F/Ae is finitely presented.
Finally we prove that the last assertion implies the first. We shall show that M

is flat over A by showing that the map I⊗AM → M is injective for all ideals I of A.
Assume that there is an element x =

∑m
i=1 ai⊗xi with ai ∈ I and xi ∈ M in I⊗AM

that maps to zero in M . Let u:F → M be the A-linear homomorphism from the free
A-module F with basis f1, . . . , fm defined by u(fi) = xi, and let y =

∑m
i=1 ai ⊗ fi.

Then u(y) = x, and the image e of y by the map i: I ⊗A F → F maps to zero
by u. Hence the last assertion of the Lemma implies that u:F → M factors via
A-module homomorphisms f : F → G and v: G → M , where G is a free A-module
of finite rank, and where f(e) = 0. The map j: I ⊗A G → G is injective since G is
flat over A. We have that 0 = f(e) = fi(y) = j(idI ⊗f)(y) and consequently that
(idI ⊗f)(y) = 0. Hence we have that x = (idI ⊗u)(y) = (idI ⊗v)(idI ⊗f)(y) = 0.

The following two results are well known (see e.g. Matsumura [M], Theorem
7.10, p. 51). We include proofs to show how Lemma (1.2) can be used in this
situation instead of the criterion for flatness by equations.

1.3 Lemma. Let A be a local ring with maximal ideal P and M a flat A-module.
Moreover, let F be a free A-module and u:F → M an A-linear map. If the residue
map u(P ): F/PF → M/PM is injective, then the map u is injective.

Proof. Let e in F be such that u(e) = 0. We first prove the Lemma when F is
of finite rank. Since M is a flat A-module it follows from Proposition (1.2) that

we have a factorization F
f−→ G

v−→ M of u into A-linear maps, where G is a free
A-module of finite rank, and where we have that f(e) = 0. Then u(P ) factors

via κ(P ) ⊗A F
f(P )−−−→ κ(P ) ⊗A G

v(P )−−−→ κ(P ) ⊗A M . Since u(P ) is injective by
assumption, it follows that f(P ) is injective. Our claim follows if we show that

F
f−→ G is injective.
We fix a basis for F and G and let the map f be represented by a matrix. Let n be

the rank of F . Since the induced map f(P ) is injective, there exist a (n×n)-minor
N(P ) of the matrix f(P ) which is invertible. It follows that the determinant of the
corresponding square matrix N of f is invertible since det(N)⊗Aκ(P ) = det(N(P )).
Then there exist a matrix N ′ such that N ′N is the identity matrix, and we may
construct a map f ′ : G → F such that f ′f is the identity map. Hence f is injective.

Assume that F has infinite rank. Then the element e is contained in a free A-
submodule F ′ of F of finite rank, which is a direct summand of F . Let i:F ′ → F
be the inclusion. Then i(P ) is injective and thus u(P )i(P ) = ui(P ) is injective. It
follows from the first part of the proof that the map ui: F ′ → M is injective. Hence
ui(e) = u(e) = 0 implies that e = 0 and we have proved the Lemma.

1.4 Proposition. Let M be a finitely generated flat A-module. Then MP is a free
AP -module for all prime ideals P of A.

Proof. Let P be a prime ideal of A. Then MP is a flat AP -module. Since M is
finitely generated it follows from Nakayama’s Lemma that we can choose a surjec-
tion u: An

P → MP such that the residue map u(P ): κ(P )n → κ(P ) ⊗AP
MP is an
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isomorphism of κ(P )-vector spaces. If follows from Lemma (1.3) that An
P → MP

is injective and hence an isomorphism. Thus MP is a free AP -module for all prime
ideals P in A.

1.5 Corollary. Let M be a finitely generated flat A-module. If there is an integer
d such that

d = dimκ(P )(κ(P )⊗A M) (1.5.1)

for all prime ideals P of A we have that M is locally free.

Proof. Let P be a prime ideal of A. Let m1, . . . ,mn be a generator set for the
A-module M , and let F be a free A-module with basis f1, . . . , fd. Since M is flat
it follows from the Proposition that MQ is a free AQ-module for all prime ideals
Q of A. It follows from (1.5.1) that MQ is of rank d. In particular there is an
isomorphism u:FP → MP of AP modules. Choose elements gj =

∑d
i=1 aj,ifi in

FP such that u(gj) = mj

1 for j = 1, . . . , n. Let t be a common denominator of the
elements u(fi), and of the coefficients aj,i for i = 1, . . . , d and j = 1, . . . , n. Then
there is a surjective map v: Ft → Mt of At-modules such that the localization of v
at P is equal to u. Denote by K the kernel of v. For each prime Q of A we obtain
an exact sequence 0 → KQ → FQ → MQ → 0 of AQ-modules. Since FQ is free of
rank d it follows that KQ = 0 for all primes Q of At. Consequently we have that
K = 0. We thus have that Mt is a free At-module.

Remark. When A is noetherian and M is a finitely generated A-module we have
that if MP is a free AP -module, then there is an element t in A not in P such
that Mt is a free At-module. Indeed, in the proof of Corollary (1.5) we constructed
a surjective map v:Ft → Mt from a free At-module of rank equal to the rank of
MP , whose localization at P is an isomorphism. Hence the localization KP of the
kernel K of v at P is zero. Since A is noetherian by assumption, we have that K is
finitely generated and thus we can find an element s in A not contained in P such
that Ks = 0. It follows that vs:Fst → Mst is an isomorphism of Ast-modules. In
particular it follows from Proposition (1.4) that if M is flat, then M is locally free.

With the following example we will show that when A is not noetherian we can
have a finitely generated flat A-module M such that MP is free for all prime ideals
P of A, but where M is not locally free. In particular it follows that condition
(1.5.1) is necessary in Corollary (1.5).

1.6 Example. Let B = k[y1, y2, . . . ] be the polynomial ring in the variables
y1, y2, . . . over the field k, and let A be the residue ring of B by the ideal gen-
erated by the polynomials yi(yi − 1) for i = 1, 2, . . . . Denote by xi the class of yi

in A. Let P be a prime ideal of A. Then, for each i, the ideal P contains either xi

or xi − 1. It follows that the prime ideals of A are the ideals (x1 − δ1, x2 − δ2, . . . ),
for all choices of δ1, δ2, . . . , where δi, here and below, will take the values 0 and 1.
We obtain in particular that A/P = κ(P ) = k.

We note that the ring A is reduced. Indeed, if a polynomial f(y1, . . . , yn) in
B maps to a nilpotent element in A we must have that f(δ1, . . . , δn) = 0 for all
choices of δ1, . . . , δn. It is easy to show, by induction on n, that this implies that
f(y1, . . . , yn) is in the ideal generated by the elements y1(y1 − 1), . . . , yn(yn − 1).
Hence the class of f(y1, . . . , yn) in A is zero.

Let P = (x1− δ1, x2− δ2, . . . ). Then P is a prime ideal of A. For each i we have
that (xi − δi)(xi + δi − 1) = 0, and clearly xi + δi − 1 /∈ P . Consequently we have
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that the class of xi − δi is zero in AP . Hence we have that AP = κ(P ) = k for all
prime ideals P in A. In particular any module M over A is flat.

Fix a prime P of A. We have that the A-module M = κ(P ) is generated by one
element. Moreover we have that MP = AP ⊗A M = κ(P )⊗A M = κ(P ), and that
MQ = AQ ⊗A M = κ(Q)⊗A M = 0 for all prime ideals Q of A different from P .

In SpecA every non-empty open set contains infinitely many points. Indeed,
let Af be the ring of a non-empty principal open set in SpecA, where f is the
residue class of the polynomial f(y1, . . . , yn) in A. Then f(δ1, . . . , δn) 6= 0 for some
δ1, . . . , δn. Then, for all choices of δn+1, δn+2, . . . , the prime (x1 − δ1, . . . , xn −
δn, xn+1 − δn+1, . . . ) is in Spec Af . Since M = κ(P ) has fiber k at one point and
fiber zero at the remaining points, it follows that M = κ(P ) can not be locally free.

The condition that M is finitely generated is necessary in Corollary (1.5), even
when A is noetherian, as shown by the following example communicated to us by
C. Walter.

1.7 Example. Let A = Z be the ring of integers and let M be the Z-submodule

M = {x ∈ Q: vp(x) ≥ −1 for all primes p ∈ Z}
of the rational numbers Q, where vp(x) = d if x = m

n pd with m and n prime to p. If
P is a maximal ideal of Z corresponding to a prime integer p, we have that MP =
1
pZP . In particular the Z-module M is a flat. Furthermore we have an isomorphism
Q → M ⊗Z Q = M(0). Hence we have that dimκ(P )(κ(P )⊗Z M) = 1 for all prime
ideals P in the ring Z. However we obviously have that Mn = { x

nm : x ∈ M,m ∈ Z}
is not finitely generated Zn-module for any non-zero integer n. In particular M is
not locally free.

1.8 Example. We shall give another, perhaps more typical, example of a ring A,
together with a flat A-module M , such that MP is a free AP -module of rank 1 for
each prime P of A, but such that M is neither a finite, nor a locally free A-module.

Denote by A the product
∏

i∈N Ki of a field K = Ki for i ∈ N. Let I be the ideal
in A consisting of elements a = (ai)i∈N with finite support Supp(a) = {i: ai 6= 0}.
That is, the ideal I is the direct sum ⊕i∈NKi of the field K = Ki for i ∈ N. Let
M = I ⊕A/I.

We first show that the ring A is absolutely flat, that is all A-modules M are flat.
Note that there are no inclusions of prime ideals in A. Indeed, let P be a prime
ideal and let a be an element in A not in P . If a is not a unit in A we let b be
an element in A having support on the complement of Supp(a). Then ab = 0, and
consequently we have b in P . The element a + b is congruent to a modulo P . We
have that a + b is a unit in A since Supp(a + b) = N, hence a is a unit in A/P .
Thus A/P is a field and all prime ideals are maximal, and minimal.

The ring A is reduced and consequently any fraction ring of A is reduced. In
particular the stalks AP are reduced for all prime ideals P in A. In our ring A
all prime ideals P are minimal, thus we get that AP = κ(P ). Consequently any
module M is flat over A.

Hence, when we localize the exact sequence

0 → I → A → A/I → 0 (1.8.1)

in a prime ideal P of A we see that we either have that IP is a free AP -module of
rank 1 and (A/I)P = 0, or we have that IP = 0 and (A/I)P is a free AP -module
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of rank 1. In both cases we have that MP = AP ⊗A M = κ(P ) ⊗A M is a free
κ(P )-module of rank 1.

We have that I is not a finitely generated A-module, since the elements of I
otherwise would have support on a finite subset of N. However I is a quotient of
M , so M is not a finitely generated A-module either.

We can tell exactly for which prime ideals P we have that IP = 0. Indeed, it
is easily seen that there is an inclusion preserving bijection between ideals in A
and filters of N. This correspondence associates to an ideal I of A the ultrafilter
consisting of the complement in N of the support Supp(a) = {i ∈ N: ai 6= 0} of
the elements a = (ai)i∈N of I. Under this correspondance the prime ideals of A
correspond to the ultra filters of N. The trivial ultra filters, that is the ultra filters
consisting of the sets containing a fixed integer, correspond to the maximal ideals
consisting of elements with one fixed coordinate equal to zero.

We have that IP = 0 exactly when P corresponds to a non-trivial ultra filter.
Indeed, let a = (ai)i∈N be an element of I. Then ab = 0 for all elements b in A
whose support is in the complement of the support of a. Such an element b has
cofinite support, that is, the complement of the support is finite. However, it is
easily seen that an ultra filter is non-trivial if and only if it contains the filter of all
cofinite sets.

We have that if P is a prime ideal corresponding to a trivial ultra filter, then
there exist a f not in P such that Mf = If = Af . The module M is however not
locally free, that is there exist prime ideals P in A such that Mf is not free for any
f not in P . Indeed if there for each prime ideal P exists fP not in P such that MfP

is free, then there exist prime ideals P1, . . . , Pm such that
∑m

i=1 aifPi = 1, with
a1, . . . , am in A. We have that MP = AP for all prime ideals P in A. It follows
that MfP is a finitely generated AfP -module. Let x1, . . . , xn be elements in M such
that the classes of x1, . . . , xn generate MfPi

as an AfPi
-module for i = 1, . . . , m.

Then x1, . . . , xn generate M as an A-module. In particular we would have that M
is finitely generated, which we have seen is not the case. Thus M is not locally free.

2. Flat modules over local rings.
In this section we shall consider the case when the ring A is local. Our main

objective is to investigate under which conditions a flat A-module M is free when
the fiber dimension dimκ(P )(κ(P )⊗A M) is constant for all primes P of M .

Remark. Assume that A is reduced and that Q is a minimal prime ideal of A. Then:
(1) For all A-modules M we have that κ(Q)⊗A M = MQ.
(2) If M is flat we have that M = QM if and only if MQ = 0.

The first assertions holds because when A is reduced and Q is minimal then AQ is
the field κ(Q).

To prove the second assertion we observe that since QQ = 0 we have that localiza-
tion gives an injective homomorphism A/Q → AQ. When M is flat over A we obtain
an injection A/Q⊗A M → AQ ⊗A M , that is, an injection M/QM → MQ. Hence
MQ = 0 implies that M = QM , and M/QM = 0 implies that 0 = (M/QM)Q =
MQ/QMQ = MQ/QQMQ = MQ.

First we prove a result of which many variations are known.

2.1 Proposition. Let A be a ring, F a free A-module, and M a flat A-module.
Moreover u: F → M be an A-linear map. If the residue map

u(P ): κ(P )⊗A F → κ(P )⊗A M
6



is injective for all maximal ideals P of A we have that u is injective and that the
cokernel of u is a flat A-module.

Proof. The kernel of u is zero if and only if its localization at all maximal ideals of
A is zero. Moreover the cokernel of u is a flat A-module if and only if its localization
is flat at all maximal ideals. Hence we can assume that A is local.

The first part of Proposition (2.1) follows from Lemma (1.3).
To prove the second part let N be the cokernel of u. To prove that N is flat over

A we shall verify that the map I ⊗A N → N is injective for all ideals I of A. We
have a commutative diagram

0
y

I ⊗A F −−−−→ I ⊗A M −−−−→ I ⊗A N −−−−→ 0
y

y
y

0 −−−−→ F
u−−−−→ M −−−−→ N

y
y

y

0 −−−−→ A/I ⊗A F
idA/I ⊗u−−−−−→ A/I ⊗A M −−−−→ A/I ⊗A N.

It is clear that the right and left vertical sequences, as well as the top horizontal
sequence, are exact. The middle vertical sequence is exact because M is flat, and
the middle horizontal sequence is exact by the first part of the Proposition. We have
that κ(P )⊗A A/I = κ(P ). Hence tensoring the source and target of idA/I ⊗Au by
κ(P ) over A we have that idA/I ⊗Au induces u(P ) which is injective by assumption.
Hence it follows from the first part of the Proposition that the bottom horizontal
sequence is exact. It follows from the diagram that I ⊗A N → N is injective.

The following Theorem is due to D. Lazard ([La2] Théorème 1, p. 65). Our
proof uses Lemma (1.2). We are thankful to D. Ferrand for making us aware of
Theorem (2.2) and pointing out that it implies Corollary (2.3).

2.2 Theorem. Let A be a local ring and M a flat A-module. Moreover, let m be
an element of M such that ann(m) is non-zero, and such that the maximal ideal is
the only prime ideal of A that contains ann(m). Then m is in

√
0M .

Proof. Let u: A → M be the A-linear map that sends 1 to m. It follows from
Lemma (1.2) that for every element a of ann(m) there is a factorization u = vafa,
where fa: A → Fa and va: Fa → M , and Fa is a finitely generated free A-module.
Then we have that va(fa(1)) = m and consequently that a ∈ ann(fa(1)) ⊆ ann(m).

Fix a non-zero element b in ann(m) and let f1, . . . , fp be a basis of F = Fb.
Write x = fb(1) =

∑p
i=1 aifi and v = vb.

We shall consider finitely generated free A-modules G and factoriations F →
G → M of v:F → M . Note that if x maps to y in G then ann(x) ⊆ ann(y) ⊆
ann(m).

Let F ′ → G1 → M and F ′ → G2 → M be two factorizations of v′: F ′ → M and
let y1 and y2 be the images in G1 respectively G2 og an element x′ in F ′. Then
we can find a factorization F ′ → G → M , with maps G1 → G and G2 → G such
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that y1 and y2 map to the same element in G. Indeed, let s:G1 ⊕G2 → M be the
sum of the maps G1 → M and G2 → M . Then the element (y1,−y2) in G1 ⊕ G2

maps to zero in M . It follows from Lemma (1.2) that there is a factorization of s in
maps f : G1 ⊕G2 → G and G → M such that f(y1, 0)− f(0, y2) = f(y1,−y2) = 0.
Let G1 → G and G2 → G be the maps induced by the canonical maps of G1

respectively G2 in G. Then we clearly have that y1 and y2 have the same image y
in G. In particular we have that the ideals ann(y1) and ann(y2) are contained in
ann(y).

Denote by I the union of the ideals ann(y) for all the elements y obtained in
this way. Then I = ann(m). Indeed, we observed that I ⊆ ann(m). On the other
hand, for each a ∈ ann(m) we observed that there is a factorization of u: A → M
in maps fa: A → Fa and va: Fa → M , where Fa is free of finite rank, such that
a ∈ ann(fa(1)). Using the above with F ′ = A and with the maps A → Fa and
A → F we obtain a free A-module G of finite rank toghether with maps Fa → G
and F → G such that if y in G is the image of x then a ∈ ann(fa(1)) ⊆ ann(y),
and F → G → M is an extension of v.

We have that b ∈ ann(x). In particular ann(x) 6= 0. Hence ann(x) is contained
in the maximal ideal of A. It follows that the elements a1, . . . , ap are contained in
the maximal ideal of A. Since, by hypothesis, the maximal prime ideal of A is the
only prime ideal containing I = ann(m), and thus the radical of I, we have that
Iai = Aai for i = 1, . . . , p. Consequently there are elements c1, . . . , cp in I such that
the image of ci in Aai is invertible. As we saw above we can find a factorization
F → G → M such that, if y in G is the image of x, then the elements c1, . . . , cp are
in ann(y). In particular we have that (ann(y))ai = Aai for i = 1, . . . , p.

Write y =
∑q

i=1 bigi, where g1, . . . , gq is a basis for G. Let P be a prime ideal
of A. If P does not contain ann(y) = ann(b1, . . . , bq) it is clear that P contains
b1, . . . , bq. On the other hand if P contains ann(y), then Pai = Aai for i = 1, . . . , p
since we have seen that (ann(y))ai = Aai . In particular P contains the elements
a1, . . . , ap. We have that x maps to y by the A-linear map F → G of free A
modules with bases f1, . . . , fp respectively g1, . . . , gq. It follows that each element bi

is a linear combination of of the elements a1, . . . , ap. Hence the elements b1, . . . , bq

are contained in P . We have proved that the elements b1, . . . , bq are in all the
prime ideals of A and consequently in the radical of A. Hence we have proved the
Theorem.

2.3 Corollary. Let A be a ring and M a flat A-module such that MP = 0 for all
minimal prime ideals P of A. We then have that

√
0M = M .

Proof. Replacing A by A/
√

0 and M by M/
√

0M we may assume that A is reduced.
The Corollary the asserts that if MP = 0 for all minimal prime ideals P of A then
M = 0.

Assume that M is not zero, and let m be a non-zero element of M . The image of
m in MP is zero for all minimal prime ideals P of A. Hence we have that ann(m) is
not contained in any minimal prime of A. Let Q be a prime ideal which is minimal
among the prime ideals in A that contain ann(m). Then QAQ is the only prime
ideal in AQ containing ann(m)AQ. It follows from the Theorem that the image of
m in MQ is contained in

√
0MQ. Hence there is an element s ∈ A not in Q such

that sm is in
√

0M . Since A is reduced we must have that sm = 0, that is s is
in ann(m). However, this is impossible since we assumed that s was not in Q and
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that Q contains ann(m). This contradicts the assumption that M is not zero and
we have proved the Corollary.

2.4 Theorem. Let A be a local ring with a nilpotent radical, and let M be a flat
A-module. Denote the maximal ideal of A by P . Assume that dimκ(P )(κ(P )⊗A M)
is finite and that

dimκ(P )(κ(P )⊗A M) = dimκ(Q)(κ(Q)⊗A M)

for all minimal prime ideals Q of A.
Then M is a free A-module of rank dimκ(P )(κ(P )⊗A M).
In particular the result holds when A is noetherian or when A is reduced.

Proof. Let F be a free A-module of rank d = dimκ(P )(κ(P ) ⊗A M). We can
find an A-linear map u:F → M such that u(P ): κ(P ) ⊗A F → κ(P ) ⊗A M is an
isomorphism. It follows from Proposition (2.1) that u is injective and that the
cokernel N of u is flat.

Since N is flat we have an exact sequence 0 −→ κ(Q) ⊗A F −→ κ(Q) ⊗A M −→
κ(Q) ⊗A N −→ 0 for all prime ideals Q of A. By assumption we have that
dimκ(Q)(κ(Q) ⊗A M) = d = rankA F when Q is minimal. Hence we have that
κ(Q)⊗A N = 0 for all minimal prime ideals Q of A.

Since
√

0 ⊆ Q we have that κ(Q) ⊗A N = κ(Q) ⊗A (N/
√

0N), and thus that
0 = κ(Q)⊗A (N/

√
0N) = (N/

√
0N)Q(A/

√
0). It follows from Corollary (2.3) applied

to the flat A/
√

0-module N/
√

0N that N =
√

0N . By assumption
√

0 is nilpotent.
Hence we have that N = 0 and we have proved the Theorem.

Remark. For a local ring A with maximal ideal P and an A-module M , Theorem
(2.4) shows that if dimκ(P )(κ(P )⊗A M) = dimκ(Q)(κ(Q)⊗A M) for all prime ideals
Q of A, then M is a free A-module of finite rank when A is noetherian or possibly
non-notherian but reduced. The following example shows that for non-noetherian
and non-reduced rings it is not necessarily true that M is finitely generated. In the
example the ring A has only one prime ideal P , with a non-zero flat module M
such that M = PM , and thus κ(P ) ⊗A M = 0. A more complicated, but similar,
example where M is an ideal in A was given by D. Lazard ([La1], Example 4.3, p.
91).

2.5 Example. Let B = k[y1, y2 . . . , ] be the polynomial ring in the independent
variables y1, y2, . . . over a field k. Let I ⊂ B be the ideal generated by the elements
y2

i , for i = 1, 2, . . . . Let A be the residue ring B/I, and let xi be the class of yi

in A. The ring A is a local ring, where the only prime ideal P of A is the ideal
generated by (x1, x2, . . . ).

Denote by E the free A-module with basis e1, e2, . . . and by F the submodule of
E generated by the elements e1 − x1e2, e2 − x2e3, . . . . It is clear that the elements
e1 − x1e2, e2 − x2e3, . . . are linearly independent over A. Thus F is a free A
module. It is clear that the element e1 of E is not in F so that F is a proper
sub-module. Moreover we have that the residue map κ(P ) ⊗A F → κ(P ) ⊗A E is
an isomorphism. It follows from Proposition (2.1) that the cokernel of the inclusion
F ⊆ E is a flat A-module. From the exact sequence 0 → F → E → M → 0 we
obtain an exact sequence 0 → κ(P ) ⊗A F → κ(P ) ⊗A E → κ(P ) ⊗A M → 0 and
thus that κ(P )⊗A M = 0.
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2.6 Note. As can be seen from the proof of Theorem (2.4), the statement of
the Theorem can be strenghtened in cases when tensor products commute with
products. This is only true in general if the product is finite. That commutation
may fail for infinite products can be seen from the simple example

Q⊗Z

∏

p prime

Z/pZ →
∏

p prime

(Q⊗Z Z/pZ).

The target is obviously zero and the source is non-zero because we have an injection
Z → ∏

p prime Z/pZ sending n to (n, n, . . . ), and thus an injection Q = Q⊗Z Z →
Q⊗Z

∏
p prime Z/pZ.

3. Finitely generated flat modules over algebras.
One of the main results of Section (2) is that when A is local and noetherian and

M is a flat A-module with fixed finite fiber dimension dimκ(P )(κ(P )⊗A M) for all
prime ideals P of A, then M is free of finite rank.

Example (1.7) and Example (2.5) show that this is not necessarily true when A
is not local but noetherian, or when A is not noetherian but local. The main result
of this section is that when we are given a finitely generated A-algebra B and M
is a finitely generated B-module, then M is locally free of finite rank over A if M
is flat over A and the dimension of the fiber κ(P ) ⊗A M is finite and fixed for all
prime ideals P of A.

We note that some condition on the A-algebra B is necessary. Indeed, let B =
A⊕M be the A-algebra with multiplication (a,m)(a′,m′) = (aa′, am′+a′m). Then
N = B is a finite B-module which is flat as an A-module when M is flat as an
A-module. Moreover dimκ(P )(κ(P )⊗A M) = 1+dimκ(P )(κ(P )⊗A M) for all prime
ideals P of A. However N is not locally free of finite rank as an A-module when
M is not locally free of finite rank as an A-module.

3.1 Lemma. Let M be a finitely generated and faithful A-module. Moreover let
I ⊆ A be an ideal. Then we have that annA(M/IM) ⊆ Rad(I).

Proof. Let b be an element of annA(M/IM). Then b corresponds to an endomor-
phism on M such that bM ⊆ IM . Since M is finitely generated the endomorphism
b satisfies an equation of the form f(b) = bn+a1b

n−1+· · ·+an = 0, where a1, . . . , an

are in I ([A-M], Proposition 2.4, p. 21). Thus f(b)M = 0. The module M is as-
sumed to be faithful such that f(b) = 0 in A, from which it follows that bn is in I.
We have proved our claim.

3.2 Lemma. Let A be a ring with radical R and B an A-algebra. Moreover, let
M be a finitely generated faithful B-module. If M/RM is a finitely generated A/R-
module, then B is integral over the image of A in B.

Proof. To prove that B is integral over A it suffices to prove that B/I is integral
over the image of A, where I is an ideal contained in the nilradical of B. Indeed, if
an element b in B is such that the image of b in B/I satisfies a monic polynomial
f(x) in the polynomial ring A[x], we have that f(b) is in I. Consequently we have
that f(b)n = 0 in B for big enough n, and hence b is integral over the image of A
in B.

Clearly we have that RB is contained in the nilradical of B. It follows from
Lemma (3.1) that annB(M/RM) is contained in the nilradical of B. To prove
the Lemma we may consequently replace B by the ring B/ annB(M/RM), and

10



we may therefore assume that M/RM is a faithful B-module. However, we know
that an element b in B is integral over the image of A if and only if there is a
faithful finitely generated A[b]-module ([L], §1, p. 334), and if M/RM is a finitely
generated A/R-module we have that M/RM is such a module.

3.3 Proposition. Let A be a ring with radical R and B an A-algebra essentially
of finite type. Moreover, let M be a finitely generated B-module. If M/RM is a
finitely generated A/R module, then M is a finitely generated A-module.

Proof. We can obviously replace B by its residue ring B/ annB M . Consequently
we may assume that M is a faithful B-module. However, then it follows from
Lemma (3.2) that B is integral over the image of A.

We have a factorization A → C → B, where C is a finitely generated A-algebra
and B is a localization of C in a set S. Since B is integral over the image of A
we have that C is integral over the image of A, and thus is a finite A-module. On
the other hand, we have that C = B. Indeed, for each c ∈ S we have that 1

c in B

is integral over the image of A, and thus there is a relation ( 1
c )n + an−1( 1

c )n−1 +
· · ·+ a0 = 0 in B with a0, . . . , an−1 in A. Consequently we have that 1

c = −an−1−
can−2 − · · · − a0c

n−1 which is in C.
We have proved that B is a finitely generated A-module. Hence we have that

M is a finitely generated A-module.

3.4 Proposition. Let B be an A-algebra essentially of finite type and let M be a
finitely generated B-module. Assume that MP is a finitely generated AP -module for
every prime ideal P in A. Then we have that M is a finitely generated A-module.

Proof. We can, if necessary, replace B by the residue ring B/ annB(M) of B modulo
the annihilator of M in B. Thus we may assume that M is a faithful B-module.
Then we have for each prime ideal P of A that MP is a faithful BP -module which is
finitely generated as an AP -module. From Lemma (3.2) we have that BP is integral
over the image of AP .

We have a factorization A → C → B such that C is a finitely generated A-algebra
and B is a localization of C. As we just proved BP is integral over the image of AP

and thus BP is integral over the image of CP . Since BP is a localization of CP it
follows that CP → BP is surjective. Hence the localization of the map C → B at
each prime ideal P of A is surjective. It follows that the map C → B is surjective
and thus that B is an A-algebra of finite type.

Let b be an element in B. The class of b in BP is integral over AP . Thus there
exists f not in P such that the class of b in Bf is integral over Af . Since B is
finitely generated A-algebra we can for each prime P in A find fP not in P such
that BfP

is integral over AfP
. The elements fP for all primes P in A, generate the

trivial ideal in A. We have that
∑m

i=1 aifPi = 1 for some prime ideals P1, . . . , Pm.
Let b1, . . . , bn in B be such that the classes of b1, . . . , bn generate BfPi

as an AfPi
-

module, for i = 1, . . . , m. Then b1, . . . , bn generate B as an A-module. We have
shown that B is a finitely generated A-module and it follows that M is finitely
generated over A. We have proved the Proposition.

3.5 Theorem. Let A be a ring and B an A-algebra which is essentially of finite
type. Moreover, let M be a finitely generated B-module. Assume that M is a flat
A module such that

d = dimκ(P )(κ(P )⊗A M)
11



for all minimal and maximal prime ideals P of A and some integer d. Then we
have that M is a locally free A-module.

Proof. It follows from Corollary (1.5) that it suffices to prove that M is a finitely
generated A-module. Consequently it follows from Proposition (3.3) that we can
replace A, B and M by A/R, B/RB and M/RM , where R is the radical of A. We
may thus assume that A is reduced.

Let P be a prime ideal in A. It follows from Theorem (2.4) applied to the
localizations AP and MP that MP is a finitely generated AP -module.Thus it follows
from Proposition (3.4) that M is a finitely generated A-module.

Remark. Our approach in the first part of this section was to use an integral de-
pendence argument allowing a globalization of the local results in Theorem (2.4)
when the module was finite over an A-algebra essentially of finite type. For the rest
of this section we will take a different approach, using the Zariski Main Theorem.
Although we can only prove Theorem (3.5) in the particular case when B is an
A-module of finite type, we think it is worth wile to present the methods involved
in this approach.

3.6 Lemma. Let A be a local ring and B a finitely generated A-algebra. Moreover,
let M be a finitely generated faithful B-module. If there is an integer d such that d =
dimκ(P )(κ(P )⊗AM) for all prime ideals P of A, then we have that dimκ(P )(κ(P )⊗A

B) is finite for all prime ideals P of A.

Proof. Since M is a finitely generated and faithful B-module we have that MP

is a faithful BP -module. Write C = BP / annBP (MP /PMP ). We have PBP ⊆
annBP

(MP /PMP ). It follows from Lemma (3.1) that annBP
(MP /PMP ) is in-

cluded in the radical of PBP . Hence we have surjections

BP /PBP → C → (BP /PBP )red, (3.6.1)

where we for each ring R write Rred for the residue ring modulo its nilradical. The
module MP /PMP is finitely generated and faithful C-module, and by assumption
we have that MP /PMP = κ(P )⊗AM is a finitely generated κ(P )-module. It follows
from Lemma (3.2) that C is integral over κ(P ). The A-algebra B is of finite type,
hence C is a κ(P )-algebra of finite type. Hence C is a finite κ(P )-module. It follows
from the surjections (3.6.1) that (BP /PBP )red is a finite dimensional as κ(P )-vector
space. Finite dimensional vector spaces satisfy the descending chain condition and
are noetherian rings of Krull dimension zero. Consequently BP /PBP is noetherian
with Krull dimension zero. Since BP /PBP in addition is finitely generated as a
κ(P )-algebra we get that BP /PBP is finite dimensional as a κ(P )-vector space.
We have proved our claim.

3.7 Theorem. Let A be a ring and B a finitely generated A-algebra. Moreover,
let M be a finitely generated B-module which is flat as an A-module. Assume that
there is an integer d such that

d = dimκ(P )(κ(P )⊗A M)

for all prime ideals P of A. Then M is a finitely generated A-module. In particular
M is locally a free A-module.
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Proof. By Proposition (3.4) it is sufficient to show that MP is finitely generated
over AP for all prime ideals P of A. Hence we may assume that A is a local ring.
Furthermore we may replace B with B/ annB(M) and assume that M is a faithful
B-module. It follows from Lemma (3.6) that A → B is quasi-finite, that is for all
prime ideals P in A the κ(P )-vector space κ(P )⊗A B is finite dimensional. By the
Zariski Main Theorem ([R], Chapter 4, Theorem 1 and Corollary 2, p. 41 et seq.)
we have a factorization

A → C → B (3.7.1)

where the A-algebra C is a finite A-module and C → B has the property that for
each prime ideal R in B there is an element f in C, not in the contraction of R to
C, such that Cf = Bf .

We will next reduce to the case when A is a henselian ring. Recall ([N], Chapter
VII or [R], Chapter VIII) that the Henselization Ah of a local ring A is a henselian
local ring and that A → Ah is faithfully flat. It is clear that Ah ⊗A B is an Ah-
algebra of finite type and that Ah ⊗A M is a finitely generated Ah ⊗A B-module
which is flat over Ah. If we have that Ah ⊗A M is finitely generated as an Ah-
module it follows by faithfully flatness of A → Ah that M is a finitely generated
A-module. Hence we can replace A by Ah.

We note that if a ring A has a decomposition A =
∏m

i=1 Ai, then an A-module
M has a decomposition M =

∏m
i=1 Mi. Indeed, let e1, . . . , em be the idempotents

in A corresponding to the decomposition A =
∏m

i=1 Ai. Write Mi = eiM . It is
readily checked that the injective map

∏m
i=1 Mi → M is surjective, hence we have a

decomposition M =
∏m

i=1 Mi. When B is an A-algebra we obtain a decomposition∏m
i=1 Bi by Ai-algebras Bi.
Since we have assumed that A is henselian, we have that C =

∏m
i=1 Ci where each

Ci is a local ring which is a finite A-module. It follows by the above remark that
B =

∏m
i=1 Bi, and that M =

∏m
i=1 Mi, where Mi is a finitely generated Bi-module.

Let P be the maximal ideal of A. We shall prove that dimκ(P )(κ(P )⊗A Mi) =
dimκ(Q)(κ(Q)⊗A Mi) for all prime ideals Q of A. First we note that each Mi is a
flat A-module, as a direct summand of M , and since dimκ(P )(κ(P )⊗A M) is finite
we have that dimκ(P )(κ(P ) ⊗A Mi) is finite. Let F → Mi be a homomorphism
from a free A-module such that the residue map κ(P ) ⊗A F → κ(P ) ⊗A Mi is
an isomorphism. It follows from Proposition (2.1) that F → Mi is injective with
a cokernel which is flat over A. Hence we have that κ(Q) ⊗A F → κ(Q) ⊗A

Mi is injective for all primes Q of A. It follows that dimκ(Q)(κ(Q) ⊗A Mi) ≥
dimκ(P )(κ(P )⊗A Mi) for all prime ideals Q of A. Furthermore we have that

m∑

i=1

dimκ(Q)(κ(Q)⊗A Mi) = dimκ(Q)(κ(Q)⊗A M)

= dimκ(P )(κ(P )⊗A M) =
m∑

i=1

dimκ(P )(κ(P )⊗A M),

from which it follows that dimκ(Q)(κ(Q) ⊗A Mi) = dimκ(P )(κ(P ) ⊗A Mi) for all
prime ideals Q of A. If we have that dimκ(P )(κ(P ) ⊗A Mi) = 0 it follows ([M],
Theorem 4.9, p. 27) that Mi = 0.

We shall finally prove that Ci = Bi when dimκ(P )(κ(P )⊗AMi) > 0. First we note
that we can not have that κ(P )⊗A Bi = 0 when dimκ(P )(κ(P )⊗A Mi) > 0, because
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we have a surjection Bn
i → Mi, and thus a surjection (κ(P )⊗ABi)n → κ(P )⊗AMi.

Since κ(P ) ⊗A Bi is not zero there is a prime ideal R in Bi that contracts to the
maximal ideal P of A. Denote by Q the contraction of R to Ci. Then Q contracts
to P in A. Since Ci is a finite A-module and thus integral over A the only ideal that
contracts to the maximal ideal P in A is the maximal ideal in Ci ([A-M], Corollary
5.9, p. 61). Hence R contracts to the maximal ideal in Ci. It follows from the
properties of the factorization (3.7.1), that there is an element f ∈ Ci not in the
maximal ideal such that (Ci)f = (Bi)f . That is Ci = Bi as we wanted to prove.

We have proved that we have a product decomposition M =
∏m

i=1 Mi such that
each Mi is a finite Bi-module, and where Bi = Ci whenever Mi 6= 0. Since each Ci

is a finitely generated A-module it follows that M is a finitely generated A-module,
and we have proved first part of the Theorem. The last part follows from Corollary
(1.5).
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