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Abstract. We study infinite intersections of open subschemes and the correspond-
ing infinite intersection of Hilbert schemes. If {Uα} is the collection of open sub-
schemes of a variety X containing the fixed point P , then we show that the Hilbert
functor of flat and finite families of Spec(OX,P ) =

T
α Uα is given by the infinite in-

tersection
T

αHilbUα , where HilbUα is the Hilbert functor of flat and finite families
on Uα. In particular we show that the Hilbert functor of flat and finite families on
Spec(OX,P ) is representable by a scheme.

1. - Introduction

We will consider in this article infinite intersections of open subschemes {Uα} of
a fixed ambient scheme X. We are interested in the corresponding Hilbert scheme
and in particular in the Hilbert scheme of Spec(OX,P ) the intersection of the open
subschemes containing a point P in X.

For a scheme X the Hilbert scheme of n-points Hilbn
X (if it exists) represents

the functor of finite flat families of length-n closed subschemes of X. Grothendieck
constructed Hilbn

X for X quasi-projective over a noetherian base scheme, but we
wish to look at Spec(OX,P ) for P a point of such an X. We know that if U is an open
subscheme of X then Hilbn

U is an open subscheme of Hilbn
X , so there is a natural

candidate for the Hilbert scheme of points on an infinite intersection
⋂

Uα of open
subschemes of X, namely the corresponding infinite intersection

⋂
Hilbn

Uα
. Note

(see Proposition (2.3)) however that an infinite intersection of open subschemes is
not necessarily a scheme!

We restrict ourselves to infinite intersection of locally principal open subschemes.
The technical heart of the paper is the study of such infinite intersections, which
we call localized schemes. The notion of localized schemes and generalized fraction
rings is carried out in Section (3). These concepts are thereafter applied to show
that the Hilbert functor of points on a localized scheme S−1X is representable, if
the Hilbert scheme of points on X exists. A special case of that statement gives
the following.
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Result. Let X → S be a projective morphism of noetherian schemes. Let P be a
point on X, with stalk OX,P . Then the Hilbert functor of n-points on Spec(OX,P )
is representable by a noetherian scheme Hilbn

OX,P
. Furthermore, if {Uα}α∈A is

the collection of open subschemes of X containing the point P , then the Hilbert
scheme of n-points on Spec(OX,P ) is given as the infinite intersection Hilbn

OX,P
=⋂

α∈AHilbn
Uα

.

The above localization property for Hilbert functors of points was known to hold
for the affine line X = Spec(k[x]) (see [LS] and [S]) where the Hilbert scheme of
points on fraction rings of k[x] were constructed explicitly. Here we show that the
localization property of the Hilbert functors of points hold for localized schemes.

What happens is the following. If L is a line bundle on X, then we get by pulling
back L to the universal family of n-points on X, a vector bundle of rank n over the
Hilbert scheme Hilbn

X . From each global section of L we get a determinant section
of the norm bundle N(L) on Hilbn

X . If Us ⊆ X is the open subscheme defined by
the non-vanishing of a section s ∈ Γ(X, L), then we show that the Hilbert scheme
of n-points on Us is the open subscheme of Hilbn

X given by the non-vanishing of the
corresponding determinant section of the norm bundle N(L) on Hilbn

X .

2. - Infinite Intersections of open subschemes

Let X be a scheme, and let {Uα ⊆ X | α ∈ A} be a collection of open subschemes
of X. The set-theoretic intersection

⋂
α∈A Uα can be made into a locally ringed

space by giving it the topology induced by the Zariski topology of X and by using
as structural sheaf the inverse image sheaf i−1OX , where i :

⋂
α∈A Uα → X is the

inclusion.
In the category of locally ringed spaces we have that

⋂
α∈A Uα = lim←−α∈A Uα.

When
⋂

α∈A Uα is a scheme, we also have that
⋂

α∈A Uα = lim←−α∈A Uα in the cate-
gory of schemes. However,

⋂
α∈A Uα is not necessarily a scheme; indeed lim←−α∈A Uα

does not always exist in the category of schemes (see Proposition 2.3 below).

2.1. Theorem (Grothendieck). Let {Uα}α∈A be a collection of open subschemes
of a scheme X. If the inclusion maps iα : Uα → X are affine morphisms, then the
locally ringed space

⋂
α Uα is a scheme. Moreover, the inclusion

⋂
α Uα → X is an

affine monomorphism.

Proof. All the assertions of the theorem are proven in [EGA] IV §8.2 when the
system {Uα} of open subsets is filtered, i.e. for any α, β there exists a γ such that
Uγ ⊆ Uα ∩ Uβ . But we may reduce to the filtered case by replacing {Uα} with
the system of all finite intersections {Uα1 ∩ · · · ∩ Uαr} because the inclusion maps
remain affine morphisms while the categorical limit is unchanged.

The construction of [EGA] is that if the inclusions Uα ⊆ X come locally from
maps of commutative rings A → Bα, then

⋂
α Uα → X comes from A → colim−−−→α Bα.

We will use this in later arguments. ¤

2.1.1. Locally principal subschemes. An open subscheme U ⊆ X is locally prin-
cipal if X can be covered by affine open subschemes Spec(Ai) such that each
U ∩ Spec(Ai) is a principal affine open subscheme of Spec(Ai) (i.e. of the form
Spec(Ai,fi) for some fi ∈ Ai). The inclusion U ⊆ X of a locally principal open
subscheme is an affine morphism, so Theorem (2.1) applies.
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2.2. Corollary. If the Uα ⊆ X are locally principal open subschemes for all
α ∈ A, then the locally ringed space

⋂
α∈A Uα is a scheme.

2.3. Proposition. Let X = Spec k[x, y] be the affine plane over a field k, and let
{Eα}α∈A be the collection of finite subsets of closed points of X. Then the locally
ringed space Y =

⋂
α(X \ Eα) is not a scheme.

Proof. As a set Y is the union {ξ} ∪X1 where ξ is the generic point of the plane,
and X1 is the set of generic points of irreducible plane curves. The open subsets of
Y are induced by the open subsets of X, and they are all of the form Y ∩Uf where
Uf = Spec k[x, y]f is a principal open subset of X. If Y were a scheme, it would be
covered by affine open subschemes, and there would exist an f ∈ k[x, y] \ {0} such
that Y ∩ Uf is an affine scheme. We claim this is impossible.

Let S = k[x]\{0} and T = k[y]\{0}. These are multiplicative systems such that
(i) any maximal ideal of k[x, y] meets both S and T , and (ii) S ∩ T = k∗. Because
of Property (i) the schemes Spec k[x, y]f,S and Spec k[x, y]f,T contain none of the
closed points of X, and so we have a commutative diagram of locally ringed spaces.

Spec k(x, y) −−−−→ Spec k[x, y]f,Sy
y

Spec k[x, y]f,T −−−−→ Y ∩ Uf −−−−→ Uf

All the maps are inclusions between infinite intersections of open subschemes of
X. Because of Property (ii) one has an equality k[x, y]f,S ∩ k[x, y]f,T = k[x, y]f of
subrings of k(x, y). Since the intersection of two subrings gives a pullback in the
category of commutative rings, dually Uf is the pushout in the category of affine
schemes. Hence if Y ∩ Uf were an affine scheme, then the universal property of
pushouts would give us maps Uf → Y ∩Uf ↪→ Uf whose composition is the identity.
But the second map is the natural inclusion, which is not surjective. Contradiction.
So no nonempty Y ∩ Uf can be an affine scheme, and Y is not a scheme. ¤.

2.4. Infinite intersection of Noetherian schemes.
If B is an A-algebra we denote with IB the extension of an ideal I ⊆ A, and

with J ∩A the contraction of an ideal J ⊆ B.

2.5 Lemma. Let ϕ : A → B be a homomorphism of commutative rings. As-
sume that the corresponding morphism of schemes Spec(B) → Spec(A) is an open
immersion. Then any ideal J ⊆ B is the extension of its contraction to A.

Proof. Let J ⊆ B be an ideal. The extension of the contraction (J∩A)B is trivially
contained in J and we need only to show that J ⊆ (J ∩A)B.

Since affine schemes are quasi-compact, Spec(B) can be covered by a finite num-
ber of principal affine open subschemes of Spec(A). Thus there exist f1, . . . , fr in
A such that Spec(B) =

⋃r
i=1 Spec(Afi). The induced maps Afi → Bϕ(fi) are iso-

morphisms, and one deduces that for any element x in the ideal J ⊆ B there exist
elements a1, . . . , ar in A such that ϕ(ai) = ϕ(fi)Nx, for some N À 0. In particular
we have that ai ∈ ϕ−1(x) ⊆ J∩A for each i = 1, . . . , r. Since the Spec(Bϕ(fi)) cover
Spec(B) it follows that there exist b1, . . . , br such that

∑r
i=1 biϕ(fi)N = 1. Then

we have that x =
∑r

i=1 biϕ(ai) is in the extension of J∩A, hence J ⊆ (J∩A)B. ¤
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2.6. Lemma. Suppose we are given a direct (or filtered) system of commutative
rings Ai and transition maps ϕij : Aj → Ai such that any ideal in Ai is the
extension of the contraction to Aj. Then any ideal in colim−−−→i Ai is the extension of
the contraction to Aj via the natural homomorphism Aj → colim−−−→i Ai.

Proof. Let J be an ideal of the direct colimit A = colim−−−→i Ai. From the the assump-
tion of the transition maps ϕij we have J ∩Ai = (ϕ−1

ij (J ∩Ai))Ai = (J ∩Aj)Ai. By
the exactness of the direct colimit we get that colim−−−→i(J∩Ai) is an ideal in colim−−−→i Ai,
easily seen to coincide with J . ¤

2.7. Proposition. In the situation of Theorem (2.1), if X is a noetherian scheme
then so is

⋂
α∈A Uα.

Proof. Assume first that X = Spec(A) is affine. Then
⋂

α∈A Uα → X is given by
A → colim−−−→α Bα. We must show that colim−−−→α Bα is noetherian. By Lemma (2.5) we
have that the homomorphism of rings ϕα : A → Bα is such that the extension of
the contraction of an ideal J ⊆ Bα equals J . It follows from Lemma (2.6) that any
ideal J ⊆ colim−−−→α Bα is the extension of its contraction to A. Since A is noetherian
and consequently any ideal of A is finitely generated, it follows that any ideal of
colim−−−→α Bα is finitely generated. Hence colim−−−→α Bα is noetherian.

If X is simply a noetherian scheme, then Y =
⋂

α∈A Uα is given locally by the
construction above, so Y is locally noetherian. Since X is quasi-compact and the
morphism Y → X is affine and hence quasi-compact, Y is also quasi-compact.
Hence Y is a noetherian scheme. ¤

3. - Localized schemes and generalized fraction rings

3.1. Localized schemes. Let X be a scheme. We will write sections of invertible
sheaves on X as pairs (s, L), where s : OX → L is a global section of the invertible
sheaf L. We let Us ⊆ X denote the open subscheme where the section s is non-
vanishing, that is the complement of the support of s.

3.2. Theorem. Let S = {(sα, Lα)}α∈A be a collection of sections of invertible
sheaves on X. Then there exists a morphism of schemes iS : S−1X → X such that
the following two assertions hold.

(1) The pull-back i∗S(sα) : OS−1X → i∗SLα is nowhere vanishing on S−1X, for
all α ∈ A.

(2) Any homomorphism f : T → X of schemes such that f∗(sα) : OT → f∗Lα

is nowhere vanishing on T for all α ∈ A, has a unique factorization via iS .
Moreover, iS : S−1X → X is unique up to unique isomorphism.

Proof. Each Usα ⊆ X is a locally principal open subscheme, thus by Corollary
(2.2) we have that the inclusion

⋂
α∈A Usα → X is a morphism of schemes. Let

S−1X =
⋂

α∈A Usα and let iS be the inclusion S−1X → X.
Note that S−1X = lim←−α∈A Usα such that a morphism of schemes f : T → X

factors via iS : S−1X → X if and only if f factors via isα : Usα → X for all α ∈ A.
Assertion (1) then follows since it is clear that the pull-back of a section s : OX → L
along the inclusion is : Us → X is non-vanishing.

To show Assertion (2) it suffices to show that for a given section (s, L) on X
a morphism f : T → X factors via is : Us → X if and only if f∗(s) is non-
vanishing on T . We can cover X by open affine subschemes {Spec(Ai)}i∈I , such
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that Us ∩ Spec(Ai) is given by some principal open subschemes Spec(Ai,fi
) of

Spec(Ai). Assertion (2) now follows from the universal properties of fraction rings.
It is clear that the condition on the morphism f : T → X given in Assertion (2)

defines a functor which is represented by the scheme S−1X with universal element
iS : S−1X → X, hence uniqueness follows. ¤
3.3. Lemma. Let S = {(sα, Lα)}α∈A be a collection of sections of invertible
sheaves on X, and p∗S = {(p∗(sα), p∗Lα)}α∈A the pull-back of S along a given
morphism of schemes p : Z → X. Then the localization map ip∗S : (p∗S)−1Z → Z
and the pull-back S−1X ×X Z → Z of the localization map on X, coincide up to
unique isomorphism.

Proof. One immediately checks that the map S−1X ×X Z → Z satisfies the two
conditions (1) and (2) of Theorem (3.2), which proves the claim. ¤
3.3.1. Remark. Let X be a scheme over some base S, and let T → S be a morphism
of schemes. Let S = {(sα, Lα)}α∈A be a collection on X, and let Usα be the locally
principal open subscheme defined by the section (sα, Lα). The natural morphism
of schemes

⋂

α∈A
(Usα ×S T ) = lim←−

α∈A
(Usα ×S T ) → ( lim←−

α∈A
Usα)×S T = (

⋂

α∈A
Uα)×S T

is an isomorphism by Lemma (3.3).

3.4. Generalized fraction rings. Let R be a ring (commutative with unit),
and let U = {(sα, Lα)}α∈A be a collection of pairs sα ∈ Lα with Lα an invertible
R-module. Let N ·A denote the subset of NA consisting of systems of non-negative
integers a = {aα}α∈A having only a finite number of non-zero components. The set
N · A is naturally partially ordered where we say that a ≤ b if for each component
we have aα ≤ bα. We define for any a ∈ N · A the invertible R-modules

La =
⊗

aα 6=0

L⊗aα
α and L0 = R. (3.4.1)

For any b ∈ N · A we have a natural identification La ⊗R Lb = La+b. We have
furthermore the element

sb =
⊗

bα 6=0

s⊗bα
α ∈ Lb (3.4.2)

The element sb defines R-module homomorphisms

La → La+b (3.4.3)

sending x ∈ La to x⊗ sb ∈ La ⊗R Lb = La+b. We denote the direct colimit of the
R-modules (3.4.1) and the described transition maps (3.4.3) as

RU = colim−−−→
a∈N·A

{La}. (3.4.4)

Note that we have a natural product structure on RU with La ·Lb ⊆ La+b, given by
xa · yb := xa ⊗ yb. As the R-modules La are invertible for all a ∈ |A|, we have that
xa · yb = yb · xa. Hence RU is a commutative ring. As R = L0, we have that RU

is a commutative R-algebra. We call RU a generalized fraction ring (with respect
to U = {(sα, Lα)}α∈A). If we have Lα = R for all α, the direct colimit RU is the
fraction ring V −1R, where V ⊆ R is the multiplicative system generated by the sα.
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3.5. Properties of the generalized fraction rings. Let U = {(sα, Lα)}α∈A be
a collection of invertible modules. We will in this section list some properties of the
generalized fraction rings RU , properties that we will use later on in Section (4).

3.5.1. Remark. We have that RU is an R-algebra, thus also an R-module. By
definition RU is the direct colimit of locally free, in particular flat, R-modules La,
hence RU is a flat R-module.

3.5.2. Remark. If N is a R-module we denote by NU := RU ⊗R N . We have that
tensor product commute with direct colimit hence

NU = colim−−−→
a∈N·A

{La} ⊗R N = colim−−−→
a∈N·A

{La ⊗R N}.

In particular we have the following. Let R be an A-algebra, and A → B a
homomorphism of rings. Write R ⊗A B = RB and let UB be the collection on RB

coming from the collection U on R, that is UB = {(sα⊗ 1, Lα⊗A 1)}α∈A. Then we
have that

RU ⊗A B = colim−−−→
a∈N·A

(La)⊗A B = colim−−−→
a∈N·A

(La ⊗A B) = (RB)UB
. (3.5.2.1)

3.5.3. Remark. Let N be an R-module. For any element x ∈ La ⊗R N we denote
the image of x in the colimit NU by x/sa, where sa is the element defined in (3.4.2).
If y ∈ Lb ⊗R N is another element then x/sa = y/sb in NU if and only if there
exists c ∈ N · A such that

sc(sbx− say) = 0 in La+b+c ⊗R N.

In particular we have that sα ∈ Lα becomes a unit in RU , namely sα/sα = 1.

3.5.4. Remark. An invertible R-module Lb is faithfully flat, hence a map

sa : N → La ⊗R N (3.5.4.1)

is injective or surjective if and only if the R-module map

sa : Lb ⊗R N → La+b ⊗R N (3.5.4.2)

is injective or surjective, respectively.

3.5.5. Remark. For any subset J ⊆ A we can consider the colimit

RUJ
= colim−−−→

a∈N·J
{La}.

The union of two subsets J1 and J2 of A again is a subset of A, and we have that
A is partially ordered by the union of its subsets. It is clear that RU is the direct
colimit

RU = colim−−−→
finite J⊆A

{RUJ}. (3.5.5.1)
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3.6. Proposition. Let U = {(sα, Lα)}α∈A be a collection of invertible modules
on R. We have the following.

(1) For any α ∈ A we have that 1⊗ sα ∈ RU ⊗R Lα is nowhere vanishing.
(2) If R → A is an R-algebra homomorphism such that 1 ⊗ sα in A ⊗R Lα is

nowhere vanishing, for all α ∈ A, then the homomorphism R → A factors
via the homomorphism R → RU .

Proof. To show Assertion (1) we need to show that the map RU → RU ⊗R Lα

determined by sending 1 to 1 ⊗ sα is an isomorphism, for all α ∈ A. We have
(3.5.2) that RU ⊗R Lα = RU , where we identify 1 ⊗ sα with sα. We have already
remarked (3.5.3) that sα is a unit in RU for all α ∈ A, and Assertion (1) follows.

We then show Assertion (2). From the assumption we have that A → A⊗R Lα

sending x → x ⊗ sα is an isomorphism of A-modules for all α ∈ A. It follows
that A → A⊗ La is an isomorphism for all a ∈ N · A, hence the colimit RU ⊗R A
is isomorphic to A. We have an R-algebra homomorphism RU → RU ⊗R A that
composed with the inverse of the isomorphism A → RU ⊗R A gives our desired
map. ¤
3.7. Corollary. Let S = {(sα, L̃α)}α∈A be a collection of invertible sheaves on
a affine scheme X = Spec(R). Let Lα = Γ(X, L̃α). Then i : S−1X → X is
canonically identified with Spec(RU ) → X.

Proof. By the proposition we have that Spec(RU ) → Spec(R) satisfies the universal
defining properties of S−1X → X. ¤
3.7.1. Remark. If the collection U = (s, L) consists of one pair only then we
have Spec(R(s,L)) = Us, where Us ⊆ Spec(R) is the locally principal affine open
subscheme defined by the non-vanishing of the section s ∈ L.

3.7.2. Remark. If the collection U = {(si, Li)}i=1,... ,r is finite then we can reduce
the situation to the single pair (s, L), where

s = s1 ⊗ · · · ⊗ sr ∈ L1 ⊗R · · · ⊗R Lr = L.

Then we have that RU = R(s,L). On the level of Spec we have that the finite inter-
section of locally principal open subschemes Usi ⊆ Spec(R) is the locally principal
open subscheme Us ⊆ Spec(R).

3.8. Proposition. Let N be an R-module, and U a collection of invertible R-
modules. If the map N → NU is an isomorphism of R-modules, then the maps
N → La ⊗A N are isomorphisms for all a ∈ N · A.

Proof. As NU is the direct colimit (3.5.2) it is clear that the assumed injectivity of
N → NU implies that the maps N → La ⊗R N are injective for all a ∈ N · A. In
particular the maps (3.5.4.2) are injective. We need only to show surjectivity of the
maps N → La ⊗R N . Let x ∈ La ⊗R N . The map N → NU to the direct colimit
is assumed to be surjective. Hence there exists y ∈ N having the same image as x
in NU . Thus y = x/sa. By (3.5.3) we have that there exists c ∈ N · A such that

sc(ysa − x) = 0 in La+c ⊗R N.

As the maps (3.5.4.2) are injective we have that ysa = x in La ⊗R N , hence we
have proven the surjectivity of N → La ⊗R N . ¤
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3.9. Lemma. Let f : M → N be a homomorphism of R-modules. Assume that
N is finitely generated and that the induced map N → NU is an isomorphism of
R-modules. If the RU -linear map fU : MU → NU is surjective, then the homomor-
phism f : M → N is surjective.

3.9.1. In particular, if M is an R-module, and MU is a finitely generated R-module,
then the localization map M → MU is surjective.

Proof. Let x1, . . . , xr generate the R-module N . For each a ∈ N · A we let fa :
La ⊗A M → La ⊗A N denote the induced R-linear maps. The map fU between
the direct colimits is assumed to be surjective, hence there exists a ∈ N · A and
elements y1, . . . , yr in La⊗R M such that fa(yi) ∈ La⊗R N has the same image as
xi in NU for each i = 1, . . . , r. By Proposition (3.8) we have that N → La ⊗R N
is surjective, thus the images of x1, . . . , xr generate La ⊗R N . It follows that the
R-module homomorphism fa : La ⊗R M → La ⊗R N is surjective. As La is a
faithfully flat R-module we obtain that M → N is surjective. ¤
3.10. Lemma. Let U = {(sα, Lα)}α∈A be a collection of invertible R-modules.
Let IU ⊆ RU be an ideal of the generalized fraction ring RU and let I = IU ∩ R
denote its contraction. Then the localization map R/I → RU/IU is an isomorphism
if and only if RU/IU is finitely generated as an R-module.

Proof. One direction of the lemma is trivial. In addition the map R/I → RU/IU is
always injective (we have taken I = IU ∩R), and we claim that (R/I)U = RU/IRU

and RU/IU are isomorphic. So if RU/IU is finitely generated, then R/I → RU/IU

is surjective by (3.9.1), and the lemma follows.
Now by (3.5.5.1) RU is the direct colimit of generalized fraction rings RUJ where

J is a finite subset of A, and by (3.7.2) each map Spec(RUJ ) → Spec(R) is an open
immersion. So by Lemma (2.5) any ideal in RUJ

is the extension of its contraction
to R, and then by Lemma (2.6) the ideal IU ⊂ RU is the extension of its contraction
to R. This gives IRU = IU , and the claim follows. ¤
3.11. Proposition. Let X → S be a scheme over a base scheme S, and let S be
a collection of sections of invertible sheaves on X. Let f : T → S be a morphism of
schemes, and let j : Z ⊆ S−1X×S T be a closed subscheme such that the projection
map Z → T is finite. Then Z is a closed subscheme of X ×S T via the composite
map (iS × idT ) ◦ j.

Proof. We may assume that T = Spec(A) is affine since closedness is a local prop-
erty. We may also, by Lemma (3.3) assume that T = S. Finally, it is clear that we
may assume that X = Spec(R) is affine. The Proposition now follows from Lemma
(3.10). ¤

4. - Determinants and Localized Schemes

There exists a notion of noncommutative localization and σ-inverting rings, for
any ring R and any set σ of morphisms s : P → Q of finitely generated projective
modules P and Q ([C], [NR]). We will our commutative situation obtain those
σ-inverting rings as generalized fraction rings of a collection of determinants and
norm bundles.

4.1. Notation. Let s : E → L be an A-module homomorphism between two
locally free A-modules E and L of finite rank n. We take the highest exterior
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power of the A-module map s : E → L and obtain en element

det(s) = ∧s ∈ HomA(∧nE,∧nL) = N(E, L).

The element det(s) is an element of the invertible A-module N(E,L). We clearly
have that s : E → L is an isomorphism if and only if det(s) : A → N(E, L) is
nowhere vanishing.

Let ϕ : A → B be an A-algebra homomorphism, and let EB = E ⊗A B and
sB = s⊗ 1 ∈ LB = L⊗A B. Then we have that

det(sB) = det(s)⊗A 1 = ϕ(det(s)). (4.1.1)

Let now E be an A-algebra such that E is locally free of finite rank as an
A-module. Let U = {(sα, Lα)}α∈A be a collection of elements sα in invertible
E-modules Lα. We denote by

NE(U) = {(det(sα), N(E,Lα))}α∈A

the corresponding collection on A. If U is a collection of invertible modules on E
we refer to NE(U) as the corresponding collection of norms on A.

4.2. Proposition. Let E be an A-algebra such that E is locally free of finite rank
n as an A-module. Let U be a collection on E and let NE(U) be the corresponding
collection of norms on A. For any homomorphism of rings ϕ : A → B the following
two statements are equivalent.

(1) The induced homomorphism E ⊗A B → EU ⊗A B is an isomorphism
(2) The homomorphism ϕ : A → B factors via A → ANE(U).

In particular we have that E ⊗A ANE(U) → EU ⊗A ANE(U) is an isomorphism.

Proof. By (3.5.2.1) we have EU ⊗A B = (E ⊗A B)UB
, where UB is the collection

{(sα⊗1, Lα⊗A B)}α∈A. The Assertion (1) then reads by Propositon (3.6) that the
sections sα ⊗A 1 are nowhere vanishing, for all α ∈ A. Hence their determinants
det(sα) ∈ N(E,Lα) are nowhere vanishing. It then follows by the universal prop-
erty of the generalized fraction rings, Proposition (3.6), that the homomorphism
f : A → B factors via A → ANE(U). We have proven that Assertion (1) implies
Assertion (2). Assume now that Assertion (2) holds. By Proposition (3.6) we have
that the sections 1 ⊗ det(sα) ∈ AN(U) ⊗A N(E,Lα) are nowhere vanishing for all
α ∈ A. Then we have that f(1 ⊗ det(sα)) ∈ B are invertible, for all α ∈ A. It
follows from (4.1.1) that the sections sα⊗ 1 in Lα⊗A B are nowhere vanishing, for
all α ∈ A. Consequently EB = E⊗A B is isomorphic to the direct colimit (EB)UB ,
which by (3.5.2.1) equals EU ⊗A B. ¤
4.3. Definition. A flat and finite morphism of schemes q : Z → H is of relative
rank n, if the quasi-coherent OH -module q∗OZ is locally free of finite rank n.

4.4. Determinant sections. Let s : OZ → L be a section of an invertible
sheaf L on Z. Let q : Z → H be a morphism of schemes that is flat, finite
and of relative rank n. We then have that q∗L is a quasi-coherent OH -module,
locally free of rank n. The highest exterior power of the OH -module homomorphism
q∗(s) : q∗OZ → q∗L gives a global section det(s) of the invertible OH -module

NZ(L) = HomOH−mod(∧nq∗OZ ,∧nq∗L).
9



Let S = {(sα, Lα)}α∈A be a collection of sections of invertible sheaves on a
scheme Z, and let q : Z → H be a morphism of schemes flat, finite and of relative
rank n. We call NZ(S) the corresponding collection of norms on H where

NZ(S) = {(det(sα),NZ(Lα))}α∈A.

4.5. Proposition. Let q : Z → H be a morphism of schemes, flat, finite and of
relative rank n. Let S be a collection of sections of invertible sheaves on Z, and
let NZ(S) be the corresponding collection of norms on H. A morphism of schemes
f : T → H factors via NZ(S)−1

H → H if and only if the induced morphism of
schemes T ×H S−1Z → T ×H Z is an isomorphism. In particular we have that
S−1Z ×H NZ(S)−1H → Z ×H NZ(S)−1H is an isomorphism.

Proof. This is a global version of Proposition (4.2). ¤

5. - An application to Hilbert schemes of points

We will in this last section apply results from the previous two sections about
the generalized fraction rings to show the existence of Hilbert scheme of points on
localized schemes S−1X, with X quasi-projective. We will use the fact that the
Hilbert scheme of quasi-projective schemes X exists.

5.1. Set up. We fix a morphism of schemes X → S, where we refer to S as the
base scheme. Let H be an S-scheme, and let Z ⊆ X×S H be closed subscheme such
that the projection q : Z → H is flat, finite and of relative rank n. Let p : Z → X
denote the other projection.

If S is a collection of sections and invertible sheaves on X we get by the construc-
tion (4.4) a collection N = NZ(p∗S) on H. We thus have the following diagram

(p∗S)−1Z −−−−→ S−1X

ip∗S

y iS

y
ZN −−−−→ Z

p−−−−→ X
y q

y

N−1H
iN−−−−→ H

(5.1.1)

where the upper right square in (5.1.1) is a fiber product by Lemma (3.3), and
where the scheme ZN is defined as the fiber product of the diagram to the down
left.

5.2. Lemma. The scheme ZN in the diagram (5.1.1) is a closed subscheme of
S−1X ×S N−1H.

Proof. We have that Z is closed in X ×S H. It follows that S−1X ×X Z is closed
in S−1X ×S H. We have that S−1X ×X Z = (p∗S)−1Z, and thence that

(p∗S)−1Z ×H N−1H (5.2.1)

is a closed subscheme of S−1X×SN−1H. By Proposition (4.5) we have that (5.2.1)
is canonically isomorphic to ZN since the morphism ZN → H factors via N−1H.
We then have that ZN is a closed subscheme of S−1X ×S N−1H as claimed. ¤
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5.3. Lemma. Let f : T → H be a morphism of schemes, and let ZT = Z ×H T ,
where Z is a closed subscheme of X ×S H. If ZT ⊆ S−1X ×S T then we have that
the natural morphism (p∗S)−1Z ×H T → ZT is an isomorphism.

Proof. If ZT is a subscheme of S−1X ×S T then we have that the projection mor-
phism ZT → X factors via the morphism S−1X → X. Hence ZT → Z factors via
the fiber product (p∗S)−1Z and we obtain our isomorphism. ¤
5.4. Definition. The Hilbert functor Hn

X of n-points on X is defined ([G] p. 274)
as the contravariant functor from the category of schemes over S to sets, sending a
S-scheme T to the set

Hn
X(T ) = {closed subschemes Z ⊆ X ×Z T such that the projection

map q : Z → T is flat, finite and of relative rank n.}
5.5. Theorem. Let X → S be a fixed scheme, and assume that the Hilbert functor
of n-points on X is represented by a scheme Hn

X with universal family Z → Hn
X . Let

p : Z → X denote the projection to X. For any collection S of sections of invertible
sheaves on X, we let N = NZ(p∗(S)) be the corresponding collection of norms on
Hn

X . We have that the scheme N−1Hn
X is the Hilbert scheme of n-points on S−1X.

The universal family ZN → N−1Hn
X is the pull-back of the family Z → Hn

X along
the localization map N−1Hn

X → Hn
X .

Proof. By Lemma (5.2) we have that ZN is an N−1Hn
X -valued point of the Hilbert

functor of n-points on S−1X. We then have a morphism of functors from the point
functor of N−1Hn

X to the Hilbert functorHn
S−1X of n-points on S−1X. A morphism

we claim is an isomorphism.
Let T → S be a morphism of schemes, and let W be a T -valued point of Hn

S−1X .
It follows by Proposition (3.11) that W is a T -valued point of Hn

X . Hence there
exists a morphism f : T → Hn

X such that the pull-back of the universal family
Z → Hn

X along f is the scheme W . We will show that f factors via N−1Hn
X .

As W is a T -valued point of Hn
S−1X it is in particular a closed subscheme of

S−1X ×S T . Hence by Lemma (5.3) we have that W = (p∗S)−1Z ×Hn
X

T . That is
the natural map

(p∗S)−1Z ×Hn
X

T → Z ×Hn
X

T (5.5.1)

is an isomorphism. By Proposition (4.5) the isomorphism (5.5.1) is equivalent with
f : T → Hn

X factoring via N−1Hn
X → Hn

X . We thus obtain a morphism of functors
from Hn

S−1X to the point functor of N−1Hn
X , a morphism that clearly is an inverse

to the morphism of functors obtained by the N−1Hn
X -valued point ZN . ¤

5.6. Corollary. Let Uα ⊆ X be the open subscheme defined by the non-vanishing
of the section sα : OX → Lα, for each α ∈ A. Then the Hilbert scheme of n-points
on

⋂
α∈A Uα is the corresponding intersection

⋂
α∈AHilbn

Uα
, where Hilbn

Uα
⊆ Hilbn

X

is the open subscheme parameterizing n-points on Uα ⊆ X.

Proof. We have that S−1X =
⋂

α∈A Usα . It then follows from the theorem that
the Hilbert scheme of points on S−1X is the infinite intersection

⋂
α∈AHdet(sα),

where Hdet(sα) is the open subscheme of Hilbn
X defined by the non-vanishing of the

section det(sα) : OHilbn
X
→ NZ(p∗Lα). Applying the theorem to the single pair

(sα, Lα) we get that Hdet(sα) is the Hilbert scheme Hilbn
Usα

of n-points on Usα . ¤
5.6.1. Noetherian schemes. The Hilbert functor defined in (5.4) restricts to a func-
tor of noetherian schemes over a noetherian base scheme S.
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5.7. Corollary. Let X → S be a projective morphism of noetherian schemes.
Let P ∈ X be a point, and let OX,P denote the stalk of the point. Then the
Hilbert functor of n-points on Spec(OX,P ) is represented by a noetherian scheme.
Furthermore, if we let {Uα} denote the set of open subschemes Uα in X containing
the point P , then we have that Hilbn

OX,P
=

⋂
α Hilbn

Uα
.

Proof. We have [G] that the Hilbert functor of n-points on X is represented by a
projective and in particular noetherian, scheme Hilbn

X/S . As X is projective we can
always find a locally principal open affine subscheme U ⊆ X containing the point
P . Hence we have that Hilbn

U/S , the Hilbert scheme of n-points on U , is an open
subscheme of Hilbn

X/S . We have that the basic open affines D(f) form a basis for
the topology on U = Spec(A), hence we can replace

U ∩
⋂

α∈A
Uα =

⋂

f∈A,P∈D(f)

D(f).

Thus Spec(OX,P ) is the localized scheme S−1U ⊆ U , where S the collection
{f,OU}, with P ∈ D(f). We then have by the theorem that the Hilbert scheme
of n-points on S−1U is the infinite intersection of locally principal subschemes⋂

Hilbn
D(f). The only thing we need to verify is that the scheme

⋂
Hilbn

D(f) is
noetherian. This follows from Proposition (2.7). ¤
5.7.1. Remark. The Hilbert schemes of points on localized schemes are not gener-
ally varieties, even if the base scheme S = Spec(k) is the spectrum of a field. The
Hilbert schemes are not always of finite type over the base, and consequently the
underlying geometry is complicated if not bizarre (see [LS]).

5.7.2. Remark. Note that the point P ∈ X in the Corollary, is not assumed to be
a closed point. Thus for an integral scheme X the result also describes the Hilbert
scheme of points on Spec(KX), where KX is the function field of X.
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