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Abstract. We introduce symmetrizing operators of the polynomial ring A[x] in
the variable x over a ring A. When A is an algebra over a field k these operators
are used to characterize the monic polynomials F (x) of degree n in A[x] such that
A ⊗k k[x](x)/(F (x)) is a free A–module of rank n. We use the characterization to

determine the Hilbert scheme parameterizing subschemes of length n of k[x](x).

Introduction. We shall study the Hilbert scheme parameterizing finite length
subschemes of the local ring k[x](x) of the line at the origin. The Hilbert schemes
parameterizing finite length subschemes of local rings have mostly been studied for
local rings at smooth points on surfaces (see e.g. [B], [BI], [C], [G], [I1], [I2], [I3],
[P]). The focus has been on the rational points of the Hilbert schemes rather than
on the schemes themselves.

The purpose of the following work is to point out that we loose essential in-
formation about the Hilbert schemes parameterizing finite length subschemes of a
local ring by considering rational points instead of families. Indeed, there is only
one rational point k[x]/(xn) of the Hilbert scheme parameterizing subschemes of
k[x](x) of length n whereas, as we shall show in this article, the Hilbert scheme is
affine of dimension n. The coordinate ring is equal to the localization of the sym-
metric polynomials of the ring k[t1, . . . , tn] in n variables, in the multiplicatively
closed subset consisting of the products g(t1) · · · g(tn) for all polynomials g(x) in
one variable over k such that g(0) 6= 0.

In forthcoming work [S1] the second author will use the techniques and results
of the present article to show that the functor of families with support at the origin,
in contrast to the Hilbert functor, is not even representable. The functor of families
with support at the origin is frequently used by some authors because it has the
same rational points as the Hilbert scheme. In [S2] the second author shows how
the techniques of the present article can be used on any localization of k[x], over
any ring k, and gives the relation to the well known result that the Hilbert scheme
of the projective line is given by the symmetric product.

An easy and fundamental result in commutative algebra states that the residue
ring A[x]/(F (x)) of the polynomial ring in a variable x over a ring A by the ideal
generated by a monic polynomial F (x) of degree n, is a free A–module of rank n.
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The key to the study of the Hilbert scheme parameterizing finite length subschemes
of k[x](x) is to determine when the ring A⊗k k[x](x)/(F (x)) is a free A–module of
rank n. Easy examples show that the A–module A⊗k k[x](x)/(F (x)) neither has to
be of rank n nor to be finitely generated. Indeed, we have that A⊗kk[x](x)/(x−1) =
0 for all A, and k[u] ⊗k k[x](x)/(x − u) = k[u](u) when A = k[u] is a polynomial
ring over k in the variable u.

Theorem (2.3), which is the main result of the article, characterizes the monic
polynomials F (x) in A[x] of degree n such that A ⊗k k[x](x)/(F (x)) is a free A–
module of rank n. The essential technical tool used in the proof is the introduction
of symmetrizing operators on the polynomials in the ring A[x] associated to F (x).
The method is introduced in Section 1 and is the main technical novelty of the
article.

Theorem (2.3) is used in Section 3, where we describe the ideals I in A⊗k k[x](x)

such that A⊗k k[x](x)/I is a free A–module of rank n. We then proceed in Section
4 to determine the Hilbert scheme parameterizing length n subschemes of k[x](x).

1. Notation and the symmetrizing operators.

1.1. Notation. Let A be a commutative ring. Denote by A[x, t] = A[x, t1, . . . , tn]
the polynomial ring over A in the variables x, t1, . . . , tn. Let ϕ: A → K be a
homomorphism of commutative rings. We shall consider K as an A–algebra via
this homomorphism and write K[x, t] = K ⊗A A[x, t]. Let G(x) = g0x

m + · · ·+ gm

be a polynomial in A[x]. We write Gϕ(x) = ϕ(g0)xm + · · ·+ ϕ(gm) in K[x].

We denote by si(t) the i’th elementary symmetric function in the variables
t1, . . . , tn.

1.2. The main construction. Let G(x) be a polynomial in A[x]. We write

si(G(t)) = si(G(t1), . . . , G(tn)).

The polynomial si(G(t)) is symmetric in the variables t1, . . . , tn. We note that the
symmetric function si(x(t)) associated to the polynomial G(x) = x is equal to the
elementary symmetric function si(t) so there is no confusion of notation. We write

∆(G, t) =
n∏

i=1

(G(x)−G(ti))

= G(x)n − s1(G(t))G(x)n−1 + · · ·+ (−1)nsn(G(t)) (1.2.1)

in A[x, t]. The polynomial ∆(G, t) is symmetric in the variables t1, . . . , tn and
∆(x, t) =

∏n
i=1(x− ti) = xn − s1(t)xn−1 + · · ·+ (−1)nsn(t). Since G(x)−G(ti) is

divisible by x− ti we obtain that

∆(G, t) = H(x, t)∆(x, t) (1.2.2)

in A[x, t].
Fix a polynomial

F (x) = xn − u1x
n−1 + · · ·+ (−1)nun

in A[x]. There is a unique A–algebra homomorphism

u: A[s1(t), . . . , sn(t)] → A
2



determined by u(si(t)) = ui for i = 1, . . . , n. We have that ∆u(x, t) = F (x). Write
sF,i(G(t)) = u(si(G(t))). It follows from the formulas (1.2.1) and (1.2.2) that

G(x)n − sF,1(G(t))G(x)n−1 + · · ·+ (−1)nsF,n(G(t)) = Hu(x)F (x). (1.2.3)

in A[x].

1.3. Lemma. Let G(x) be a polynomial in A[x]. If sF,n(G(t)) is invertible in A
we have that the class of G(x) in A[x]/(F (x)) is invertible.

Proof. When sF,n(G(t)) is invertible we obtain from formula (1.2.3) the formula

(−1)n+1sF,n(G(t))−1G(x)
[
G(x)n−1 − sF,1(G(t))G(x)n−2 + · · ·

+(−1)n−1sF,n−1(G(t))
]

= 1 + (−1)n+1sF,n(G(t))−1Hu(x)F (x).

The Lemma follows immediately from the latter formula.

1.4. Lemma. Let ϕ:A → K be a ring homomorphism of the ring A into a field
K. Let α1, . . . , αn be the roots of the polynomial

Fϕ(x) = xn − ϕ(u1)xn−1 + · · ·+ (−1)nϕ(un)

in the algebraic closure of K. Then we have that

ϕ(sF,n(G(t))) = Gϕ(α1) · · ·Gϕ(αn)

in K.
In particular, if k is a field and ϕ is a homomorphism of k–algebras, we have for

each polynomial g(x) in k[x] that

ϕ (sF,n(g(t))) = g(α1) · · · g(αn)

in K.

Proof. From the construction of Section (1.2) for the ring K we obtain an expression

∆(Gϕ, t) = Gϕ(x)n − s1(Gϕ(t))Gϕ(x)n−1 + · · ·+ (−1)nsn(Gϕ(t))

in K[x, t]. Moreover, from the polynomial Fϕ(x) we obtain a unique K–algebra
homomorphism

ϕu:K[s1(t), . . . , sn(t)] → K

determined by (ϕu)(si(t)) = ϕ(ui). It follows from the construction of Section (1.2)
applied to A and to K, that we have

ϕ(sF,i(G(t))) = sF ϕ,i(Gϕ(t))

for i = 1, . . . , n. Denote by K the algebraic closure of K. The K–algebra homo-
morphism

α:K[t1, . . . , tn] → K

determined by α(ti) = αi extends the homomorphism ϕu because α(si(t)) =
si(α1, . . . , αn) = ϕ(ui) = (ϕu)(si(t)). We have that sn(Gϕ(t)) = Gϕ(t1) · · ·Gϕ(tn)
in K[t]. Hence

ϕ (sF,n(G(t))) = sF ϕ,n(Gϕ(t)) = α(Gϕ(t1) · · ·Gϕ(tn)) = Gϕ(α1) · · ·Gϕ(αn).

which is the formula of the first part of the Lemma.
The second part of the Lemma follows from the first because gϕ(x) = g(x) for

all polynomials g(x) in k[x].
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2. Roots of Fϕ(x) and invertible elements in A[x]/(F (x)).

2.1. Notation. We shall use the notation of Sections (1.1) and (1.2). Let A be a
ring and let P be a prime ideal. We write κ(P ) = AP /PAP for the residue field.
Let k be a field and assume that A is a k–algebra. Denote by k[x](x) the localization
of k[x] in the multiplicatively closed subset k[x] \ (x) of polynomials g(x) in k[x]
such that g(0) 6= 0. We have that A⊗k k[x](x) is the localization of the k[x]–algebra
A⊗k k[x] in the multiplicatively closed set k[x] \ (x).

2.2 Lemma. Let K be a field extension of k. Let G(x) be a polynomial in K[x]
that has a non–zero root in the algebraic closure K of K which is algebraic over
k. Then there is a polynomial g(x) in k[x] with g(0) 6= 0 and a factorization
I(x)g(x) = H(x)G(x) in K[x], where I(x) is a non–zero polynomial with deg(I) <
deg(G) whose roots in K are zero or transcendental over k.

Proof. We shall prove the Lemma by induction on the degree m of G(x).
Let α be a non–zero root of G(x) in K which is algebraic over k. Denote by

g1(x) ∈ k[x] and G1(x) ∈ K[x] the minimal polynomials of α over k respective K.
Then we have that g1(0) 6= 0 and deg(G1) ≥ 1. Moreover we have factorizations
g1(x) = H1(x)G1(x) and G(x) = I1(x)G1(x) in K[x], where I1(x) is non–zero and
deg(I1) < deg(G). Consequently I1(x)g1(x) = H1(x)I1(x)G1(x) = H1(x)G(x) in
K[x].

When m = 1 we have that I1(x) is a non–zero constant in K and the Lemma
holds. If all the roots of I1(x) are zero or transcendental over k we have proved the
Lemma.

Assume that the Lemma holds for all polynomials of degree less that m. It
remains to prove the Lemma when m > 1 and I1(x) has a non–zero root in K that
is algebraic over k. Since deg(I1) = deg(G) − deg(G1) < m it follows from the
induction assumption that there is a polynomial g2(x) ∈ k[x] such that g2(0) 6= 0,
and a factorization I(x)g2(x) = H2(x)I1(x) in K[x], where I(x) is a non–zero
polynomial such that deg(I) < deg(I1) whose roots are all zero or transcendental
over k. We get that I(x)g1(x)g2(x) = H2(x)g1(x)I1(x) = H1(x)H2(x)G(x), and we
have proved the Lemma.

2.3. Theorem. Let A be a k–algebra, and let

F (x) = xn − u1x
n−1 + · · ·+ (−1)nun

be a polynomial in A[x]. The following six assertions are equivalent:
(1) For all maximal ideals P of A with residue map ϕ: A → κ(P ), the roots of

Fϕ(x) = xn−ϕ(u1)xn−1+ · · ·+(−1)nϕ(un) in the algebraic closure of κ(P )
are zero or transcendental over k.

(2) For every polynomial g(x) in k[x] with g(0) 6= 0 we have that sF,n(g(t)) is
invertible in A.

(3) For every polynomial g(x) in k[x] with g(0) 6= 0 we have that the class of
g(x) in A[x]/(F (x)) is invertible.

(4) The canonical fraction map

A[x]/(F (x)) → A⊗k k[x](x)/(F (x))

is an isomorphism.
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(5) The A–module A⊗k k[x](x)/(F (x)) is free of rank n with a basis consisting
of the classes of 1, x, . . . , xn−1.

(6) For all maximal ideals P of A with residue map ϕ: A → κ(P ), the κ(P )–
vectorspace κ(P )⊗kk[x](x)/(Fϕ(x)) is n–dimensional with a basis consisting
of the classes of 1, x, . . . , xn−1.

Proof. Assume that assertion (1) holds. Let ϕ: A → K be the residue map as-
sociated to a maximal ideal of A. It follows from Lemma (1.4) that we have
ϕ(sF,n(g(t))) = g(α1) · · · g(αn) in K, where α1, . . . , αn are the roots of Fϕ(x) in
the algebraic closure of K. Since g(0) 6= 0 we have that g(αi) 6= 0 both when αi

is zero and when αi is transcendental over k. Hence ϕ(sF,n(g(t))) 6= 0. Since this
holds for all maximal ideals of A we have that sF,n(g(t)) is not contained in any
maximal ideal of A and thus is invertible in A. Consequently assertion (2) holds.

It follows from Lemma (1.3) that assertion (2) implies assertion (3).
The canonical map of assertion (4) is the fraction map of the k[x]–algebra A[x]

by the multiplicatively closed subset k[x] \ (x). Thus the fraction map is an iso-
morphism if and only if the classes of the elements of k[x] \ (x) in A[x]/(F (x)) are
invertible. Consequently assertions (3) and (4) are equivalent.

Since the A–module A[x]/(F (x)) is free of rank n with a basis consisting of the
classes 1, x, . . . , xn−1, we have that assertions (4) and (5) are equivalent.

It is evident that assertion (5) implies assertion (6).
We shall prove that assertion (6) implies assertion (1). Assume that assertion (1)

does not hold. Then there exists a maximal ideal in A with residue map ϕ: A → K
such that Fϕ(x) has a non–zero root in the algebraic closure of K that is algebraic
over k. It follows from Lemma (2.2) that there is a polynomial g(x) ∈ k[x] with
g(0) 6= 0, and a factorization I(x)g(x) = H(x)Fϕ(x) in K[x] where I(x) is a non–
zero polynomial with deg(I) < deg(Fϕ) = n, such that the roots of I(x) are zero
or transcendental over k. Since g(x) is invertible in K ⊗k k[x](x) we obtain that
(I(x)) ⊆ (Fϕ(x)) in K ⊗k k[x](x) and thus a surjection

K ⊗k k[x](x)/(I(x)) → K ⊗k k[x](x)/(Fϕ(x)). (2.3.1)

We already proved that assertion (1) implies assertion (6). Hence we conclude
that K ⊗k k[x](x)/(I(x)) is a vectorspace of dimension deg(I). Since we have the
surjection (2.3.1) the dimension of the K–vectorspace K ⊗k k[x](x)/(Fϕ(x)) is at
most equal to deg(I) and thus strictly smaller than n. Hence assertion (6) does not
hold. We have thus proved that assertion (6) implies assertion (1).

2.4. Corollary. Assume that A = K is a field. Let G(x) be a polynomial in K[x]
of degree n. Then the K–vectorspace K⊗kk[x](x)/(G(x)) is generated by the classes
of 1, x, . . . , xn−1.

Proof. If the roots of G(x) in the algebraic closure K of K are zero or transcendental
over k, the Corollary follows from the Theorem.

Assume that G(x) has a non–zero root in K that is algebraic over k. It follows
from Lemma (2.2) that there is a polynomial g(x) in k[x] with g(0) 6= 0, and a fac-
torization I(x)g(x) = H(x)G(x) in K[x] where I(x) is a non–zero polynomial with
deg(I) < deg(G) whose roots in K are zero or transcendental over k. We obtain
that (I(x)) ⊆ (G(x)) in K ⊗k k[x](x) and thus a surjection K ⊗k k[x](x)/(I(x)) →
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K ⊗k k[x](x)/(G(x)). By Theorem (2.3) we have that K ⊗k k[x](x)/(I(x)) is gen-
erated by the classes of 1, x, . . . , xm−1 with m = deg(I) < deg(G) = n. Thus
K ⊗k k[x](x)/(G(x)) is generated by the classes of 1, x, . . . , xn−1.

3. Ideals in A⊗k k[x](x) whose residue rings are free A–modules.

3.1. Notation. Let k be a field and let A be a k–algebra. We denote by k[x] the
polynomial ring in a variable x over k and write A[x] = A ⊗k k[x]. We denote by
k[x](x) the localization of k[x] in the multiplicatively closed set k[x] \ (x) consisting
of polynomials g(x) of k[x] with g(0) 6= 0.

3.2. Lemma. Given an ideal I of A ⊗k k[x](x) such that the residue ring A ⊗k

k[x](x)/I is a free A–module of rank n. Then the A–module A ⊗k k[x](x)/I has a
basis consisting of the classes of the elements 1, x, . . . , xn−1.

Proof. We must prove that the A–module homomorphism

An → A⊗k k[x](x)/I (3.2.1)

which sends the coordinates of An to the classes of 1, x, . . . , xn−1 is an isomorphism.
It suffices to prove that the localization of the map (3.2.1) in each prime ideal of A
is an isomorphism. Hence we may assume that A is a local k–algebra. In fact, it
suffices to prove that the map (3.2.1) is surjective since any set of n generators of
a free module of rank n form a basis.

Assume that A is local and let K be the residue field of A. We denote by IK

the image of the ideal I by the residue map A⊗k k[x](x) → K ⊗k k[x](x). From the
map (3.2.1) we obtain a homomorphism

Kn → K ⊗k k[x](x)/IK (3.2.2)

of K–vectorspaces which sends the coordinates of Kn to the classes of 1, x, . . . , xn−1.
If the map (3.2.2) is injective then it is surjective because dimK(K⊗k k[x](x)/IK) =
n by assumption. On the other hand, if (3.2.2) is not injective, there is a polynomial
G(x) = xm + g1x

m−1 + · · ·+ gm in K[x] of degree m ≤ n such that (G(x)) ⊆ IK in
K⊗kk[x](x). Hence we have a surjection K⊗kk[x](x)/(G(x)) → K⊗kk[x](x)/IK . It
follows from Corollary (2.4) that K⊗k k[x](x)/(G(x)) is generated by the classes of
1, x, . . . , xm−1. Thus the K–vectorspace K⊗k k[x](x)/IK is generated by the classes
of 1, x, . . . , xn−1, and the map (3.2.2) is surjective even when it is not injective.

By assumption the A–module A⊗kk[x](x)/I is finitely generated. Hence it follows
from Nakayama’s Lemma that the A–module homomorphism (3.2.1) is surjective.

3.3. Theorem. Given an ideal I in A⊗k k[x](x) such that A⊗k k[x](x)/I is a free
A–module of rank n. Then the ideal I is generated by a unique monic polynomial

F (x) = xn − u1x
n−1 + · · ·+ (−1)nun

in A[x].

Proof. Since the A–module A⊗k k[x](x)/I is free of rank n by assumption, it follows
from Lemma (3.2) that the A–module A⊗k k[x](x)/I has a basis consisting of the
classes of the elements 1, x, . . . , xn−1. Hence the class of xn in A⊗k k[x](x)/I can be
written as a unique A–linear combination of the classes of 1, x, . . . , xn−1. It follows
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that there is a unique monic polynomial F (x) = xn − u1x
n−1 + · · · + (−1)nun in

A[x] whose image is contained in I.
To show that F (x) generates I we must prove that the surjective residue map

A⊗ k[x](x)/(F (x)) → A⊗k k[x](x)/I (3.3.1)

is injective. It suffices to prove that the localization of (3.3.1) at every prime
ideal of A is injective. Hence we may assume that A is local. Denote by ϕ:A →
K the residue map, and let IK be the image of the ideal I by the residue map
A⊗k k[x](x) → K ⊗k k[x](x). From the map (3.3.1) we obtain the K–linear residue
map

K ⊗k k[x](x)/(Fϕ(x)) → K ⊗k k[x](x)/IK . (3.3.2)

By assumption we have that the A–module A⊗k k[x](x)/I is free of rank n. Con-
sequently we have that K ⊗k k[x](x)/IK is an n–dimensional K–vectorspace. It
follows from Lemma (3.2) that the classes of 1, x, . . . , xn−1 in K⊗k k[x](x)/IK form
a K–basis. From Corollary (2.4) it follows that the classes of 1, x, . . . , xn−1 in the
K–vectorspace K⊗kk[x](x)/(Fϕ(x)) are generators. The existence of the surjection
(3.3.2) therefore shows that the classes of 1, x, . . . , xn−1 in K ⊗k k[x](x)/(Fϕ(x))
form a K–basis. Hence it follows from Theorem (2.3) that the roots of Fϕ(x)
in the algebraic closure of K are zero or transcendental over k. Consequently
it follows from Theorem (2.3) that the classes of 1, x, . . . , xn−1 in the A–module
A⊗k k[x](x)/(F (x)) form a basis. On the other hand it follows from Lemma (3.2)
that the classes of 1, x, . . . , xn−1 in the A–module A ⊗k k[x](x)/I form a basis. It
follows that the map (3.3.1) is injective. We have proved the Theorem.

4. The coordinate ring of the Hilbert scheme.

4.1. Notation. Let k be a field. Denote by k[x, t] = k[x, t1, . . . , tn] the poly-
nomial ring over k in the variables x, t1, . . . , tn. For every k–algebra A we write
A[x, t] = A ⊗k k[x, t]. We denote by si(t) the i’th elementary symmetric polyno-
mial in the variables t1, . . . , tn. For every polynomial g(x) in k[x] we form, as in the
construction of Section (1.2), the symmetric polynomial sn(g(t)) = g(t1) · · · g(tn)
in k[t1, . . . , tn]. The set

U = {sn(g(t)): g(x) ∈ k[x] and g(0) 6= 0}

form a multiplicatively closed subset of k[s1(t), . . . , sn(t)]. We write

Hn = U−1k[s1(t), . . . , sn(t)]

and
Fn(x) = xn − s1(t)xn−1 + · · ·+ (−1)nsn(t)

in Hn[x].

4.2 Proposition. Let ψ: Hn = U−1k[s1(t), . . . , sn(t)] → A be a k–algebra homo-
morphism. Let ψ(si(t)) = ui for i = 1, . . . , n and write

Fψ
n (x) = xn − u1x

n−1 + · · ·+ (−1)nun
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in A[x]. Then the A–module

A⊗k k[x](x)/(Fψ
n (x))

is free of rank n with a basis consisting of the classes of the elements 1, x, . . . , xn−1.
In particular the Hn module Hn⊗k k[x](x)/(Fn(x)) is free of rank n with a basis

consisting of the classes of the elements 1, x, . . . , xn−1.

Proof. The fraction map ξ: k[s1(t), . . . , sn(t)] → Hn composed with ψ defines a map
ζ: k[s1(t), . . . , sn(t)] → A. We have that ζ is the restriction to k[s1(t), . . . , sn(t)] of
the map u of the construction of Section (1.2) for the polynomial Fψ

n (x). Hence we
have that

ψ(sn(g(t))) = ζ (sn(g(t))) = sF ψ,n(g(t))

for all polynomials g(x) of k[x]. Given a polynomial g(x) of k[x] with g(0) 6= 0. Since
ζ factors via the fraction map ξ and sn(g(t)) is invertible in Hn by definition, we
have that ζ(sn(g(t))) = sF ψ,n(g(t)) is invertible in A. Consequently it follows from
Theorem (2.3) that A⊗k k[x](x)/(Fψ

n (x)) is a free A–module with a basis consisting
of the classes of the elements 1, x, . . . , xn−1. We have proved the Proposition.

4.3. Notation. We denote by Hilbn
a the affine Hilbert functor from the category

of k–algebras to sets that sends a k–algebra A to

Hilbn
a(A) ={Ideals I in A⊗k k[x](x) such that

A⊗k k[x](x)/I is a free A–module of rank n}.

It follows from Proposition (4.2) that we, for every k–algebra A, obtain a natural
map

F(A): Homk(Hn, A) → Hilbn
a(A)

which sends a k–algebra homomorphism ψ: Hn → A to the ideal (Fψ
n (x)) in A ⊗k

k[x](x). Clearly F defines a morphism of functors from k–algebras to sets.

4.4. Theorem. The morphism F is an isomorphism of functors. Equivalently,
the k–algebra Hn represents the functor Hilbn

a .

Proof. We shall construct an inverse to F . Given a k–algebra A and an ideal I in
A ⊗k k[x](x) such that the A–module A ⊗k k[x](x)/I is free of rank n. It follows
from Theorem (3.3) that there is a unique polynomial F (x) = xn − u1x

n−1 + · · ·+
(−1)nun in A[x] such that (F (x)) = I in A ⊗k k[x](x). In particular we have that
A⊗k k[x](x)/(F (x)) is a free A–module of rank n. Hence it follows from Theorem
(2.3) that the element sF,n(g(t)) is invertible in A for all polynomials g(x) in k[x]
such that g(0) 6= 0.

We have that the k–algebra homomorphism ζ: k[s1(t), . . . , sn(t)] → A determined
by ζ(si(t)) = ui for i = 1, . . . , n coincides with the restriction to k[s1(t), . . . , sn(t)]
of the homomorphism u of Section (1.2). It follows that ζ(si(g(t))) = sF,i(g(t))
for i = 1, . . . , n and for all polynomials g(x) in k[x]. In particular the elements
sn(g(t)) of U are mapped to the invertible elements sF,n(g(t)) in A. Consequently
the k–algebra homomorphism ζ factors through a unique k–algebra homomorphism
ψ:Hn = U−1k[s1(t), . . . , sn(t)] → A. Thus we have constructed a map Hilbn

a(A) →
Homk(Hn, A). It is easy to check that this map is the inverse to F(A).
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4.5. Definition. We define the Hilbert functor Hilbn of families of length n sub-
schemes of Spec k[x](x) as the contravariant functor from schemes over k to sets,
that to a k–scheme T associates the set

Hilbn(T ) ={Closed subschemes Z in T ×Spec k Spec k[x](x) such that
p∗OZ is a locally free OT –module of rank n, where

p: T ×Spec k Spec k[x](x) → T is the projection}.
Equivalently the set Hilbn(T ) consists of the quasi–coherent ideals I in OT ⊗OSpec k

OSpec k[x](x)
such that

(
OT ⊗OSpec k

OSpec k[x](x)

)
/I is locally free considered as an

OT –module via p.

4.6. Theorem. We have that the scheme Spec Hn with the universal family
Spec

(
Hn ⊗k k[x](x)/(Fn(x))

)
represents Hilbn.

Proof. For every k–scheme T and every point Z in Hilbn(T ) we cover T with
affine open subsets Spec A such that p∗OZ |Spec A is a free OSpec A–module. It
follows from Theorem (4.4) that we have a unique morphism Spec A → Spec Hn

such that the family Spec
(
Hn ⊗k k[x](x)/(Fn(x))

)
pulls back to the family Z ∩

p−1(SpecA) over SpecA. Since the map is unique the morphisms for the affine
subsets covering T glue together to a morphism T → Spec Hn such that the family
Spec

(
Hn ⊗k k[x](x)/(Fn(x))

)
pulls back to Z.

4.7. Note. The point s1(t) = · · · = sn(t) = 0 is, as expected, the only k–rational
point of Spec Hn. Indeed, let (u1, . . . , un) be point different from the origin of
the affine n–dimensional space An

k over k. To show that this point does not lie in
Spec Hn we chose roots α1, . . . , αn in k of the polynomial xn−u1x

n−1+· · ·+(−1)nun

in k[x]. Since all the ui are not zero there is at least one root αi which is not zero.
Let g(x) ∈ k[x] be the minimal polynomial of such a root. Then g(0) 6= 0 and thus
sn(g(t)) ∈ U . The map α: k[t1, . . . , tn] → k which sends ti to αi for i = 1, . . . , n
iduces the map u: k[s1(t), . . . , sn(t)] → k which sends si(t) to ui for i = 1, . . . , n.
However, the map u does not factor through the fraction map k[s1(t), . . . , sn(t)] →
Hn because sn(g(t)) = g1(t) · · · gn(t) is mapped to the element g(α1) · · · g(αn) = 0
in k. Hence the point (u1, . . . , un) is not in SpecHn.

When n = 1 we have that H1 = k[x](x) is a local ring. However, when n ≥
2 the ring Hn is not local. To see this we first prove that the ideal (F (t)) in
k[s1(t), . . . , sn(t)] generated by a non–constant, symmetric polynomial F (t) which
is irreducible in k[t1, . . . , tn] does not intersect the multiplicatively closed subset
U of k[s1(t), . . . , sn(t)]. Assume that (F (t)) intersects U . Then we have that
F (t)G(t) = sn(f(t)) = f(t1) · · · f(tn) in k[s1(t), . . . , sn(t)] for a polynomial f(x) ∈
k[x] with f(0) 6= 0. Then F (t) divides one of the polynomials f(t1), . . . , f(tn) in
k[t1, . . . , tn]. Hence F (t) is a polynomial in one of the variables ti. Hence, when
n ≥ 2 it can not be symmetric, contrary to our assumption. Thus (F (t)) does not
intersect U .

For each non–constant, symmetric, irreducible polynomial F (t) in k[t1, . . . , tn]
we can choose an ideal PF which is maximal among the ideals in k[s1(t), . . . , sn(t)]
that contain F (t) and do not intersect U . Then PF is a prime ideal and the ideal
PF Hn is maximal in Hn. In this way we can construct an abundance of maximal
ideals in Hn when n ≥ 2. For example we can choose Fv(t) = v + s1(t) with v ∈ k.
It is clear that the maximal ideals PFvHn for different v are all different.
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