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Abstract

We generalize the algebraic results of Laksov and Skjelnes (2001) and Skjelnes (2002), and

obtain easy and transparent proofs of the representability of the Hilbert functor of points on

the affine scheme whose coordinate ring is any localization of the polynomial ring in one vari-

able over an arbitrary base ring. The coordinate ring of the Hilbert scheme is determined. We

also make explicit the relation between our methods and the beautiful treatment of the Hilbert

scheme of curves via norms, indicated by Grothendieck (1995), and performed by Deligne

(1973).

0. Introduction

In a previous article we proved the existence of an affine Hilbert scheme that parametrizes finite

closed subschemes of length n of the affine scheme whose coordinate ring is the local ring of

the affine line at the origin, and we gave an explicit description of the Hilbert scheme. The

results on the representation and structure of the Hilbert scheme were generalized in [17] to the

case of finite length subschemes of the affine scheme whose coordinate ring is any localization

of the polynomial ring k½x� in a variable x over any base ring k. Instead of generalizing the

special algebraic tools used in [10], the article [17] used the Spectral Mapping Theorem. Further

explorations of the Spectral Mapping Theorem led to a short and simple proof of a generalized

version of this result, valid for norms on algebras; see [12]. In the present article we generalize

the algebraic results of [10], [17]. Our point of view as well as the algebraic techniques that we

use are completely different from those of the articles [10], [17]. The methods are more general

and allow us to obtain shorter and more transparent proofs of the results of these articles and to

minimize the role of norms, and the use of the Generalized Spectral Mapping Theorem of [12].

We also give the precise relation between our work and the beautiful approach to the Hilbert

scheme of curves via the theory of norms on algebras that was indicated by Grothendieck [5]

and developed by Deligne [2, §5.5, pp. 120–124, §6.3, pp. 180–192]. Grothendieck and Deligne

use their theory of norms to a morphism of finite type of locally noetherian schemes X ! S;
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and obtain a natural transformation from the Hilbert functor Hilbn
X=S to the point functor of the

nth symmetric product Symn
SðXÞ; when this product exists as a scheme. The norm was also con-

structed by Iversen [9] using coordinates, and used to study the same map. When X ! S is a

family of smooth curves the Hilbert functor Hilbn
X=S is the same as the functor Divn

X=S of relative

divisors of degree n of X over S, and when X ! S is in addition quasi-projective, they prove that

the morphism Divn
X=S ! Symn

SðXÞ is an isomorphism [2, Proposition 6.3.9, p. 186]. In this article

we use our algebraic results to construct explicitly an isomorphism Hilbn
X=S ! Symn

SðXÞ

when X ¼ SpecðU21k½x�Þ and S ¼ SpecðkÞ; for any ring k and any multiplicative subset U of the

polynomial ring k½x� in the variable x over k. Hence we generalize the result of Deligne and

Grothendieck, and we make explicit their result when X is an open subscheme of Specðk½x�Þ: In

particular we generalize to the important cases when X is the spectrum of the local ring k½x�ðxÞ;

and when X is the spectrum of the function field k(x).

One of the most interesting features of the results of [17, 10] is that they show that one

should take extreme care in studying only the rational points of Hilbert schemes. Indeed, the

Hilbert schemes that are described in [17, 10] are generally of high dimension but have extre-

mely few, and sometimes no, rational points. For example will the Hilbert scheme parametrizing

finite closed subschemes of length n of the scheme Specðk½x�ðxÞÞ; when k is a field, have dimen-

sion n, but only one rational point, and for Spec(k(x)) it will have dimension n 2 1 and no

rational points. In contrast most of the results on the structure of the Hilbert schemes found in

the literature concern the rational points of Hilbert schemes parametrizing subschemes of length

n in a projective scheme X over a field K. To get an idea of the extremely complicated phenom-

ena that can occur, it is natural to focus on the subschemes concentrated at a single rational

point p of X. Such schemes are most naturally parametrized by the fibre over the cycle np of the

Hilbert–Chow morphism Hilbn
X=S ! Chown

X=S from the Hilbert scheme parametrizing subschemes

of length n in X to the Chow scheme parametrizing cycles of dimension zero and degree n in X

[4]. The functor of this fibre, although representable, appears to be very hard to describe. It is

therefore habitual to consider related functors that describe colength n ideals of the local ring

OX;p of X at p, and which have the same rational points as the fibre of the Hilbert–Chow morph-

ism. The case which is mostly studied is when p is a smooth point on a surface; see [6–8, 13]

for references.

Let k be a ring and A a k-algebra, and let X ¼ Spec (A) and S ¼ Spec(k). The Hilbert functor

[5, p. 274] of finite closed subschemes of length n of X assigns to an S-scheme T the set

Hilbn
X=SðTÞ :¼ fclosed subschemes Z of T £S X such that the projection map

p : Z ! T is finite and such that theOT -module p�ðOZÞ is locally free of rank ng:

There are several other functors that appear to be natural candidates for the Hilbert functor.

One that is frequently used assigns to a k-scheme T the set

Hn
X=SðTÞ :¼ fclosed subschemes Z of T £S X such that the projection map

p : Z ! T is flat and such that the fibre p21ðtÞ is the spectrum of a

kðtÞ � algebra of dimension n as a vector space; for every point t in Tg:
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When A is essentially of finite type over k, that is, a localization of a finitely generated

k-algebra, the two functors coincide; see [11, Theorem 3.5 p. 5624].

Perhaps the most frequently studied functor for the colength n ideals with support in a maxi-

mal ideal Q in a local k-algebra A associates to a k-scheme T the set

N n
X=SðTÞ ¼ fZ [ Hn

X=SðTÞ jZ has support on T £k SpecðA=QÞg:

Assume that k is a field. Then the three functors mentioned above have the same rational

points. However, the functor N n
X=S is not representable by a noetherian scheme even when A is

the local ring of a regular point on a variety of positive dimension [16].

Assume that A is a local k-algebra with maximal ideal Q. When B ¼ A=QN and Y ¼ Spec(B)

then Hn
Y=S is a subfunctor of N n

X=S: The functor Hn
Y=S can be shown to be representable for a wide

class of local rings A, but depends heavily on the power N of the maximal ideal [16].

In the literature several other functors are used to parametrize the ideals of colength n in a

local ring A, most notably Hn

SpecðÂÞ=SpecðkÞ
; where Â is the Q-adic completion of A. Although

many results are known about the k-rational points, very little is known about the represent-

ability, even when Â ¼ k½½x�� is the formal power series ring in one variable.

The above remarks illustrate that the k-rational points reveal very little about the represent-

ability of the Hilbert functors, or about the representing scheme when the functor is represent-

able, even when the schemes are defined over an algebraically closed field. Particular examples

when the local ring A is equal to k[x ](x) can be found in [10, 16]. Most authors are, however,

only interested in the rational points and it is not always clear what functor they consider. Hence

it is unclear what the parameter scheme is, or whether the parameter scheme exists at all.

1. The basic algebraic results

In this section we shall prove the results from algebra that are needed in our study of the Hilbert

scheme of ideals in the localizations of a polynomial ring in one variable. We generalize the

results of [10, 17]. The point of view, as well as the methods, are completely different from

those of [10, 17].

Throughout we shall work with commutative algebras over a fixed (commutative) base ring

k. We fix a multiplicative subset U of the polynomial ring k½x� in one variable over k.

Lemma 1.1 Let A be a commutative ring, let S be a multiplicative subset of A, and let I be an

ideal of S21A: Assume that the quotient B :¼ S21A=I is integral over A. Then the natural map

A ! B is surjective.

Proof. It suffices to show, for every element s in S, that the inverse of the image of s in B,

denoted by 1/s, is in the image of A ! B: Since B is integral over A we have an equation

ð1=sÞn þ a1ð1=sÞ
n21 þ · · · þ an ¼ 0 in B with a1; a2; … ; an in A. By multiplying the equation

by sn21 we see that 1/s is in the image of A ! B.

Definition 1.2 Let Q be a k½x�-algebra such that Q as a k-module is locally free of rank n.

Then the characteristic polynomial of Q is the characteristic polynomial of multiplication by

x on Q; it is denoted PQ. By the Cayley–Hamilton theorem, the polynomial PQ is in the ker-

nel of the structure map k½x�! Q: In particular, the structure map induces a map of k-algebras

k½x�=ðPQÞ! Q:
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Theorem 1.3 Let Q be a quotient of U21k½x� such that Q as a k-module is locally free of rank

n. Then the two maps of k-algebras

k½x�=ðPQÞ
w
�! U21k½x�=ðPQÞ

c
�! Q;

of which the first is the localization map and the second is the induced map of Definition 1.3,

are isomorphisms.

In particular we have that U21k½x�=ðPQÞ and Q are free k-modules of rank n with a basis

given by the images of 1; x; … ; xn21:

Proof. It follows from Lemma 1.1, applied with A :¼ k½x�=ðPQÞ; that cw is surjective. Since

both the source and target of cw are locally free of rank n we have that cw is an isomorphism.

For each F in U, the image under cw of the class of F in k½x�=ðPQÞ is invertible in Q. Conse-

quently the class of F in k½x�=ðPQÞ is invertible. It follows that w is an isomorphism, and conse-

quently that c is an isomorphism.

Corollary 1.4 The correspondence of Definition 1.2, under which a k½x�-algebra Q is mapped

to the characteristic polynomial PQ; defines a bijection between the set of k-algebra quotients

U21k½x�! Q such that Q is a locally free k-module of rank n and the set of monic polynomials

P in k½x� of degree n such that, for every F in U, the class of F in k½x�=ðPÞ is invertible.

Proof. We shall give the inverse to the correspondence of Definition 1.2. For each monic poly-

nomial P in k½x� of degree n such that for all polynomials F in U the class of F in k½x�=ðPÞ is

invertible, the map k½x�=ðPÞ! U21k½x�=ðPÞ is an isomorphism. Hence we have a quotient map

U21k½x�! U21k½x�=ðPÞ to a free k-module of rank n. It follows from the theorem that we have

obtained the inverse to the correspondence of Definition 1.3.

2. Representation of the Hilbert functor on algebras

We shall in this section show that the Hilbert functor is representable by an affine scheme and

give an explicit description of the coordinate ring of the Hilbert scheme.

Let k½x1; x2; … ; xn� be the polynomial ring in n independent variables x1; x2; … ; xn over

k and let k½s1; s2; … ; sn� be the subalgebra generated by the elementary symmetric functions

s1; s2; … ; sn in x1; x2; … ; xn: Let

Un :¼ fFðx1ÞFðx2Þ· · ·FðxnÞ : F [ Ug:

Then Un is a multiplicative subset of k½s1; s2; … ; sn�:

Let R be a ring and P a monic polynomial of degree n in the polynomial ring R½t� in the vari-

able t over R. For every polynomial F in R½t� we denote by NPðFÞ the determinant of the endo-

morphism on R½t�=ðPÞ given by multiplication by the class of F. In [12] there are given several

descriptions of the map NP : R½t�! R (see in particular the Spectral Mapping Theorem, [12,

Corollary (7.2), p. 356]). Clearly we have that the class of F in R½t�=ðPÞ is invertible if and only

if NPðFÞ is invertible in R. Moreover, we have that P is the characteristic polynomial of the

endomorphism of R½t�=ðPÞ given by multiplication by the class of t.
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Consider in k½s1; s2; … ; sn�½t� the following polynomial:

PnðtÞ ¼
Yn

i¼1
ðt 2 xiÞ ¼ tn 2 s1t n21 þ · · · þ ð21Þnsn: ð2:0:1Þ

As the s1; … ; sn are algebraically independent over k, the polynomial Pn is the universal

polynomial over k. It follows from the Spectral Mapping Theorem of [12, Corollary (7.2),

p. 356] that the norm NPn
: k½s1; s2; … ; sn�½t�! k½s1; s2; … ; sn� is given by

NPn
ðFÞ ¼

Yn

i¼1

FðxiÞ:

In particular we have that NPn
ðUÞ ¼ Un:

2.1. Representation of the Hilbert functor

For each k-algebra A we denote by Hilbn
A=k the Hilbert functor on k-algebras that we naturally

obtain from the functor Hilbn
SpecðAÞ=SpecðkÞ of the Introduction. Thus, for a k-algebra R we have

that

Hilbn
A=kðRÞ :¼ fideals I in R^kA such that the R-module ðR^kAÞ/I is locally free of rank ng:

It follows from Corollary 1.4 and the discussion above that Hilbn
U21k½x�=kðRÞ corresponds to the

set of all monic polynomials P of degree n in R½t� such that NPðFÞ is invertible in R for all F in

U. A monic polynomial P of degree n in R½t� is uniquely given by the map of k-algebras

w : k½s1; s2; … ; sn�! R under which the coefficients of PnðtÞ are mapped to the

corresponding coefficients of P(t). Clearly, for any polynomial F in k½s1; s2; … ; sn�½t� we have

that the image of NPn
ðFÞ by w is NPðF

wÞ; where Fw is obtained by applying w; to the

coefficients of F. Consequently we have that NPðF
wÞ is invertible in R for all F in U if and

only if k½s1; s2; … ; sn�! R maps Un into the set of invertible elements in R, that is, if and only

if k½s1; s2; … ; sn�! R extends to a k-algebra map

U21
n k½s1; s2; … ; sn�! R:

We consequently have a bijection

1 : Hilbn
U21k½x�=kðRÞ! Homk2algðU

21
n k½s1; s2; … ; sn�;RÞ ð2:1:1Þ

which clearly is functorial in R. We rephrase the existence of the functorial bijection 1 as the

following theorem.

Theorem 2.2 The k-algebra U21
n k½s1; s2; … ; sn� represents the Hilbert functor Hilbn

U21k½x�=k: The

ideal generated by PnðxÞ in U21
n k½s1; s2; … ; sn�^kU21k½x� is the universal element.

Corollary 2.3 The Hilbert functor Hilbn
SpecðU21k½x�Þ=SpecðkÞ; on the category of Spec(k)-schemes,

is represented by the affine scheme SpecðU21
n k½s1; s2; … ; sn�Þ:

Proof. The assertion follows from the theorem because the Hilbert functor on schemes is a

sheaf for the Zariski topology.
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2.4. Localization

Let Vn be the multiplicative subset of k½x1; x2; … ; xn� consisting of all products F1ðx1ÞF2ðx2Þ· · ·

FnðxnÞ with Fi in U. We have that Un # Vn; and from the equation F1ðx1ÞF2ðx2Þ· · ·FnðxnÞ
Q

i–j

FiðxjÞ ¼
Qn

i¼1

Qn
j¼1FjðxiÞ it follows that for any v [ Vn there exists a polynomial w such that

vw [ Un: Consequently, the canonical k-algebra homomorphism

U21
n k½x1; x2; … ; xn�! V21

n k½x1; x2; … ; xn� ð2:4:1Þ

is an isomorphism.

We have the obvious identifications

ðk½x�Þ^kn ¼ k½x1; x2; … ; xn� and ðU21k½x�Þ^kn ¼ V21
n k½x1; x2; … ; xn�:

Hence we obtain an identification

ðU21k½x�Þ^kn ¼ U21
n k½x1; x2; … ; xn�: ð2:4:2Þ

The symmetric group Sn operates on the left of (2.4.2) by permutation of the factors of tensor

product. The subalgebra of invariants is the algebra TSn
kðU

21k½x�Þ of symmetric tensors. Under

the identification (2.4.2), the action of Sn on the right is given by permutation of the variables

x1; x2; … ; xn: The ring of invariants of the right-hand side is U21
n k½s1; s2; … ; sn�: Indeed, if an

element w/u in U21
n k½x1; x2; … ; xn� is invariant under Sn; then there is, for every element s in

Sn; an element us in Un such that usw ¼ ussw: Let v :¼
Q

s[Sn
us: Then v [ Un; and vw is

invariant under Sn and thus is in k½s1; s2; … ; sn�: Hence w=u ¼ vw=vu is in U21
n k½s1; s2; … ; sn�

as we wanted to prove. Therefore, by taking invariants under Sn of each side of the identity

(2.5.2), we obtain the identification

TSn
kðU

21k½x�Þ ¼ U21
n k½s1; s2; … ; sn�: ð2:4:3Þ

3. The Grothendieck-Deligne approach via norms

We sketch the approach of Grothendieck and Deligne to the representation of the Hilbert scheme

of families of smooth curves, and show that the norm they construct, with the appropriate identi-

fications, gives the same map as the map 1 of Section 2.

Let A be a k-algebra, and let TSn
kA be the k-algebra of symmetric tensors, that is, the subalge-

bra of A^kn invariant under the symmetric group Sn [14, III §5, p. 251; 1, §2, AIV.40]. Grothen-

dieck and Deligne defined a natural map, functorial in the k-algebra R [6, 6.3.8, p. 186],

d : Hilbn
A=kðRÞ! Homk2algðTSn

kA;RÞ: ð3:0:1Þ

They proved that the map is a bijection when SpecðAÞ! SpecðkÞ is smooth of relative dimen-

sion 1, and that for a quasi-projective smooth family of curves X ! S the maps in (3.0.1) globa-

lize and give a representation of the Hilbert functor [2, Proposition 6.3.9, p. 186]

Hilbn
X=S ¼ Symn

SðXÞ:
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We shall below give the construction, via norms, of the map (3.0.1), and we show that when

A ¼ U21k½x� the map d is equal to the bijection 1 described in section 2.1.

3.1. The norm construction

To define d we note that an element in the source Hilbn
A=kðRÞ is given by a quotient,

R^kA ! Q;

where Q as an R-module is a locally free of rank n. The determinant,

detQ : EndRðQÞ! R;

defines in a natural way a multiplicative homogeneous polynomial law, of degree n, also called

a norm of degree n, from the R-algebra E ¼ EndRðQÞ to R (see [14, I §2, p. 219, §8, p. 266; 15,

p. 870 1, Exercise 9, AIV.89–90] for polynomial laws and [3, 2.5 p. 14; 12, §5, pp. 352–353]

for norms). Let GnE be the degree-n part of the algebra of divided powers of the R-module E.

Then the norm defined by detQ determines a unique R-module map GnE ! R that composed

with gn : E ! GnE is equal to detQ [14, IV.1, Proposition IV.1, p. 265, IV §2, Théorème IV.1, p.

266, 1; Exercise 10(a), (b), AIV.90]. For each element u in E the n th divided power] gnðuÞ in

GnE is mapped to det u in R. Since E is an R-algebra we have that GnE is also an R-algebra. In

fact the algebra GnE is universal for norms of degree n. That is, there is a bijection between

norms of degree n from E to an R-algebra A, and R-algebra homomorphisms w : GnE ! A such

that wgn corresponds to the norm from E to A [3, 2.4.2 p. 11; 15 Théorème p. p. 871].

Since E is a locally free R-module of finite rank, the natural map of R-modules,

GnE ! TSn
RoðEÞ; under which gnðuÞ is mapped to u^n [ E^Rn for all u in E, is an isomorphism

of R-modules [14, IV §5, Proposition IV.5, p. 272; 1, Exercise 8(a), AIV.89]. It is also an iso-

morphism of R-algebras. In fact GnE commutes with base extension [14, III §8, Théorème III.3,

p. 262], and consequently TSn
RðEÞ commutes with base extension when E is locally free. It fol-

lows that the map u ! u^n determines a norm of degree n from E to TSn
RðEÞ: Hence we obtain,

from the quotient Q, a natural R-algebra map TSn
RðEÞ! R which maps u^n to det u.

The quotient Q is also an A-module. Thus we have a k-algebra homomorphism A ! E under

which a [ A is mapped to the multiplication aQ; by a on Q, and consequently there is a k-

algebra homomorphism TSn
kA ! TSn

kE: We also have a natural k-algebra homomorphism TSn
k

E ! TSn
RE coming from the k-algebra structure on R. Composing the three maps TSn

kA ! TSn
k

E; TSn
kE ! TSn

RE; and TSn
RE ! R; we obtain a k-algebra homomorphism,

dQ : TSn
kA ! R: ð3:1:1Þ

If a [ A; then

dQða
^nÞ ¼ detaQ: ð3:1:2Þ

Hence we have constructed a map dHilbn
A=kðRÞ! Homk2algðTSn

kA;RÞ that maps Q to dQ: The

map d is easily seen to be functorial with respect to the k-algebra R. In addition, the k-algebra

homomorphism dQ commutes with base change in the following sense. Let k ! k0 be a map

of rings. Form the k0-algebras A0 :¼ k0^kA and R0 ¼ k0^kR; and set Q0 :¼ R0^RQ ¼ k0^kQ:

Then, from the given quotient map R^kA ! Q we obtain by base change the quotient map
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R0^k0A
0 ! Q0; and hence a map of k0-algebras dQ0TSn

k0A
0 ! R0: In this notation, the composition

of the map dQ0 and the canonical map k0^kTSn
kA ! TSn

k0A
0 is equal to 1^kdQ:

3.2. Comparison with the method of Grothendieck and Deligne

We shall prove, when A :¼ U21k½x�; that 1 : Hilbn
A=kðRÞ! Homk2algðU

21
n k½s1; s2; … ; sn�;RÞ of

section 2.2 is the same as the map d : Hilbn
A=kðRÞ! Homk2algðTSn

kA;RÞ of section 3.1 under the

identification TSn
kðU

21k½x�Þ ¼ U21
n k½s1; s2; … ; sn� of (2.4.3).

An element in Hilbn
U21k½x�=kðRÞ is given by a quotient R^kU21k½x�! Q as in section 3.1. The

images dQ and 1Q of the quotient Q under d and 1 are k-algebra maps U21
n k½s1; s2; … ; sn�! R

and consequently determined by their values on s1; … ; sn: Equivalently, dQ and 1Q are deter-

mined by the image of the polynomial PnðtÞ (2.0.1) under the induced map k½s1; s2; … ; sn�½t�!

R½t� of polynomial rings.

As noted in the construction of the map 1Q in section 2.1, the polynomial PnðtÞ is mapped by

k½s1; … ; sn�½t�! R½t� to the characteristic polynomial of xQ : the endomorphism on Q given as

multiplication by the class of the variable x.

To determine the image of PnðtÞ under the map k½s1; s2; … ; sn�½t�! R½t� induced by dQ we

apply the observation at the end of section 3.1 with k0 :¼ k½t�: Then, under the canonical map

k0^kTSn
kA ! TSn

k0A
0; the polynomial PnðtÞ is mapped to ðt 2 xÞ^n: Therefore it follows from

(3.1.2) that under the induced map, the polynomial PnðtÞ is mapped to the characteristic poly-

nomial of xQ:

Hence we have proved that dQ ¼ 1Q; and consequently that d ¼ 1:
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