
ON THE REPRESENTABILITY OF Hilbnk[x](x)

Roy Mikael Skjelnes

Abstract. Let k[x](x) be the polynomial ring k[x] localized in the maximal ideal

(x) ⊂ k[x]. We study the Hilbert functor parameterizing ideals of colength n in this
ring having support at the origin. The main result of this article is that this functor
is not representable. We also give a complete description of the functor as a limit of
representable functors.

1. Introduction.
Let k be a field. Let R be a local noetherian k-algebra with maximal ideal P .

The Hilbert functor of n-points on Spec(R), denoted by Hilbn
R, is determined by

sending a scheme T to the set

Hilbn
R(T ) =





Closed subschemes Z ⊆ T ×k Spec(R) such that

the projection Z → T is flat, and the κ(y)-vector
space of global sections of the fibre Zy has
dimension n for all points y ∈ T.





.

We let HilbnR(T ) ⊆ Hilbn
R(T ) be the set of T -valued points Z of Hilbn

R such
that Zred ⊆ T×kSpec(R/P ). Here Zred is the reduced scheme associated to Z. The
assignment sending a k-scheme T to the set HilbnR(T ) determines a contravariant
functor from the category of noetherian k-schemes to sets. The functor HilbnR is
different from the Hilbert functor Hilbn

R.
The functor HilbnR with R = C{x, y}, the ring of convergent power series in

two variables, was introduced by J. Briançon in [1], and its set of C-rational points
were described. The motivation behind the present paper was to understand the
universal properties of HilbnC{x, y}.

Instead of analytic spaces, as considered in [1], we work in the category of noe-
therian k-schemes. Primarily our interest was in the representability of the functor
Hilbnk[[x, y]]. However, we realized that the problems we faced were present for
Hilbnk[x](x), where k[x](x) is the local ring of the line at the origin. To illustrate
the difficulties of the representability of Hilbnk[[x, y]] we will in this paper focus on
Hilbnk[x](x), the functor parameterizing colength n ideals in k[x](x), having support
in (x).

The scheme Spec(k[x]/(xn)) is the only closed subscheme of Spec(k[x](x)) whose
coordinate ring is of dimension n as a k-vector space. It follows that the functor
Hilbnk[x](x) has only one k-valued point. Thus in a naive geometric sense the func-
torHilbnk[x](x) is trivial. We shall see, however, that the functorHilbnk[x](x) is not
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representable! In fact we show in Theorem (4.8) that HilbnR is not representable
when R is the local ring of a regular point on a variety.

In addition to Theorem (4.8) which is our main result, we show in Theorem (5.5)
that the non-representable functorHilbnk[x](x) is pro-represented by k[[s1, . . . , sn]],
the formal power series ring in n-variables. In Theorem (6.8) we show that there
exist a natural filtration of Hilbnk[x](x) by representable subfunctors {Hn,m}m≥0,
where Hn,m is a closed subfunctor of Hn,m+1.

The three theorems (4.8), (5.5) and (6.8) completely describe Hilbnk[x](x). The
three mentioned results are more or less explicit applications of Theorem (3.5),
which describes the set of elements inHilbnk[x](x)(Spec(A)) for arbitrary k-algebras
A.

The paper is organized as follows: In Section (2) we recall some results from
[3]. In Section (3) we establish Theorem (3.5). The sections (4), (5) and (6) are
applications of Theorem (3.5). In Section (4) we show that Hilbnk[x](x) is not
representable. We pro-represent Hilbnk[x](x) in Section (5). We give a filtration of
Hilbnk[x](x) by representable subfunctors in Section (6).

I thank my thesis advisor Dan Laksov for his help and assistance during the
preparation of the present paper, and I thank Torsten Ekedahl, Trond Gustavsen,
Yves Pitteloud and the referee for their comments and remarks.

2. Preliminaries.

2.1. Notation. Let k be a field. Let k[x] be the ring of polynomials in one variable
over k. The polynomials f(x) in k[x] such that f(0) 6= 0 form a multiplicatively
closed subset S in k[x]. We write the fraction ring k[x]S = k[x](x). For every
k-algebra A we write A ⊗k k[x] = A[x]. The localization of the k[x]-algebra A[x]
in the multiplicatively closed set S ⊂ k[x] is A⊗k k[x](x). If I is an ideal in a ring
A we let R(I) denote its radical, and if P is a prime ideal we let κ(P ) = AP /PAP

be its residue field.

Lemma 2.2. Let A be a k-algebra. Let I ⊆ A ⊗k k[x](x) be an ideal such that
A ⊗k k[x](x)/I is a free A-module of rank n. Then the following two assertions
hold:

(1) The classes of 1, x, . . . , xn−1 form an A-basis for A⊗k k[x](x)/I.
(2) The ideal I is generated by a unique F (x) = xn − u1x

n−1 + · · ·+ (−1)nun

in A[x].

Proof. See [3], Lemma (3.2) for a proof of the first assertion. The second assertion
follows from [3], Theorem (3.3). ¤

Proposition 2.3. Let A be a k-algebra. Let I ⊆ A ⊗k k[x](x) be an ideal with
residue ring M = A⊗k k[x](x)/I. Assume that

(1) There is an inclusion of ideals (x) ⊆ R(I) in A⊗k k[x](x).
(2) The A-module M = A⊗k k[x](x)/I is flat.
(3) For every prime ideal P in A we have that M ⊗A κ(P ) is of dimension n

as a κ(P )-vector space.

Then M is a free A-module of rank n.

Proof. We first show that M ⊗A AP is free for every prime ideal P in A. Thus we
assume that A is a local k-algebra. Assumption (1) is equivalent to the existence
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of an integer N such that we have an inclusion of ideals (xN ) ⊆ I in A⊗k k[x](x).
Consequently we have a surjection

A⊗k k[x](x)/(xN ) → M = A⊗k k[x](x)/I. (2.3.1)

We have that A⊗k k[x](x)/(xN ) = A[x]/(xN ). It follows from the surjection (2.3.1)
that M is generated by the classes of 1, x, . . . , xN−1. In particular M is finitely
generated. A flat and finitely generated module over a local ring is free, see [4]
Theorem (7.10). Hence by Assumption (2) we have that M is a free A-module. By
Assumption (3) we have that the rank of M is n.

Thus we have proven that M ⊗A AP is free of rank n for every prime ideal P in
A. It then follows by Assertion (1) of Lemma (2.2) that M ⊗A AP has a basis given
by the classes of 1, x, . . . , xn−1. Since the classes of 1, x, . . . , xn−1 form a basis for
M ⊗A AP for every prime ideal P of A, it follows that 1, x, . . . , xn−1 form a basis
for M . ¤
Theorem 2.4. Let A be a k-algebra and let F (x) in A[x] be a polynomial where
F (x) = xn−u1x

n−1 + · · ·+(−1)nun. The following three assertions are equivalent.
(1) For all maximal ideals P of A with residue map ϕ : A → A/P , the roots

of Fϕ(x) = xn − ϕ(u1)xn−1 + · · ·+ (−1)nϕ(un) in the algebraic closure of
A/P are zero or transcendental over k.

(2) The ring A⊗k k[x](x)/(F (x)) is canonically isomorphic to A[x]/(F (x)).
(3) The A-module A⊗k k[x](x)/(F (x)) is free of rank n with a basis consisting

of the classes of 1, x, . . . , xn−1.

Proof. See [3], Assertions (1), (4) and (5) of Theorem (2.3). ¤
Corollary 2.5. Let F (x) = xn − u1x

n−1 + · · · + (−1)nun be an element of A[x].
Assume that the coefficients u1, . . . , un are in the Jacobson radical of A. Then we
have that M = A ⊗k k[x](x)/(F (x)) is canonically isomorphic to A[x]/(F (x)). In
particular we have a canonical isomorphism M = A[x]/(F (x)) when A is local and
the coefficients u1, . . . , un of F (x) are in the maximal ideal of A.

Proof. Let P be a maximal ideal, and let ϕ : A → A/P be the residue map. We
have that Fϕ(x) = xn since the coefficients u1, . . . , un of F (x) are in the Jacobson
radical of A. Consequently the roots of Fϕ(x) are zero, and the Assertion (1) of
the Theorem is satisfied. ¤
Corollary 2.6. Assume that F (x) in A[x] is such that the assertions of the The-
orem are satisfied. Then an inclusion of ideals (xN ) ⊆ (F (x)) in A ⊗k k[x](x) is
equivalent to an inclusion of ideals (xN ) ⊆ (F (x)) in A[x].

Proof. Obviously an inclusion of ideals in A[x] extends to an inclusion of ideals in
the fraction ring A ⊗k k[x](x). Consequently it suffices to show that an inclusion
(xN ) ⊆ (F (x)) in A ⊗k k[x](x) gives an inclusion (xN ) ⊆ (F (x)) in A[x]. Assume
that we have an inclusion of ideals (xN ) ⊆ (F (x)) in A ⊗k k[x](x), or equivalently
a surjection

A⊗k k[x](x)/(xN ) → A⊗k k[x](x)/(F (x)). (2.6.1)

We have that F (x) in A[x] satisfies the conditions in the Theorem. Hence we have
a canonical isomorphism A ⊗k k[x](x)/(F (x)) = A[x]/(F (x)). Then the surjec-
tion (2.6.1) gives a surjection A[x]/(xN ) → A[x]/(F (x)) which is equivalent to an
inclusion of ideals (xN ) ⊆ (F (x)) in A[x]. ¤
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3. Polynomials with nilpotent coefficients.
The purpose of this section is to establish Theorem (3.5). Applications of The-

orem (3.5) are given in Sections (4), (5) and (6).

3.1. Set up and Notation. We will study ideals generated by monic polynomials
with nilpotent coefficients. For this purpose we introduce the following terminology;
Let A be a commutative ring, and let A[t1, . . . , tn] be the polynomial ring over A in
the variables t1, . . . , tn. Let si(t) = si(t1, . . . , tn) be the i’th elementary symmetric
function in the variables t1, . . . tn. The elementary symmetric functions si(t) are
homogeneous in the variables t1, . . . , tn, having degree deg(si(t)) = i. We let
A0 = A and consider the ring of symmetric functions A[s1(t), . . . , sn(t)] = ⊕i≥0Ai

as graded in t1, . . . , tn. For every positive integer d we have the ideal ⊕i≥dAi ⊆
A[s1(t), . . . , sn(t)]. We denote the residue ring by

Qd := A[s1(t), . . . , sn(t)]/⊕i≥d Ai. (3.1.1)

Lemma 3.2. Let u1, . . . , un be nilpotent elements in a ring A. Then the homo-
morphism u : A[s1(t), . . . , sn(t)] → A, determined by u(si) = ui for i = 1, . . . , n,
factors through Qd for some integer d.

Proof. The coefficients u1, . . . , un are nilpotent by assumption. Hence there exist
integers ni such that uni

i = 0 for every i = 1, . . . , n. Let τ = max{ni}, and let
d = τ + 2τ + · · · + nτ . We claim that u : A[s1(t), . . . , sn(t)] → A maps ⊕i≥dAi

to zero. It is enough to show that monomials m(s1(t), . . . , sn(t)) of degree ≥ d
are mapped to zero. We have that m(s1(t), . . . , sn(t)) = s1(t)e1s2(t)e2 . . . sn(t)en

where e1 + 2e2 + · · ·+ nen = deg(m(s1(t), . . . , sn(t))). It follows that at least one
ej ≥ τ , and consequently u

ej

j = 0. Thus we have that u(s1(t)e1s2(t)e2 . . . sn(t)en) =
ue1

1 ue2
2 . . . uen

n = 0. ¤
3.3. Polynomials with nilpotent coefficients. For every monic polynomial
F (x) = xn−u1x

n−1 + · · ·+(−1)nun in A[x] we let uF : A[s1(t), . . . , sn(t)] → A be
the A-algebra homomorphism determined by uF (si(t)) = ui for i = 1, . . . , n. Let

∆(t, x) =
n∏

i=1

(x− ti) = xn − s1(t)xn−1 + · · ·+ (−1)nsn(t). (3.3.1)

If D(t, x) = D(t1, . . . , tn, x) is symmetric in the variables t1, . . . , tn, we let DuF (x)
in A[x] be the image of D(t, x) by the map uF ⊗ 1 : A[s1(t), . . . , sn(t)][x] → A[x].
In particular we have that ∆uF (x) = F (x).

For every non-negative integer p we define dp(ti, x) in A[t1, . . . , tn, x] by

dp(ti, x) = (x + ti)(x2 + t2i ) . . . (x2p

+ t2
p

i ). (3.3.2)

It follows by induction on p that (x− ti)dp(ti, x) = x2p+1 − t2
p+1

i . We let

Dp(t, x) =
n∏

i=1

dp(ti, x). (3.3.3)

For every non-negative integer N , we let si(tN ) = si(tN1 , , . . . , tNn ), which is a
homogeneous symmetric function in the variables t1, . . . , tn. We have that the
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degree of si(tN ) is deg(si(tN )) = iN . Both ∆(t, x) and Dp(t, x) are symmetric in
the variables t1, . . . , tn. Their product is

∆(t, x)Dp(t, x) =
n∏

i=1

(x2p+1 − t2
p+1

i )

= x2p+1n − s1(t2
p+1

)x2p+1(n−1) + · · ·+ (−1)sn(t2
p+1

).

(3.3.4)

Proposition 3.4. Let F (x) = xn−u1x
n−1 + · · ·+(−1)nun be an element of A[x].

Then the coefficients u1, . . . , un are nilpotent if and only if we have an inclusion of
ideals (x) ⊆ R(F (x)) in A[x].

Proof. Assume that the coefficients u1, . . . , un of F (x) are nilpotent.We must show
that x ∈ R(F (x)), or equivalently that xN ∈ (F (x)) for some integer N . By
Lemma (3.2) the map uF : A[s1(t), . . . , sn(t)] → A determined by uF (si(t)) = ui,
factors through Qd for some integer d. Let p be an integer such that 2p+1 ≥ d.
The function Dp(t, x) (3.3.3) is symmetric in the variables t1, . . . , tn. We will show
that DuF

p (x) in A[x] is such that F (x)DuF
p (x) = xN . The product ∆(t, x)Dp(t, x)

is given in (3.3.4), and the degree of the symmetric functions si(t2
p+1

) = i2p+1 ≥ d.
Consequently the class of ∆(t, x)Dp(t, x) in Qd[x] equals x2p+1n. We obtain that

x2p+1n = ∆uF (x)DuF
p (x) = F (x)DuF

p (x), (3.4.1)

in A[x]. Hence we have that (x) ⊆ R(F (x)).
Conversely, assume that we have an inclusion of ideals (x) ⊆ R(F (x)) in A[x].

Then there exists a G(x) in A[x] such that xN = F (x)G(x) for some integer N .
Let P be a prime ideal of A, and let ϕ : A → κ(P ) = K be the residue map. Let
Fϕ(x) and Gϕ(x) be the classes of F (x) and G(x), respectively, in K[x]. We have

xN = Fϕ(x)Gϕ(x) = (xn − ϕ(u1)xn−1 + · · ·+ (−1)nϕ(un))Gϕ(x), (3.4.2)

in K[x]. The ring K[x] is a unique factorization domain, hence ϕ(ui) = 0 for
i = 1, . . . , n. Therefore the classes of ui are zero in A/P for all prime ideals P of
A. This shows that u1, . . . , un are nilpotent. ¤
Theorem 3.5. Let A be a k-algebra, and let I ⊆ A⊗kk[x](x) be an ideal. Write the
residue ring as M = A⊗k k[x](x)/I. The following two assertions are equivalent.

(1) M is a flat A-module such that for every prime ideal P in A we have that
M ⊗A κ(P ) is of dimension n as a κ(P )-vector space, and we have an
inclusion of ideals (x) ⊆ R(I) in A⊗k k[x](x).

(2) The ideal I is generated by an element F (x) in A[x], of the form F (x) =
xn−u1x

n−1 + · · ·+(−1)nun, where the coefficients u1, . . . , un are nilpotent.

Proof. Assume that Assertion (1) holds. By Proposition (2.3) we have that M is a
free A-module of rank n. It follows from Lemma (2.2) that the ideal I is generated
by a unique F (x) = xn − u1x

n−1 + · · · + (−1)nun in A[x], and that the classes
of 1, x, . . . , xn−1 form a basis for M . Consequently F (x) in A[x] is such that the
assertions of Theorem (2.4) hold. By assumption there is an inclusion of ideals
(x) ⊆ R(F (x)) in A ⊗k k[x](x). Equivalently (xN ) ⊆ (F (x)) in A ⊗k k[x](x) for
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some integer N . By Corollary (2.6) we get an inclusion of ideals (xN ) ⊆ (F (x)) in
A[x]. It follows from Proposition (3.4) that the coefficients u1, . . . , un of F (x) are
nilpotent.

Conversely, assume that Assertion (2) holds. Since the coefficients u1, . . . , un of
F (x) are nilpotent, we get by Corollary (2.5) that F (x) is such that the assertions
of Theorem (2.4) are satisfied. Thus M = A⊗k k[x](x)/(F (x)) is a free A-module of
rank n. In particular we have that M is a flat A-module such that M ⊗A κ(P ) is of
rank n, for every prime ideal P in A. What is left to prove is the inclusion of ideals
(x) ⊆ R(F (x)) in A⊗k k[x](x), which is an immediate consequence of Proposition
(3.4). ¤
4. The non-representability of Hilbnk[x](x).

In this section we define for every local noetherian k-algebra R, the functor
HilbnR. We will show in Theorem (4.8) that the functorHilbnR is not representable
when R is the local ring of a regular point on a variety.

4.1. Notation. If Z is a scheme, we let Zred be the associated reduced scheme.
Given a morphism of schemes Z → T , we write Zy = Z ×T Spec(κ(y)) for the fibre
of this morphism over y ∈ T , where κ(y) is the residue field of the point y ∈ T .

Lemma 4.2. Let I and J be two ideals in a ring A. Assume that I is finitely
generated. Then an inclusion I ⊆ R(J) is equivalent to the existence of an integer
N such that IN ⊆ J .

Proof. Let x1, . . . , xm be a set of generators for the ideal I. Assume that we have
an inclusion of ideals I ⊆ R(J). It follows that there exists integers ni such that
xni

i ∈ J , for i = 1, . . . ,m. Thus we have that IN ⊆ J , when N ≥ ∑m
i=1(ni−1)+1.

The converse is immediate, and we have proven the Lemma. ¤
Lemma 4.3. Let I be an ideal in a noetherian k-algebra R. Let T be a noetherian
k-scheme. Suppose that Z ⊆ T ×k Spec(R) is a closed subscheme. Then Zred ⊆
T ×k Spec(R/I) if and only if there exists an integer N = N(Z) such that Z ⊆
T ×k Spec(R/IN ).

Proof. The scheme T is noetherian and we can find a finite affine open cover {Ui}
of T . Thus {Ui×k Spec(R)} is a finite affine open cover of T ×k Spec(R). It follows
from the finite covering of T ×k Spec(R) that it is enough to prove the statement
for each Ui ×k Spec(R). Hence we may assume that T is affine.

Let T = Spec(A), and let the closed subscheme Z be given by the ideal J ⊆
A ⊗k R. We write IA for the image of the natural map A ⊗k I → A ⊗k R. The
ring R is noetherian, hence I ⊆ R is finitely generated. Consequently the ideal
IA ⊆ A⊗k R is finitely generated. It follows from Lemma (4.2) that IA ⊆ R(J) if
and only if IN

A ⊆ J for some N . ¤
Definition 4.4. Let R be a local noetherian k-algebra. Let P be the maximal
ideal of R. Let n be a fixed positive integer. We define for any k-scheme T the set

HilbnR(T ) =





Closed subschemes Z ⊆ T ×k Spec(R), where the

projection Z → T is flat, and the κ(y)-vector space
of global sections of the fibre Zy has dimension n

for all y ∈ T , and such that Zred ⊆ T ×k Spec(R/P ).





.
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Lemma 4.5. The assignment sending a k-scheme T to the set HilbnR(T ), deter-
mines a contravariant functor from the category of noetherian k-schemes to sets.

Proof. Let U → T be a morphism of noetherian k-schemes. If Z is a T -valued point
of HilbnR we must show that ZU = U ×T Z is an element of HilbnR(U). The only
non-trivial part of the claim is to show that ZU is supported at U ×k Spec(R/P ).

Since Z is supported at T ×k Spec(R/P ) there exists by Lemma (4.3) an integer
N such that Z ⊆ T ×k Spec(R/PN ). It follows that ZU ⊆ U ×k Spec(R/PN ).
Hence by Lemma (4.3) we have that ZU is supported at U ×k Spec(R/P ). ¤
Remark. Note that we restrict ourselves to noetherian k-schemes. It is not clear
whether HilbnR is a presheaf of sets on the category of k-schemes.

Remark. When R = C{x, y}, the ring of convergent power series in two variables,
the Definition (4.4) gives the functor of J. Briançon [1].

Lemma 4.6. Let R be a local noetherian k-algebra. Let P be the maximal ideal of
R, and let R̂ be the P -adic completion of R. Then HilbnR is canonically isomorphic
to HilbnR̂.

Proof. We have that R̂ is a local ring with maximal ideal P̂ = P⊗R R̂. Furthermore
we have for any positive integer N that R/PN = R̂/P̂N . It follows that for any
k-scheme T we have that

T ×k Spec(R/PN ) = T ×k Spec(R̂/P̂N ). (4.6.1)

Thus if Z is an element of HilbnR(T ) there is by Lemma (4.3) an integer N such
that Z is a closed subscheme of T ×k Spec(R/PN ). By (4.6.1) it follows that Z is
a closed subscheme of T ×k Spec(R̂) having support in T ×k Spec(R̂/P̂ ). We get
that Z is an element of HilbnR̂(T ). It is clear that a similar argument shows that
the converse also holds; any element Z ∈ HilbnR̂(T ) is naturally identified as an
element of HilbnR(T ). ¤
Lemma 4.7. Let A be a k-algebra. Let ε be a nilpotent element in A such that
the smallest integer j where ej = 0 is j = 2m+1. Then the smallest integer N
such that we have an inclusion of ideals (xN ) ⊆ (xn − εxn−1) in A ⊗k k[x](x) is
N = 2(m+1) + n− 1.

Proof. We first show that we have an inclusion (xN ) ⊆ (xn−εxn−1) in A⊗k k[x](x),
with N = 2m+1 + n− 1. For every non-negative integer p we let

dp(ε, x) = (x + ε)(x2 + ε2) . . . (x2p

+ ε2
p

) in A[x]. (4.7.1)

We have that (x− ε)dp(ε, x) = x2(p+1) − ε2
(p+1)

in A[x]. Thus when p ≥ m, we have
that (x− ε)dp(ε, x) = x2p+1

in A[x]. It follows that there is an inclusion of ideals

(x2m+1+n−1) ⊆ (xn − εxn−1) in A⊗k k[x](x). (4.7.2)

We need to show that 2m+1 + n− 1 is the smallest integer such that the inclusion
(4.7.2) in A⊗k k[x](x) holds.

Let N + r = 2m+1 + n − 1, where r is a non-negative integer. Assume that
we have an inclusion of ideals (xN ) ⊆ (xn − εxn−1) in A ⊗k k[x](x). The element
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ε ∈ A is nilpotent, hence by Corollary (2.5) we have that F (x) = xn−εxn−1 is such
that the assertions of Theorem (2.4) are satisfied. It follows by Corollary (2.6) that
an inclusion of ideals (xN ) ⊆ (F (x)) in A ⊗k k[x](x) is equivalent to an inclusion
of ideals (xN ) ⊆ (F (x)) in A[x]. Consequently there exists a G(x) in A[x] such
that xN = (xn − εxn−1)G(x). Let dm(ε, x) in A[x] be the polynomial as defined in
(4.7.1). We have that (x− ε)dm(ε, x) = x2m+1

. Hence we get the following identity
in A[x];

(xn − εxn−1)dm(ε, x) = x2m+1+n−1 = xNxr = (xn − εxn−1)G(x)xr. (4.7.3)

The element xn is not a zero divisor in the ring A[x]. It follows that the element
(xn − εxn−1) is not a zero divisor in A[x]. From the identity in (4.7.3) we obtain
the identity (xn − εxn−1)(dm(ε, x) − G(x)xr) = 0 in A[x], which implies that
dm(ε, x) = G(x)xr in A[x]. The polynomial dm(ε, x) (4.7.1) has a constant term
ε2

(m+1)−1 6= 0. Consequently x does not divide dm(ε, x). Therefore r = 0, and
N = 2m+1 + n − 1 is the smallest integer such that we have an inclusion of ideals
(xN ) ⊆ (xn − εxn−1) in A⊗k k[x](x). ¤
Remark. When ε(m) = ε is as in Lemma (4.7), we have that the closed subscheme
Zm = Spec(A ⊗k k[x](x)/(xn − εxn−1)) ⊆ Spec(A ⊗k k[x](x)) is a subscheme of
Spec(A)×k Spec(k[x]/(xN )) if and only if N ≥ 2m+1 + n− 1.

Theorem 4.8. Let R be a local noetherian k-algebra with maximal ideal P . Assume
that the P -adic completion of R is R̂ = k[[x1, . . . , xr]], the formal power series ring
in r > 0 variables. Then the functor HilbnR is not representable in the category of
noetherian k-schemes.

Proof. Write x = x1, . . . , xr, and set k[x](x) = k[x1, . . . , xr](x1,... ,xr) the localiza-
tion of the polynomial ring k[x1, . . . , xr] in the maximal ideal (x1, . . . , xr). By
Lemma (4.6) it suffices to show that Hilbnk[x](x) is not representable.

Assume that Hilbnk[x](x) is representable. Let H be the noetherian k-scheme
representing the functor Hilbnk[x](x). Let U ∈ Hilbnk[x](x)(H) be the universal
family. Then in particular we have that Ured ⊆ H ×k Spec(k). Hence, by Lemma
(4.3) there exists an integer N such that we have an closed immersion

U ⊆ H ×k Spec(k[x1, . . . , xr]/(x1, . . . , xr)N ). (4.8.1)

We let m be an integer such that 2m+1+n−1 > N . Write Am = k[u]/(u2(m+1)
). Let

Zm = Spec(Am ⊗k k[x](x)/(xn
1 − εxn−1

1 , x2, . . . , xr)) ⊆ Spec(Am ⊗k k[x](x)), where
ε ∈ Am is the class of u in Am. We have that Zm = Spec(Am ⊗k k[x1](x1)/(xn

1 −
εxn−1

1 )). It follows from Theorem (3.5) that Zm is an Am-valued point of the
functor Hilbnk[x](x).

By the universality of the pair (H, U) there exists a morphism Spec(Am) → H
such that Zm = Spec(Am)×HU . It then follows from the closed immersion in (4.8.1)
that Zm ⊆ Spec(Am)×kSpec(k[x]/(x1, . . . , xr)N ). However, since 2m+1+n−1 > N
we have by the remark following Lemma (4.7), that Spec(Am ⊗k k[x1](x1)/(xn

1 −
εxn−1

1 )) is not a subscheme of Spec(Am) ×k Spec(k[x1]/(xN
1 )). Hence we get that

Zm can not be a closed subscheme of Spec(Am)×k Spec(k[x1]/(x1, . . . , xr)N ). We
have thus reached a contradiction and proven the Theorem. ¤
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5. Pro-representing Hilbnk[x](x).

5.1. Set up. Let s1, . . . , sn be independent variables over the field k. We write
Rn = k[[s1, . . . , sn]] for the completion of the polynomial ring k[s1, . . . , sn] in
the maximal ideal (s1, . . . , sn). We will show that Rn pro-represents the functor
Hilbn k[x](x). We recall the basic notions from [5].

5.2. Notation. Let Ck be the category where the objects are local artinian k-
algebras with residue field k, and where the morphisms are (local) k-algebra homo-
morphism. If A is an object of Ck we say that A is an artin ring.

We write Hn for the restriction of the functor Hilbnk[x](x) to the category Ck.
Note that an artin ring A, that is an element of the category Ck has only one prime
ideal. The residue field of the only prime ideal of A is k. The ideal (xn) is the only
ideal I of k[x](x) such that the residue ring k[x](x)/I has dimension n as a k-vector
space. It follows that the covariant functor Hn from the category Ck to sets, maps
an artin ring A to the set

Hn(A) =





Ideals I ⊆ A⊗k k[x](x) such that the residue ring

M = A⊗k k[x](x)/I is a flat A-module, where

M ⊗A k = k[x]/(xn), and such that there is an

inclusion of ideals (x) ⊆ R(I) in A⊗k k[x](x).





. (5.2.1)

Remark. Let Hilbn
k[x](x)

denote the usual Hilbert functor and consider its restriction
to the category Ck. Thus an A-valued point ofHilbn

k[x](x)
is an ideal I ⊆ A⊗kk[x](x)

such that the residue ring M = A⊗kk[x](x)/I is flat over A, and such that M⊗Ak =
k[x]/(xn). We shall show that the restriction of the Hilbert functor Hilbn

k[x](x)
to

the category Ck coincides with the functor Hn.
Note that an A-valued point M = A ⊗k k[x](x)/I of Hilbn

k[x](x)
is not a priori

finitely generated as an module over A. However we have the following general
result ([2], Theorem (2.4)).

Let A be a local ring with nilpotent radical. Let M be a flat A-module, and
denote the maximal ideal of A by P . If dimκ(P )(M ⊗A κ(P )) = dimκ(Q)(M ⊗A

κ(Q)) = n, for all minimal prime ideals Q in A, then M is a free A-module of rank
n.

It follows that when A is an artin ring, and M = A ⊗k k[x](x)/I is an A-
valued point of Hilbn

k[x](x)
, then M is free and of rank n as an A-module. It

then follows by Lemma (2.2) that the ideal I is generated by a monic polynomial
F (x) = xn−u1x

n−1+· · ·+(−1)nun in A[x]. Since we have that M⊗Ak = k[x]/(xn)
we get that the coefficients u1, . . . , un of F (x) are nilpotent. Hence by Theorem
(3.5) we have that (x) ⊆ R(I) in A ⊗k k[x](x). We have shown that the two
functors Hilbnk[x](x) and Hilbn

k[x](x)
coincide when restricted to the category Ck of

artin rings.

Lemma 5.3. Let A be an artin ring. Let ψ : Rn = k[[s1, . . . , sn]] → A be a local
k-algebra homomorphism. Let Fψ

n (x) = xn − ψ(sn)xn−1 + · · · + (−1)ψ(sn). Then
(Fψ

n (x)) ⊆ A⊗k k[x](x) is an A-valued point of Hn.

Proof. Since the map ψ is local we have that ψ(si) is in the maximal ideal mA of A,
for each i = 1, . . . , n. The ring A is artin. Consequently mq

A = 0 for some integer q.
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It follows that the coefficients ψ(s1), . . . , ψ(sn) of Fψ
n (x) are nilpotent. By Theorem

(3.5) we have an inclusion of ideals (x) ⊆ R(Fψ
n (x)) in A⊗k k[x](x) and the residue

ring M = A⊗k k[x](x)/(Fψ
n (x)) is a flat A-module such that M⊗A k is of dimension

n as a k-vector space. Thus we have proven that the ideal (Fψ
n (x)) ⊆ A⊗k k[x](x)

is an element of Hn(A). ¤

5.4. The pro-couple (Rn, ξ). Let m be the maximal ideal of Rn = k[[s1, . . . , sn]].
For every positive integer q we let sq,1, . . . , sq,n be the classes of s1, . . . , sn in
Rn/mq. It follows from Lemma (5.3) that the ideal generated by F q

n(x) = xn −
sq,1x

n−1 + · · ·+ (−1)nsq,n in R/mq[x] generates an Rn/mq-point of Hn. We get a
sequence

ξ = {(F q
n(x))}q≥0, (5.4.1)

where (F q
n(x)) is an Rn/mq-point for every non-negative integer q. Clearly ξ defines

a point in the projective limit lim←−q{Hn(Rn/mq)}. Thus we have that (Rn, ξ) is a
pro-couple of Hn.

We let hR be the covariant functor from Ck to sets, which sends an artin ring A
to the set of local k-algebra homomorphisms Homk-loc(Rn, A). We note that a local
k-algebra homomorphism ψ : Rn → A factors through Rn/mq for high enough q.
We get that the pro-couple (Rn, ξ) induces a morphism of functors Fξ : hR → Hn

which for any artin ring A, maps an element ψ ∈ hR(A) to the element (Fψ
n (x)) in

Hn(A). Here Fψ
n (x) is as in Lemma (5.3).

Theorem 5.5. Let Rn = k[[s1, . . . , sn]], and let ξ be as in (5.4.1). The morphism
of functors Fξ : hR → Hn induced by the pro-couple (Rn, ξ), is an isomorphism.

Proof. We must construct an inverse to the morphism Fξ : hR → Hn. Let A be
an artin ring, and let I ⊆ A ⊗k k[x](x) be an ideal satisfying the properties of
(5.2.1). We have that Assertion (1) of Theorem (3.5) holds. Consequently the ideal
I ⊆ A ⊗k k[x](x) is generated by a unique F (x) = xn − u1x

n−1 + · · · + (−1)un

in A[x], where u1, . . . , un are nilpotent. The coefficients u1, . . . , un of F (x) are in
the maximal ideal of A, hence the map ψ : k[[s1, . . . , sn]] → A sending si to ui,
determines a local k-algebra homomorphism. We have thus constructed a morphism
of functors G : Hn → hR. It is clear that G is the inverse of Fξ. ¤

6. A filtration of Hilbnk[x](x) by schemes.
We will show in this section that there is a natural filtration of Hilbnk[x](x) by

representable functors {Hn,m}m≥0, whereHn,m is a closed subfunctor ofHn,m+1 for
all m. The functorsHn,m are the Hilbert functors parameterizing closed subschemes
of length n of Spec(k[x]/(xn+m)).

An outline of Section (6) is as follows. We will define the functors Hn,m from the
category of k-schemes, not necessarily noetherian schemes, to sets. We then con-
struct schemes Spec(Hn,m) which we show represent Hn,m. Thereafter we restrict
Hn,m to the category of noetherian k-schemes, and show that we get a filtration of
Hilbnk[x](x).

Definition 6.1. Let n > 0,m ≥ 0 be integers. In the polynomial ring k[x] we
have the ideal (xn+m) and we denote the residue ring by R = k[x]/(xn+m) =
k[x](x)/(xn+m). We denote by Hn,m = Hilbn

R the local Hilbert functor of n-points
on Spec R. Thus Hn,m is the contravariant functor from the category of k-schemes
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to sets, determined by sending a k-scheme T to the set

Hn,m(T ) =





Closed subschemes Z ⊆ T ×k Spec(k[x]/(xn+m)),
such that the projection Z → T is flat, and the

κ(y)-vector space of global sections of the fibre
Zy has dimension n for all points y ∈ T.





.

6.2. Construction of the rings Hn,m. Let Pn = k[s1, . . . , sn] be the polynomial
ring in the variables s1 . . . , sn over k. Let m be a fixed non-negative integer, and
let y1, . . . , ym, x be algebraically independent variables over Pn. We define Fn(x) =
xn− s1x

n−1 + · · ·+(−1)nsn in Pn[x], and we let Ym(x) = xm + y1x
m−1 + · · ·+ ym.

The product Fn(x)Ym(x) is

Fn(x)Ym(x) = xn+m + Cm,1(y)xn+m−1 + · · ·+ Cm,n+m(y). (6.2.1)

As a convention we let s0 = y0 = 1, and yj = 0 for negative values of j. The
coefficient Cm,i(y) is the sum of products (−1)jsjyi−j , where j = 0, . . . , n, and
i− j = 0, 1, . . . , m. We have

Cm,i(y) = yi − s1yi−1 + · · ·+ (−1)nsnyi−n

Cm,m+j(y) = (−1)jymsj + · · ·+ (−1)nym+j−nsn

when i = 1, . . . , m.

when j = 1, . . . , n.
(6.2.2)

For every non-negative integer m we let Im ⊆ Pn[y1, . . . , ym] be the ideal generated
by the coefficients Cm,1(y), . . . , Cm,m+n(y). We write

Hn,m = Pn[y1, . . . , ym]/Im = Pn[y1, . . . , ym]/(Cm,1(y), . . . , Cm,m+n). (6.2.3)

Using (6.2.2) we note that Cm,m(y) = ym + Cm−1,m(y). For every positive integer
m we define the Pn-algebra homomorphism

cm : Pn[y1, . . . , ym] → Pn[y1, . . . , ym−1] (6.2.4)

by sending yi to yi when i = 1, . . . , m− 1, and ym to −Cm−1,m(y).

Lemma 6.3. The natural map Pn → Pn[y1, . . . , ym]/(Cm,1(y), . . . , Cm,m(y)) is an
isomorphism for each non-negative integer m. In particular the map Pn → Hn,m

is surjective.

Proof. Consider the homomorphism cm as defined in (6.2.4). It is clear that cm is
surjective and that we get an induced isomorphism

Pn[y1, . . . , ym]/(Cm,m(y)) w Pn[y1, . . . , ym−1]. (6.3.1)

When i ≤ m we have that Cm,i(y) is a function in the variables y1, . . . , yi. Hence
when i = 1, . . . , m − 1 the elements Cm,i(y) are invariant under the action of cm.
From (6.2.2) we get that Cm,i(y) = Cm−1,i(y) when i = 1, . . . , m− 1. It follows by
successive use of (6.3.1) that we get an induced isomorphism

Pn[y1, . . . , ym]/(Cm,1(y), . . . , Cm,m(y)) w Pn. (6.3.2)

It is easy to see that the map (6.3.2) composed with the natural map induced by
Pn → Pn[y1, . . . , ym], is the identity map on Pn. ¤
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Lemma 6.4. For every positive integer m, the Pn-algebra homomorphism cm

(6.2.4) induces a surjective map Hn,m → Hn,m−1.

Proof. Let ĉm be the composite of the residue map Pn[y1, . . . , ym−1] → Hn,m−1

and cm. We first show that we get an induced map Hn,m → Hn,m−1. That is, we
show that the ideal Im ⊆ Pn[y1, . . . , ym] defining Hn,m, is in the kernel of ĉm.

The ideal Im is generated by Cm,1(y), . . . , Cm,m+n(y). As noted in the proof of
Lemma (6.3) the elements Cm,i(y) are mapped to Cm−1,i(y) when i = 1, . . . , m−1,
whereas Cm,m(y) is in the kernel of cm. Consequently we need to show that the
elements Cm,m+j(y) are mapped to zero by ĉm. Using (6.2.2) we get that

Cm,m+j(y) = (−1)jymsj + (−1)j+1ym−1sj+1 · · ·+ (−1)nym+j−nsn

= (−1)nymsj + Cm−1,m+j(y) when j ≤ n− 1.
(6.4.1)

It follows that Cm,m+j(y), for j = 1, . . . , n− 1 are mapped to zero by ĉm. The last
generator of Im is Cm,m+n(y) = (−1)nymsn, clearly in the kernel of ĉm. Thus we
have proven that the ideal Im is in the kernel of ĉm : Pn[y1, . . . , ym] → Hn,m−1.

We need to show that the induced map Hn,m → Hn,m−1 is surjective. From
Lemma (6.3) we have that the natural map Pn → Hn,m is surjective for all m.
Since the map cm is Pn-linear, it follows that the induced map Hn,m → Hn,m−1 is
Pn-linear and the result follows. ¤
Definition 6.5. The natural map Pn = k[s1, . . . , sn] → Hn,m is surjective by
Lemma (6.3), for all m. We let sm,i be the class of si in Hn,m, for i = 1, . . . , n.
Define

Fn,m(x) = xn − sm,1x
n−1 + · · ·+ (−1)nsm,n in Hn,m[x]. (6.5.1)

Lemma 6.6. Let A be a k-algebra. Let I be an ideal in A⊗k k[x](x) such that the
residue ring A⊗k k[x](x)/I is a free A-module of rank n, and such that there is an
inclusion of ideals (xn+m) ⊆ I in A ⊗k k[x](x). Then there is a unique k-algebra
homomorphism ψ : Hn,m → A such that

Fψ
n,m(x) = xn − ψ(sm,1)xn−1 + · · ·+ (−1)nψ(sm,n)

in A[x] generates I.

Proof. It follows by Assertion (2) of Lemma (2.2) that I is generated by a unique
F (x) = xn− u1x

n−1 + · · ·+ (−1)nun in A[x]. By Assertion (1) of Lemma (2.2) the
classes of 1, x, . . . , xn−1 form a basis for M . Consequently F (x) in A[x] satisfies the
assertions of Theorem (2.4). By Corollary (2.6) the inclusion of ideals (xn+m) ⊆
(F (x)) in A ⊗k k[x](x) is equivalent to the existence of G(x) in A[x] such that
xn+m = F (x)G(x). Let G(x) = xm + g1x

m−1 + · · · + gm in A[x]. The coefficients
g1, . . . , gm are uniquely determined by G(x), hence uniquely determined by the
ideal I. Let y1, . . . , ym be independent variables over k. We get a well-defined k-
algebra homomorphism θ : k[s1, . . . , sn, y1, . . . , ym] → A determined by θ(si) = ui

where i = 1, . . . , n, and θ(yj) = gj where j = 1, . . . , m. We have thus constructed
a k-algebra homomorphism θ : Pn[y1, . . . , ym] → A. We will next show that the
map θ factors through Hn,m. We have that

xn+m = F (x)G(x)

= (xn − u1x
n−1 + · · ·+ (−1)nun)(xm + g1x

m−1 + · · ·+ gm)

= xn+m + c1x
n+m−1 + · · ·+ cn+m

(6.6.1)
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in A[x]. It follows that the coefficients cj where j = 1, . . . , m+n are zero in A. The
homomorphism θ induces a map Pn[y1, . . . , ym][x] → A[x] which sends Fn,m(x) to
F (x) and Ym(x) = xm + y1x

m−1 + · · ·+ ym to G(x). It follows that the coefficient
equations Cm,j(y) (6.2.1) where j = 1, . . . ,m+n, are mapped to cj = 0. Hence the
homomorphism θ : Pn[y1, . . . , ym] → A factors through Hn,m. Let ψ : Hn,m → A
be the induced map. We have for each i = 1, . . . , n that ψ(sm,i) = θ(si) = ui.
Consequently we get that Fψ

n,m(x) = F (x). We have thus proven the existence of a
map ψ : Hn,m → A such that Fψ

n,m(x) generates the ideal I in A⊗k k[x](x).
We need to show that the map ψ is the only map with the property that

(Fψ
n,m(x)) = I. Let ψ′ : Hn,m → A be a k-algebra homomorphism such that

Fψ′
n,m(x) generates the ideal I in A⊗k k[x](x). By Assertion (2) of Lemma (2.2) the

ideal I ⊆ A ⊗k k[x](x) is generated by a unique monic polynomial F (x) in A[x].
It follows that we must have Fψ′

n,m(x) = F (x). Thus if u1, . . . , un are the coeffi-
cients of F (x), we get that ψ′(sm,i) = ui. A k-algebra homomorphism Hn,m → A
is determined by its action on sm,1, . . . , sm,n. Hence ψ = ψ′, and the map ψ is
unique. ¤
Proposition 6.7. The functor Hn,m is represented by Spec(Hn,m). The universal
family is given by Spec(Hn,m[x]/(Fn,m(x))).

Proof. We first show that Spec(Hn,m[x]/(Fn,m(x))) is an Hn,m-valued point of
Hn,m. We have that Fn,m(x) = xn− sm,1x

n−1 + · · ·+(−1)nsm,n in Hn,m[x]. Since
Fn,m(x) is of degree n and has leading coefficient 1, we have that Hn,m[x]/(Fn,m(x))
is a free Hn,m-module of rank n. By the identity in (6.2.1) and the construction
of Hn,m we have an inclusion of ideals (xn+m) ⊆ (Fn,m(x)) in Hn,m[x]. Thus we
have that Hn,m[x]/(Fn,m(x)) = Hn,m ⊗k R/(Fn,m(x)), where R = k[x]/(xn+m),
and consequently Spec(Hn,m[x]/(Fn,m(x))) is an Hn,m-valued point of Hn,m.

We then have a morphism of functors F : Hom(−, Spec(Hn,m)) → Hn,m, which
we claim is an isomorphism.

Let T be a k-scheme and let Z be an T -valued point of Hn,m. Let p : T ×k

Spec(k[x]/(xn+m)) → T be the projection on the first factor. Let Spec(A) =
U ⊆ T be an open affine subscheme and let the closed subscheme Z ∩ p−1(U) ⊆
U ×k Spec(k[x]/(xn+m)) be given by the ideal J ⊆ A⊗k k[x]/(xn+m). Let I be the
inverse image of J under the residue map A⊗k k[x](x) → A⊗k k[x]/(xn+m).

It follows from the definition of the functor Hn,m that the ideal I satisfies the
conditions of Proposition (2.3). Hence A ⊗k k[x](x)/I is a free A-module of rank
n. We have by definition an inclusion of ideals (xn+m) ⊆ I in A ⊗k k[x](x). Con-
sequently we get by Lemma (6.6) a unique map fU : U → Spec(Hn,m) such that
Z ∩ p−1(U) = U ×Hn,m Spec(Hn,m[x]/(Fn,m(x))).

Thus, if {Ui} is an open affine covering of T , we get maps fi : Ui → Spec(Hn,m)
with the property that

Z ∩ p−1(Ui) = Ui ×Hn,m Spec(Hn,m[x]/(Fn,m(x))). (6.7.1)

The maps fi : Ui → Spec(Hn,m) are unique with respect to the property (6.7.1).
Hence the maps fi glue together to a unique map fZ : T → Spec(Hn,m) such that
Z = T ×Hn,m Spec(Hn,m[x]/(Fn,m(x))). It follows from the uniqueness of the map
fZ that the assignment sending a T -valued point Z to the morphism fZ sets up an
bijection between the set Hn,m(T ) and the set Hom(T, Spec(Hn,m)). ¤
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Theorem 6.8. Let n be a fixed positive integer. There is a filtration of the functor
Hilbnk[x](x) by an ascending chain of representable functors

Hn,0 ⊆ Hn,1 ⊆ Hn,2 ⊆ . . . ,

where Hn,m is a closed subfunctor of Hn,m+1, for every m.

Proof. By Proposition (6.7) the functors Hn,m are represented by Spec(Hn,m)
where the universal family is given by Un,m = Spec(Hn,m[x]/(Fn,m(x)). Let
cm+1 : Hn,m+1 → Hn,m be the surjective map of Lemma (6.3). It follows from the
Pn-linearity of cm+1 that the induced map Hn,m+1[x] → Hn,m[x] maps Fn,m+1(x)
to Fn,m(x). Consequently we have that Spec(Hn,m) is a closed subscheme of
Spec(Hn,m+1) such that Un,m+1 ×Hn,m+1 Spec(Hn,m) = Un,m. Hence we have
that Hn,m is a closed subfunctor of Hn,m+1.

From the constructions (6.2.3) of the rings Hn,m it is evident that they are
noetherian. It follows that the restriction of the functor Hn,m to the category of
noetherian k-schemes, is represented by Spec(Hn,m).

That the functors {Hn,m}m≥0 give a filtration of the functorHilbnk[x](x), follows
from Lemma (4.3). Indeed, let T be noetherian k-scheme and let Z be a T -valued
point of Hilbnk[x](x). Then there exists an integer N = N(Z) such that Z ⊆
T ×k Spec(k[x]/(xN )). Consequently the T -valued point Z of Hilbnk[x](x) is a
T -valued point of Hn,N−n. ¤
6.9. Examples of Hn,m. The rings Hn,m are all of the form k[s1, . . . , sn]/Jm,
where Jm is generated by n elements. With n = 1 it is not difficult to solve
the equations (6.2.2). We get that H1,m = k[u]/(um+1). Thus we have that the
scheme Spec k[x]/(xm+1) itself represents the Hilbert functor H1,m of 1-points on
Spec(k[x]/(xm+1), for all non-negative integers m.

In general, with n > 1 a description of the generators of the ideal Jm is not
known, even though they can be recursively solved. For instance, we have

H2,1 = k[x, y]/(x2, xy)

H2,2 = k[x, y]/(x3 − 2xy, x2y − y2)

H2,3 = k[x, y]/(x4 − 3x2y + y2, x3y − 2xy2).
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