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Abstract. The dynamics of dendritic growth of a crystal in an undercooled melt is deter-
mined by macroscopic diffusion-convection of heat and capillary forces acting on length
scales compared to the nanometer width of the solid-liquid interface. Its modeling is useful
for instance in processing techniques based on casting. The phase field method is widely
used to study evolution of such microstructures of phase transformations on a continuum
level; it couples the energy equation to a phenomenological Allen-Cahn/Ginzburg-Landau
equation modeling the dynamics of an order parameter determining the solid and liquid
phases, including also stochastic fluctuations to obtain the qualitative correct result of
dendritic side branching. This lecture presents some ideas to derive stochastic phase field
models from atomistic formulations by coarse-graining molecular dynamics and kinetic
Monte Carlo methods.
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1. Introduction to Phase-field Models

The phase field model for modeling a liquid solid phase transformation is an Allen-
Cahn/Ginzburg-Landau equation coupled to the energy equation

∂tφ = div(k1∇φ) − k0

(
f ′(φ) + g′(φ)k4T

)
+ noise

∂t

(
cvT + k2g(φ)

)
= div(k3∇T )

(1.1)

with a double well potential f having local minima at ±1, smoothed step function
g, temperature T and specific heat cv, cf. [3]. The phase field variable φ : Rd ×
[0,∞) → [−1, 1] interprets the solid and liquid phases as the domains {x ∈ Rd :
φ(x) > 0} and {x ∈ Rd : φ(x) < 0} respectively. To have such an implicit definition
of the phases, as in the level set method, is a computational advantage compared
to a sharp interface model, where the necessary direct tracking of the interface
introduce computational drawbacks. This phenomenological phase-field model,
with free energy potentials motived by thermodynamics, has therefore become a
popular and effective computational method to solve problems with complicated
microstructures of dendrite and eutectic growth, cf. [1],[3]. The phase-field model
has mathematical wellposedness and convergence to sharp interface results [34].

Assuming that the reaction term in the Allen-Cahn equation takes a given form,
e.g. a standard choice is

f(φ) := (1 − φ2)2

g(φ) :=
15
16

(
1
5
φ5 −

2
3
φ3 + φ) +

1
2
,

then the parameters k0, k1, k2, k3, k4 in the phase-field model can be determined
from atomistic molecular simulations [19]; an alternative in [1] uses a steeper step
function g to easy derive consistency with sharp interface models. The evolution of
the phase interface depends on the orientation of the solid crystal; this is modeled
by an anisotropic matrix k1. Added noise to system (1.1) is also important, e.g.
to obtain sidebranching dendrites [22] explained in Section 5.4.

Phase changes can be modeled on an atomistic level by molecular dynamics or
kinetic Monte Carlo methods. This lecture first presents some ideas and questions
to derive a stochastic phase field model by coarse-graining molecular dynamics,
to determine the reaction term (i.e. f and g) and the noise. This is made in
three steps in Sections 2 to 4: to give a precise quantitative atomistic definition
of the phase-field variable, to introduce an atomistic molecular dynamics model
based on Brownian dynamics, and to derive the dynamics for the coarse-grained
phase-field. Section 5 derives stochastic hydrodynamical limits of solutions to an
Ising model with long range interaction, i.e. coarse-graining a kinetic Monte Carlo
method following [24]. Section 5.4 presents a simple kinetic Monte Carlo method
for dendrite dynamics.
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2. Quantitative Atomistic Definition of the Phase-
field Variable

The aim is to give a unique definition of the phase-field variable, so that it can
be determined precisely from atomistic simulations. The usual interpretation is
to measure interatomic distances and use structure functions (or similar methods)
to measure where the phase is solid and where it is liquid, which then implicitly
defines the phase-field variable [3]. Here we instead use the energy equation for
a quantitative and explicit definition of the phase-field variable. The macroscopic
energy equation with a phase transformation and heat conduction is

∂t(cvT + m) = div(k∇T ) (2.1)

where m corresponds to the latent heat release. In (1.1) the latent heat determines
the parameter k2, since φ is defined to jump from 1 to −1 in the phase transforma-
tion. We will instead use this latent heat to directly define the phase field function,
and not only the parameter k2. The total energy, cvT + m, can be defined from
molecular dynamics of N particles with position Xi, velocity vi and mass µ in a
potential V , see [20], [18],

cvT + m =
N∑

i=1

µ
|vi|2

2
+ V (X1, . . . , XN ). (2.2)

Assume that the potential can be defined from pair interactions

V (X) =
1
2

N∑

i=1

∑

j 6=i

Φ(Xi − Xj), (2.3)

where Φ : R3 → R is a molecular dynamics pair potential, e.g. a Lennard-Jones
potential

Φ(x) = z1

( σ

|x|

)12

− z2

( σ

|x|

)6

.

In the macroscopic setting the jump of m in a phase change is called the latent
heat, which depends on the thermodynamic variables kept constant: with constant
N, T and volume it is called the internal energy and with constant pressure instead
of volume it is called enthalpy. The kinetic energy

∑
i µ|vi|2/2 is related to the

temperature. It is therefore natural to let the phase field variable be determined
by the potential energy V (X). In a pointwise setting the potential energy can be
represented by the distribution

1
2

N∑

i=1

∑

j 6=i

Φ(Xi − Xj)δ(x − Xi)

where δ is the point mass at the origin [20]. We seek an averaged variant and we
will study a microscopic phase change model where the interface is almost planar
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in the microscopic scale with normal in the x1 direction. Therefore we take a
smooth average and define the phase-field variable by

m(X, x) :=
1
2

N∑

i=1

∑

j 6=i

Φ(Xi − Xj)

︸ ︷︷ ︸
mi(X)

η(x − Xi) (2.4)

where η : R3 → (0,∞) is a smooth approximation of the point (delta) mass, with
scale εi > 0 in the xi direction,

η(x) :=
3∏

i=1

e−|xi|2/(2ε2i )

(2πε2i )1/2
. (2.5)

Smooth averages have been used in molecular dynamics for fluid dynamics, cf.
[18] and for the vortex blob method and the smoothed particle hydrodynamics
approximation of moving particles in fluid dynamics, cf. [29] [2]. Sections 3-4
present a molecular dynamics model for the potential energy (2.4) and Section 5.4
formulates a kinetic Monte Carlo model.

Question 2.1. How accurate is it to say that the (macroscopic) latent heat is
equal to a jump in V ?

3. An Atomistic Brownian Dynamics Model

The standard method to simulate molecular dynamics is to write Newton’s laws
for the particles, cf. [10], [32]. We will instead use Brownian dynamics with the
Ito differential equations

dXt
i = −∂XiV (Xt)dt +

√
2γ dW t

i (3.1)

where Wi are independent Brownian motions and the notation Xt
i := Xi(t) is the

position of the i’th particle at time t. This equation, called the Smoluchowski
equation, is the zero relaxation time limit (i.e. τ → 0+) of Langevin’s equation (
cf. [25], [30], [32], [21])

dX̂s
i = pi/µds

dps
i = −∂XiV (X̂s)ds − ps

i

τ
ds +

√
2γµ

τ
dŴ s

i ,
(3.2)

in the faster time scale s = µt/τ , where µ is the mass and Ŵi are independent
Brownian motions. The zero relaxation time limit is explained more in Remark 3.2.
The simplified Brownian dynamics has the same invariant measure with density
proportional to e−V (X)/γ as in Monte-Carlo molecular dynamics simulations of
equilibrium problems with γ = kBT , where T is the absolute temperature and kB
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is the Boltzmann constant. In this sense, the parameter γ/kB in the Brownian
dynamics is the local temperature T . In contrast to the standard Monte-Carlo
method, the model (3.1) includes the time variable. Our microscopic model of
a phase change is then the Brownian dynamics model (3.1) for the phase-field
(latent heat) variable m in (2.4) coupled to the macroscopic energy equation (2.1).
The Brownian dynamics uses γ := kBT , where the temperature varies on the
macroscopic scale, due to the energy equation, so that T is almost constant on
the microscopic scale of a molecular dynamics simulation and makes its Gibbs
equilibrium density proportional to e−V (X)/(kBT (x)) reasonable.

We have two reasons to use Brownian dynamics instead of standard determin-
istic Newton dynamics (τ = ∞ in (3.2)): the most important reason is to have a
formulation that separates the noise and the mean drift, which is a much harder
issue in deterministic many particle dynamics, in fact so far the only derivation of
the Euler equations of conservation laws from particle dynamics use a weak noise
perturbation of a Hamiltonian system in [31]; and the second reason is to try to
simulate molecular dynamics longer time.

Question 3.1. Is Brownian dynamics a reasonable alternative to standard molec-
ular dynamics here?

Remark 3.2 (Smoluchowski Limit of the Langevin Equation). The Smoluchowski
high friction limit of the Langevin equation has been computed with different
methods using strong [30] and weak convergence [25]. Strong convergence has
the drawback to yield error estimates of order eKtτ , due to a Gronwall estimate
and Lipschitz bound K of the forces; in contrast, error estimates of probabilities
using weak convergence can show good accuracy for long time. The proof that
the Langevin solution X̂µt/τ converges weakly (i.e. in law) to the Smoluchowski
solution Xt, as τ → 0+, in [25, 28], uses a Chapman-Enskog expansion of the
Kolmogorov backward equation, for the Langevin dynamics in the diffusion time
scale t, combined with a general convergence result for such diffusion processes in
[26]. Dissipative particle dynamics [15] has dissipation-fluctuation perturbations
of a Hamiltonian system where the momentum is conserved, in contrast to the
analogous Langevin dynamics. The work [25] also shows that a Smoluchowski
type limit seems more subtly for dissipative particle dynamics.

4. Coarse-grained Phase-field Dynamics

We want to determine a mean drift function a(m̄) and a diffusion function b(m̄)
so that the coarse-grained approximation m̄t, solving the coarse-grained equation

dm̄t = a(m̄t)dt +
M∑

k=1

bk(m̄t)dW̃ t
k,

is an optimal approximation to the phase field m(Xt, ·) defined in (2.4), where
Xt solves the Brownian dynamics (3.1). Here W̃k, k = 1, . . .M are all indepen-
dent Brownian motions, also independent of all Wi. For this purpose we seek to
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minimize the error of the expected value at any time T

E
[
g
(
m(XT , ·)

)]
− E

[
g(m̄T )

]

for any given function g with the same initial value m̄0 = m(X0, ·). Here the
expected value of a stochastic variable w, with set of outcomes Ω and probability
measure P , is defined by

E[w] :=
∫

Ω

wdP.

The first idea, in Section 4.1, is that Ito’s formula and the Brownian dynamics
(3.1) determine functions α and β, depending on the microscopic state X, so that

dm(Xt, ·) = α(Xt)dt +
N∑

j=1

βj(Xt)dW t
j . (4.1)

The next step, in Section 4.2, is estimate the error, using the Kolmogorov
equations for m̄ and (4.1), similar to [35, 24], which leads to

E
[
g
(
m(XT , ·)

)
− g(m̄T )

]
= E[

∫ T

0

〈ū′, α − a〉 + 〈ū′′,

N∑

j=1

βj ⊗ βj −
M∑

k=1

bk ⊗ bk〉dt],

where 〈ū′, ·〉 is the L2(R) scalar product, corresponding to the variable x with
ū′, which is the Gateaux derivative (i.e functional derivative) of the functional
E[g(m̄T ) | m̄t = n] with respect to n; and similarly 〈ū′′, ·〉 is the L2(R × R) scalar
product with the second Gateaux derivative ū′′ of the functional E[g(m̄T ) | m̄t = n]
with respect to n. The notation bk ⊗ bk(x, x′) := bk(x)bk(x′) is the tensor product.

The final step, in Section 4.3, is to use molecular dynamics simulations for
a planar two phase problem and take averages in cross sections parallel to the
interface, where ū′, ū′′, a,

∑
k bk ⊗ bk are constant, to evaluate approximations to

the functions a and
∑

k bk ⊗ bk by

a =
1
T E

[ ∫ T

0

αdt],

∑

k

bk ⊗ bk =
1
T E

[ ∫ T

0

N∑

j=1

βj ⊗ βjdt].

4.1. The Ito Formula for the Phase-field. The Ito formula (cf. [13])
implies

dm(Xt, x) =
N∑

j=1

(−∂Xj m ∂Xj V + γ∂Xj Xjm)

︸ ︷︷ ︸
α(Xt)

dt +
N∑

j=1

√
2γ∂Xj m︸ ︷︷ ︸
βj(Xt)

dWj . (4.2)
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The definition in (2.4),

m(Xt, x) =
∑

i

mi(X)η(x − Xt
i ),

yields
∂Xjm =

∑

i

∂Xj miη(x − Xi) + mj∂Xj η(x − Xj).

In (4.2) we will use (2.5) to evaluate the last derivative as

∂Xj η(x − Xj) = −∂xη(x − Xj) in dt terms

∂Xj η(x − Xj) = −η(x − Xj)
( (x − Xj)1

ε21
,
(x − Xj)2

ε22
,
(x − Xj)3

ε23

)
in dWj terms,

in order to avoid spatial derivatives on the diffusion coefficient, while including
them in the drift. Since

mi =
1
2

∑

k 6=i

Φ(Xi − Xk)

and
V (X) =

1
2

∑

i

∑

j 6=i

Φ(Xi − Xj)

there holds

∂Xj mi =
1
2

∑

k 6=i

Φ′(Xi − Xk)δij −
1
2
Φ′(Xi − Xj)(1 − δij),

∂Xj V (X) =
∑

k 6=j

Φ′(Xj − Xk),

where

δij :=

{
1 i = j,

0 i 6= j

is the Kronecker symbol. The second derivatives are

∂XjXj m =
∑

i

∂XjXj miη(x − Xi) − 2∂Xj mj∂xη(x − Xj) + mj∂xxη(x − Xj),

with
∂XjXj mi =

1
2

∑

k 6=i

Φ′′(Xi − Xk)δij +
1
2
Φ′′(Xi − Xj)(1 − δij)

and all terms in (4.2) are now expressed in terms of Φ, its gradient Φ′ and Hessian
Φ′′. We note that the drift, α, has the form

α = ∂xxA2 + ∂xA1 + A0 :=

γ∂xxm(Xt, x) + ∂x

( N∑

i=1

n1i(Xt)η(x − Xt
i )

)
+

N∑

i=1

n0i(Xt)η(x − Xt
i )

(4.3)
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of conservative and non conservative reaction terms. Similarly the diffusion, βj ,
takes the form

N∑

i=1

n3ji(Xt)η(x − Xt
i ) + n4j(Xt)η(x − Xt

j)(x − Xt
j).

Remark 4.1. A similar derivation with Ito’s formula shows that the density,
ρ(x) :=

∑
i η(x − Xi), satisfies

dρ = γ∂xxρ dt−
√

2γ ∂x

N∑

i=1

η(x − Xi) dXi

which in the case of zero particle forces, V ′ = 0, reduces to the diffusion equation
for the expected density, ρ := E[ρ],

∂tρ = γ∂xxρ.

4.2. The Error Representation. The conditioned expected value

ū(n, t) := E[g(m̄T ) | m̄t = n] (4.4)

satisfies the Kolmogorov equation (cf. [35, 24])

∂tu + 〈ū′, a〉 + 〈ū′′,

M∑

k=1

bk ⊗ bk〉 = 0

ū(·, T ) = g

(4.5)

Let mt := m(Xt, ·). The final condition in (4.5) and the definition (4.4) show that

E
[
g
(
m(XT , ·)

)
− g(m̄T )

]
= E[ū(mT , T )] − ū(m0, 0) = E[

∫ T

0

dū(mt, t)].

Use the Ito formula and (4.2) to evaluate dū(mt, t) and Kolmogorov’s equation
(4.5) to replace ∂tū in this right hand side to obtain the error representation

E
[
g
(
m(XT , ·)

)
− g(m̄T )

]

= E
[ ∫ T

0

〈ū′, α〉 + 〈ū′′,

N∑

j=1

βj ⊗ βj〉 + ∂tū dt
]

= E
[ ∫ T

0

〈ū′, α − a〉 + 〈ū′′,

N∑

j=1

βj ⊗ βj −
M∑

k=1

bk ⊗ bk〉 dt
]
.

4.3. Computation of Averages in Cross Sections. The optimal
choice of the function a is to minimize E[

∫ T
0 〈ū′, α − a〉dt], which seems hard to

determine exactly, since ū′(m(Xt, ·), t
)

depends on Xt. However, the function
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ū′(m(Xt, ·), t
)

depends only mildly on the coarse-grained m(Xt, ·) and not directly
on Xt. Therefore a reasonable approximation of this optimum is to think of an
expansion of ū′ in α− a and determine a by the leading order condition E[

∫ T
0 α−

adt] = 0, which means that the drift a(x) := a(m̄(·, x)) is

a(x) =
1
T

E
[ ∫ T

0

α(x)dt
]
,

and similarly for the diffusion matrix

d(x, x′) =
1
T E

[ ∫ T

0

N∑

j=1

βj(x) ⊗ βj(x′)dt
]
.

We expect the spatial averages of the microscopic variables to vary on a much
smaller scale in the x1 direction normal to the phase front than in its orthogonal
directions, consequently we use an average function η in (2.4) with higher resolution
in the x1 direction, so that 0 < ε1 � ε2 = ε3. In a microscopic simulation the
molecular dynamics (3.1) has a small spatial volume, so that ε2 is much larger
than the size of the simulation box. Consequently we may first think of α and β
depending only on the x1 coordinate. Here the averages for the drift with its three
terms Ai in (4.3) is made separatly for each Ai, so that

a(x) =
2∑

i=0

∂i
x

1
T

E
[ ∫ T

0

Ai(Xt, x)dt
]

=:
2∑

i=0

∂i
xAi(x)

In practice, the drift terms Ai and diffusion d can only be determined for a
discrete set of points

{(x1(1), x2(1), x3(1)), . . . , (x1(M/3), x2(M/3)), x3(M/3))} =: XM

and XM ×XM , respectively, related to the scales εi. The diffusion coefficient b, as
a function of x, can then be obtained from Choleski factorization of the M × M
matrix d

M∑

k=1

bk(x)bk(x′) = d(x, x′).

We expect that x1 7→ T −1E[
∫ T
0

mtdt] is monotone, for fixed (x2, x3), so that its
inverse function, denoted by m−1, is well defined. Then the coarse-grained drift
and the diffusion can be obtained as function of m̄ by

a(m̄) :=
∑

i=0

∂i
xAi

(
m−1(m̄)

)
,

and similarly for bj .

Question 4.2. Will the computed a and b be reasonable?
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Question 4.3. Can the phase-field method be coupled to the molecular dynamics
method for improved localized resolution?

Question 4.4. Note that the approximation error E
[
g
(
m(XT , ·)

)
− g(m̄T )

]
be-

comes proportional to the variances

E[
∫ T

0

〈α − a, α − a〉dt],

E[
∫ T

0

〈
N∑

j=1

βj ⊗ βj −
M∑

k=1

bk ⊗ bk,

N∑

j=1

βj ⊗ βj −
M∑

k=1

bk ⊗ bk〉dt].

The first variations ∂ū′(m(Xt, ·), t
)
/∂α and ∂ū′′(m(Xt, ·), t

)
/∂βj determine the

factors of proportionality. Can this be used to adaptively determine the resolution
scale ε?

Remark 4.5. If we integrate the noise term over all x1, i.e. take ε1 very large,
and let g(m) = m2, then the error we are studying E

[
g
(
m(XT , ·)

)
−g(m̄T )

]
is the

usual fluctuation of energy E[V 2 − E[V ]2] (proportional to the specific heat [21]),
provided we set m̄ = E[V ].

5. An Atomistic Kinetic Monte Carlo Method

Kinetic Monte Carlo methods can also be used to simulate solid-liquid phase
changes on an atomistic level, cf. [14]. Here the reaction states and rates are
given a priori, which makes it possible to simulate crystal growth on larger time
scales than in molecular dynamics. The reaction rates and states can in principle
be determined from a molecular dynamics simulations on smaller systems, cf. [37];
however often several reactions are involved making this a demanding modeling
task. This section is a short version of [24] and derives stochastic hydrodynamical
limits of the Ising model with long range interaction, which is the simplest model
of this kind of an stochastic interacting particle system on a square lattice with
two possible states in each lattice point, cf. [21].

Define a periodic lattice L := γZd/Zd, with neighboring sites on distance γ,
and consider spin configurations σ : L × [0, T ] → {−1, 1} defined on this lattice.
Introduce a stochastic spin system where the spin σt(x), at site x ∈ L and time
t, will flip to −σt(x) with the rate c

(
x, σt(·)

)
dt, in the time interval (t, t + dt),

independent of possible flips at other sites, cf. [27]. Let σx denote the configuration
of spins after a flip at x of state σ, i.e.

σx(y) =
{

σ(y) y 6= x
−σ(x) y = x,

the probability density P (σ, t) of finding the spin system in configuration σ ∈
{−1, 1}L at time t then solves the master equation

dP (σ, t)
dt

=
∑

x∈L

(
c(x, σx)P (σx, t) − c(x, σ)P (σ, t)

)
, (5.1)
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where the gain term
∑

x c(x, σx)P (σx, t) is the probability of jumping to state σ at
time t and the loss term

∑
x c(x, σ)P (σ, t) is the probability to leave state σ. Similar

master equations are used for microscopic models of chemical reactions and phase
transformations, cf. [36, 14], where lattice sites are occupied by different species
of particles. For instance with two species the state space could be {0, 1}× {0, 1}
instead of {−1, 1} for the classical spin model above.

We want a spin system that has statistical mechanics relevance, which can
achieved e.g. by choosing the rate function c as follows. Consider the Hamiltonian

H(σ) = −1
2

∑

x∈L

∑

y 6=x

J(x − y)σ(x)σ(y) −
∑

x∈L

h(x)σ(x)

J = γdJ0, J0(x) = 0 for |x| ≥ 1,

where the long range interaction potential, J0 ∈ C2(Rd), is compactly supported
and the function h ∈ C2(Rd) is a given external field. Define the Glauber Markov
process on {−1, 1}L with generator

d

dt
E[f(σt)|σ] = Lf(σ) =

∑

x∈L

c(x, σ)
(
f(σx) − f(σ)

)
(5.2)

for f : {−1, 1}L → R and the flip rate

c(x, σ) =
e−βU(x)σ(x)

e−βU(x) + eβU(x)

=
1
2

(
1 − σ(x) tanh

(
βU (x)

))
,

U (x) = h(x) +
∑

y 6=x

J(x − y)σ(y) =: h(x) + J ∗ σ(x) − J(0)σ(x),

(5.3)

where β > 0 is the inverse temperature. This flip rate has built in invariance of
the Gibbs density, e−βH(σ)/

∑
σ e−βH(σ), since it satisfies the detailed balance

c(x, σ)e−βH(σ) = c(x, σx)e−βH(σx ),

which implies that this Gibbs density is a time independent (invariant) solution to
(5.1). Having this invariant Gibbs measure implies that the model has statistical
mechanics relevance, see [12], [4, 5, 6], [11]. For example in a neighborhood of
x ∈ L, where h and J ∗ (1, . . . , 1) are positive, the construction of the flip rate c
makes the system favor phases with spins mostly equal to 1 as compared to phases
with spins mostly equal to −1.

We will study localized projection averages of σ on scale ε. In particular we
will find approximations to expected values of such averages. The error analysis
uses consistency with the backward equation

∂tũ + Lũ = 0 t < T , ũ(·, T ) = g.

corresponding to the master equation (5.1) for expected values

ũ(ξ, t) := E[g(σT )| σt = ξ].
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5.1. A Coarse-grained Kinetic Monte Carlo Method. Define the
coarse periodic lattice L̄ := qγZd/Zd with neighboring sites on distance qγ =: ε,
where q is an even positive integer and qd is the number of fine sites projected to
a coarse site: the lattice points y ∈ L̄ define the coarse cells

Cy = {x ∈ L : −qγ/2 ≤ xi − yi < qγ/2},

of qd neighboring points in the fine lattice and the averaging operator

Aε(z, x) =
{

1/qd if x and z are in the same coarse cell Cy

0 if x and z are in different coarse cells .

We will study the behavior of the localized projection averages

X̄(z) :=
∑

x∈L
Aε(z, x)σ(x), (5.4)

for z ∈ L. The coarse-grained average X̄ can be interpreted as a function on
the coarse lattice since the restriction of X̄ to each coarse cell Cz is constant, i.e
X̄ =

∑
x∈C·

σ(x)/qd.
The work [23] derives a coarse-grained kinetic Monte Carlo equation approxi-

mating the average X̄ . The next section shows as in [24] that the average spin, X̄ ,
can be approximated by the solution, X : L̄× [0, T ]×Ω → R, to the Ito stochastic
differential equation

dXt(x) = a(Xt)(x)dt + b(Xt)(x)dW x, X0 = X̄0, (5.5)

with the drift, a : RL̄ → RL̄, and diffusion, b : RL̄ → RL̄, coefficients given by

a(X) = −X + tanh
(
β(J ∗ X + h − J(0)X)

)
,

b(X)(x) = (
γ

ε
)d/2

√
|1− X tanh

(
β(J ∗ X + h − J(0)X)

)
(x)| η

(
X(x)

)
,

η(r) =
{

1 for x ∈ [−1, 1],
0 for x ∈ (−∞,−r̂) ∪ (r̂,∞),

r̂ := min(1 + e−2β(2|J |`1+‖h‖L∞ ), 3/2)

(5.6)

and a Wiener process W : L̄×[0, T ]×Ω → R on a probability space (Ω, P, {Ft}Tt=0),
with the set of outcomes Ω, probability measure P and sigma algebra Ft of events
up to time t. Here W x are independent one dimensional standard Brownian mo-
tions for x ∈ L̄, so that formally

E[dW x
t ] = 0,

E[dW x
s dW y

t ] = 0 for s 6= t,

E[dW x
t dW y

t ] = 0 for x 6= y, and
E[dW x

t dW x
t ] = dt.

The C∞ cut-off function η : R → [0, 1], with compact support, is introduced to
handle the complication that |X(x)| may be larger than 1, although |X̄(x)| is not,
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so that 1 − X tanh
(
β(J ∗ X + h − J(0)X)

)
(x) may be close to zero causing large

values on derivatives of√
|1− X tanh

(
β(J ∗ X + h − J(0)X)

)
(x)| ,

note that we have |X̄(x)| ≤ 1 and consequently the cut-off η improves the approx-
imation by switching off the noise before 1 − X tanh

(
β(J ∗ X + h − J(0)X)

)
(x)

becomes zero making b a C∞ function.
The approximation uses that the high dimensional value function u : RL̄ ×

[0, T ] → R defined by
u(ξ, t) = E[g(XT )|Xt = ξ]

solves a corresponding Kolmogorov backward equation, where the drift and diffu-
sion coefficients in (5.6) are chosen to minimize the error E[g(X̄T )] − E[g(XT )].
To define the Kolmogorov backward equation introduce the scalar products

w · v :=
∑

y∈L̄ wyvy for w, v ∈ RL̄,

w · v :=
∑

x,y∈L̄ wxyvxy for w, v ∈ RL̄2
,

w · v :=
∑

x,y,z∈L̄ wxyzvxyz for w, v ∈ RL̄3
.

Then u satisfies the Kolmogorov backward equation

∂tu + a · u′ + D · u′′ = 0, for t < T ,

u(·, T ) = g,

with the diagonal diffusion matrix

Dxy =
{ (

1 − X tanh
(
β(J ∗ X + h)

)
(x)

)
η2(X(x)) y = x,

0 y 6= x,

and the first and second order derivatives u′(ξ, t) = ∂ξu(ξ, t) = (u′
1, u

′
2, . . . , u

′
|L̄|)

and u′′(ξ, t) = (∂xyu). We write ∂g(ξ)/∂ξx = ∂xg = g′x and similarly for higher
order derivatives.

We consider expected values of three times differentiable functions g satisfying
the bounds

sup
ξ∈RL̄

|g′i(ξ)| = O(εd)

sup
ξ

|g′′ii(ξ)| = O(εd), sup
ξ

|g′′ij(ξ)| = O(ε2d) j 6= i

sup
ξ

|g′′′iii(ξ)| = O(εd), sup
ξ

|g′′′ijj(ξ)| = O(ε2d) j 6= i

sup
ξ

|g′′′ijk(ξ)| = O(ε3d) j 6= i, k 6= i.

(5.7)

This means that g measures global properties, related to thermodynamic observ-
ables. For instance, the potential energies

∑
x,y ∈L̄ J̄(x−y)X(x)X(y)εd ,

∑
x∈L̄ h(x)X(x)

and
∑

x∈L̄ h(x)f(X(x)) satisfy (5.7), for h(x) = εdh0(x) with h0 a continuous func-
tion on the periodic unit cube and f ∈ C3(R).
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5.2. Stochastic Hydrodynamical Limit of the Particle Sys-
tem. The main result in [24] is

Theorem 5.1. Assume g : RL̄ → R satisfies (5.7). At a fixed time T , the average
spin, X̄T , can be approximated by the solution, XT , to the Ito stochastic differential
equation (5.5) with error

E[g(X̄T )] − E[g(XT )] = O
(
ε + (γ/ε)2d

)
, as ε and γ tend to zero. (5.8)

Note that a = 0 gives O(1) error, while b = 0 gives O
(
(γ/ε)d

)
error so that b

defined by (5.6) is justified for γ � ε � γ2d/(2d+1), with T fixed.
The stochastic differential equation (5.5) has C∞ coefficients, where perturba-

tions of solutions may grove exponentially in time. The proof is in three streps:
first to derive an error representation based on u(ξ, t) = E[g(XT ) | Xt = ξ] along
ξ = X̄t, then to estimate the error using the long range interaction and finally to
bound derivatives of u(ξ, t).

Proof of the theorem. Step 1. The definitions of u, the generator (5.2) and the
average (5.4) imply

E[g(X̄T )] − E[g(XT )] = E[u(X̄T , T )] − E[u(X0, 0)]

= E[
∫ T

0

du(X̄t, t)] =
∫ T

0

E[Lu + ∂tu]dt =
∫ T

0

E
[
E[Lu − a · u′ − D · u′′ | X̄t]

]
dt

=
∫ T

0

E
[
E[

∑

x∈L

c(x, σt)
(
u
(
X̄(σx

t ), t
)
− u

(
X̄(σt), t

))

− a · u′(X̄(σt), t
)
− D · u′′(X̄(σt), t

)
|X̄t]

]
dt

=
∫ T

0

E
[
E[

∑

x∈L
c(x, σt)

(
u
(
X̄t − 2Aε(x, ·)σt(x), t

)
− u(X̄t, t)

)

− a · u′(X̄t, t) − D · u′′(X̄t, t) | X̄t]
]
dt.

(5.9)

The first step to estimate this error is to write the difference of u in terms of its
derivatives by Taylor expansion, for some s ∈ [0, 1],

u
(
X̄(σ) − 2Aε(x, ·)σ(x), t

)
− u

(
X̄(σ), t

)

= −2u′(X̄, t) ·Aε(x, ·)σ(x)

+ 2u′′(X̄, t) · Aε(x, ·)Aε(x, ·)σ2(x)

− 4
3
u′′′(X̄ − 2sAε(x, ·)σ(x), t

)
· Aε(x, ·)Aε(x, ·)Aε(x, ·)σ3(x),

(5.10)
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so that the error representation (5.9) becomes

E[g(X̄T )] − E[g(XT )]

=
∫ T

0

E
[
E

[
u′(X̄t, t) ·

(
− 2

∑

x∈L
c(x, σt)Aε(x, ·)σt(x) − a

)

+ u′′(X̄t, t) ·
( ∑

x∈L
2c(x, σt)Aε(x, ·)Aε(x, ·)σ2

t (x) − D
)

− 4
3

∑

x∈L

u′′′(X̄t − 2sAε(x, ·)σt(x), t
)
· c(x, σt)Aε(x, ·)Aε(x, ·)Aε(x, ·)σ3

t (x) | X̄t

]]
dt.

We note that the matrix Fyz := −2
∑

x∈L c(x, σ)Aε(x, y)Aε(x, z)−Dyz is diagonal
(i.e Fyz = 0 for y 6= z) and the tensor Ryzv := c(x, σ)Aε(x, y)Aε(x, z)Aε(x, v)σ3(x)
is also diagonal (i.e Ryzv = 0 if not y = z = v). Therefore the error representation
reduces to

E[g(X̄T )] − E[g(XT )]

=
∫ T

0

E
[
E

[ ∑

y∈L̄

u′
y(X̄t, t)

(
− 2

∑

x∈L
c(x, σt)Aε(x, y)σt(x) − a(y)

)

+
∑

y∈L̄

u′′
yy(X̄t, t)Fyy − 4

3

∑

x∈L

∑

y∈L̄

u′′′
yyy

(
X̄t − 2sAε(x, y)σt(x), t

)
Ryyy(x) | X̄t

]]
dt.

(5.11)

Step 2. The next step is to determine the optimal a and b which minimize
the error (5.11). For this purpose we shall in the flipping rate approximate the
coupling J ∗ σ by J̄ ∗ X̄, using the long range O(1) interaction distance of J . We
have

∑

x

Aε(x, y) = 1,

∑

x

Aε(x, y)Aε(x, y) = (γ/ε)d,

∑

x

Aε(x, y)Aε(x, y)Aε(x, y) = (γ/ε)2d.

(5.12)

The definition of the average (5.4) implies

J ∗ X̄ =
∑

z,y∈L

J(· − y)Aε(y, z)σ(z)

and consequently the coupling has the uniform error estimate

J ∗ σ(x) − J ∗ X̄(x) =
∑

z∈L

(
J(x − z) −

∑

y∈L
J(x − y)Aε(y, z)

)
σ(z)

=
∑

y,z∈L

(
J(x − z) − J(x − y)

)
Aε(y, z)σ(z) = O(ε),

(5.13)
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since, for any of the γ−d points z, either Aε(y, z) = 0 or Aε(y, z) = (γ/ε)d and

|J(x − z) − J(x − y)| = O(ε)γd

for (ε/γ)d points y ∈ Cz. The definition of J̄ shows

J ∗ X̄(x) =
∑

y∈L̄

∑

z∈Cy

γdJ0(x − z)X̄(y) = J̄ ∗ X̄(x)

and consequently
sup
x∈L

|J ∗ σ(x) − J̄ ∗ X̄(x)| = O(ε). (5.14)

This error estimate and the flip rate (5.3) imply

−
∑

x∈L

2c(x, σ)Aε(x, ·)σ(x) = −X̄ + Aε · tanh
(
β(J ∗ σ + h)

)

= −X̄ + tanh
(
β(J̄ ∗ X̄ + h)

)
+ O(ε),

(5.15)

and
∑

x∈L

2c(x, σ)Aε(x, ·)Aε(x, ·)σ2(x) = (
γ

ε
)d

[
1 − X̄ tanh

(
β(J̄ ∗ X̄ + h)

)]

+ O
(
(γ/ε)2d + ε2

)
.

(5.16)

We have X̄t ∈ [−1, 1]L̄, therefore we need estimates of the derivatives of u in
this set. Lemma 3.2 in [24] proves that

sup
ξ∈[−1,1]L̄

∑

x∈L̄

|u′
x(ξ, t)| + sup

ξ∈[−1,1]L̄

∑

x∈L̄

|u′′
xx(ξ, t)|+ sup

ξ∈[−1,1]L̄

∑

x∈L̄

|u′′′
xxx(ξ, t)| = O(1),

(5.17)
as ε, γ → 0+, which together with the expansions (5.11), (5.12),(5.15) and (5.16)
proves the theorem.

We also have

Lemma 5.2. Assume g : RL̄ → R satisfies (5.7) and that the initial spin σ0 has
expected value m, where σ0(x) − mx are i.i.d. with bounded variance and second
order difference quotients |d2m/dx2| = O(1). Then the deterministic mean field
solution, X̂ : RL̄ × [0, T ] → R,

dX̂/dt = −X̂ + tanh
(
β(J̄ ∗ X̂ + h − J(0)X̂)

)
, X̂0 = E[X̄0],

depends on ε only through the initial data and satisfies

E[g(X̄T )] − E[g(X̂T )] = O
(
ε + (γ/ε)d

)

provided the drift a is defined by (5.6).

Proof of Lemma 5.2. Think of X̂ as an X with b = 0 and apply the corresponding
expansion (5.9), (5.10) and (5.12). Then it remains to verify that the initial data
satisfy

E[u(X̄0, 0) − u(X̂0, 0)] = O
(
(γ/ε)d

)
,

but this is a direct consequence of the central limit theorem and the initial σ0 −
E[σ0] being i.i.d. with bounded variance.
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5.3. Alternative Invariant Measure Diffusion for Mean Exit
Times. Not all expected values E[g(X̄T )] can be approximated using the stochas-
tic differential equation (5.5) with Einstein diffusion, due to the required bounds
on the derivatives of u; such an example is to determine the expected first exit time
τ (Y ) = inf{t : Yt 6∈ A} from a neighborhood A of an equilibrium point y′ ∈ A,
where a(y′) = 0 and Y0 ∈ A. Then the expected exit time is exponentially large,
i.e.

limγ/ε→0+(γ
ε
)d logE[τ (X̄)] and limγ/ε→0+(γ

ε
)d log E[τ (X)]

are both strictly positive.
(5.18)

These expected values are related to transition rates k and E[τ ] = 1/k in simple
cases, see [17], [9]. Hanggi et. al. [16] have proposed a remedy by approximating
the master equation by a different stochastic differential equation with the same
asymptotic drift but a modified diffusion, to leading order, chosen so that the
SDE invariant density Z−1e−U/(γ/ε)d

is asymptotically the same as for the master
equation. One perspective on the two different SDEs with Einstein diffusion or
invariant measure diffusion is that the two limits, coarse-graining and time tending
to infinity, do not commute. Because of (5.18) the theory of large deviations for
rare events is relevant for exit times, cf. [9].

Let γ1 := γ/ε. Consider an SDE

dXt(x) =
(
a(Xt) + γd

1c(Xt)
)
(x)dt + γ

d/2
1 b̃(Xt)(x)dW x

t ,

with the generator

Lf = (a + γd
1c) · f ′ + γd

1D̃ · f ′′, Dij = b̃ib̃jδij;

the idea in [16] is to find c and D so that the corresponding SDE asymptotically
has the same invariant density e−U/γd

1 /Z as the master equation. Hanggi et.al.
[16] determines the diagonal diffusion matrix D̃ and the small contribution to the
drift, γd

1c, by

D̃ii = −ai/U ′
i

ci = −∂xiD̃ii;
(5.19)

note that since a and U have the same zeros, the constructed function D̃ii is
positive in general. The equation (5.19) can be obtained by the WKB expansion

0 ' L∗e−U/γd
1 =

(
γ−d
1 (aiU

′
i + D̃iiU

′
iU

′
i )

+ γ0
1(∂iai + 2U ′

i∂iD̃ii + U ′′
iiD̃ii + ciU

′
i)

+ γd
1 (∂ic − ∂iiD̃ii)

)
e−U/γd

1

together with the two leading order conditions that the terms of order γ−d
1 and

γ0
1 vanish; here L∗ is the Fokker-Planck operator adjoint to L. Consequently the
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choice (5.19) will in general generate an SDE with an invariant density e−Ũ/γd
1 /Z,

where |Ũ − U | = O(γ2d
1 ).

Let us indicate why good approximation of the invariant measure implies that
also the expected values, E[τ ], for exit problems related to rare events with large
deviations, are accurately computed: the work [9] shows that

lim
γ1→0+

γd
1 log E[τ (X)] = inf

y∈∂A
U (y) − U (y′), (5.20)

for one stable attracting equilibrium point y′ ∈ A. The work [24] shows that the
exit time (5.20) with SDE’s and invariant measure diffusion is asymptotically the
same as for the master equation for the 1D Curie-Weiss model:

lim
γ1→0+

γd
1

(
log E[τ (X)] − log E[τ̄(X̄)]

)
= 0 , (5.21)

where E[τ (X)] and E[τ̄ (X̄)] denote the mean exit time for the Hanggi SDE and
the Curie-Weiss master equation, respectively. The Curie-Weiss model is a simple
adsorption/desorption Ising model with constant interaction potential, cf. Section
5.4. The technique to establish this asymptotic agreement is to use logarithmic
(Hopf-Cole) transformations of the two mean exit times, as functions of the initial
location, which transforms the corresponding two linear Kolmogorov backward
equations to two nonlinear Hamilton-Jacobi equations, cf. [8]. The two processes
give rise to two different asymptotic Hamilton-Jacobi equations, however the key
observation is that they have the same viscosity solution since they are both
convex and have the same set of zeros.

5.4. Dendrites with Einstein Diffusion. We see by Theorem 5.1 and
Lemma 5.2 that the mean field differential equation solution is also an accurate
approximation to the spin dynamics, provided the derivatives of the value function
are bounded; this indicates that the stochastic differential equation (5.5) then only
offers a small quantitative improvement. However, if the derivatives of the value
function are large the mean field solution may give a qualitatively wrong answer,
with O(1) error as γ/ε → 0+, while the stochastic differential equation still yields
an asymptotically correct limit; such an example is dendrite formation in phase
transformations, cf. [22, 19, 3], [14].

Let us try to motivate why the noise in Theorem 5.1 seems applicable to den-
drite formation. Dendrite dynamics can be formulated by the phase field method
with an Allen-Cahn/Ginzburg-Landau equation coupled to a diffusion equation for
the energy, as in (1.1), and by master equations coupled to the energy equation, cf.
[14]. Mean field equations related to such a phase field system have been derived
from a spin system coupled to a diffusion equation, see [7].

A master equation variant of the molecular dynamics model in Sections 2-4 is
to let the coarse-grained potential energy be defined by

m(σ, z) :=
∑

x

( ∑

y 6=x

1
2
J(x − y)σ(y) − h

)
σ(x)Aε(x, z),
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where A is the average in (5.4), and replace the Glauber dynamics with Arrhenius
dynamics. That is, the microscopic dynamics is given by independent spins σ(x) ∈
{0, 1}, for each lattice point x ∈ L, flipping with adsorption rate

ca(x) = d0

(
1 − σ(x)

)
,

from states 0 to 1, and with desorption rate

cd(x) = d0σ(x) exp
(
−

1
kBT

( ∑

y 6=x

J(x − y)σ(y) − h
))

,

from states 1 to 0, where h is a surface binding energy or an external field and d0

is a given rate, cf. [23]. Arrhenius dynamics also satisfies detailed balance with
the same Gibbs density

e

( ∑
x

∑
y 6=x J(x−y)σ(x)σ(y)/2−

∑
x hσ(x)

)
/(kBT )

as for Glauber dynamics. The dynamics for the potential energy variable can then
be coupled to the energy equation (2.1)

∂t(cvT + m) = div(k∇T )

by letting the temperature T vary on the coarse-grained scale.
The dendrite grows with a positive non vanishing speed. Without noise in the

model there is no side branching, while the side branching is present with added
noise to the phase field model, cf. [3], or to the mean field model derived in [14].
This noise induced side branching is explained by the high sensitivity with respect
to small perturbations at the dendrite tip, cf. [22]. Therefore the derivatives of an
appropriate value function are large. Here the value function, u, could for instance
measure the total dendrite surface at a fixed time. The inconsistent approximation
of the mean field solution could by Lemma 5.2 be explained by having

(γ/ε)d‖u′′‖`1 = O(1). (5.22)

The smallest scale in the problem is the dendrite tip radius ρ; with a bounded
value function its derivatives could then be

‖u′‖`1 = O(1/ρ),

‖u′′‖`1 = O(1/ρ2),

‖u′′′‖`1 = O(1/ρ3).

Consequently (5.22) yields (γ/ε)d/2 = ρ, so that the noise error for the stochastic
differential equation with the Einstein diffusion of Theorem 5.1 would be bounded
by (γ/ε)2d‖u′′′‖`1 = O

(
(γ/ε)d/2

)
, which tends to zero as γ/ε → 0+. Therefore,

this adsorption/desorption kinetic Monte Carlo model with long range interaction
generates an approximating stochastic differential equation, which could be ap-
plicable also to coupling with the energy equation if the derivation remains valid
with slowly varying temperature. An essential and maybe more difficult question
is to find accurate kinetic Monte Carlo methods for real systems with dendrite dy-
namics, e.g. using ideas from the molecular dynamics coarse-graining in Sections
2-4.
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