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Summary A variational principle, inspired by optimal control, yields
a simple derivation of an error representation, global error =

∑
local

error · weight, for general approximation of functions of solutions to
ordinary differential equations. This error representation is then ap-
proximated by a sum of computable error indicators, to obtain a use-
ful global error indicator for adaptive mesh refinements. A uniqueness
formulation is provided for desirable error representations of adaptive
algorithms.
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1 Introduction to Error Expansions for ODE

This paper derives an error expansion, for approximation of ordinary
differential equations, of the form

global error =
∑

time steps

local error · weight + higher order error. (1.1)
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Such error estimates for differential equations can be derived by the
classical error equation and linearization, cf. [13], [8], [12], by Galerkin
orthogonality using either local problems or the residual, cf. [1], [9],
and by a variational principle, following Alekseev [2] and Gröbner
[11]. The variational principle was introduced to derive an error rep-
resentation for perturbation errors of differential equations based on
the residual of the perturbation. Our analysis applies the variational
principle to error analysis based on local errors and gives a simple
and precise derivation of the fundamental property that the global
error is a weighted sum of the local errors

global error =
∑

time steps

local error · weight. (1.2)

However in (1.2) both the true local errors and the weights are
non computable, therefore we transfer the representation (1.2) to an
asymptotic expansion (1.1) with computable approximations of the
local errors and the weights, using standard estimates. The adaptive
algorithm analyzed and tested in [18] is based on the leading order
term in the expansion (1.1). Computations including similar asymp-
totic global error control are well known, cf. [13], [19]. Section 3 shows
that the classical derivation of (1.1) based on the error equation does
not include (1.2), since the global error is polluted by the linearization
error between the exact and approximate solution.

Consider a solution X : [0, T ] → R
d of a differential equation, with

flux a : [0, T ] × R
d → R

d,

dX

dt
(t) = a(t,X(t)), 0 < t ≤ T,

X(0) = X0,
(1.3)

and an approximation X of (1.3) by any numerical method, satisfying
the same initial condition

X(0) = X(0) = X0 (1.4)

with time steps
0 = t0 < · · · < tN = T.

The next section derives estimates of the form (1.1) for the global
error

g(X(T )) − g(X(T )) (1.5)

with a given general function g : R
d → R. The function g is therefore

included in the data of the problem, which the user specifies as in
optimal control problems; i.e. the user provides the information to
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approximate the value of the objective function g in the algorithm.
One example is to find the value of one component of the solution at
the final time, e.g. g(x) = x1. Note that the apparently more general
approximation of

∫ T
0 h(X(t), t)dt + g(X(T )), for a given function h :

R
d × R → R, is a particular case of (1.5) by extending the system

(1.3) with the additional equation dXd+1(t)/dt = h(X(t), t) and the
objective g(x) + xd+1.

The estimates (1.1)-(1.2) will use the local error e defined by

e(tn) ≡ X̃(tn) − X(tn), (1.6)

where the local exact solution X̃ satisfies, for each time step (tn−1, tn],

dX̃

dt
(t) = a(t, X̃(t)), tn−1 < t ≤ tn,

X̃(tn−1) = X(tn−1).
(1.7)

Theorems 2.1 and 2.3-2.4, below, prove error estimates of the form
(1.2) and (1.1), respectively. These results use the weight function,
which solves a certain linear backwards dual (or adjoint) problem,
obtained by linearizing the forward problem (1.3) around the solution.
In an adaptive time stepping method with a given bound on the global
error, the number of time steps are minimized by choosing for all time
steps ∣∣local error · weight

∣∣ = constant. (1.8)

Therefore the weights need to be determined to find the optimal mesh.
It is possible to approximate the weight with lower accuracy and a
coarser mesh than that used for the approximate solution X . When
the solution is well resolved, the work to determine the weight can
therefore be smaller than the work to solve the differential equation
(1.3). However, to solve the dual problem requires the storage of the
approximate solution on the coarser mesh. This additional storage
is clearly a drawback. On the other hand many computer programs
for the numerical solution of ordinary differential equations store the
solution at all time levels for other reasons, e.g. for post processing.
The use of dual functions is standard in optimal control theory and
also well known for adaptive mesh control for ordinary and partial
differential equations, see [3], [4], [6], [10], [15], [16], [20].

In conclusion, the main results are:

– an easy derivation of the fundamental property “global error =∑
local error · weight” which can be used, e.g., in introductory

numerical analysis courses;
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– analysis of an error expansion useful for adaptive mesh refinements
method based on global error estimation, including a formulation
for uniqueness of desirable error representations for adaptive re-
finements.

The outline of the paper is: Section 2 and 2.1-2.3 prove by a vari-
ational principle an error representation (1.2) and an error expan-
sion (1.1). Section 2.4 treats roundoff errors. Section 2.5 provides a
formulation of uniqueness for adaptive error representations. Finally
Section 3 compares the derivation in Section 2 to the well known al-
ternatives to obtain (1.1) by the error equation and by the residual.

2 The Variational Principle

Let X(s; t, y) denote the solution of (1.3) at time s, which at time t
takes the value y, i.e.

dX

ds
(s; t, y) = a(s,X(s; t, y)), t < s ≤ T,

X(t; t, y) = y.
(2.1)

Define, for the given function g : R
d → R in (1.5), the function

u : [0, T ] × R
d → R by

u(t, y) ≡ g(X(T ; t, y)), t < T, (2.2)

provided the differential equation (2.1) on (t, T ) has a unique solu-
tion for all initial data y in R

d and all t ∈ (0, T ). In the following
theorem, the global approximation error for differential equations is
represented in terms of the local errors and their weights, depending
on the first variation of u. The generalization to partial differential
equations is then possible with some convenient assumptions, see [17].

Theorem 2.1 Assume that (2.1) has a unique continuous solution
X for all initial data y ∈ R

d and that the flux a(t, x) is differentiable
in x, for all t ∈ (0, T ). Let e(tn) ≡ X̃(tn) − X(tn) denote the local
error of an approximation, X, of (1.3), satisfying (1.4) and (1.7).
Then, for any differentiable function g : R

d → R, the function u is
well defined by (2.2) and the global error is a weighted sum of the
local error with the representation

g(X(T ))−g(X(T ))

=
N∑

n=1

(
e(tn),

∫ 1

0
Ψ

(
tn,X(tn) + se(tn)

)
ds

)
,

(2.3)
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where (·, ·) is the standard scalar product on R
d and Ψ(t, y) ≡ ΨX(t) ∈

R
d is the first variation of u in the sense that for all w ∈ R

d and all
sufficiently small δ > 0

u(t, y + δw) − u(t, y) = (ΨX(t), δw) + o(δ).

The weight function ΨX satisfies, for t < s < T , the dual equation

−dΨX

ds
(s) = (a′)∗(s,X(s; t, y)) ΨX(s),

ΨX(T ) = g′(X(T ; t, y)),
(2.4)

where (a′)∗(s, x) is the transpose of the Jacobian matrix a′(s, x) ≡
{ ∂ai

∂xj
(s, x)} ∈ R

d×d, and X solves (2.1).

Proof. By the construction (2.2), the function u is constant along the
characteristics X̃, i.e. for all t and τ in [tn−1, tn]

u(t, X̃(t)) = u(τ, X̃(τ)). (2.5)

Therefore the initial condition for the local problem (1.7) shows that

u(tn, X̃(tn)) = u(tn−1, X̃(tn−1)) = u(tn−1,X(tn−1)), n = 1, . . . , N,

and consequently the initial condition (1.4) and (2.2) imply that

N∑
n=1

(u(tn, X̃(tn)) − u(tn,X(tn))) = u(0,X(0)) − u(T,X(T ))

= u(0,X(0)) − u(T,X(T ))

= g(X(T )) − g(X(T )).

(2.6)

The function U : [0, 1] → R, defined by

U(s) = u(tn, sX̃(tn) + (1 − s)X(tn)),

and the equality

U(1) − U(0) =
∫ 1

0
U ′(s)ds

show that each term in the sum (2.6) can be written

u(tn, X̃(tn)) − u(tn,X(tn)) =
(

e(tn),
∫ 1

0
Ψ(tn,X(tn) + se(tn))ds

)
,

which proves (2.3). The first variation ∂X(s; t, y)/∂y exists, since
a(s, x) is differentiable in x. The combination of the existence of the
first variation of X and the assumption that g is differentiable, implies
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by (2.1)-(2.2) that Ψ exists. Finally, to verify that Ψ satisfies the
dual equation (2.4), observe that, for any w ∈ R

d and δ → 0, two
solutions X1 and X2 of (2.1), with initial data X1(t) = y ∈ R

d and
X2(t) = y + δw satisfy

0 =
d

dt

(
u(t,X2(t)) − u(t,X1(t))

)
=

d

dt

(
ΨX1 ,X2(t) − X1(t)

)
+ o(δ)

=
(

d

dt
ΨX1 ,X2(t) − X1(t)

)
+

(
ΨX1 ,

d

dt
X2(t) − d

dt
X1(t)

)
+ o(δ)

=
(

δ
d

dt
ΨX1 , w

)
+

(
δΨX1 , a′(t,X1(t))w

)
+ o(δ),

which proves (2.4) in the limit δ → 0. �

Our next goal is to construct error expansions useful for adaptive
methods. The starting point for the adaptive method in [18] is an
asymptotic expansion of the representation (2.3) with leading order
term in computable form. Such error expansions are well known and
derived e.g. in [13], [12]. The motivation to derive this expansion
again is that ours has somewhat sharper higher order terms; Section 3
presents a comparison between these global error expansions derived
by the variational principle, the residual with Galerkin orthogonality
and the error equation. However, the higher order terms are not used
in an essential way in the adaptive algorithm in [18].

The error expansion is based on an approximation Ψ of the weight
Ψ and an approximation ē of the local error e

N∑
n=1

(e(tn), Ψ) −
N∑

n=1

(
ē(tn), Ψ

)

=
N∑

n=1

(
e(tn) − ē(tn), Ψ

)
+

N∑
n=1

(
e(tn), Ψ − Ψ

)
.

(2.7)

2.1 Approximation of the Weight

The averaged weight function Ψ in Theorem 2.1, which is needed
to determine the optimal step size in an adaptive method, can be
computed by approximating (2.1) and (2.4). Therefore, any p-th order
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accurate approximation (X,Ψ) of (X,Ψ), which solves the systems of
differential equations (1.3) and (2.4), satisfies∣∣Ψ(tn) − Ψ(tn,X(tn))

∣∣ = O((max Δt)p) + O
( ε

min Δt

)
, (2.8)

where ε is the machine roundoff unit and Δtn = tn − tn−1 with
maxΔt ≡ maxn Δtn and min Δt ≡ minn Δtn. The effect of roundoff
errors is neglected in the formulation of Theorems 2.2 and 2.3 below.
Instead a remark in the end of the section includes roundoff errors in
the error estimation.

A natural choice of approximation Ψ , for a p-th order one step
method X written in the form

X(tn) = A(X(tn−1),Δtn), (2.9)

is

Ψ i(tn−1) =
d∑

j=1

∂xiAj(X(tn−1),Δtn)Ψ j(tn),

Ψ i(T ) = ∂xig(X(T )),

(2.10)

which yields a p-th order accurate approximation (X,Ψ) of (X,Ψ)
and satisfies

Ψ i(tn−1) = ∂xig
(
X(T ;X(tn−1) = x)

)
. (2.11)

The relation (2.11) is the discrete version of the fact that Ψ(t) is the
first variation of g(X(T )) with respect to variation in the location of
the path X(t) at time t, and (2.11) holds precisely when Ψ is defined

by (2.10). The Jacobian matrix ∂xiAj(X(tn−1),Δtn) = ∂Xj(tn)

∂Xi(tn−1)
can

be approximated by numerical differentiation of X(tn) with respect
to X(tn−1), or alternatively the Jacobian can be evaluated explicitly
for each method, e.g. to preserve a sparse structure. To conclude, we
have the error estimate

Theorem 2.2 Suppose that (2.8) and the assumptions of Theorem
2.1 hold. Let ∂xxu(t, x) in (2.2) be uniformly bounded for (t, x) ∈
[0, T ] × R

d. Then the global approximation error for the differential
equation (1.3) satisfies the estimate

g(X(T ))−g(X(T ))

=
N∑

n=1

(
e(tn), Ψ(tn) + O(|e(tn)|) + O((max Δt)p)

) (2.12)

where e(tn) ≡ X̃(tn) − X(tn) is the local error and (X,Ψ) is a p-th
order accurate approximation of the system (1.3) and (2.4).
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Proof. A combination of Theorem 2.1, (2.8) and the boundedness of
∂xxu ≡ ∂xΨ implies that

Ψ(tn,X(tn) + se(tn)) − Ψ(tn)

=
(
Ψ(tn,X(tn) + se(tn)) − Ψ(tn,X)

)
+

(
Ψ(tn,X) − Ψ(tn)

)
= O(e(tn)) + O((max Δt)p),

which proves (2.12). �

2.2 Approximation of the Local Error

The next step necessary to derive an error estimate based on com-
putable quantities is to approximate the local error e = X̃ − X

by replacing the exact local solution X̃ by an approximation X of
higher accuracy than X, i.e., with smaller time steps or a higher order
method in a higher precision. For smooth solutions X, the existence
of the limits

lim
Δt→0

(Δtn)−(p+1)
(
X̃(tn) − X(tn)

)
,

lim
Δt→0

(Δtn)−(q+1)
(
X̃(tn) − X(tn)

)
,

(2.13)

determines by Richardson extrapolation a constant γ, for q ≥ p cf.
[7], such that

e(tn) = X̃(tn) − X(tn) = γ
(
X(tn) − X(tn)

)
+ o(Δtp+1

n ). (2.14)

For instance there holds: γ = 2p/(2p − 1) for X computed with the
half mesh size and q = p; and γ = 1 for X computed with a higher
order method q > p, see [12]. Let Δt(t) ≡ Δtn, tn−1 < t ≤ tn. The
replacement of the exact local error with this approximate local error
leads to

Theorem 2.3 Suppose that the limits (2.13) exist and that the as-
sumptions of Theorems 2.1 and 2.2 hold. Then the global approxima-
tion error for the differential equation (1.3) satisfies the estimate

g(X(T )) − g(X(T )) =
N∑

n=1

(
ē(tn), Ψ(tn)

)
+

∫ T

0
o(Δtp(t))dt (2.15)

where ē(tn) ≡ γ
(
X(tn) − X(tn)

)
is the approximation of the local

error in (2.14) and (X,Ψ) is a p-th order accurate approximation of
the system (1.3) and (2.4).
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Proof. By substituting (2.14) in (2.12), we obtain

g(X(T )) − g(X(T )) =
N∑

n=1

(
ē(tn), Ψ(tn)

)
+ E

where

E ≡
N∑

n=1

[
o(Δtp+1) + O(Δtp+1) · (Δtp+1 + (max Δt)p

) ]

=
∫ T

0
o(Δtp)dt

≤ o((max Δt)p),

which proves the theorem. �

2.3 An Alternative Error Expansion

Let us present an alternative to the error expansion (2.15), using
Richardson extrapolation. Assume that X

h and X
H are approxima-

tions based on (2.9), where the step sizes Δht(t) and ΔHt(t) satisfy

Δht(t)
ΔHt(t)

is independent of t,

max
t

Δht(t) = h,

max
t

ΔHt(t) = H.

(2.16)

Then the convergence assumption

g(X(T )) − g(Xh(T )) = c hp + αh,

αh = o(hp),
(2.17)

is meaningful for two positive constants c and p. An attractive alter-
native to the approximation (2.15) is to use (2.17) and apply Richard-
son extrapolation directly to the p-th order accurate approximations
X

h and X
H of X to obtain

Theorem 2.4 Suppose that (2.16), (2.17) and the assumptions of
Theorem 2.1 hold. Let the two p-th order accurate approximations
X

h and X
H of X, be defined by

X
h(tn) = Ah(Xh(tn−1)), X

H(tn) = AH(XH(tn−1)) (2.18)
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following (2.9). Then the global approximation error for the differen-
tial equation (1.3) satisfies the estimate

g(X(T )) − g(X(T )) = α

+
1

(H
h )p − 1

N∑
n=1

(
Ah(XH(tn−1)) − AH(XH(tn−1)), Φ(tn)

)
,

(2.19)

where
α ≡ αh +

αh − αH

(H
h )p − 1

= o(hp) (2.20)

and the weight function Φ(tn) ∈ R
d is defined for n = N, . . . , 1 and

i = 1, . . . , d by the recursive equation

Φi(T ) =
∫ 1

0
∂xig

(
sX

h(T ) + (1 − s)XH(T )
)

ds,

Φi(tn−1)

=
(∫ 1

0
∂xiA

h
(
sX

h(tn−1) + (1 − s)XH(tn−1)
)

ds, Φ(tn)
)

.

(2.21)

Proof. Using Richardson extrapolation, we get

g(X(T ))−g(X(T ))

=
1

(H
h )p − 1

(
g(Xh(T )) − g(XH(T ))

)
+ o(hp).

(2.22)

Therefore it is sufficient to prove that the computable quantity,

g(Xh(T )) − g(XH(T )),

has the representation

g(Xh(T )) − g(XH(T ))

=
N∑

n=1

(
Ah(XH(tn−1)) − AH(XH(tn−1)), Φ(tn)

) (2.23)

which proves (2.19)-(2.20) together with (2.22). The initial conditions
in (2.21) and (1.4) and telescoping cancellation show

g(Xh(T )) − g(XH(T )) =
(
X

h(tN ) − X
H(tN ), Φ(tN )

)

=
N∑

n=1

[ (
X

h(tn) − X
H(tn), Φ(tn)

)

−
(
X

h(tn−1) − X
H(tn−1), Φ(tn−1)

)]
.

(2.24)
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By the definitions (2.18), the right hand side of (2.24) can be sepa-
rated into three parts(

Ah(Xh(tn−1)) − Ah(XH(tn−1)), Φ(tn)
)
,(

Ah(XH(tn−1)) − AH(XH(tn−1)), Φ(tn)
)
,

−
(
X

h(tn−1) − X
H(tn−1), Φ(tn−1)

)
,

where the first and the last parts are canceled out, since the first term
can be written(

Ah(Xh(tn−1)) − Ah(XH(tn−1)), Φ(tn)
)

=
(
X

h(tn−1) − X
H(tn−1),

d∑
j=1

Λ·j Φj(tn)
)

with

Λij ≡
∫ 1

0
∂xiA

h
j

(
sX

h(tn−1) + (1 − s)XH(tn−1)
)
ds,

so that ∑
j

ΛijΦj(tn) = Φi(tn−1)

by (2.21). Consequently (2.23) holds. �

2.4 Approximation of Roundoff Error

Theorems 2.2 and 2.3 can be modified to include error caused by
roundoff due to finite precision arithmetic. Let ê(tn) be the local
roundoff error in one step of the method X , i.e.,

ê(tn) ≡ X̂(tn) − X(tn),

where X̂(tn) is the exact arithmetic version of one step of the method
X, with the same initial data X(tn−1) at time tn−1. Here, X is com-
puted in finite precision arithmetic. Theorem 2.1 then implies that
the part of the global error due to roundoff is the following weighted
sum of the local roundoff error

N∑
n=1

(
ê(tn),

∫ 1

0
Ψ

(
tn,X(tn) + se(tn)

)
ds

)
.
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If the local roundoff error ê(tn) in one step dominates the local dis-
cretization error, i.e., if

|ê(tn)| ≥ ∣∣γ(
X(tn) − X(tn)

)∣∣, (2.25)

then the refinement of the time step will not decrease the approxi-
mation error; instead a higher precision is needed. The local roundoff
error ê can be estimated by approximating X̂ with higher precision
than X . Alternatively, the approximation

fl
(
fl(X(tn) − X(tn−1)) − ΔX(X(tn−1))

) � ê(tn), (2.26)

motivated by the compensated summation method by Kahan, cf. [14],
is useful when the main roundoff error is caused by the recursive sum-
mation X(tn−1) + ΔX(X(tn−1)). Here ΔX(X(tn−1)) is the explicit
increment X(tn) − X(tn−1), of the method X , and fl denotes the
rounded operation. A test analogous to (2.25) can be applied also to
the dual problem (2.4) for Ψ , to provide an accurate weight function.

2.5 Uniqueness of the Error Representation

To understand a setting for possible uniqueness of the error represen-
tation (2.3), suppose that

g(X(T )) − g(X(T )) =
N∑

i=1

ri, (2.27)

is an alternative error representation to (2.3). What properties are
desirable in order for an error representation to be useful for adap-
tive mesh refinements? A typical adaptive algorithm does two things
iteratively:

(1) if the error indicator is smaller than the given tolerance it stops;
otherwise

(2) the algorithm chooses where to refine the mesh and then makes
an iterative step to (1).

Therefore the representation ri must, in addition to estimating the
global error (2.27) in (1), also give simple information about where to
refine in order to reach the optimal mesh. The only practical method
seems to be to link the refinement of element i to the value of ri.
Then an ideal error representation would satisfy:

(i) the error contribution ri depends only on Δti, not on Δtj for
i �= j, and
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(ii) ri = o(Δti).

The following related conditions imply uniqueness

Theorem 2.5 Suppose that an error representation satisfies

(i′) the error representation (2.27) holds for all choices
of step sizes, (2.28)

and
(ii′) the indicator ri depends only on Δtk, k = 1, . . . , i,

and not on Δtj for j > i, (2.29)
(iii′) the error indicators have a uniform bound

ri = o(Δti). (2.30)

Then

ri =
(

e(ti),
∫ 1

0
Ψ(ti,X(ti) + se(ti))ds

)
.

Proof. Take the limit Δti = 0, i = 2, 3, . . . . Then by (2.28), (2.30)
and Theorem 2.1

g(X(T )) − g(X(T )) = r1 =
(

e(t1),
∫ 1

0
Ψ(t1,X(t1) + se(t1))ds

)
.

(2.31)
Next, let Δti = 0, i = 3, 4, . . . and use (2.28), (2.29) to get

r1 + r2 =
2∑

i=1

(
e(ti),

∫ 1

0
Ψ(ti,X(ti) + se(ti))ds

)
,

which together with (2.31) show also

r2 =
(

e(t2),
∫ 1

0
Ψ(t2,X(t2) + se(t2))ds

)
.

Continue this inductive argument to prove the theorem for all ri. �

Note that the theorem only claims that the indicators ri are unique:
clearly for any invertible d × d matrix B, we have (e,

∫
Ψds) =

(Be, (B−1)∗
∫

Ψds). As mentioned, the error representation is not
computable and therefore it is not directly useful for adaptive al-
gorithms. Section 3 shows that the computable leading order term of
error expansions derived by the variational principle, the error equa-
tion and the residual all give the same result, so that in this sense
Theorem 2.5 includes them all.
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3 Global Error by the Residual and the Error Equation

This section compares the well known derivations of error estimates
for differential equations based on the variational principle for the
residual [2,11], the classical error equation cf. [13,12] and Galerkin
orthogonality for the residual cf. [9,5] to the variational principle for
the local error in Theorems 2.1 and 2.2. All methods give the same
leading order term, but only the variational principle shows that the
local error is a factor in the higher order error terms. The adaptive
algorithm in [18] uses only the leading order term. Consequently,
computational results with the algorithm in [18] and error indicators
based on the three different methods will give the same result.

Below, we use the summation convention, i.e., if the same subscript
appears twice in a term, the term denotes the sum over the range of
this subscript, e.g.

cik∂xk
bj ≡

d∑
k=1

cik∂xk
bj.

3.1 The Residual with the Variational Principle

The starting point for the residual method is a differential equation

dX(t)
dt

= a(t,X(t)), t > 0,

X(0) = X0,
(3.1)

and a perturbed equation

dX(t)
dt

= a(t,X), t > 0,

X(0) = X0.

(3.2)

The error then has the representation

g(X(T )) − g(X(T )) =
∫ T

0
(ai(t,X(t)) − ai(t,X))∂xiu(t,X(t))dt,

(3.3)
where the function u : [0, T ] × R

d → R, defined by (2.2), satisfies

∂

∂t
u + ai∂xiu = 0, t < T,

u(T, x) = g(x).
(3.4)
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The representation (3.3), with g(x) = xj, was derived in [11], by Lie
series, and in [2], by using that ∂xiu is based on the first variation of
the solution X, see also [12]. The residual

dX

dt
− a(t,X(t)) = a(t,X) − a(t,X(t))

shows that (3.3) takes the form error =
∫ T
0 residual × weight dt. A

derivation of (3.3) based on the transport partial differential equation
(3.4) reduces to first observe that by (3.1) and (3.4) the function u
is constant along its characteristics

d

dt
u(t,X(t)) = 0,

and in particular
u(0,X(0)) = u(T,X(T )). (3.5)

Then a consequence of (3.2) and (3.4) is that

d

dt
u(t,X) =

∂

∂t
u(t,X(t)) + ai(t,X)∂xiu(t,X(t))

= (ai(t,X) − ai(t,X(t)))∂xiu(t,X(t)).

Integrate this to obtain

u(T,X(T )) − u(0,X0) =
∫ T

0
(ai(t,X) − ai(t,X(t)))∂xiu(t,X(t))dt,

which combined with (3.5) and the initial data (3.4) shows (3.3).
The close relation between (3.3), error =

∫ T
0 residual × weight dt,

and (2.3), error =
∑

n local error × weight, is also explained by

Claim 3.1 Theorem 2.1 can be derived directly from the representa-
tion (3.3).

Proof. The first step is to determine a numerical flux a and to use
the representation (3.3) to obtain an error estimate depending on the
error of the numerical flux a−a. Then (3.3) is applied again to replace
this residual error by a local discretization error for the solution X.

Step 1. Any numerical method for (3.1) is defined by the nodal
values X(tn), n = 0, 1, . . . , N . Every such approximation can be ex-
tended to t ∈ (0, T ) by introducing

dX

dt
(t) = a(t,X), (3.6)
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for some function a. The nodal values of X only determine∫ tn

tn−1

a(t,X)dt = X(tn) − X(tn−1), n = 1, . . . , N. (3.7)

For instance, the forward Euler method has

a(t,X) = a(tn−1,X(tn−1)), tn−1 ≤ t < tn.

Therefore, for a given numerical method of (3.1) we have the freedom
to choose any approximate flux a satisfying (3.7). We shall use the
local error to determine the error of the flux a − a and consequently
obtain a global error estimate for general methods.

Step 2. The linear backward equation (3.4) shows that

u(tn,X(tn))

depends only on the path {X(
s; tn,X(tn)

)
: tn ≤ s ≤ T}, so that

differentiation gives

∂xiu(t,X(t)) =
∂u

(
tn,X(tn; t,X(t))

)
∂Xj(tn)

∂Xj(tn; t,X(t))
∂X i(t)

, (3.8)

where ∂Xj(tn;t,X(t))

∂Xi(t)
denotes the first variation of the exact solution

X(tn) of (3.1) on [t, tn] with respect to the initial position X(t) =
X(t) at time t, t < tn, located at the approximate solution. The
representation (3.3) applied to the local problem shows

Xj

(
tn; t,X(t)

) − Xj(tn)

=
∫ tn

t
(ai(s,X(s)) − ai(s,X))

∂Xj(tn; s,X(s))
∂Xi(s)

ds,
(3.9)

so that differentiation of the definition of the local error e(t)

e(t) ≡ X̃(tn) − X
(
tn; t,X(t)

)
, (3.10)

where X̃(tn) = X(tn; tn−1,X(tn−1)) is the exact solution of the local
problem (1.7), i.e.

dX̃

dt
(t) = a(t, X̃(t)), tn−1 < t ≤ tn,

X̃(tn−1) = X(tn−1),
(3.11)

implies

dej

ds
(s) = (ai(s,X(s)) − ai(s,X))

∂Xj(tn; s,X(s))
∂X i(s)

. (3.12)
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Therefore, the representation (3.3) combined with (3.8), (3.10) and
(3.12) establish∫ tn

tn−1

(ai(t,X(t)) − ai(t,X))∂xiu(t,X(t))dt

=
∫ tn

tn−1

∂xju(tn, X̃(tn) − e(t))dej(t)

= u(tn, X̃(tn)) − u(tn,X(tn)),

which proves the claim. �

3.2 The Error Equation

Let us now compare the estimate (2.15) with the classical estimate
obtained from the error equation based on linearization, see [13],
neglecting the roundoff error. In [12] the analysis of [13] is generalized
to also include the behavior of the higher order error terms, see [12]
for more references on such expansions. For a given approximation
X, of (3.1), satisfying (3.6)-(3.7), the first step is to introduce the
local approximate solution

dX̂

dt
(t) = a(t, X̂), tn−1 < t ≤ tn,

X̂(tn−1) = X(tn−1),
(3.13)

which is assumed to be accurate of order p + 1, i.e.

X̂(tn) − X(tn) = O((Δtn)p+1).

Then the error E ≡ X − X satisfies the error equation

dE

dt
= a(t,X) − a(t, X̂) + a(t, X̂) − a(t,X(t)).

Integration of the last two terms yields the local error∫ tn

tn−1

(
a(t, X̂) − a(t,X(t))

)
dt = X̂(tn) − X(tn)

and a linearization around X gives

aj(t,X) − aj(t, X̂) = ∂xiaj(t,X)(E − ê)i + O(|E|2 + |ê|2),
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where ê ≡ X̂ − X is the local error. Let g(x) ≡ xk and let ϕ̄ be the
discrete dual function

−dϕ̄j

dt
= ∂xjai(t,X)ϕ̄i, t < T,

ϕ̄j(T ) = δjk,

corresponding to the discrete forward problem

dEj

dt
= ∂xiaj(t,X)Ei +

dêj

dt
+ O(|ê|) + O(|E|2 + |ê|2).

Integration with Duhamel’s principle and integration by parts then
show that

Xk(T ) − Xk(T )

= −
N∑

n=1

∫ tn

tn−1

dêi(t)
dt

ϕ̄i(t)dt

+
N∑

n=1

∫ tn

tn−1

(O((Δtn)p+1) + O((Δtn)2p)
)|ϕ̄(t)|dt

=
N∑

n=1

(
Xi(tn) − X̂i(tn)

)
ϕ̄i(tn)

+
N∑

n=1

∫ tn

tn−1

[
(O((Δtn)p+1) + O((Δtn)2p)

)|ϕ̄(t)|

+ O((Δtn)p+1)|ϕ̄′(t)|]dt,

(3.14)

where the error terms are based on the local error ê = O((Δtn)p+1)
and the square of the error |E|2 = O((Δtn)2p). The corresponding a
posteriori analysis, based on the local problem (1.7) instead of (3.13),
yields similarly

Xk(T ) − Xk(T ) =
N∑

n=1

(
X̃i(tn) − X i(tn)

)(
ϕ̄i(tn) + O((Δtn)p)

)

+
N∑

n=1

∫ tn

tn−1

O((Δtn)p+1)
(|ϕ̄(t)| + O((Δtn)p)

)
dt.

(3.15)

The leading order terms in (3.15) and Theorem 2.2 are the same,
while the higher order terms are larger and less precise in the case
(3.15) as compared to (2.12), where all terms are directly multiplied
by the local error X̃i(tn) − Xi(tn).
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3.3 Galerkin Orthogonality

Our final comparison is with the a posteriori error analysis based
on Galerkin orthogonality and residuals in [15,16,10,9,6] and [5].
As a simple example, let the approximation X̌ be the discontinuous
Galerkin approximation of (3.1) with piecewise constants, cf. [9]

X̌(tn) = X̌(tn−1) +
∫ tn

tn−1

a(s, X̌(tn−1))ds ≡ A(X̌(tn−1)). (3.16)

This is a variant of the Euler method with exact quadrature with
respect to t in the flux a(t, x) and no roundoff error.

This subsection compares the residual representation (3.3) applied
to the discretization (3.16) with the corresponding representation de-
rived by Galerkin orthogonality. Let the approximation X of the form
(3.2) be defined by X

′ = a(t,X) and

a(t,X) ≡ a(t,X(tn−1)) tn−1 ≤ t < tn.

Then X is continuous and satisfies for all time steps

X(tn−1) = X̌(tn−1).

The representation (3.3) implies

Xj(T )−Xj(T ) =
∫ T

0
(ak(t,X(t))−ak(t,X))∂xk

uj(t,X(t))dt, (3.17)

where vij ≡ ∂xiuj solves

− ∂

∂t
vij − ak∂xk

vij − ∂xiakvkj = 0,

vij(T, ·) = δij .
(3.18)

Let d
dt denote differentiation along the characteristic

dX

ds
(s; t, y) = a(s,X(s; t, y)), s > t

X(t; t, y) = y.
(3.19)

Then, vy(s) ≡ v(s,X(s)) is determined by the system of differential
equations (3.19) and

d

ds
vy(s) = −(a′)T (s,X(s; t, y)) vy(s), t < s < T

vy(T ) = I,
(3.20)
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where (a′)T is the transpose of the Jacobian of a and I is the unit
matrix in R

d×d. Let us first compare (3.17) with the following well
known representation based on local residuals and Galerkin orthogo-
nality, found e.g. in [15], [9], [6].

Claim 3.2 There holds

X(T ) − X̌(T ) =
∫ T

0
a(t, X̌(t))(ϕ̃(t) − Πϕ̃(t))dt, (3.21)

where ϕ̃(t) = ϕ̃(t;T ) solves the linear backward problem,

dϕ̃

dt
= −α(t)ϕ̃(t), ϕ̃(T ) = I,

α(t) =
∫ 1

0
(a′)T (t, sX(t) + (1 − s)X̌(t))ds,

(3.22)

(which depends on both the exact solution X and the approximate
solution X̌) and Πϕ̃ is the piecewise constant function

Πϕ̃(t) = ϕ̃(tn), ∀t ∈ (tn−1, tn].

A proof of the Claim is included in the end of this section. Equa-
tion (3.22) yields

ϕ̃(t) − Πϕ̃(t) = −
∫ t

tn

α(s)ϕ̃(s)ds = (αϕ̃)(ξn(t))(tn − t)

for some ξn(t) ∈ (t, tn). Therefore the representation (3.21) takes the
form

X(T ) − X̌(T ) =
N∑

n=1

∫ tn

tn−1

a(t, X̌(t)) · (αϕ̃)(ξn(t))(tn − t)dt. (3.23)

On the other hand, the estimate (3.17) can be written

X(T ) − X̌(T ) =
N∑

n=1

∫ tn

tn−1

{∫ 1

0
a′(t,X(tn−1)s + X(t)(1 − s))ds

}
× a(t,X)(t − tn−1) · vX(t)(t)dt,

(3.24)

which is clearly similar to (3.23). One difference is that in (3.23),
the matrix αT (ξn) is the averaged Jacobian of a′ between the exact
and approximate solutions X(t) and X̌(t), with difference X(t) −
X̌(t) = O(Δt); while in (3.24) we have the less averaged Jacobian of a′
between the approximate solution at time t and at tn−1, with smaller
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difference X(t)−X(tn−1) = O((Δt)2). A second difference, is that in
(3.23) the differential equation for ϕ̃ has a linear flux function based
on the averaged Jacobian α, while in (3.24) the function vX(t)(t) is the
solution of the differential equation (3.19)-(3.20) with the linear flux
based in the Jacobian a′(s,XX(t)(s)) along exact solutions, starting
at the approximate solution X(t).

The work [5] derives a different error representation, also based
on Galerkin orthogonality, which for (3.16) leads to a similar error
representation

X(T ) − X̌(T ) =
1
2

N∑
n=1

∫ tn

tn−1

ǎ(t) ·
∫ tn

t
(a′(s))T vX(s)(s)dsdt

+
1
2

N∑
n=1

∫ t

tn−1

(
a(s)ds · (ǎ′(t))T ϕ(t) + R(t)

)
dt

where

R = O((|X(t) − X̌(t)| + |vX(t)(t) − ϕ̄(t)|)3),
ǎ(s) ≡ a(s, X̌(s)), ǎ′(s) ≡ a′(s, X̌(s)),

and

ϕ̄i(tn) = ∂xiA(X̌(tn))ϕ̄(tn+1), ϕ̄i(T ) = ∂xig(X̌(T )).

Proof. Proof of Claim 3.2, as in [9,16]. Let ε ≡ X − X̌. Then

Lε ≡ ε′ − αT ε = X ′ − a(·,X) − (X̌ ′ − a(·, X̌))

= −(X̌ ′ − a(·, X̌)) ≡ R,
(3.25)

where the local residual R is a bounded measure on [0, T ]. The con-
struction (3.22) can then be written

L∗ϕ̃ = 0. (3.26)

Let (v,w) ≡ ∫ T
0 v(s) · w(s)ds and integrate by parts to obtain

(Lε, ϕ̃) = (ε, L∗ϕ̃) + X(T ) − X̌(T ). (3.27)

On the other hand, there holds

(Lε, ϕ̃) = (R, ϕ̃), (3.28)

and the Galerkin orthogonality applied to (3.16) yields

(R, ϕ̃) = (R, ϕ̃ − Πϕ̃) = (−a(t, X̌(t)), ϕ̃ − Πϕ̃), (3.29)

since ϕ̃(tn−1)−Πϕ̃(tn−1) = 0. Together (3.25)-(3.29) prove (3.21). �
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3. I. Babuška, A. Miller and M. Vogelius, Adaptive methods and error estima-
tion for elliptic problems of structural mechanics, in Adaptive computational
methods for partial differential equations ( SIAM, Philadelphia, Pa., 1983)
57-73.

4. R. Becker and R. Rannacher, A feed-back approach to error control in finite
element methods: basic analysis and examples, East-West J. Numer. Math.,
4 (1996), no. 4, 237-264.

5. R. Becker and R. Rannacher, An optimal control approach to a posteriori
error estimation in finite element methods Acta Numerica, (2001), 1-102.
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11. W. Gröbner, Die Lie-Reihen und ihre Anwendungen, (VEB Deutscher Verlag
der Wissenschaften, Berlin, 1967).

12. E. Harrier, S.P. Norsett and G. Wanner, Solving Ordinary Differential Equa-
tions I, (Springer-Verlag, 1993).

13. P. Henrici, Discrete Variable Methods in Ordinary Differential Equations
(John Wiley & Sons, Inc., 1962).

14. N.J. Higham, Accuracy and Stability of Numerical Algorithms, (Society for
Industrial and Applied Mathematics, 1996).

15. C. Johnson, Error estimates and adaptive time-step control for a class of
one-step methods for stiff ordinary differential equations, SIAM J. Numer.
Anal., 25 (1988), 908-926.

16. C. Johnson and A. Szepessy, Adaptive finite element methods for conserva-
tion laws based on a posteriori error estimates, Comm. Pure Appl. Math.,
48 (1995), 199-234.

17. K.-S. Moon, A. Szepessy, R. Tempone and G.E. Zouraris, Hyperbolic differen-
tial equations and adaptive numerics, in Theory and numerics of differential
equations (Eds. J.F. Blowey, J.P. Coleman and A.W. Craig, Durham 2000,
Springer Verlag, 2001).



A variational principle for adaptive approximation of ODE 23

18. K.-S. Moon, A. Szepessy, R. Tempone and G.E. Zouraris, Convergence rates
for adaptive approximation of ordinary differential equations, Numer. Math.
(in press).

19. A. Prothero, Estimating the accuracy of numerical solutions to ordinary dif-
ferential equations, in Computational Techniques for Ordinary Differential
Equations, I. Gladwell and D.K. Sayers, eds. Academic Press, New York, 1980,
103-128.

20. T. Utumi, R. Takaki and T. Kawai, Optimal time step control for the nu-
merical solution of ordinary differential equations, SIAM J. Numer. Anal.,
33 (1996), 1644-1653.


